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Abstract—Graph signal processing has recently received consid-
erable attention. Several concepts, tools, and applications in signal
processing such as filtering, transforming, and sampling have been
extended to graph signal processing. One such extension is the opti-
mal filtering problem. The minimum mean-squared error estimate
of an original graph signal can be obtained from its distorted and
noisy version. However, the best separation of signal and noise,
and thus the least error, is not always achieved in the ordinary
Fourier domain, but rather a fractional Fourier domain. In this
work, the optimal filtering problem for graph signals is extended to
fractional Fourier domains, and theoretical analysis and solution
of the proposed problem are provided along with computational
cost considerations. Numerical results are presented to illustrate
the benefits of filtering in fractional Fourier domains.

Index Terms—Fractional Fourier transform, graph signal
processing (GSP), optimal filtering, Wiener filter, graph Fourier
transform (GFT), signal processing on graphs, graphs.

I. INTRODUCTION

D ISCRETE signal processing on graphs, or graph signal
processing (GSP) is concerned with analyzing data which

reside on irregular and/or complex structures [1]–[14]. In appli-
cations including social, neural, and sensor networks, data can
be modeled on the vertices of a weighted graph [2], [4]. While
conventional signal processing formulations may be inadequate
to model and analyze such data, GSP may make possible the
extraction of intrinsic complex relationships in such irregular
and complex data [2], [10].

Many standard concepts in signal processing have been ex-
tended to graph signals [9], [10], [12]. Specifically, filtering [1]–
[3], [7], [9], [10], [13], [15], frequency analysis [5], [13],
[16], sampling [6], [17], interpolation [18], Fourier transforma-
tion [19], multiscale decompositions and approaches [20]–[23],
and processing of stationary signals and processes [24], [25]
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have been considered for graph signals. Graph based extensions
to areas such as machine learning and brain signal analysis have
also been studied [26], [27].

There exists two main approaches for adapting standard signal
processing concepts to GSP. One is based on the graph Laplacian
matrix [2], [12], [14]. Although the graph Laplacian matrix is
generally restricted to be symmetric and positive semi-definite,
there exist attempts for generalizations [28]. However, it is
generally not possible to deploy the graph Laplacian matrix
approach for directed graphs or negative edge weights [6]. The
other approach is based on the graph shift operator, which
is also known as the graph adjacency matrix [1], [3]–[11],
[13]. The graph adjacency matrix is not restricted to be either
symmetric or positive semi-definite and therefore has broader
applicability. In this work, we adopt the latter approach in
its most general form to cover both directed/undirected and
weighted/unweighted graphs.

A graph signal is defined as a mapping between the set of
vertices of a graph and a set of complex numbers. The definition
of graph filters is given in [1]–[5], [7], [9], [10], [13] based on
the shift operator for graph signals. As a concept that is the
counterpart of linear time-invariant (LTI) systems in standard
signal processing, linear shift-invariant (LSI) filters are defined
in [1], [2], [7], [9], [10], [13]. In [7], the optimal filtering problem
on graphs is discussed. Given a noisy version of the actual
graph signal, the filter leading to the minimum mean-squared
error (MSE) is found under the assumptions that the filter is
LSI and the noise is a white Gaussian process. This leads to the
classical Wiener-Hopf equations. Adaptive versions of graph fil-
ters, which combine multiple graph filters, for semi-supervised
classification, are discussed in [29], [30].

The concept of the graph spectral domain, which is the
counterpart of the conventional frequency domain, is introduced
through the graph Fourier transform (GFT) [1]–[11], [13], [14].
In the literature, there exists two main GFT definitions, which
use the spectral structure of the graph Laplacian matrix or the
graph adjacency matrix. The first is built on spectral graph
theory and uses the graph Laplacian. This approach defines the
GFT as a change of basis to the basis of the eigenvectors of the
graph Laplacian [2], [13], [14]. In the second approach, which is
built on algebraic signal processing, the GFT is introduced based
on the graph adjacency matrix [1], [3]–[11], [13]. This approach
defines the GFT as a change of basis into the eigenvectors of
the adjacency matrix. Since the GFT is defined based on the
graph adjacency matrix, which is analogous to the discrete shift
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matrix, it reduces to the discrete-time Fourier transform matrix
for circulant adjacency matrices, [4], [5], [7], [9], [10]. The graph
adjacency matrix based GFT has also been extended to the graph
fractional Fourier transform (GFRT) in [8], [11], [19].

An important issue in frequency analyses of graph signals
is to develop an ordering among graph frequencies. The GFT
matrix is used to define graph frequencies in [2], [4], [5], [7],
[9], [10]. One approach for developing an ordering among graph
frequencies is to use total variation based methods [5], [10].
In [5], it is proven that the ordering based on the total variation
is unique for graph adjacency matrices with real spectra (all
eigenvalues are real), but may not be unique for graphs with
complex spectra (some eigenvalues are not real).

The ath order fractional Fourier transform (FRT) is the ath
operator power of the ordinary Fourier transform (FT). It gener-
alizes the FT to fractional orders a, with a = 0 corresponding to
the identity operation and a = 1 to the ordinary FT [31]–[38]. As
an operator power, it satisfies index additivity: The ath transform
of the bth transform is the (a+ b)th transform. The ordinary
FT transforms a signal from the time or space domain to the
temporal or spatial frequency domain. The FRT, on the other
hand, transforms the signal to a fractional Fourier domain, which
can be viewed as intermediate domains. If one considers the
time-frequency or space-frequency plane (such as that in which
the Wigner distribution lives), where the horizontal axis is time
or space and the vertical axis is frequency, theath order fractional
Fourier domain is an axis making angle aπ/2with the horizontal
axis. Thus, the FRT leads to a generalization of the concept
of the frequency domain. Further details can be found in [34],
[37], [39]. The FRT has many applications in several areas of
signal and image processing [40]–[47], including time/space-
frequency representations, image and video processing, signal
reconstruction, pattern recognition, radar signal processing, and
beamforming [36], [39], [48]–[62]. FRT has also been widely
used in wave and beam propagation, diffraction, optics, and
optical signal processing, among several other applications [31],
[63], [64].

