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Abstract: In this study, the authors consider the problem of secure and reliable communication with uncertain channel state
information (CSI) and present a new solution named active secure coding which combines the machine-learning methods with
the traditional physical-layer secure coding scheme. First, the authors build a detectable wiretap channel model by combining
the hidden Markov model with the compound wiretap channel model, in which the varying of channel block CSI is a Markov
process and the detected information is a stochastic emission from the current CSI. Next, the authors present a CSI-learning
scheme to learn the CSI from the detected information by the Baum–Welch and Viterbi algorithms. Then the authors construct
explicit secure polar codes based on the learned CSI, and combine it with the CSI-learning scheme to form the active secure
polar coding scheme. Simulation results show that an acceptable level of reliability and security can be achieved by the
proposed active secure polar coding scheme.

1௑Introduction
Over the last decade, polar codes [1] based physical layer secure
coding schemes [2–7] have achieved secure and reliable
communication over the wiretap channels (WTCs) [8] with a
decisive assumption that legitimate parties perfectly know the
precise channel information. However, in a practical situation,
uncertainties of the channel information always exists on legitimate
side [9–12]. For instance, adversaries can initially choose the
wiretapping channels and keep the channel information unknown
to legitimate parties. Such uncertainties of channel information
have brought enormous limitations on the application of physical-
layer secure coding in realistic communication.

To solve this uncertain channel state information (CSI)
problem, encryption methods are employed and combined with the
physical-layer secure coding [10, 13, 14], which, however, brings
new limitations. Since the security of encryption is negatively
related to the level of adversaries' computational power, the
encryption-coding solution cannot be applied in some extremely
high computational power cases, which is problematic due to the
rapidly developing quantum computing [15, 16] and the inevitable
needs of anti-quantum computing communication. Therefore, we
need to investigate new cooperative methods, other than the
encryption, with the physical-layer secure coding for the uncertain
CSI problem.

1.1 Our work

In this work, we study a new solution to the uncertain CSI
problem. In [17] a detectable assumption was proposed that
‘modifications of adversary's action may induce physical effects in
the environment which can be detected by legitimate parties’.
Based on this assumption, we have a general idea of an active
solution: if legitimate parties can learn the behaviour of adversaries
from the detected information and decode the current CSI, then the
physical-layer secure codes can be adjusted accordingly and
actively.

To implement this idea, we carry out our work from three major
aspects. First, is the construction of a new WTC model that covers
both uncertain CSI and detectable assumption. Second, is the
construction of a proper scheme to analyse the CSI from detected
information. Third, is the construction of an active secure coding
scheme that combines the CSI analysing scheme with the physical-
layer secure coding scheme.

Our contributions are summarised as follows:

(i) We have built a new detectable assumption based WTC model
by combining the hidden Markov model (HMM) [18] with the
compound WTC model (a block-varying WTC model [11]). In this
new model, we use Markov process to express the varying of
channel block CSI, and use a stochastic emission from the current
CSI to generate the detected information.
(ii) We have presented a CSI-learning scheme to analyse the CSI
from the detected information. Specifically, we set up a pre-
collecting stage to collect the training data prior to the secure
communication; we construct a CSI pattern learning scheme to
learn the HMM from the detected information by the Baum–Welch
algorithm [18]; we also construct a CSI decoding scheme to decode
the CSI from the detected information by the Viterbi algorithm [19]
with the learned HMM.
(iii) We construct the explicit secure polar codes based on the
learned CSI, and combine it with the CSI-learning scheme to form
the active secure polar coding scheme. We also analyse the
performance of the CSI-learning scheme and the active secure
polar coding scheme. For the analysis results of CSI-learning
scheme, the CSI pattern learning can achieve very good accuracy,
but the CSI error rate of CSI decoding is not vanishing. Then for
the analysis results of the active secure coding scheme, both
legitimate bit error rate and the information leakage rate stay at a
low level, thus acceptable reliability and security can be achieved.

