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Link-Privacy Preserving Graph Embedding Data Publication
with Adversarial Learning

Kainan Zhang, Zhi Tian, Zhipeng Cai, and Daehee Seo�

Abstract: The inefficient utilization of ubiquitous graph data with combinatorial structures necessitates graph

embedding methods, aiming at learning a continuous vector space for the graph, which is amenable to be adopted

in traditional machine learning algorithms in favor of vector representations. Graph embedding methods build an

important bridge between social network analysis and data analytics, as social networks naturally generate an

unprecedented volume of graph data continuously. Publishing social network data not only brings benefit for public

health, disaster response, commercial promotion, and many other applications, but also gives birth to threats that

jeopardize each individual’s privacy and security. Unfortunately, most existing works in publishing social graph

embedding data only focus on preserving social graph structure with less attention paid to the privacy issues

inherited from social networks. To be specific, attackers can infer the presence of a sensitive relationship between

two individuals by training a predictive model with the exposed social network embedding. In this paper, we propose

a novel link-privacy preserved graph embedding framework using adversarial learning, which can reduce adversary’s

prediction accuracy on sensitive links, while persevering sufficient non-sensitive information, such as graph topology

and node attributes in graph embedding. Extensive experiments are conducted to evaluate the proposed framework

using ground truth social network datasets.
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1 Introduction

Over the last decade, social networks have evolved
from being an entertaining extra to an integrated part of
nearly every aspect of people’s daily life. The shipment
of social media users in January 2020 was about 3.8
billion, with 7 percent increasing rate per year. Social
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networks not only make it convenient for users to interact
with their friends and family members, but also enable
third parties to utilize published social network data for
various purposes, such as promoting business, improving
healthcare, preventing pandemic and disasters, etc.[1–5],
taking advantage of powerful data mining and machine
learning techniques. On the other hand, combinatorial
structures of graph data limit the widespread adoption
of most machine learning methods, which only support
vector representations as an input. Graph embedding
methods have emerged as a promising solution to
transform graph data to a set of low-dimensional vectors,
such that a richer set of statistics and machine learning
approaches can be utilized[6].

Note that the set of low-dimensional representation
vectors need to preserve the graph topology and other
relevant information about graphs. Therefore, publishing
graph embedding data has to face the same dilemma as



Kainan Zhang et al.: Link-Privacy Preserving Graph Embedding Data Publication with Adversarial Learning 245

publishing original social network data, both of which
suffer from threatening user privacy seriously. Although
we can sanitize a social network by modifying the
original social graph structure in a precise way to retain
utility and preserve user privacy[7], implementing graph
embedding directly after traditional data anonymization
may not perform well, because this decoupled behavior
limits the expressiveness of the model. Furthermore, as
most influential graph embedding methods concern both
local neighborhood structure and global graph topology,
substantial information about the edges of a removed
node/user can still be retrieved from the embedding
vectors of the remaining adjacent nodes[8]. Recently,
differential privacy is introduced to graph embedding,
which intends to make no statistical difference on the
output of the released graph embedding matrix after the
removal or addition of an edge in the original graph.
However, the sensitivity of multiple-dimensional graph
data is so high, such that it may lead to poor utility
with extra computation cost. Therefore, it is worth to
discover a balanced trade-off between sharing social
graph embedding and compromising user privacy.

In this paper, we address a practical issue named
celebrity privacy, which refers to the right of celebrities
and public figures to withhold the information that they
are unwilling to disclose to the public[9]. Different
from the privacy of the general public, celebrity privacy
is usually challenged by the press for commercial
purposes or the fans for personal interests. Moreover,
because a celebrity usually has a wider social circle, it
is easier to predict more private information through
inference attacks. Do Chinese basketball player Yao
Ming and England football player David Beckham know
each other? The answer is an easy yes, as long as
we know that both of them were invited by Britain’s
Prince William to attend a Wild-Aid campaign[10]. This
privacy issue can be generalized as how to preserve
relationship information among some users who have
extensive and strong relationships in a social network
graph. Although simply deleting a relationship link
between two users can make the first-order relationship
irrelevant, high-order information (i.e., common friends
and attributes) will force the embedding of these
sensitive users to be closely related to each other and
adversaries can still predict the relationship with high
accuracy through machine learning techniques. Privacy
customization is another challenge for this issue that the
celebrity or data owner may only want to protect partial

relationship-links. To overcome the aforementioned
problems and reduce the risk concern about privacy
disclosure in social network data publishing, we propose
a Link-Privacy Preserving Graph Embedding (LPPGE)
framework using adversarial learning with two types of
prepossessing methods. The main contributions of our
work can be summarized as follows:
� We investigate a practical privacy issue named

celebrity privacy based on some graph embedding
methods, which are widely used for social network
analysis, and our proposed work can protect the specified
links upon user requirements.
� Our framework integrates both graph embedding

and social network privacy protection into an end-to-end
process flow through an adversarial training based graph
autoencoder.
� Extensive experiments on ground truth social

network data demonstrate the performance of our
framework in privacy protection compared with other
existing methods.