Our main motivation can be stated from two alternative
perspectives. First, we generalize the optimal Wiener filtering
problem on graphs to fractional Fourier domains. This is a
generalization of the corresponding problem in ordinary Fourier
domains, and has the potential to offer improved performance
in the sense of lower errors, thanks to the additional degree of
freedom in choosing the fractional Fourier transform order. The
ordinary (non-fractional) version of the optimal filtering prob-
lem has been addressed in [7] for the graph vertex-domain under
the assumption that the filter is shift-invariant. The problem
considered in [7] corresponds to a special case of the problem
proposed in this manuscript when the fractional order a is equal
to one. In this work, it is shown that the minimum MSE is
not always attained at a = 0 or a = 1; hence, employing the
fractional Fourier transform can offer improved performance. In
other words, we propose a generalized version of the problem
in [7] and provide its analytical solution for any order a. Our
development is valid for all kinds of weighted/unweighted and
directed/undirected graph structures, and for all graph signals
that can be defined on them. Neither on the graph structure nor

on the graph signals, did we make any restrictive assumptions.
Therefore, the proposed GFRT filtering framework can be ap-
plied under a wide variety of arbitrary conditions.

The second perspective is that we generalize the optimal
fractional Fourier domain filtering problem to graph signal pro-
cessing. The optimal fractional Fourier domain filtering problem
has earlier been solved in a conventional signal processing
context [40], [65]. Here we focus on the graph signal processing
version of the problem. In any event, since in our generalized
method, both the time (space) and frequency domains are in-
cluded as special cases, consideration of fractional domains will
never degrade the filtering performance and will most likely
improve it.

The rest of the manuscript is organized as follows: In
Section II, we present preliminaries for both GSP and FRT.
Section III introduces the proposed optimal filtering approach
in the fractional Fourier domain for graph signals and provides
theoretical derivations. Section IV discusses computational cost
issues. Numerical examples are given in Section V, followed by
the concluding remarks in Section VI.

II. BACKGROUND INFORMATION

In this section, some preliminaries for graph signals, graph
filters, GFT, fractional FT (FRT) and graph fractional Fourier
transform (GFRT) are provided.

A. Graph Signals

Let G = {V,A} be a graph where V = {v0, v1, . . . , vN−1} is
the set of vertices and A is the adjacency matrix of the graph G.
The adjacency matrix A ∈ C

N×N stands for the relationships
between the vertices. In other words, if there is no relation be-
tween the vertices vi and vj ,A(i, j) = 0, otherwiseA(i, j) �= 0,
where A(i, j) is the (i, j)th element of A. The graph signal
x = [x[0] x[1] . . . x[N − 1]]ᵀ ∈ C

N is a mapping from the set
of vertices, V to C

N , i.e., each vertex is mapped to a complex
number [7], [9], [10], [13] as follows:

x : V → C
N

vn → x[n]

B. Graph Filters

A graph filter can be defined as any matrix H ∈ C
N×N . The

filtering is the process of multiplying a matrix H with the graph
signal x, which is a linear operation. Before going into details,
we define the graph shift operator and the shift-invariance prop-
erty of a graph filter. In discrete signal processing, the basic
building block for filters is given by the time shift, which is
denoted by z−1 in the z-transform domain [3].

Consider the adjacency matrix A of the simple graph given
by Fig. 1, which can be written as

A(i, j) =

{
1, if i− j ≡ 1 (mod N)

0, otherwise
.

Note that Ax = [x[N − 1] x[0] . . . x[N − 2]]ᵀ, which is a
circularly shifted version of the original signalx. In other words,
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Fig. 1. Graph representation of periodic data.

the result of the unit time shift operation for the signal x can be
written as Ax. In order for a graph filter H to be considered
LSI, it is required that AHx = HAx for any x ∈ C

N , where
A is the adjacency matrix. In other words, linear shift-invariance
means that filtering and shifting commute with each other for
any signal x. From this definition, it follows that AH = HA
when H is an LSI filter.

In [1], it is proven that any LSI filter H can be represented
as a polynomial of the adjacency matrix A, if the characteristic
polynomial and the minimal polynomial ofA are the same. That
is, there exist L ∈ N and coefficients {hk}L−1

k=0 such that

H =

L−1∑
k=0

hkA
k (1)

In the preceding discussion, instead of the adjacency matrix
A, one can substitute any alternative definition of a shift operator
on graphs. For example, 1

λmax(A)
A is the normalized graph shift

matrix introduced in [5], where λmax(A) denotes the largest
eigenvalue of A.

If the adjacency matrixA is assumed to be diagonalizable and
its eigendecomposition is given by A = VΛV−1, a new graph
shift operator is introduced in [7] as Aφ = VΛφV

−1, where
Λφ = diag(ejφ0 , ejφ1 , . . . , ejφN−1) and φk is an arbitrary phase
in [0, 2π] such that φk �= φl for k �= l. The reason why such
a shift operator is introduced is due to its energy preserving
property, which will be clear in the next subsection.

