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Abstract: The goal of image splicing localization is to detect the tampered area in an input image.
Deep learning models have shown good performance in such a task, but are generally unable to
detect the boundaries of the tampered area well. In this paper, we propose a novel deep learning
model for image splicing localization that not only considers local image features, but also extracts
global information of images by using a multi-scale guided learning strategy. In addition, the model
integrates spatial and channel self-attention mechanisms to focus on extracting important features
instead of restraining unimportant or noisy features. The proposed model is trained on the CASIA
v2.0 dataset, and its performance is tested on the CASIA v1.0, Columbia Uncompressed, and DSO-1
datasets. Experimental results show that, with the help of the multi-scale guided learning strategy
and self-attention mechanisms, the proposed model can locate the tampered area more effectively
than the state-of-the-art models.

Keywords: image splicing localization; multi-scale guided learning; image forensics; self-attention
mechanism

1. Introduction

With the development of image-editing tools, image forgery has become so easy
and low-cost that it is difficult for the human eye to distinguish traces of image forgery.
The most common methods of image tampering include image splicing, copy–move and
removal, and examples of these manipulations, as shown in Figure 1. The detection of
tampered images by splicing operation, as the focus of this work, is a procedure of copying
the selected regions from one image and then pasting them into another image. Previ-
ous splicing detection methods mainly emphasize the characteristics of image processing.
Some examples of such types of methods are Color Filter Array (CFA) [1], Photo Response
Non-Uniformity (PRNU) [2], and image residual analysis [3], to name only a few. Al-
though these methods are reliable for uncompressed images, they may fail to detect the
tampered areas of compressed images; moreover, it is time-consuming for them to extract
handcrafted features.

Convolutional neural networks (CNNs) have achieved excellent performance in vari-
ous computer vision tasks, such as object detection [4,5] and semantic segmentation [6,7].
Recently, CNNs have also been applied to image tampering detection and have shown
good performance in this task. Compared to traditional image processing methods, CNN-
based methods can automatically construct complex image features (i.e., handcrafted
features) during image processing. However, many CNN-based image splicing localiza-
tion methods [8–10] do not take global image information into consideration, making the
models prone to disturbance by the semantic information of the image content.
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Figure 1. The figure demonstrates three types of image manipulation, namely (a) splicing,
(b) copy–move, and (c) removal. The tampered images are on the top, and the authentic image
are on the bottom.

In this paper, we propose a novel deep learning architecture with a fully convolutional
network (FCN) to localize the tampered area of an image. This architecture incorporates
the multi-scale guided learning strategy and self-attention mechanisms. The multi-scale
guided learning strategy is employed to scale the tampering mask with different sizes,
and then calculate the binary classification loss in each feature extraction layer and feature
fusion layer. Our architecture uses self-attention mechanisms, including spatial and channel
self-attention mechanisms, for the purpose of promoting that the model pay more attention
to important features while restraining unimportant or noisy features. Our proposed
architecture adopts ResNet-50 [11] as the backbone, since it can extract more complex and
effective image features with fewer parameters compared to those of VGG-16 [12].

The rest of this paper is organized as follows: in Section 2, we briefly review the
related work; in Section 3, we describe the proposed model in detail. Section 4 provides
summaries of data preparation and implementation details, as well as the experimental
results obtained by compared methods. We conclude this work in Section 5.

2. Related Work

The image forensics community has a long history, throughout which many image
forgery detection algorithms have been developed. Based on the feature extraction method,
we can roughly divide exiting image splicing localization algorithms into two classes,
namely, traditional signal processing methods and deep learning methods, both of which
we briefly discuss below.

2.1. Signal Processing Methods

Earlier image forgery detection algorithms are mainly based on image processing
characteristics. In [13], the authors proposed a fine-grained analysis algorithm based on
CFA interpolation patterns, assuming that image splicing may cause CFA interpolation
discontinuities. Moreover, some researchers have used photo response non-uniformity
(PRNU) [14] or scale invariant feature transform (SIFT) [15] to localize the tampered area.
Although these algorithms are reliable for uncompressed images, they may fail to detect
compressed images. To solve this issue, some researchers [16] have exploited traces left
by JPEG compression to detect tampered areas, but this detection strategy may still fail on
other formats of compressed images. In summary, the signal processing methods can only
be applied under some specific circumstances.