2 Related Work

2.1 Graph embedding methods

As the first unsupervised graph representation learning
model, DeepWalk[11] traverses a network via random
walk for sampled vertex sequences leveraging skip-
gram[12] to learn the latent vertex representation.
Based on the architecture of DeepWalk, Node2Vec[13]

optimizes the random walk strategy for vertex
sampling by discovering both structural equivalence and
homophily of the graph. LINE[14] defines two objective
functions (i.e., first-order proximity and second-order
proximity) to preserve both the local and global network
structures by minimizing the difference between the
input and embedding distributions. It is suitable for
directed and/or weighted information networks. As an
extension of LINE, SDNE[15] uses an autoencoder to
optimize two proximity functions simultaneously and
is robust to sparse networks. Not only considering
graph structures, GAE[16] uses Graph Convolutional
Networks (GCNs) to encode nodes in a graph and
improves performance by incorporating node features.
Further works[17, 18] prove that GAEs can be successfully
used for link prediction and recommendation systems.
Although these prior graph embedding methods have
been making good progress in different fields, less
consideration is given to the privacy issue in graph
embedding publishing.
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2.2 Link privacy preservation in social networks

With the investigation of Online Social Networks
(OSNs) diving deeper, more concerns about users’
privacy have been rising. Korolova et al.[19] showed
that attackers can piece together the link structure of a
global network by only bribing several users and their
neighborhood information. Ying and Wu[20] investigated
the performance of edge randomization on protecting the
privacy of sensitive links and showed that attackers can
enhance the link prediction accuracy via node proximity
measures. Fire et al.[21] reconstructed the removed links
by training a link prediction classifier with a small
amount of training data. Fard and Wang[22] proposed
a structure-aware randomization scheme that hides a
sensitive link with less distortion in a directed graph.
Considering the dependence between utility/public
attributes, private/public attributes, and link information,
Cai et al.[23] developed a collective method to sanitize
social networks against inference attacks on user profile
and friendship relations. While the above works have
achieved some decent trade-offs between data utility
and privacy, none of them integrates its technology with
graph embedding which is an effective and efficient way
in graph analysis. Close to our work, DPNE[24] is the
first work on preserving differential privacy in network
embedding, and PPGD[25] develops a differentially
private perturbed gradient descent method for matrix-
factorization based graph embedding matrix sharing.
Although differential privacy is considered as the gold
standard of rigorous privacy, it cannot guarantee the
protective effect against the aforementioned problems.
Moreover, the performances of DPNE and PPGD in
graph representation are also limited by the matrix
factorization based methods.

3 Problem Statement

We firstly introduce the definitions to state our problem
as follows.

Social network: We model a social network as an
undirected graph G D .V;E;X/, consisting of a set of
users V, friendship-link set E , and user-attribute set X.
A is the adjacency matrix corresponding to the structure
of graph G. If e.i; j / 2 E (i.e., users ui and uj are
friends), then Aij D 1, otherwise Aij D 0.

As we are interested in protecting the celebrity users,
the sensitive user is defined as follows.

Sensitive user: Given a social network G D
.V, E, X/ and �, if user ui 2 V and the node degree
of ui > �, ui is a sensitive user. The value of � is

pre-defined by the data owner, which is usually larger
than the average degree of graph G.

Sensitive link: Any pair of sensitive users ui and uj

in social network G, where e.i; j / 2 E is a candidate
sensitive link. The candidate sensitive link set is defined
as CS. The data owner can customize the set of actual
sensitive links S � CS. Links in E n CS are considered
as non-sensitive links.

Graph embedding is generally used for a variety of
machine learning tasks, such as node classification and
link prediction. The ultimate goal of our method is
to publish a link-privacy preserving graph embedding
vectors without sacrificing data utility/usability. In the
following, we define data utility and link-privacy in our
LPPGE.

Privacy: We define privacy as the prediction accuracy
for the set of sensitive links S by a classifier C1, which
is trained by graph embedding to predict links in a social
network graph.

Utility: We define utility as the amount of information
to be preserved in the graph embedding from an original
graph G, which is measured by the non-sensitive link
classification accuracy using classifier C1, and the node
classification accuracy using classifier C2.

Thus, our proposed method is expected to derive a
privacy-preserving graph embedding, that can achieve
the desired privacy-utility trade-off between privacy and
utility.