If the considered graph shift operator is Aφ, the definition
of an LSI filter is modified by replacing Aφ with A. In other
words, if H is an LSI filter under Aφ, then H should commute
with Aφ. Moreover, by Theorem 1 in [1], if H is an LSI filter
under Aφ, then it should be a polynomial of Aφ, since all the
eigenvalues of Aφ are different.

It is evident that A commutes with Aφ, hence A is an LSI
filter under Aφ and Aφ is an LSI filter under A. Since all the
eigenvalues of Aφ are different, Theorem 1 in [1] implies that
A can be expressed as a polynomial of Aφ.

C. Graph Fourier Transform (GFT)

It is known that under some conditions, an LSI filter for a
graph signal can be represented as in (1), and that a matrix and
its powers share the same set of eigenvectors. Therefore, the
LSI filter H shares a set of eigenvectors with the adjacency
matrix A. We can write the Jordan decomposition of A as
A = VJAV

−1, where JA is the Jordan block form matrix, and
V = [v0 v1 . . . vN−1] contains the generalized eigenvectors
of A in its columns. Hence, the columns of V provide a basis
for the eigenvectors of an LSI filter, which is the graph signal

processing counterpart of the well-known result stating that
complex exponentials are the eigenfunctions of (conventional)
LTI systems.

In conventional signal processing, as complex exponentials
form an orthonormal basis, one can express any signal in terms
of the complex exponential basis, and the expansion coefficients
constitute the Fourier representation of the signal. Similarly, for
the graph signal processing case, one can write any signal x in
terms of the columns vi of V as follows:

x =

N−1∑
i=0

x̂ivi

= V[x̂0 x̂1 . . . x̂N−1]
ᵀ = Vx̂.

If {λi}N−1
i=0 denotes the set of eigenvalues of A, we can view

λi’s as frequencies and x̂i’s as the Fourier coefficients of x
corresponding to λi’s. Therefore, x̂ can be defined as the graph
Fourier transform of x, which is given by

x̂ � Fx = V−1x.

However, for an arbitrary graph, one should note that the GFT
may not be unitary; i.e., Parseval’s theorem does not hold unless
V−1 = V

H
, where (·)H

denotes the conjugate transpose of its
argument. From [7], it is known that ‖V−1x‖2 is bounded as

α‖x‖22 ≤ ‖V−1x‖22 ≤ β‖x‖22
with α = 1/‖V−1‖2 and β = ‖V−1‖2, where ‖ · ‖2 and ‖ · ‖
denote the l2 norm and the spectral norm, respectively. More-
over, in [7], it is proven that ‖Fx‖2 = ‖F(Ak

φx)‖2 for any
integer k ≥ 0. That is, the energy of the graph signal x in the
Fourier domain remains the same for any amount of shift k. This
property is not satisfied if neither A nor 1

λmax(A)
A is used as the

graph shift operator as the magnitudes of the eigenvalues of A
and 1

λmax(A)
A do not have to be equal to 1.

D. Fractional Fourier Transform (FRT)

Fractional Fourier transform (FRT) is a generalization to the
Fourier transform (FT). The ath order FRT Fa of a function
f(u) is defined for 0 < |a| < 2 as follows [34]:

Faf(u) =

∫ ∞

−∞
Ka(u, u

′)f(u′) du,′

Ka(u, u
′) = Aθ exp

[
iπ(u2 cot θ − 2uu′ csc θ + u′2 cot θ)

]
,

Aθ =
exp(−iπsgn(sin θ)/4 + iθ/2)

| sin θ|1/2 and θ =
aπ

2
.

When a = 1, FRT reduces to FT. More details can be found
in [34].

E. Graph Fractional Fourier Transform (GFRT)

The definition of FRT for graph signals is introduced in [8],
[11]. Let the Jordan decomposition of the GFT matrix V−1 be
as follows:

V−1 = PJP−1.
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Then, the definition of the ath order GFRT matrix is given by

Fa � PJaP−1.

The ath power of J can be computed as follows: For the
jth Jordan block, the ath power of the kth super-diagonal is∏k

i=1
a+1−i

i λa−k
j . The details of this computation can be found

in [8]. Then, the definition of the ath order GFRT is given by

x̂ � Fax = Fax.

Then, the inverse GFRT is specified by the matrix F−a. Clearly,
when a = 0 and a = 1, the GFRT reduces to I (the identity
matrix) and F (the non-fractional transform), respectively. It is
also easy to verify that the index additivity property holds, i.e.,
FaFb = Fa+b for any a, b.

Thus, we have established the fractional Fourier transform for
graph signals that will be employed in the following section.

III. OPTIMAL FILTERING IN FRACTIONAL FOURIER DOMAINS

FOR GRAPH SIGNALS

To formulate the proposed problem, the following signal
observation model is used:

y = Gx+ n (2)

where G is a known matrix in C
N×N and x is a stochastic

graph signal defined over G = {V,A} with given parameters
E{x},E{xH

x}, and E{xxH}. Moreover, n is the additive noise
term with the following statistical parameters assumed to be
known: E{n},E{nnH},E{nH

n},E{xnH},E{xH
n}.

Before presenting the proposed problem, we first start with the
optimal Wiener filtering problem for graph signal processing. If
x is a graph signal to be estimated and y is the observed graph
signal, the optimal Wiener filtering problem for graph signal
processing can be formulated as

min
R

E{‖Ry − x‖22} (3)

This problem is exactly in the same form as the classical Wiener
filtering problem. Assuming E{yyH} is invertible, the solution
of (3) is given by [66]:

arg minR∈CN×NE{‖Ry − x‖22} = E{xyH}
(
E{yyH}

)−1

(4)
In this manuscript, our aim is to find the optimal filter in the

fractional Fourier domain for graph signals, which minimizes the
MSE while recovering the original signal x. This is the graph
signal processing counterpart of the problem discussed in [40].