2.2. Deep Learning Methods

Most splicing detection algorithms [17–19] based on CNNs can only deduce whether
a given image is tampered with but cannot localize the tampered area. Zhang et al. [20]
made a preliminary attempt to locate the tampering area, but their method can only detect
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some rough square areas. Bappy et al. [8] proposed a hybrid CNN-LSTM model to capture
the discriminative features in the boundaries between authentic and tampered regions, but
the model fails to recognize image blocks that are completely within the tampered area.
Salloum et al. [9] designed an FCN-based model that utilizes two output branches for multi-
task learning, one of which is employed to localize the tampered area, and the second of
which is used to localize the edge or boundary of the tampered area. Zhou et al. constructed
a two-stream Faster R-CNN network [10], where RGB stream is used to extract features
from the image and noise stream to discover the noise inconsistency between authentic
and tampered regions. Moreover, there also exist some tamper detection methods [21,22]
based on image similarity and semantic segmentation. However, the above deep learning
methods ignore the importance of global information and are prone to disturbance by the
semantic information of the image content.

3. Proposed Methods

In this section, we describe the details of our proposed network architecture, including
the method of fusing multi-scale features and implementing self-attention mechanisms.
This network architecture framework is shown in Figure 2. The rest of this section will
illustrate our method in detail.

Figure 2. The proposed network architecture. The input is an image with the size 128 × 128, and the
network outputs a tampered possibility map with the same size.

3.1. Network Architecture

Image splicing localization is similar to semantic segmentation, also making deep
image semantic features useful for this task. For this reason, the proposed model adopts
Resnet-50 as the backbone of the network to extract image features in each feature extraction
layer (i.e., Res-layer1, Res layer2, and Res-layer3). At the beginning, a 1 × 1 convolutional
layer is used to reduce the channels of feature maps, and then spatial and channel self-
attention is integrated into the network to make the network pay more attention to im-
portant features in the spatial and channel dimensions. After that, an upsampling layer
is employed to resize multi-scale feature maps to the size of the input image and concate-
nate them together. Finally, binary classification loss, including the seg_loss1, seg_loss2,
seg_loss3, and seg_loss4, is calculated for training the model.

3.2. Multi-Scale Guided Learning

Unlike the method proposed in [9], which only calculates the loss-of-feature fused
layer, our approach scales the tampering mask to the same size as those of the feature maps
in each feature extraction layer, and generates a tampered probability map with each of
its components ranging from 0 to 1. Here, 0 means authentic labeled pixel, and 1 means
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tampered labeled pixel. We regard the pixels with tampered probability higher than η
as positive samples and the pixels with tampered probability lower than µ as negative
samples. Otherwise, if a pixel is marked between µ and η, it is considered to be of an
intermediate value. Since regarding the pixels with an intermediate value as either positive
or negative samples may cause confusion, we ignore such pixels in the proposed method.

As such, each pixel in each feature extraction layer with respect to pixel label can be
calculated as:

Lseg =


α·P
(
xi; F′ j

)γ· log
(
1− P

(
xi; F′ j

))
i f yi < µ

β·(1− P
(
xi; F′ j

)γ
)·logP

(
xi; F′ j

)
i f yi < η

0 otherwise

(1)

with

α =
|Y+|

|Y+|+ |Y−| , β =
|Y−|

|Y+|+ |Y−| (2)

where Y+ and Y− denote the numbers of positive samples and negative samples in each
training batch, respectively. Therefore, Equation (1) is very different from focal loss [23]
in that α and β in Equation (1) change adaptively, according to the proportion of positive
and negative samples in each training batch. The focusing parameter γ is used to smoothly
adjust the rate of the decreasing weight of easy examples. The activation value and ground
truth tampered probability of pixel i are represented by xi and yi, respectively; P(xi) is the
standard sigmoid function; and F′ j denotes different feature extraction layers.