4 Proposed Framework

We design the LPPGE framework based on Graph Auto-
Encoder (GAE)[16], shown as Fig. 1, which makes use
of graph structure A and node content X to learn a latent
representation Z, and then reconstructs OA from Z. In
the probabilistic setting of GAE, the encoder is defined
by a posterior q.ZjA;X/; where H i is the matrix of i-th
hidden layer, and the decoder is defined by a generative
distribution p.AjZ/.

We also utilize a supervised learning mechanism in

Fig. 1 GAE with graph convolutional networks.
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Adversarial Auto-Encoder (AAE)[26] to achieve privacy
protection. Classical AAE forces the latent code to match
the previous distribution through the adversarial training
module, which distinguishes whether the current latent
code zi 2 Z comes from the encoder or the previous
distribution. While in supervised AAE, shown as Fig. 2,
a label vector zp is provided to the decoder along with
the latent code zi to reconstruct the information. The
encoder must disentangle some information from zi to
make zi obey the previous distribution, while the decoder
can gain the label information from Zp, so that the
label information can be disentangled from zi during
the reconstruction.

4.1 Prepossessing

As shown in Fig. 3, there are two prepossessing steps
before applying the adversarial learning scheme.

First, we delete all the sensitive links in the original

Fig. 2 Supervised AAE.

graph G to obtain a modified graph Gtrain as the input
of the training process to avoid computing sensitive link
prediction loss during reconstruction, which can remove
the first-order sensitive link information from the graph
embedding.

Second, a privacy embedding is generated via another
privacy graph Gpriv. Because we want to exclude the
private information in the graph embedding, a privacy
label that represents that information explicitly should
be provided to the decoder. However, each embedding
vector is a representation of each node, not each link,
then how can we add a privacy label on each node
to include the link information is a challenge. Here,
different from the independent one-hot label information
in supervised AAE, our private information is located
in a pair of nodes’ embedding vectors (i.e., a link
is determined by two nodes’ labels). Note that the
private information is not only the direct sensitive link
between sensitive users, but also includes the high-order
information of the sensitive users (e.g., mutual friends
and user profiles), which can be used to infer the first-
order friendship. Therefore, instead of deleting all the
non-sensitive links in G, we develop two methods to
generate the privacy graph Gpriv separately:

(1) Trimming method: We define a radius R, which
is the minimum graph eccentricity of a sensitive user
as the central point, and only keep the links within R
in Gpriv (e.g., when R D 1, only the links that connect
sensitive users will be kept; when R D 2, only the links
that connect sensitive users or their neighbors will be

Fig. 3 Graph prepossessing. The red nodes are sensitive users (���DDD 4) and the blue ones are non-sensitive users. In the original
graph, the dotted line is the sensitive link which is deleted in the training graph. In the Privacy Graph 1 (PG1), two links out of
radius (R DDD 1) are deleted. In the Privacy Graph 2 (PG2), two links are added between sensitive and non-sensitive users. The
privacy embedding will be generated from either privacy graph.



248 Tsinghua Science and Technology, April 2022, 27(2): 244–256

kept).
(2) Addition method: To enhance relationship

between sensitive users, we add M links in G by
Algorithm 1. In Step 2 of Algorithm 1, We set an upper-
bound U for the number of links to be distributed near
each sensitive link se.i; j / based on the node degrees
of its associated sensitive users ui and uj . Because we
consider higher degree users as more sensitive, a stronger
relationship needs to be built between them. In Steps 3
and 4 of Algorithm 1, we connect uj with ui ’s friends
conditionally, so that more private information can be
embedded into the privacy graph embedding framework.

At last, we compute the privacy graph embedding
Zp of Gpriv generated from either method, and use it
as a privacy label which describes the relationship of
sensitive users precisely.

4.2 Encoder model

Based on the design of GAE and AAE, LPPGE consists
of an encoder, a decoder, and a discriminator, which
is shown in Fig. 4. The encoder involves GCNs which
extends the operation of convolution to graph data in the
spectral domain, and learns a layer-wise transformation
by spectral convolution function,

Z.lC1/
D f .Z.l/;AjW.l// (1)

where Z.l/ is the input for convolution, Z.lC1/ is the
output after convolution, and W.l/ is the weight matrix

Algorithm 1 Generate privacy graph by addition method
Input: G D (V, E, X): original graph

SE: sensitive links in G
N : number of SE
M : number of links to be added
D: average node degree of sensitive users
d.i/: node degree of user ui 2 V
se.i; j /: sensitive link between users ui and uj

Output: privacy graph Gpriv

1: for se.i; j / 2 SE do
2: Compute the upper-bound, U D M

N
�

d.i/Cd.j /
2D

3: if 9 ui ’s friend ux who is 2 hops away from uj without
passing ui then

4: Link ux to uj

if the number of new links added for se.i; j / 6 U then
find next ux

else
break

end if-else
5: end if
6: end for
7: return the modified G as the privacy graph Gpriv