The aim is to recover x in (2) with the minimum mean error in
the l2 sense (i.e., with the minimum MSE). If the reconstructed
version of x is x̃, which is a function of y, the corresponding
MSE is given by E{‖x̃− x‖22}. We consider filtering in the ath
order fractional Fourier domain, so that the estimated signal x̃
is expressed as

x̃ = F−aHFay . (5)

In other words, the observed signal y is fractional Fourier
transformed, multiplicatively filtered with a “transfer function,”
and then inverse fractional Fourier transformed to the original

domain. Therefore, our aim is to design the matrix H to solve
the following problem:

min
H

E{‖F−aHFay − x‖22} (6)

for any a. Then, we will search over possible values of a in order
to find a∗ that yields the minimum MSE.

The following lemma focuses on the unconstrained version
of the problem in (6).

Lemma 1: If there is no restriction on H in (6), the problem
yields the same MSE for any a.

Proof: Consider any real numbers a, b such that a �= b and
define

H(a) = arg minHE{‖F−aHFay − x‖22} (7)

H(b) = arg minHE{‖F−bHFby − x‖22} (8)

Note that for any choice of H, we know by (7) that

E{‖F−aH(a)Fay − x‖22} ≤ E{‖F−aHFay − x‖22}. (9)

Then, taking H = FaF−bH(b)FbF−a, we obtain via (9) that

E{‖F−aH(a)Fay − x‖22} ≤ E{‖F−bH(b)Fby − x‖22}. (10)

Similarly, we can easily show that

E{‖F−bH(b)Fby − x‖22} ≤ E{‖F−aH(a)Fay − x‖22}. (11)

From (7), (8), (10), and (11), it can be concluded that the same
minimum value is achieved for any a and b. Hence, the statement
in the lemma is proven. �

The result in Lemma 1 is quite intuitive since we can view
F−a and F−b as similarity transformation matrices.

In [40], optimal fractional Fourier domain filters for both
continuous-time and discrete-time signals are derived. This
amounts to first taking the fractional Fourier transform of the
given signal, applying a multiplicative filter with a certain “trans-
fer function” or “fractional frequency response” in the fractional
Fourier domain, and finally inverse fractional Fourier transform-
ing to return to the original signal domain. In a discrete-time
formulation, application of a multiplicative filter or “transfer
function” can be modeled as multiplication by a diagonal matrix.
Hence, we will force H in (6) to be diagonal. To that aim,
we define a set as D � {H | H ∈ C

N×N and H is diagonal}.
Then, our aim is to solve the following optimization problem:

min
H

E{‖F−aHFay − x‖22} (12a)

subject to H ∈ D (12b)

In [7], (3) is solved under the assumptions that A is diagonaliz-
able andR is shift-invariant, i.e.,R is the polynomial of the shift
operator. More specifically, the following problem is considered
in [7]:

min
H

E{‖Hy − x‖22} (13a)

subject to H is LSI and A is diagonalizable. (13b)

Proposition 1: The optimization problems given by (12) and
(13) are equivalent to each other for a = 1 and diagonalizable
adjacency matrix A.
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Proof: It is known that when H is shift-invariant, it can be
represented as a polynomial of the shift operator Aφ. Hence,
there exist L ∈ N and {ak}L−1

k=0 ∈ R such that

H =

L−1∑
k=0

akA
k
φ

Since A = VΛV−1, we can write Ak
φ = VΛk

φV
−1, where V

contains the eigenvectors of A. Therefore, one can say that any
LSI filter H can be represented as

H = V

(
L−1∑
k=0

akΛ
k
φ

)
︸ ︷︷ ︸

diagonal

V−1

Since V−1 = F1, (13) can be transformed into the following
optimization problem:

min
Q

E{‖F−1QFy − x‖22} (14a)

subject to Q ∈ D̂
where D̂ = {Q | ∃L ∈ N, {ak}L−1

k=0 ∈ R such that Q =∑L−1
k=0 akΛ

k
φ}.

If we can show that D̂ = D, then the proof is completed. Since
any Q ∈ D̂ is diagonal, it is clear that D̂ ⊆ D. Hence, the aim
becomes showing thatD ⊆ D̂. To that aim, take any arbitrary di-
agonal matrix X = diag(x0, x1, . . . , xN−1) ∈ D and consider
the following matrix equation:⎡
⎢⎢⎢⎢⎣
1 ejφ0 · · · ej(N−1)φ0

1 ejφ1 · · · ej(N−1)φ1

...
...

. . .
...

1 ejφN−1 · · · ej(N−1)φN−1

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Y

⎡
⎢⎢⎢⎢⎣

a0

a1
...

aN−1

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

x0

x1

...

xN−1

⎤
⎥⎥⎥⎥⎦

(15)
Another way of writing (15) is that

N−1∑
k=0

akΛ
k
φ = X

Note that as Y is a Vandermonde matrix, (15) is solvable. Since
(15) is solvable, one can claim that X ∈ D̂. Therefore, we must
have D ⊆ D̂. Therefore, D̂ = D and the proof is completed. �

Remark 1: By Proposition 1, one can infer that the proposed
problem in (12) is the generalized version of (13). In other words,
by solving (12) we can achieve lower MSE values than (13) for
some 0 < a < 1.

Remark 2: As a consequence of Proposition 1, we conclude
that for graph signal processing, filtering via an LSI filter corre-
sponds to multiplication in the vertex-frequency domain. This
result matches with the classical signal processing theory since
filtering with an LTI filter corresponds to a multiplicative filter
in the Fourier domain for both continous-time and discrete-time
signals.