With the above specification, the segmentation loss function for our model can be
formulated as

Lseg_total =

J

∑
j=1

∑
|Ij|
i=1Lseg(xj

i ; F′ j) +∑
|I f use|
i=1 Lseg(x f use

i ; F′ f use) (3)

where xj
i is the activation value in each feature extraction layer F′ j, x f use

i is the value from
the feature fused layer F′ f use,

∣∣Ij
∣∣ is the number of pixels in each feature extraction layer

F′ j, and
∣∣∣I f use

∣∣∣ is the number of pixels in feature fusion layer F′ f use.
By accumulating the binary classification loss of multi-scale feature maps, we can

successfully activate the responses of different resolution feature maps to the corresponding
resolution tampering regions, and weaken the effect of image content information. Results
of ablation experiments show that this method can effectively accelerate the convergence
speed and obtain better segmentation results.

3.3. Self-Attention Mechanisms

The convolution neural network in the proposed model can construct new feature
maps from input feature maps, with the help of convolution kernels. After integrating
self-attention mechanisms, the network emphasizes important features in the spatial and
channel dimensions and discards those unimportant or noisy features. The spatial and
channel self-attention mechanisms we use in our network are the same as the ones in
CBAM [24]. The features that the spatial self-attention and the channel self-attention
obtained are fused with a simple addition operation, as will be described below.

Channel Self-attention. The input feature F obtained by the former convolutional
layer first passes through a channel attention module to obtain the weighted Mc(F) by the
following formula

Mc(F) = F·Mc + MLP(AvgPool(F)) (4)

with
Mc = σ(MLP(MaxPool(F))) (5)

where F is the input feature map, MaxPool and AvgPool are the global maximum pooling
layer and the global average pooling layer, respectively; MLP is a multilayer perceptron;
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σ is the sigmoid activation function; and Mc is the weight of channel features. Here, the
fusion method is element-wise multiplication.

Spatial Self-attention. The input feature F obtained by the former convolutional layer
passes through a spatial attention module to obtain the weights Ms(F). The calculation of
Ms(F) is as below

Ms(F) = F·Ms (6)

with
Ms = σ( f 7×7([MaxPool(F); AvgPool(F)] (7)

where F is the input feature map, MaxPool and AvgPool are the global maximum pooling
layer and the global average pooling layer, respectively; f 7×7 is a 7 × 7 size convolution
kernel; σ is the sigmoid activation function; and Ms is the weight of spatial features. The
fusion method is also element-wise multiplication.

4. Experiments

In this section, we illustrate the operation of dataset processing and the details of the
training process. Furthermore, we provide the experimental results from our method on
three common image manipulation datasets and compare them with those obtained by
state-of-the-art algorithms on the same datasets.

4.1. Data Preparation

We trained our model using CASIA v2.0 dataset, which contains 7491 authenticated
images and 5123 tampered images. The producers of the dataset did not save the mask
of the ground truth but encoded the name of the tampered picture in the name of source
pictures. Therefore, we used a simple and effective method to obtain the tampered area
mask as

ID = ||IT − IS || (8)

where IT and IS are the tampered image and source image, ID is the absolute difference of
the gray values between IT and IS. Here, 0 means that the pixel is labeled as “authentic”,
and 1 means that the pixel is labeled as “tampered”. For each pixel, we took the pixels
with ID higher than s for positive samples and the pixels with ID lower than s for negative
samples. The formula is given as below

Itruth =

{
1 ||IT − IS|| > s
0 otherwise

(9)

We discarded the image generated by symmetry, and some images in which the
tampered region boundary could not be approximately satisfied by the algorithm. Af-
ter screening, we only used 4465 tampered images. However, the number of tampered
image blocks was still not sufficient, so we performed a horizontal flip operation on the
tampered images.

4.2. Parameters Setting

Training of the networks was performed in Pytorch using stochastic gradient descent
(SGD) algorithm with a momentum of 0.9 and a weight decay of 0.0005, and the learning
rate was initially set to 0.003 and was multiplied by 0.95 after every training epoch. We
initialized the weights or parameters in our model with the weights pre-trained on the
ImageNet dataset. We firstly trained the model with Lseg_total , and then fine-tuned the
trained model with hard negative examples.

4.3. Performance Evaluation Metrics

We evaluated the performance of our model and some existing methods by using
the F1 and Matthews Correlation Coefficient (MCC) metrics, both of which are per-pixel
localization metrics.