Fig. 4 Architecture of the adversarial learning in LPPGE.

of l-th layer to be learned during training.
We have Z0

D X 2 Rn�m (n nodes and m features)
for our problem. The symmetrically normalized graph
Laplacian is applied in f .�/ as

f .Z.l/;AjW.l// D �. QD�
1
2 QA QD�

1
2 Z.l/W.l// (2)

where QA D A C I (I is the identity matrix of A) and
QDi i D

P
j
QAij (i.e., the diagonal node degree matrix of

QA), and � is an activation function.
In LPPGE, we use a 2-layer GCN to extract latent

code Z0 from graph Gtrain. The activation function of
the first layer is Relu.�/ and the second layer is a
linear function. In order to disentangle the private
information from latent code Z0, we apply a privacy
embedding on Z0 before feeding it to the decoder. In
this way, the encoder learns a compressed Z0, which
excludes the private information, but is sufficient for
the decoder to reconstruct the graph data because of
merging privacy label encoding. Although a lower-
dimensional Z0 can extrude more private information,
it will also lose some utility information to reconstruct
the graph. To moderate the performance decrements,
we use the method presented by Li et al.[27], which
mapped the low dimensional representation Z0 to a
higher dimensional Z via a fully connected layer to
restore the utility information. Then we can concatenate
the privacy embedding with Z to obtain Z+ as the input
of the decoder.

4.3 Decoder model

Because the final embedding result should be able to
reconstruct Gtrain with adjacency matrix (structure) A
and content information X, there are two modules in
the decoder. The first module reconstructs an adjacency
matrix OA via the inner product of embedding matrix
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Z+ as
OA D �..Z+/.Z+/T/ (3)

where �.�/ is the logistic sigmoid function.
The cross-entropy loss between OA and A would be

minimized as the loss for link prediction,

Llink D �
1

N 2

nX
iD1

nX
jD1

Aij log. OAij / (4)

where Aij and OAij are the corresponding elements of A
and OA, respectively.

The second module is a category classifier, which
decodes Z+ using a soft-max function Oyi D softmax.zCi /
and computes the cross-entropy loss between the one-hot
label yi of each user. The loss function is defined as

Llabel D �
1

N

nX
iD1

yi log.Oyi / (5)

Thus the total loss of LPPGE is the combination of
the link prediction loss and the category classification
loss,

Lrecon D Llink C ˛Llabel (6)

where ˛ is a trade-off parameter between the link
prediction loss and the category classification loss.

4.4 Discriminator model

The discriminator consists of two fully connected layers.
It will be trained to distinguish whether a latent code is
from Gaussian distribution (positive) or from the encoder
of LPPGE (negative). We optimize the discriminator by
minimizing the following loss:

Ldc D � log.D.x// � log.1 �D.z0i // (7)

where D.x/ is the discriminator’s estimation of the
probability that real sample x is from the Gaussian
distribution, and D.z0i / is the discriminator’s estimation
of the probability that a latent code z0i is real. During the
optimization, the graph embedding Z is regularized to
Gaussian distribution.

4.5 Algorithm explanation

We summarize the proposed framework in Algorithm 2.
The framework has two stages: prepossessing (Steps 1

Algorithm 2 Link-privacy preserving graph embedding
Input: G D (V, E, X): original graph

T : number of training iterations
d : dimension of the final graph embedding Z

Output: Z 2 Rn�d

1: Generate the training graph Gtrain and the privacy graph Gpriv

from G
2: Generate the privacy embedding Zp from Gtrain

3: for iteration D 0 to T do
4: Generate the latent code Z0 of Gtrain by Eq. (2)
5: Map Z0 to the higher dimensional Z
6: Concatenate Zp with Z as the input of the decoder
7: Update the encoder and decoder by minimizing Eq. (6)
8: Update the discriminator by minimizing Eq. (7)
9: Update the encoder by maximizing Eq. (7)

10: end for
11: return Z 2 Rn�d

and 2) and training (Steps 3 to 10). In Step 8, we
update the discriminator to tell if the input is from a
positive sample or the graph encoder. In Step 9, the
encoder is updated to confuse the discriminator. These
two steps can be integrated as minmaxLdc in Eq. (7).
After T epochs’ training, we return the final link-privacy
preserved graph embedding Z 2 Rn�d in Step 11.

5 Experiment

In our experiments, we employ four different datasets
summarized in Table 1. The first two datasets are
Cora and Citeseer used in Ref. [16], and both of
them consist of scientific publications as nodes and
citation relationships as edges. The features are unique
words in each document. The other two datasets are
two ground truth social network datasets: Yale and
Rochester, which are composed of Facebook users from
Yale University and Rochester University.