Instead of working with matrices in D, we can transform
the proposed problem in (12) into another problem where the

parameter of interest is simply a vector in C
N as the number

of nonzero elements of H is at most N . To that end, let F−a =
[w1 w2 . . . wN ], (Fa)ᵀ = [w̃1 w̃2 . . . w̃N ], andWi = wiw̃

ᵀ
i

for i = 1, 2, . . . , N . Then, for H = diag(h1, h2, . . . , hN ), we
can write

F−aHFa =
N∑
i=1

hiWi.

That is, the objective is a function of h = [h1 h2 . . . hN ]ᵀ, and
(12) can be transformed into the following problem:

min
h

E

⎧⎨
⎩
∥∥∥∥∥

N∑
i=1

hiWiy − x

∥∥∥∥∥
2

2

⎫⎬
⎭ (16)

where we do not impose any restrictions on h.
Proposition 2: (16) is a convex optimization problem.
Proof: Since we do not have any restriction on h, the domain

of the problem is CN , which is a convex set. Therefore, we only
need to prove that the objective function in (16) is a convex
function of h. The convexity follows from the linearity of the
expectation operation and the convexity of the norm. For the
sake of completeness we provide the proof in Appendix A. �

As a consequence of Proposition 2, by simply taking the
derivative of the objective function in (16), we can find the op-
timal solution. The following proposition characterizes solution
of the optimal filtering problem in (16).

Proposition 3: For the problem in (16), the optimal filter
coefficients h(opt) = [hopt

1 hopt
2 . . . hopt

N ]ᵀ are obtained from the
following matrix equation:

Th(opt) = q (17)

where q = E{SH
x},T = E{SH

S},S = [S1 S2 . . . SN ] and
Sk = Wky for any 1 ≤ k ≤ N .

Proof: Let f(h) � E{‖∑N
i=1 hiWiy − x‖22}. Thus,

f(h) = E

⎧⎨
⎩
(

N∑
i=1

h∗
iy

H
W

H

i − x
H

)⎛⎝ N∑
j=1

hjWjy − x

⎞
⎠
⎫⎬
⎭

=

N∑
i=1

N∑
j=1

h∗
ihjE

{
y

H
W

H

iWjy
}
−

N∑
j=1

hjE

{
x

H
Wjy

}

−
N∑
i=1

h∗
iE

{
y

H
W

H

i x
}
+ E

{
x

H
x
}
.

By taking the derivative of f(h) with respect to the real and
imaginary parts of h, we can obtain the optimal solution. To that
aim, for any 1 ≤ k ≤ N , let hk be given by hk = hk,r + jhk,im

where hk,r and hk,im denote the real and imaginary parts of hk,
respectively. Then the following equations must hold:

∂f(h)

∂hk,r

∣∣∣
h=hopt

=

N∑
j=1

(
hopt
j E

{
y

H
W

H

kWjy
}

+ (hopt
j )∗E

{
y

H
W

H

jWky
})

− E

{
x

H
Wky + y

H
W

H

kx
}
= 0.

(18)
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∂f(h)

∂hk,im

∣∣∣
h=hopt

=

N∑
j=1

(
−hopt

j E

{
y

H
W

H

kWjy
}

+ (hopt
j )∗E

{
y

H
W

H

jWky
})

− E

{
x

H
Wky − y

H
W

H

kx
}
= 0.

(19)

By combining (18) and (19), for any 1 ≤ k ≤ N , we obtain

N∑
j=1

hopt
j E

{
y

H
W

H

kWjy
}
= E

{
y

H
W

H

kx
}

(20)

Then, for any 1 ≤ k ≤ N , (20) can be rewritten as

N∑
j=1

hopt
j E

{
S

H

kSj

}
= E

{
S

H

kx
}
. (21)

which is exactly the statement in the proposition. �
Remark 3: One should note that via some algebraic manipu-

lation, the (i, j)th entry ofT and the ith entry ofq can be written
as

T(i, j)

= Tr
{
G

H
W

H

iWjGE{xxH}
}
+Tr

{
G

H
W

H

iWjE{nxH}
}

+Tr
{
W

H

iWjGE{xnH}
}
+Tr

{
W

H

iWjE{nnH}
}
,

q(i) = Tr
{
G

H
WiE{xxH}

}
+Tr

{
W

H

iE{xn
H}
}
.

Since G,E{xxH},E{nxH},E{xnH},E{nnH}, {Wi}Ni=1 are
all known parameters, each entry of T and q is completely
known. Entries of q are not affected by the auto-correlation
of the noise terms, whereas the entries of T are affected by all
the system parameters. The optimal filter coefficents h(opt) can
be derived from the linear equation given by (17) based on G,
{Wi}Ni=1, and the statistical parameters related to x and n.

Proposition 3 provides an analytical solution to the problem of
optimal filtering in fractional Fourier domains for graph signals.
It should also be noted that, in the analysis above, we do not make
any assumptions on the adjacency matrix A. In other words,
our analysis is valid for any kind of graph structures including
directed/undirected or weighted/unweighted graphs.

IV. COMPUTATIONAL COST

The detailed analysis of the computational cost of solving
(12), in other words, determining the optimal filter coefficients
h(opt) is given in Appendix B. It is shown that for any GFRT
order, the number of required operations is O(N4). For the
GFRT order, the interval [0, 1] is discretized with NA different
elements. For any GFRT order, the corresponding optimal filter
coefficients are found and among NA different vectors of filter
coefficients, the one which yields the lowest MSE is chosen.
Thus, the resulting computational complexity is O(N4NA).
However, these operations have to be performed only once for a
particular graph structure, since the filter depends on the graph
and signal statistics, not on the particular realization of the signal.
Hence, in the following, we concentrate on the computational

cost of filtering in the fractional Fourier domain which should
not be confused with the cost of computation of optimal filter
coefficients.