1.2 Related works

The detectable assumption was proposed in [17] and further
studied in [20]. In these studies, the authors present a detectable
WTC model and a corresponding secure coding scheme. However,
different from our model that legitimate can only observe CSI-
related information, [17] assumes that legitimate parties directly
obtain the CSI from the detected information with hindsight. Then
with this delayed CSI, [17] presents the encryption-based secure
codes.

Another WTC model related to our hidden Markov-based
detectable WTC model is the finite state Markov WTC with
delayed feedback studied in [21]. In this work, the authors have
characterised the capacity-equivocation regions of their proposed
model. Same with our model, the varying process of the CSI is a
stochastic Markov process. The difference is that in our model
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legitimate parties can only detect information relevant to the CSI
but in the model proposed in [21] the legitimate receiver directly
knows the CSI and transmits it back to the legitimate sender as
delayed feedback.

1.3 Paper organisation

The outline of this paper is as follows. Section 2 presents the
construction of the hidden Markov-based detectable WTC model.
Section 3 presents the construction of CSI-learning scheme and the
active secure polar coding scheme. Section 4 presents the
performance analysis of the active secure polar coding scheme.
Finally, Section 5 concludes the paper.

1.4 Notations

We define integer interval [[a, b]] as the integer set between ⌊a⌋ and
⌈b⌉. For n ∈ ℕ and define N ≜ 2n. Denote X, Y, Z,…random
variables (RVs) taking values in alphabets X, Y, Z,…and the
realisation of these RVs is denoted by x, y, z,…respectively. Then
pXY denotes the joint probability of X and Y, and pX, pY denote the
marginal probabilities. Also, we denote a N size vector
X

N ≜ (X1, X2, …, XN) and denote Xa
b ≜ (Xa, Xa + 1, …, Xb). In

addition, for any index set A ⫅ [[1, N]], we define X
A ≜ {Xi}i ∈ A.

For the polar codes, we denote GN as the generator matrix, R as the

bit reverse matrix, F =
1 0
1 1

, ⊗ as the Kronecker product, and

have GN = RF
⊗ n. H( ⋅ ) denotes the binary entropy and I( ⋅ )

denotes the mutual information.

2௑Hidden Markov-based detectable WTC model
In this section, we build a new uncertain CSI WTC model with the
detectable assumption.

2.1 Hidden Markov model

In the detectable uncertain CSI case, CSI of the model is time
varying and controlled by the adversaries. Legitimate parties only
have the detected information relevant to the current CSI. To build
such a model, there are two aspects for consideration.

• CSI pattern: A model that generates the time-varying process of
CSI, written as ℙ.

• Mapping of detected information: A model that generates the
detected information from the CSI, written as O.

One good model that matches both CSI pattern and mapping of
detected information is the HMM [18].

The structure of a basic 1-HMM (S, O, A, B, π) is illustrated in
Fig. 1 which contains the following two parts: 

• A hidden internal part: This part is a stochastic Markov process
of hidden states which cannot be observed. As illustrated in Fig.
1, we have the Markov process as (S, A, π). S = {s1, s2, s3} is the
alphabet of possible states. A is a 3 × 3 state transparent

probability matrix that each item ai j represents the probability of
state changing from si to sj. π is the probability matrix for the
initial state S1. At the beginning of this Markov process, the
value of initial state S1 is distributed according to π over the
alphabet S. Then for any t > 1, each state St is stochastically
determined by the last state St − 1 and the state transparent
probability matrix A. For an instance, if current state value is s1,
then the next state value could be s1 with probability a11 or s2

with probability a12 or s3 with probability a13.
• An external emission part: This part is a stochastic mapping

from the hidden state to the observable information. As
illustrated in Fig. 1, we have this stochastic mapping as
(S, O, B). O = {o1, o2, o3, o4} is the observation alphabet. B is a
3 × 4 emission probability matrix that each item bi j represents
the probability of mapping si to oj. For any time t, the value of
observed information Ot is stochastically determined by the
value of current hidden state St and the emission probability
matrix B. For an example, if current state value is s1, then the
value of observed information could be o1 with probability b11 or
o2 with probability b12 or o3 with probability b13 or o4 with
probability b14.