By default, we assume the number of the sensitive
links is around 1% of the total links, then we find
the corresponding � to define the sensitive users and
sensitive links in each dataset. For the addition method,
we set the target number M to be 10% of the total links
and the actual number is around 9%.

We compare LPPGE with the following baselines:

Table 1 The employed graph datasets and the parameters of each dataset. Per* is the percentage of the sensitive links in the
graph. The actual number of added Links (addition method) is less than M because of the graph structure and upper-bound U
round-down for each sensitive link.

Dataset #Nodes #Links #Features � #Sen Links Per� (%) Radius R ˛ M #Added Links
Cora 2708 5429 1433 13 53 0.97 2 3 470 434

Citeseer 3327 4732 3703 16 62 1.31 1 3 40 000 39 200
Yale 8758 405 450 7 320 2800 0.69 2 2 40 000 39 200

Rochester 4563 167 653 7 220 1446 0.86 2 2 16 000 15 906
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(1) GAE is an autoencoder-based model for
unsupervised learning on graph-structured data.

(2) GAE RM uses the same framework as GAE, but
deletes the defined sensitive links.

(3) DPNE is a differentially private network
embedding method based on DeepWalk as matrix
factorization. It applies the objective perturbation
approach by adding noise in the objective function of
matrix factorization to learn a representation satisfying
differential privacy.

(4) Non-Privacy Graph Embedding (NPGE) uses
the same architecture as LPPGE, but the privacy
embedding of NPGE is generated from the graph that
only has sensitive links.

For LPPGE, we implement LPPGE(T) using the
trimming method to generate the privacy graph and
LPPGE(A) using the addition method. We set the
embedding size of DPNE as 64 dimensions with a
relatively large privacy budget � D 1 to maximize the
defined utility for all the datasets. For the rest of the
methods, we embed a graph into a 16-dimensional
space for the Cora and Citeseer datasets, while a 32-
dimensional space for the Yale and Rochester datasets. In
LPPGE, we also set hidden code z0 to be a 4-dimensional
vector for all the datasets. The performance of LPPGE is
evaluated on two aspects which are link prediction and
node classification.

5.1 Link prediction

We train a Multi-Layer Perceptron (MLP) classifier as
the attacker, which tries to predict the sensitive links in
a social network by the graph embedding. The input of
the MLP is the embedding vectors of two users in the
social network and the output is the relationship between
these two users. We assume 10% of non-sensitive links
are exposed to the attacker as the positive samples in the
training set, and the same number of negative samples
are collected by randomly selecting unconnected users.

We present the results in the Macro F1-score of the non-
sensitive links and the sensitive links separately. We
conduct each experiment 10 times and show the mean
values with standard errors as the final scores. The details
of the experiment results on link prediction are shown in
Table 2.

The performance of GAE RM shows that even if the
sensitive links are deleted, the attacker is still able to
predict its existence precisely according to the high-order
information. Although DPNE has the lowest prediction
accuracy for sensitive links, its prediction accuracy of
non-sensitive links is much lower than other methods.
It can be seen DPNE costs a significant amount of
utility information in its embedding to preserve privacy,
and differential privacy is susceptible to inference
attacks. The result of NPGE shows that merely extruding
sensitive links in graph embedding is not enough to
protect sensitive information. Moreover, it should be
noted that as sensitive users have large degrees, in the
traditional graph embedding methods, sensitive links are
easier to be predicted than non-sensitive links, which
can be observed in Table 2. It is also worth mentioning
that both LPPGE(T) and LPPGE(A) can reduce sensitive
accuracy much lower than non-sensitive ones on the
Cora and Citeseer datasets. For the Yale and Rochester
datasets, LPPGE(A) can reduce sensitive accuracy by
about 10% with only losing 5% utility accuracy on
non-sensitive links. These facts prove that LPPGE is
capable of reducing the attackers’ prediction accuracy
of sensitive links, while slightly sacrificing the utility
of embedding to reconstruct the non-sensitive part of a
graph.

5.2 Node classification

We apply two classifiers, MLP and Support Vector
Machine (SVM), to predict user category labels through
graph embedding. For all the datasets, 5-fold cross-
validation is used to ensure the model’s reliability and

Table 2 Result of link prediction.
(%)

Approach
Dataset

Cora Citeseer Yale Rochester
Non-sensitive Sensitive Non-sensitive Sensitive Non-sensitive Sensitive Non-sensitive Sensitive

GAE 81.8˙ 1.0 85.6˙ 3.5 83.7˙ 1.4 92.1˙ 3.4 84.4˙ 1.4 90.0˙ 1.2 85.1˙ 0.4 90.7˙ 1.1
GAE RM 84.6˙ 0.7 83.3˙ 3.0 87.5˙ 1.2 91.8˙ 3.3 84.2˙ 0.2 89.6˙ 0.8 84.7˙ 0.3 88.5˙ 0.7