The computational cost of filtering in the ath order fractional
Fourier domain as given in (5) can be analyzed as follows.
In the conventional version, fractional Fourier domain filtering
corresponds to two instances of computing the discrete frac-
tional Fourier transform (DFRT) and one multiplication with a
diagonal matrix. The diagonal matrix multiplication in the center
can be performed in O(N), where N is the number of samples
in the signal. The discrete definition of the FRT and its fast
computation are well-studied in the literature and the following
references can be listed to name a few, [35], [67]–[74]. A detailed
recent review on this issue can also be found in [75]. There are
also algorithms for efficient computation of FRT inO(N logN)
time [67], [76]. Therefore, the conventional fractional domain
filtering can be implemented in O(N logN) time.

When we generalize to graph signal processing, the com-
putational cost becomes O(N2), since an efficient and fast
O(N logN) time algorithm for computation of the GFT, let
alone the fractional GFT, does not exist. Development of such
algorithms is an important future research direction [77]–[79].
In [77], the GFT matrix is factorized into sparse matrices using
Flexible Approximate Multi-layer Sparse Transforms (FA μ
ST), in which each matrix has at most 2N non-zero elements.
It is shown that for some setups the complexity will reduce to
O(Nα) for some α ∈ (1, 2). Furthermore, in [80], fast GFT is
proposed when the graph is bipartite or satisfies certain topolog-
ical symmetries. To the best of our knowledge, there are not any
attempts for developing a fast algorithm for GFRT.

The computational complexity of the unconstrained Wiener
filtering problem for the graph signal processing given in (3) is
O(N2). Even though the computational complexity of (12) is
the same as (3), if a fast algorithm for GFRT is developed, the
cost will be significantly reduced. It is important to note that in
conventional (non-graph) signal processing, the complexity of
fractional Fourier transformation and fractional Fourier domain
filtering is the same as ordinary Fourier transformation and
ordinary Fourier domain filtering. The advantages of working in
fractional Fourier domains comes at no cost. Thus, the additional
cost here does not come from working in fractional domains,
but from working on graphs. If a fast algorithm is found for
Fourier transformation on graphs, it is likely fractional Fourier
transformation will not introduce additional costs.

V. NUMERICAL RESULTS

In this section, numerical examples are provided to illus-
trate the theoretical results. We provide two sets of numerical
examples. The first set utilizes graph signals with a physical
interpretation that is motivated from sensor networks. The sec-
ond set presents results for a totally arbitrary graph signal,
demonstrating that our results are general and not restricted
to a particular choice of signal. In the simulations, we assume
that the noise in (2) is uncorrelated with the graph signal x,
E{n} = 0, and E{nnH} = σ2I for some σ > 0, where I is the
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Fig. 2. Sensor network with 15 nodes (undirected and unweighted graph).

identity matrix in R
N×N . In addition, for the order of the GFRT,

11 different values a = { k
10}10k=0 are used.

For the graph signal x = [x[0] x[1] . . . x[N − 1]]ᵀ ∈ C
N ,

we assume that its auto-correlation matrix E{xxH} is given
by 1

λmax(C)
C, where λmax(C) is the largest eigenvalue of C ∈

R
N×N and for any 1 ≤ i, j ≤ N ,

Cij =

⎧⎪⎨
⎪⎩
2, if i = j

1, if there is a connection between i and j

0, otherwise.

Division of the matrix C by λmax(C) is just for normalization
purposes. By this construction, any two signals corresponding
to different nodes are correlated only if the nodes are connected.
Moreover, the average power of the graph signal can be calcu-
lated as follows E{xH

x} =
∑N

i=1 E{|x[i]|2} = 2N/λmax(C).
In the simulations, we assume that the entries of G are

independent and identically distributed (i.i.d.) standard Gaussian
random variables; i.e.,N (0, 1). Accordingly,N2 realizations are
generated in a matrix form with dimensions N ×N by using
MATLAB (the seed is equal to 1).

In the following first four subsections, examples are provided
in four different setups. First, we consider a sensor network with
an undirected and unweighted graph adjacency matrix. Then, we
use an exponentially distance based weighted adjacency matrix
for the same setup. Third, we consider a sensor network with
a directed and unweighted graph adjacency matrix. Then, we
work with a directed and weighted graph adjacency matrix.

The graph signal model above is dependent on the graph struc-
ture. We also consider an arbitrary graph signal x which does
not necessarily have any physical interpretation related to the
underlying graph structure. Simulation results for an undirected
and unweighted graph adjacency matrix with an arbitrary graph
signal x are presented in the last subsection.

A. Example With Undirected and Unweighted Graph

Fig. 2 illustrates the deployment of 15 sensor nodes in a two
dimensional area. The sensors are located at{[0, 0], [5, 3], [3, 5],

Fig. 3. MSE versus a for the undirected and unweighted graph for different
levels of noise.

[2, 1], [1, 2], [6, 4], [4, 6], [9, 5], [5, 9], [11, 1], [1, 11], [10, 3],
[3, 10], [8, 7], [7, 8]} meters. Each node is connected to 5 of its
nearest neighbors. We assume that the graph is undirected. If
node i and node j has a connection, Aij = Aji = 1, otherwise
Aij = Aji = 0, where A is the graph-adjacency matrix of the
sensor network given in Fig. 2. Since A is undirected, it is
diagonalizable and its eigenvalues are real-valued.