The two parts of HMM can match our modelling needs. The
internal part can be used as the model for CSI pattern and the
external part can be used as the model for detected information.
Therefore, we build the detectable WTC model based on the
HMM.

2.2 HMM-based detectable WTC model

First, we make a few assumptions for the detectable WTC model.

• Both main channel and WTC are considered to be block varying
so that the CSI remains constant within each N length block.

• Both main channel and WTC are not necessarily symmetric or
degraded.

• The varying and detecting operation of CSI is ahead of the
encoding process, so legitimate parties can have the detected
information of current CSI before the encoding.

• Legitimate parties know all the possible values of CSI and
detected information.

Now we present the definition of our HMM-based detectable
WTC model.

 
Definition 1: The HMM-based detectable WTC model is

defined as (X, Y, Z, S, O, A, B, π) which contains an HMM
(S, O, A, B, π) with parameter set λH = (A, B, π).

X is the alphabet for main channel input, Y is the alphabet for
main channel output and Z is the alphabet for WTC output.

S = {s1, s2, …, sα} is the finite alphabet of the CSI state also as
the state set of HMM, have S = α. For si ∈ S, si = pYZ X

(i) , we
have

∀ xN, yN, zN ∈ XN × YN × ZN,

pY
N

Z
N

X
N yN, zN xN = ∏

j = 1

N

pYZ X
(i) yj, zj xj ,

(1)

Both main channel and WTC are asymmetric with no degradation
relationship.

O = {o1, o2, …, oγ} is the finite alphabet of detected information,
as well as the observation set of HMM, have O = γ; Matrix A is
an α × α state transparent probability matrix of the internal Markov
process of HMM, for i ∈ [[1, α]] we have

A = (ai j)α × α, ai j = p(sj si) . (2)

Matrix B is an α × γ emission probability matrix of HMM from
S to O, for i ∈ [[1, α]] and j ∈ [[1, γ]] we have

Fig. 1௒ Hidden Markov model
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B = (bi j)α × γ, bi j = p(oj si) . (3)

π is a 1 × α probability matrix for the initial state S1 when t = 1,
we have

π = p(S1 = s1), p(S1 = s2), p(S1 = s3), … 1 × α . (4)

Denote ℙH as the HMM-based CSI pattern, as well as the
internal Markov process of HMM. For t = 1, S1 = ℙH(π); for t > 1

St = ℙH(S1
t − 1, A) =

(a)
ℙH(St − 1, A), S ∈ S . (5)

where (a) is for the first-order Markov model (1-HMM) case.
Denote OH as the HMM-based CSI detecting, as well as the

external emission process of HMM, have

Ot = OH(St, B), O ∈ O, S ∈ S . (6)
Fig. 2 illustrates the communication process of the HMM-based

detectable WTC model, which is as follows: 

(i) Adversary Eve chooses the CSI S for both main channel and
WTC according to the CSI pattern ℙH.
(ii) Legitimate parties, Alice and Bob, detect the varying CSI and
observe the detected information O according to the CSI detecting
model OH.
(iii) Alice encodes the message M into N length codewords XN and
transmits it to Bob over the main channel block with side
information O.
(iv) Bob receives YN from the main channel block and decodes it
into message M^  with side information O.
(v) Eve receives Z

N form the WTC block and decodes it into
message Z^ N

 according to CSI S.