DPNE 55.3˙ 1.3 67.3˙ 4.2 52.7˙ 1.3 67.5˙ 5.2 48.8˙ 10 52.5˙ 10 60.6˙ 1.2 75.9˙ 3.9
NPGE 85.1˙ 1.4 89.2˙ 2.8 88.9˙ 1.5 92.6˙ 2.6 81.7˙ 0.1 85.2˙ 0.6 83.5˙ 0.4 88.0˙ 1.2

LPPGE(T) 81.5˙ 1.1 75.8˙ 3.9 85.6˙ 1.6 81.0˙ 3.9 81.2˙ 0.2 83.1˙ 0.5 82.2˙ 0.3 83.1˙ 0.7
LPPGE(A) 80.5˙ 1.2 72.3˙ 3.1 84.1˙ 1.2 77.0˙ 3.5 80.2˙ 0.2 80.7˙ 1.0 80.4˙ 0.3 81.3˙ 1.2
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effectiveness, and the results are given as Macro F1-
score in Table 3.

Because DPNE only embeds graph structure
information without node attributes in the embedding,
even though with a higher dimensional embedding space,
the performance is still poor on the classification task
and the graph embedding utility is low. Comparing
LPPGE with GAE and GAE RM, the classifiers have
similar accuracy in predicting node’s class labels on
all the datasets, which indicates LPPGE can maintain
accurate cluster information at the same level with
privacy protection.

5.3 Trade-off between utility and privacy

To demonstrate the trade-off between utility and privacy,
we compute the ratio of utility (i.e., the sum of the
prediction accuracy of non-sensitive links and node
classification) to privacy (i.e., the prediction accuracy
of sensitive links), that is Utility/Priracy. As shown in
Fig. 5, both LPPGE(T) and LPPGE(A) can achieve
better performance on the aspects of privacy protection
and data usability preservation. Due to space limitation,
the experiment results for link prediction and node
classification are presented in the Appendix with
Table A1 listing all notations used in the paper.

5.4 Graph visualization

We visualize the Cora and Yale datasets in 2-dimensional
space by applying the t-SNE algorithm to the learned

Table 3 Result of node classification. Dataset(*) indicates
the number of the categories in each dataset.

(%)

Approach
Cora(7) Citeseer(6) Yale(6) Rochester(2)

MLP SVM MLP SVM MLP SVM MLP SVM
GAE 74.0 71.5 58.6 54.0 85.8 87.0 84.8 84.1

GAE RM 75.1 71.3 63.5 55.5 85.1 86.3 85.8 84.4
DPNE 14.5 6.63 18.6 8.32 24.2 4.66 50.2 44.7
NPGE 72.4 68.0 69.0 64.1 78.9 77.6 84.1 80.0

LPPGE(T) 79.2 70.8 56.4 47.7 84.8 83.5 86.2 82.8
LPPGE(A) 73.9 71.8 66.9 62.3 84.0 83.3 86.4 83.6

Fig. 5 Evaluation of trade-off between utility and privacy.

embedding. The Cora dataset is partitioned by the
publication subject, and the Yale dataset is partitioned
by the user’s class year. Each subgroup is represented
in a different color. The results shown in Figs. 6 and 7
validate our assertions in the node classification section
through a meaningful layout.

5.5 Customization

In real-world situations, data owners may only need to
protect some specified relationships between sensitive
users based on their demands. Hence, we randomly
select 25%, 50%, and 75% links from pre-defined
sensitive links as the new sensitive links and conduct the
same Utility/Privacy evaluation to testify the scalability
of our model. The results for different scales shown in
Fig. 8 demonstrate that LPPGE can fulfill customized
requests for privacy protection. We present the link
prediction and node classification results of different
customized datasets in Tables A2–A9 in the Appendix.

6 Conclusion and Future Work
In this paper, we investigate a practical privacy issue
in social graph embedding and propose a novel graph
embedding framework. By utilizing graph autoencoder
and adversarial learning, we can regularize the latent
representation to follow a prior distribution and extrude
sensitive information from graph embedding. The
experiment results demonstrate that our framework can
achieve the desired trade-off between privacy protection
and data usability comparing with other non-privacy
preserving methods. In the future, we would like
to further explore more applications for dynamic
graph embedding as a new trending research direction.
Adversaries may predict or restore sensitive information
by capturing the dynamism of graph sequence[28], which
is a big challenge in data privacy and security.
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Table 5������Table A2 Result of link prediction for Cora dataset.
(%)

Approach
25% 50% 75% 100%

Non-sensitive Sensitive Non-sensitive Sensitive Non-sensitive Sensitive Non-sensitive Sensitive
GAE 82.2˙ 1.7 89.9˙ 4.6 82.0˙ 1.2 86.3˙ 3.4 82.4˙ 1.8 85.1˙ 4.0 81.8˙ 1.0 85.6˙ 3.5