For three different σ values, the resulting MSE versus the
order of the GFRT, a, are plotted in Fig. 3. From Fig. 3, it can
be observed that the minimum MSE is not attained at a = 0
or a = 1; hence, the optimal filtering in the ordinary (non-
fractional) space or frequency domains would be suboptimal.
The optimal value of the fractional order is a = 0.8 for all values
of σ, showing that filtering in fractional domains facilitates a
reduction in the MSE.

B. Example With Undirected and Weighted Graph

In this example, we use the same setup as in the undirected and
unweighted case except that the adjacency matrix is different.
We again use the 5-nearest graph structure, but this time, an ex-
ponential distance based weighted adjacency matrix is used [5].
In particular, A is given by

Aij =
e−d2

i,j√∑
k∈Ni

e−d2
i,k
∑

l∈Nj
e−d2

j,l

(22)

where Ni denotes the set of nodes which are the 5 nearest
neighbors of node i, and di,j is the distance between node i and
node j. Based on (22), when the positions of the graph nodes
are explicitly known, we are able to construct the adjacency
matrix A. From (22), one can easily note that A is symmetric,
i.e., Aij = Aji, hence diagonalizable. (A detailed discussion of
whyA is constructed as in (22) is beyond the scope of this paper.
Using inverse exponents of squared distances is a popular choice
to construct weighted adjacency matrices. The construction of
representation graphs is an important research question and there
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Fig. 4. MSE versusa for the undirected and weighted graph for different levels
of noise.

Fig. 5. Sensor network with 8 nodes (directed and unweighted graph).

are various other graph construction methods [2], [21], [81],
[82].)

For various σ values, the MSE versus the order of the GFRT
a are plotted in Fig. 4. It is concluded that the minimum MSE
is attained for a = 0.5 for all values of σ. In other words, we
observe the benefit of filtering in fractional domains.

C. Example With Directed and Unweighted Graph

Fig. 5 represents the deployment of 8 sensor nodes
in a two dimensional area. The sensors are located
at {[1, 2], [6, 4], [4, 6], [9, 5], [5, 9], [8, 7], [1, 11], [10, 3]} me-
ters and the connections between the nodes are as illustrated in
Fig. 5. Each node is connected to 3 of its nearest neighbors. In this
case, the graph is directed. If there is an edge from node j to node
i, Aij = 1, otherwise Aij = 0, where A is the graph-adjacency
matrix of the sensor network in Fig. 5. Since A is directed, it
is not necessarily diagonalizable and we need to work with its
Jordan canonical form.

In Fig. 6, the MSE is plotted versus the order of the GFRT,
a, for three different σ values. From Fig. 6, it can be observed

Fig. 6. MSE versusa for the directed and unweighted graph for different levels
of noise.

Fig. 7. MSE versus a for the directed and weighted graph for different levels
of noise.

that the minimum MSE is attained at a = 0.3 for all values of
σ, not at a = 0 or a = 1. Once again, we conclude that filtering
in fractional domains leads to lower errors.

D. Example With Directed and Weighted Graph

In this example, we use the same setup as in the directed and
unweighted case except that the adjacency matrix is weighted
and each node is connected to 4 of its nearest neighbor nodes. We
use the exponentially distance based weighted graph adjacency
matrix, but this time we assume that if there is no edge from
node j to node i, then Aij = 0.

In Fig. 7, the MSE is plotted versus the order of the GFRT,
a, for three different σ values. As in the previous cases, we
have again the same observation that the minimum MSE is not
attained at a = 0 or a = 1. For all σ values, the minimum MSE
is attained for a = 0.6.
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Fig. 8. MSE versus a for the undirected and unweighted graph for different
levels of noise with an arbitrary graph signal.

E. Example With Undirected and Unweighted Graph With an
Arbitary Graph Signal

To define an arbitrary graph signal x, we generate a random
matrix B such that its entries are i.i.d. standard Gaussian ran-
dom variables; i.e., N (0, 1). Accordingly, N2 realizations are
generated in a matrix form with dimensions N ×N by using
MATLAB (the seed is equal to 2). Then, E{xxH} is set to

1

λmax(BBH )
BB

H
. One should note that, 1

λmax(BBH )
BB

H
is a valid

auto-correlation matrix, as it is Hermitian and positive semi-
definite matrix. For the simulations, we use the undirected and
unweighted graph setup employed previously. In other words,
we use the same graph adjacency matrix, the same matrix G
and the same statistical assumptions about the noise as in the
undirected and unweighted graph case.

In Fig. 8, the MSE is plotted versus the order of the GFRT,
a, for three different σ values. As in the previous cases, we
have again the same observation that the minimum MSE is not
attained at a = 0 or a = 1. For all σ values, the minimum MSE
is attained for a = 0.5. Hence, benefit of filtering in fractional
domains is observed for the arbitrary graph signal scenario, as
well.

VI. CONCLUSION

The optimal fractional Fourier domain filtering problem has
been formulated in a discrete graph signal processing context.
It has been shown that the proposed problem generalizes the
approach in [7], which is a special case when the order of the
fractional Fourier transform, a, is equal to one. The problem
has been solved analytically for any kind of graph structures
including weighted/unweighted or directed/undirected graphs.

Numerical examples show that the minimum value of the
MSE can occur at non-integer values of the fractional Fourier
transform order a. This means that the optimal values do not
necessarily correspond to the ordinary time/space or frequency
domains but to fractional domains which are not accessible with
conventional methods. Since fractional domain filtering does not

bring any additional complexity, the improvements come at no
additional cost.

Many operations and problems in signal analysis and pro-
cessing have been generalized in terms of the fractional Fourier
transform. Our results suggest that similar generalizations can be
carried over into graph signal processing with beneficial results.