 
Definition 2: ([2]) For any (2NR, N) code over the detectable

WTC model, the code performance can be measured as follows:

• Reliability can be measured by the bit error rate of Bob
decoding the message M

Pe = Pr (M ≠ M
^
) . (7)

• Security can be measured by the information leakage rate of
massage M to Eve

Lr =
I(ZN; M)

N
. (8)

3௑Active secure polar coding scheme
In this section we implement our idea of active secure coding on
the HMM-based detectable WTC model. Recalling our idea of
active secure coding solution for the uncertain CSI problem: under
the detectable assumption, legitimate parties can detect the varying
hidden CSI and observe information relevant to the CSI; then they
can analyse the detected information and estimate the current CSI;
according to estimated CSI, the secure scheme can actively adjust
its coding strategy.

Following this idea, the framework of our active secure coding
scheme over the HMM-based detectable WTC model can be
divided into two major parts:

• A CSI-learning scheme which analyses and estimates the CSI
from detected information.

• A secure coding scheme constructed by polar codes which can
actively adjust the coding strategy according to the estimated
CSI.

Therefore, for the rest of this section, we first present a HMM-
based CSI-learning scheme, then we present the corresponding

polar code construction, and finally we present the structure of
active secure polar coding scheme by combining the CSI-learning
and the code construction together.

3.1 HMM-based CSI learning scheme

Consider the multi-block communication over the HMM-based
detectable WTC model, for block 1 to block t, legitimate parties
can obtain the detected information sequence as O1

t. With this
detected information sequence, the aim of the CSI learning is to
estimate the current CSI S

^

t from the O1
t. The framework of CSI-

learning scheme contains following three parts:

(i) Pre-collecting stage: Initial detected information collection
prior to the secure communication.
(ii) CSI pattern learning: Learn the optimal parameter of the CSI
pattern from the detected information sequence.
(iii) CSI decoding: Decode the CSI from the detected information
sequence with the learned CSI pattern.

3.1.1 Pre-collecting stage: We setup ω rounds random
transmission prior to the secure communication as the pre-
collecting stage, in which legitimate users directly transmit random
bits over the main channel, so that they can collect initial detected
information which is defined as O1 − ω

0 , from the varying CSI
without any information leakage.

The purpose of this pre-collecting stage is to guarantee that
legitimate parties have enough detected information (train data) for
CSI pattern learning at the first few blocks of secure
communication. For example, at the tth block communication, the
detected information for CSI pattern learning is O1 − ω

t .
Also note that we use (ω + t) → ∞ to illustrate ω → ∞ with a

finite t.

3.1.2 CSI pattern learning: Denote LH as the HMM-based CSI
pattern learning.

Consider the T-times secure communication over the HMM-
based detectable WTC model (X, Y, Z, S, O, λH) where
λH = (A, B, π) is the parameter set of HMM. Then for any time
t ∈ [[1, T]], the detected information obtained by legitimate parties
is O1 − ω

t .
Assuming legitimate parties know that the CSI pattern ℙH and

the emission process OH is an HMM, but they do not know the
precise parameter set λH, thus for any time t ∈ [[1, T]], the CSI
pattern learning is to learn the optimal estimated parameter
λ
^

H = (A
^

, B
^

, π
^) from the detected information sequence O1 − ω

t ,
which is defined as

λ
^

H = LH(O1 − ω
t , S, O) . (9)

Particularly, for 1-HMM-based detectable WTC model, we
apply the Baum–Welch algorithm [18] in Appendix 1 to implement
the CSI pattern learning.

3.1.3 CSI decoding: Denote DH as the HMM-based CSI
decoding.

Fig. 2௒ HMM-based detectable WTC model
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Note that for any time t ∈ [[1, T]], legitimate parties obtain the
detected information as O1 − ω

t , and they have the estimated
parameter set λ

^

H = (A
^

, B
^

, π
^) by the CSI pattern learning.

Then the aim of CSI decoding is to decode the optimal
estimated state sequence S

^

1

t
 from the detected information O1 − ω

t

with the learned parameter set λ
^

H, which is described as

S
^

1

t
= DH(O1 − ω

t , λ
^

H, S, O) . (10)

Particularly for 1-HMM-based detectable WTC model, we apply
the Viterbi algorithm [19] in Appendix 2 to implement CSI
decoding.