Electronics 2022, 11, 1607 6 of 10

Both F1 and MCC metrics require a binary mask as input. We converted each output
into a binary mask based on a threshold (equal to 0.5 here), and then calculated the F1-socre
and MCC indicators by comparing the output binary mask with the corresponding ground
truth mask. The F1 score is defined as:

F1
(

Mout, Mgt
)
=

2TP
2TP + FN + FP

(10)

where Mout represents the binary mask of output and Mgt denotes the ground truth mask.
TP is known as the number of pixels which are correctly classified as spliced, TN as the
number of pixels which are correctly classified as authentic, FN as the number of pixels
which are incorrectly classified as authentic, and FP as the number of pixels which are
incorrectly classified as spliced. The MCC metric is defined as:

MCC
(

Mout, Mgt
)
=

TP× TN − FP× FN√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

(11)

4.4. Experimental Results

In this section, four image datasets were totally tested. They are CASIA v1.0, CASIA
v2.0, and Columbia Uncompressed and DSO-1 datasets, which are summarized in Table 1.
CASIA v2.0 was employed for training the proposed model and the other compared
models. This dataset has 5123 tampered images totally, including 1851 splicing images and
3272 copy–move images, which are more than the other datasets used for testing. The other
three datasets were used as testing datasets in order to evaluate the generalization ability
of the models trained on the CASIA v2.0. The CASIA v1.0 dataset contains 921 tampered
images, each sized at 384 × 256, using splicing and copy–move dataset manipulations. The
Columbia Uncompressed dataset focuses on the splicing manipulation of uncompressed
images with 180 tampered images. The ground truth masks of CASIA v1.0 are obtained by
thresholding the difference between tampered and original images, while the ground truth
masks of Columbia are provided by the producer. The DSO-1 dataset contains 100 spiced
images, including indoor and outdoor images, with the resolution of each image being
2048× 1536 pixels. These spiced images are created by adding one or more individuals to
the authentic images. The ground truth masks of DSO-1 are provided by the producer.

Table 1. Summaries of the datasets.

Sets Types Splicing Copy–Move Total

Training Set CASIA v2.0 1851 3272 5123

Testing Set
CASIA v1.0 463 458 921
Columbia 180 0 180

DSO-1 100 0 100

In order to compare performance, we investigated and evaluated our proposed method
and some other existing splicing localization algorithms, such as CNN-LSTM [8], MFCN [9],
DCT [25], BLK [16], EXIF-SC [26], SpliceRadar [26], and Noiseprint [26]. Here, CNN-LSTM
is a hybrid framework of CNN and long short-term memory (LSTM) cells, consisting of five
convolutional layers and an LSTM network with three stacked layers. MFCN is a multi-task
fully convolutional network, which uses two output branches for multi-task learning. DCT
is a passive method to detect digital image forgery by measuring its quality inconsistency of
blocking artifact. BLK was proposed to blindly extract the block artifact grids (BAGs) from
JPEG images and check abnormal BAGs routinely. EXIF-SC, SpliceRadar, and Noiseprint are
three non-end-to-end deep learning-based splice localization tools, which were proposed
recently and have shown good performance in image splice detection. We computed each
method’s average F1 and MCC scores on CASIA v1.0, Columbia Uncompressed and DSO-1
datasets, with the results illustrated in Table 2.
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Table 2. The average F1 scores and MCC metric of all methods on three test datasets.

Methods
CASIA v1.0 Columbia DSO-1

F1 Score MCC F1 Score MCC F1 Score MCC

DCT 0.3005 0.2516 0.5199 0.3256 0.4876 0.5317
BLK 0.2312 0.1769 0.5234 0.3278 0.3177 0.4151

CNN-LSTM 0.5011 0.5270 0.4916 0.5074 0.4223 0.5183
MFCN 0.5182 0.4935 0.6040 0.4645 0.4810 0.6128

EXIF-SC 0.6195 0.5817 0.5181 0.4512 0.5285 0.5028
SpliceRadar 0.5946 0.5397 0.4721 0.4199 0.4727 0.5429
Noiseprint 0.6003 0.5733 0.5218 0.4255 0.5085 0.6019
Our model 0.6457 0.5941 0.5386 0.4278 0.5187 0.5962