GAE RM 80.8˙ 1.0 82.1˙ 6.9 84.5˙ 1.3 81.3˙ 4.8 85.0˙ 1.1 84.5˙ 4.1 84.6˙ 0.7 83.3˙ 3.0
DPNE 54.6˙ 1.3 65.7˙ 6.1 55.0˙ 1.7 63.7˙ 8.1 53.8˙ 1.7 65.9˙ 4.3 55.3˙ 1.3 67.3˙ 4.2
NPGE 86.4˙ 1.4 85.7˙ 5.2 86.3˙ 1.0 82.6˙ 3.9 84.3˙ 2.4 85.2˙ 3.4 85.1˙ 1.4 89.2˙ 2.8

LPPGE(T) 81.9˙ 1.8 81.1˙ 4.3 82.4˙ 1.1 77.7˙ 3.9 82.4˙ 1.3 78.1˙ 3.2 81.5˙ 1.1 75.8˙ 3.9
LPPGE(A) 80.7˙ 1.0 73.0˙ 5.1 80.7˙ 0.9 64.6˙ 4.7 81.2˙ 1.2 72.6˙ 3.4 80.5˙ 1.2 72.3˙ 3.1

Note: 25%, 50%, 75%, and 100% indicate the percentage of pre-defined sensitive links for customization, same as in Tables A3–A9.

Table 6������Table A3 Result of link prediction for Citeseer dataset.
(%)

Approach
25% 50% 75% 100%

Non-sensitive Sensitive Non-sensitive Sensitive Non-sensitive Sensitive Non-sensitive Sensitive
GAE 84.9˙ 1.2 94.3˙ 3.2 84.8˙ 2.6 93.7˙ 2.1 85.0˙ 1.7 91.3˙ 3.6 83.7˙ 1.4 92.1˙ 3.4

GAE RM 85.0˙ 1.6 97.0˙ 4.4 86.0˙ 1.8 87.2˙ 6.0 86.6˙ 0.9 92.6˙ 2.6 87.5˙ 1.2 91.8˙ 3.3
DPNE 52.9˙ 1.7 64.0˙ 6.4 52.2˙ 1.5 62.2˙ 6.0 53.4˙ 1.6 64.0˙ 4.4 52.7˙ 1.3 67.5˙ 5.2
NPGE 87.5˙ 0.9 89.3˙ 6.5 86.9˙ 1.0 87.1˙ 4.4 88.5˙ 0.6 88.7˙ 2.5 88.9˙ 1.5 92.6˙ 2.6

LPPGE(T) 87.9˙ 1.6 82.6˙ 6.1 85.8˙ 1.2 75.8˙ 4.9 84.0˙ 0.6 84.0˙ 4.3 85.6˙ 1.6 81.0˙ 3.9
LPPGE(A) 84.8˙ 1.2 86.0˙ 6.7 82.1˙ 3.6 80.3˙ 4.5 83.9˙ 1.4 77.1˙ 3.7 84.1˙ 1.2 77.0˙ 3.5

Table 7������Table A4 Result of link prediction for Yale dataset.
(%)

Approach
25% 50% 75% 100%

Non-sensitive Sensitive Non-sensitive Sensitive Non-sensitive Sensitive Non-sensitive Sensitive
GAE 84.6˙ 0.3 89.7˙ 0.7 84.5˙ 0.4 89.1˙ 1.2 84.5˙ 0.5 89.9˙ 1.1 84.4˙ 1.4 90.0˙ 1.2

GAE RM 83.9˙ 0.3 88.1˙ 0.1 83.9˙ 0.3 86.9˙ 1.0 84.1˙ 0.3 87.7˙ 0.5 84.2˙ 0.2 89.6˙ 0.8
DPNE 39.9˙ 10.4 41.2˙ 12.9 45.7˙ 11.4 47.8˙ 13.5 44.3˙ 12.4 46.0˙ 14.6 48.8˙ 10 52.5˙ 10.2
NPGE 82.0˙ 0.3 85.8˙ 1.0 82.2˙ 0.3 86.4˙ 0.6 82.3˙ 0.4 86.5˙ 0.5 81.7˙ 0.1 85.2˙ 0.6

LPPGE(T) 81.5˙ 0.2 84.5˙ 0.5 80.9˙ 0.4 82.5˙ 0.1 81.4˙ 0.2 82.8˙ 0.6 81.2˙ 0.2 83.1˙ 0.5
LPPGE(A) 80.1˙ 0.2 83.6˙ 0.9 80.2˙ 0.2 82.4˙ 1.0 78.1˙ 0.2 78.4˙ 0.9 80.2˙ 0.2 80.7˙ 1.0