APPENDIX A

Proof of Proposition 2: To prove the convexity of the
objective function in (16) with respect to h, we take z =
[z1 z2 . . . zN ]ᵀ,w = [w1 w2 . . . wN ]ᵀ ∈ C

N , andα ∈ [0, 1]. If
we define c �

∑N
i=1 ziWiy − x and d �

∑N
i=1 wiWiy − x,

then, it is sufficient to prove the following inequality:

‖αc+ (1− α)d‖22 ≤ α‖c‖22 + (1− α)‖d‖22 (23)

Therefore, to prove (23), via some algebraic manipulations, we
observe that it is sufficient to show that

c
H
d+ d

H
c ≤ ‖c‖22 + ‖d‖22. (24)

Using the Cauchy-Schwarz inequality, we can write

|cH
d| = |dH

c| ≤ ‖c‖2‖d‖2. (25)

Hence, by using (25), it can be verified that

c
H
d+ d

H
c ≤︸︷︷︸
cHd+dHc∈R

|cH
d+ d

H
c| ≤ |cH

d|+ |dH
c| ≤ 2‖c‖2‖d‖2

(26)
Thus, to prove (24), it is sufficient to show that

2‖c‖2‖d‖2 ≤ ‖c‖22 + ‖d‖22 (27)

This clearly holds since (27) is true if and only if (‖c‖2 −
‖d‖2)2 ≥ 0. �

APPENDIX B

Computational complexity of determining optimal filter co-
efficients for any GFRT order a is given by O(N4).

Proof: By Proposition 3, it is known that optimal filter co-
efficients hopt should satisfy Thopt = q. As a consequence of
Remark 3, in order to compute each entry of T and q, we
need O(N2) operations. Hence, computational complexities of
constructingT andq areO(N4) andO(N3), respectively. Since
the complexity of the Gauss-Jordan elimination is O(N3), the
total complexity is O(N4). �
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[26] L. Stanković et al., “Graph signal processing - Part III: Machine learning
on graphs, from graph topology to applications,” 2020, arXiv:2001.00426.

[27] W. Huang, L. Goldsberry, N. F. Wymbs, S. T. Grafton, D. S. Bassett, and A.
Ribeiro, “Graph frequency analysis of brain signals,” IEEE J. Sel. Topics
Signal Process., vol. 10, no. 7, pp. 1189–1203, Oct. 2016.

[28] R. Singh, A. Chakraborty, and B. S. Manoj, “Graph Fourier transform
based on directed laplacian,” in Proc. Int. Conf. Signal Process. Commun.,
2016, pp. 1–5.

[29] S. Chen, A. Sandryhaila, J. M. Moura, and J. Kovačević, “Adaptive graph
filtering: Multiresolution classification on graphs,” in Proc. IEEE Global
Conf. Signal Inf. Process., 2013, pp. 427–430.

[30] S. Chen, F. Cerda, P. Rizzo, J. Bielak, J. H. Garrett, and J. Kovačević,
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two close fractional Fourier power spectra,” IEEE Trans. Signal Process.,
vol. 51, no. 1, pp. 112–123, Jan. 2003.

[58] D. Mendlovic, Z. Zalevsky, and H. M. Ozaktas, “Optical pattern recogni-
tion,” in The Applications of the Fractional Fourier Transform to Optical
Pattern Recognition. T. S. Yu and S. Jutamulia, Eds. Cambridge, UK:
Cambridge Univ. Press, pp. 89–125, 1998.

[59] R. Jacob, T. Thomas, and A. Unnikrishnan, “Applications of fractional
Fourier transform in sonar signal processing,” IETE J. Res., vol. 55, no. 1,
pp. 16–27, 2009.

[60] Z. Zhao, R. Tao, G. Li, and Y. Wang, “Fractional sparse energy represen-
tation method for ISAR imaging,” IET Radar, Sonar Navigation, vol. 12,
no. 9, pp. 988–997, 2018.

[61] M. I. Ahmad, M. U. Sardar, and I. Ahmad, “Blind beamforming using frac-
tional Fourier transform domain cyclostationarity,” Signal, Image Video
Process., vol. 12, no. 2, pp. 379–383, Feb. 2018.

[62] M. I. Ahmad, “Optimum FrFT domain cyclostationarity based adaptive
beamforming,” Signal, Image Video Process., vol. 13, no. 3, pp. 551–556,
Apr. 2019.

[63] H. M. Ozaktas and D. Mendlovic, “Fractional Fourier optics,” J. Opt. Soc.
Amer. A, vol. 12, pp. 743–751, 1995.

[64] H. M. Ozaktas and M. F. Erden, “Relationships among ray optical, gaussian
beam, and fractional Fourier transform descriptions of first-order optical
systems,” Opt. Commun., vol. 143, pp. 75–86, 1997.

[65] Z. Zalevsky and D. Mendlovic, “Fractional Wiener filter,” Appl. Opt.,
vol. 35, no. 20, pp. 3930–3936, Jul. 1996.

[66] J. Gutiérrez-Gutiérrez, A. Podhorski, I. Iglesias, and J. Del Ser, “A note
on the Wiener filter for vector random processes,” in Mobile Lightweight
Wireless Systems. J. Del Ser, E. A. Jorswieck, J. Miguez, M. Matinmikko,
D. P. Palomar, S. Salcedo-Sanz, and S. Gil-Lopez, Eds., Berlin, Heidelberg:
Springer, 2012, pp. 30–36.

[67] H. M. Ozaktas, O. Arıkan, M. A. Kutay, and G. Bozdağı, “Digital compu-
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