As shown in Table 2, we find that our model outperforms all the other compared
methods on CASIA v1.0 in terms of both F1 score and MCC. Specifically, the F1 score
yielded by our model is 0.6457, which is 13 percent higher than the second-best model,
Noiseprint, and the MCC generated by our model is also better than all the other compared
models. Images in Columbia dataset are uncompressed, and the splicing traces can be
easily discerned by the human eye. Models that emphasize local features are more suitable
for this dataset. However, the F1 score of the proposed model is the second best. Some
predictions of tampered area are shown in Figure 3. For the DSO-1 dataset, the model with
the best performance in terms of F1 score is EXIF-SC (0.5285), and the performance of our
model is the second best with its F1 score being 0.5187. Although our model, trained on the
CASIA v2.0 dataset, did not show the best performance on all three testing datasets, the
overall performance is better than that of the other competitors. Moreover, the results in
Table 2 also verify that the performance robustness of our model is better than that of the
other compared models.

Figure 3. Image examples. Top row: original images; second row: binary probability maps predicted
by our model; third row: the ground truth of tampered area.

We also conducted several ablation studies with various methods, including Baseline
(training with seg_loss4), seg_total (training with seg_total), self-attention (training with
self-attention mechanisms), and OHEM (fine-tuning with hard negative examples) on the
CASIA v1.0 dataset. The results are presented in Table 3 as below.

Table 3. The average F1 scores of proposed method on the CASIA v1.0 dataset.

Baseline Seg_Total Self-Attention OHEM F1 Score MCC
√

0.5796 0.5010√ √
0.6085 0.5340√ √
0.6101 0.5492√ √
0.5945 0.5376√ √ √ √
0.6457 0.5941
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According to Table 3, we can see that the model trained with self-attention, OHEM,
and multi-scale guided learning performed the best on the CASIA v1.0 dataset, indicating
that multi-scale guided learning and OHEM are both helpful to detect the tampered area.
The F1 score of the model trained with seg_total is about 3% higher than the model trained
with seg_loss4. This means that the model trained with the summation segmentation loss
can activate the response of feature maps to corresponding resolution tampered regions.
Moreover, by comparing the corresponding results in Table 3, we can observe that self-
attention mechanisms and OHEM also contribute to the localization of tampered areas.
Some output examples of the model trained with different methods are shown in Figure 4.

Figure 4. First row: tampered images; second row: the prediction of model trained with seg4;
third row: the prediction of model trained with seg_total; fourth row: the prediction of model trained
with seg_total, self-attention, and OHEM.

Furthermore, we compared the performance of our proposed model on the spliced
images before and after the JPEG compression. The CASIA v1.0, Columbia Uncompressed,
and DSO-1 datasets were also used for this experiment. The images are originally in JPG or
TIF format, which we compressed using two different quality factors, i.e., 70 and 90. Table 4
shows the average F1 scores on the original images and the JPEG compressed images by
using the two different quality factors. From this table, we can see that the segmentation
performance of our model has a slight degradation on the Columbia Uncompressed dataset,
but a more significant one on the CASIA v1.0. The reason may be that the quality of the
images in Colombian Uncompressed dataset is higher than that of the CASIA v1.0 dataset
and DSO-1 dataset, and if a tampered image is generated by JPEG compression of low
quality, the tampered traces of the image are concealed.

Table 4. The average F1 scores of our model for JPEG compressed images in the three datasets.

Datasets
F1 Score

Original (No Compression) JPEG Quality = 90 JPEG Quality = 70

CASIA v1.0 0.6457 0.5355 0.2466
Columbia 0.5386 0.5341 0.5300

DSO-1 0.5187 0.5025 0.4712
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5. Conclusions

In this paper, we proposed a novel deep learning model for localization of tampered
regions in an image. With the help of the multi-scaled learning strategy, the model can
extract the global features of the image. In addition, implementation of self-attention
mechanisms makes the model pay more attention to the tampered region rather than the
content information of the image, and also helps the model enhance its ability to detect
the tampered area. The experimental results on three well-studied benchmark datasets
show that the proposed model, which were trained by the CASIA v2.0, has better overall
performance than those of the other compared state-of-the-art models trained by the same
training dataset. This means that our model is effective in solving the task of tampered
splicing localization. In the future, we will make more attempts to improve the ability of
boundary detection of the model on images with low JPEG quality compression.
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