Table 8������Table A5 Result of link prediction for Rochester dataset.
(%)

Approach
25% 50% 75% 100%

Non-sensitive Sensitive Non-sensitive Sensitive Non-sensitive Sensitive Non-sensitive Sensitive
GAE 84.9˙ 0.2 89.7˙ 1.0 85.2˙ 0.3 90.3˙ 1.1 85.1˙ 0.3 90.1˙ 1.0 85.1˙ 0.4 90.7˙ 1.1

GAE RM 84.7˙ 0.5 88.2˙ 1.6 84.8˙ 0.3 89.1˙ 1.2 84.6˙ 0.4 89.2˙ 1.3 84.7˙ 0.3 88.5˙ 0.7
DPNE 54.0˙ 12.7 65.2˙ 18.5 55.8˙ 11.9 67.9˙ 18.0 58.5˙ 8.9 71.2˙ 13.3 60.6˙ 1.2 75.9˙ 3.9
NPGE 83.5˙ 0.3 88.3˙ 1.1 83.4˙ 0.3 88.1˙ 0.7 83.1˙ 0.4 88.7˙ 1.1 83.5˙ 0.4 88.0˙ 1.2

LPPGE(T) 82.1˙ 0.3 81.9˙ 0.9 82.1˙ 0.2 84.4˙ 0.8 81.8˙ 0.4 83.2˙ 0.8 82.2˙ 0.3 83.1˙ 0.7
LPPGE(A) 79.2˙ 0.1 75.4˙ 1.5 78.7˙ 0.5 76.3˙ 1.4 78.4˙ 0.5 75.1˙ 1.4 80.4˙ 0.3 81.3˙ 1.2

Table 9������Table A6 Result of node classification for Cora dataset
(7 categories).

(%)

Approach
25% 50% 75% 100%

MLP SVM MLP SVM MLP SVM MLP SVM
GAE 73.7 71.5 74.3 71.5 73.1 71.5 74.0 71.5

GAE RM 72.7 70.1 78.2 73.6 76.3 75.1 75.1 71.3
DPNE 15.2 6.63 14.9 6.63 14.8 6.63 14.5 6.63
NPGE 69.3 60.2 73.0 61.6 73.9 63.9 72.4 68.0

LPPGE(T) 73.6 59.6 75.8 69.8 73.7 54.8 79.2 70.8
LPPGE(A) 72.0 66.9 71.0 61.7 70.7 62.1 73.9 71.8

Table 10������Table A7 Result of node classification for Citeseer dataset (6
categories).

(%)

Approach
25% 50% 75% 100%

MLP SVM MLP SVM MLP SVM MLP SVM
GAE 59.2 54.1 61.2 54.0 58.9 54.1 58.6 54.0

GAE RM 58.2 51.9 58.7 54.1 51.9 48.4 63.5 55.5
DPNE 16.7 8.32 17.5 8.32 17.3 8.32 18.6 8.32
NPGE 64.7 56.0 67.3 60.5 67.9 62.6 69.0 64.1

LPPGE(T) 64.1 55.0 66.5 60.7 64.6 57.3 56.4 47.7
LPPGE(A) 60.3 54.7 59.2 57.7 59.6 55.6 66.9 62.3
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Table 11������Table A8 Result of node classification for Yale dataset
(6 categories).

(%)

Approach
25% 50% 75% 100%

MLP SVM MLP SVM MLP SVM MLP SVM
GAE 86.5 87.1 86.3 87.1 86.1 87.0 85.8 87.0

GAE RM 85.2 86.7 85.1 85.8 84.3 86.9 85.1 86.3
DPNE 24.5 4.66 24.6 4.66 24.2 4.66 24.2 4.66
NPGE 83.1 81.4 83.9 82.5 82.8 82.0 78.9 77.6

LPPGE(T) 83.8 82.8 83.8 81.8 84.6 82.8 84.8 83.5
LPPGE(A) 85.4 84.7 83.9 83.0 82.9 81.2 84.0 83.3

Table 12������Table A9 Result of node classification for Rochester dataset
(3 categories).

(%)

Approach
25% 50% 75% 100%

MLP SVM MLP SVM MLP SVM MLP SVM
GAE 84.6 84.1 85.0 84.1 84.6 84.1 84.4 84.1

GAE RM 85.4 83.4 84.1 83.6 85.1 83.5 85.2 84.2
DPNE 50.4 44.7 50.8 44.7 49.7 44.7 50.2 44.7
NPGE 83.7 81.6 85.0 79.9 85.3 82.6 84.1 80.0

LPPGE(T) 85.4 81.5 85.0 80.9 85.8 82.9 86.2 82.8
LPPGE(A) 83.7 79.7 85.1 79.0 85.1 82.0 86.4 83.6
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