3.2 Secure polar code construction

Next we present the construction of secure polar code for an N-
length block with any CSI value si ∈ S. As studied in [2], the main
technique for the secure polar code construction is the polarised
subset division of the channel block index [[1, N]].
 

Definition 3 ((Bhattacharyya parameter)): Consider a pair of
RVs (X, Y) ∼ pXY, where X is a binary RV and Y is a finite-alphabet
RV. To measure the amount of randomness in X with given Y, the
Bhattacharyya parameter is defined as

Z X Y = 2 ∑
y ∈ Y

pY(y) pX Y 0 y pX Y(1 y . (11)

As we defined in Definition 1, CSI value si = pYZ X
(i) , i ∈ [[1, α]].

Assume that we know the optimal distribution of channel inputs to
achieve the channel capacity under pY X

(i) . Then for δN = 2−N
β

,
ℳ → UN → XN → YN, ZN, β ∈ 0, 1/2 , according to the source
polarisation theory [22] and channel polarisation theory [1], we can
have the following polarised results of CSI value si:

• Source polarisation

ℋX
(i) = j ∈ [[1, N]]:Z U j U1

j − 1 ≥ 1 − δN ,

ℒX
(i) = j ∈ [[1, N]]:Z U j U1

j − 1 ≤ δN .
(12)

• Main channel polarisation

ℋX Y
(i) = j ∈ [[1, N]]:Z U j U1

j − 1, Y
N ≥ 1 − δN ,

ℒX Y
(i) = j ∈ [[1, N]]:Z U j U1

j − 1, Y
N ≤ δN .

(13)

• WTC polarisation

ℋX Z
(i) = j ∈ [[1, N]]:Z U j U1

j − 1, Z
N ≥ 1 − δN ,

ℒX Z
(i) = j ∈ [[1, N]]:Z U j U1

j − 1, Z
N ≤ δN .

(14)

Based on above polarised results, we divide the index [[1, N]] as
follows, which is similar to the structure in [5, 6]

ℐ(i) = ℋX
(i) ∩ ℒX Y

(i) ∩ ℋX Z
(i) ,

ℱ(i) = ℋX
(i) ∩ ℒX Y

(i) c
∩ ℋX Z

(i) ,

ℛ(i) = ℋX
(i) ∩ ℒX Y

(i) ∩ ℋX Z
(i) c

,

ℬ(i) = ℋX
(i) ∩ ℒX Y

(i) c
∩ ℋX Z

(i) c
,

D(i) = ℋX
(i) c

.

(15)

Since legitimate parties cannot know the CSI of next block, in
order to implement the multi-block chaining structure [2], we have
to assume that ℐ(i) > max

S
ℬ  (if ℐ(i) ≤ max

S
ℬ , subset ℰ(i)

cannot be constructed), and then construct the subset ℰ(i) as
follows:

ℰ(i) ⊂ ℐ(i), ℰ(i) = max
S

ℬ . (16)

Finally for every si = pYZ X
(i) , we have the divided subsets

ℐ(i) ∖ ℰ(i), ℰ(i), ℱ(i), ℛ(i), ℬ(i) and D(i)) for the secure polar code.
Then the functions of these subsets are as follows: subset

ℐ(i) ∖ ℰ(i) is secure and reliable, which is used for indicating
information bits; subset ℰ(i), with a fixed size for all si, is secure
and reliable, which is used for indicating functional random bits;
subset ℱ(i) is secure but unreliable, which is used for indicating
frozen bits; subset ℛ(i) is reliable but insecure, which is used for
indicating uniformly distributed random bits; subset ℬ(i) is neither
secure nor reliable, which is constructed to retransmit the random
bits in ℰ(i) of previous round; subset D(i) is used for indicating
deterministic bits calculated by

uj = arg max
u ∈ {0, 1}

pU j U1
j − 1(u u1

j − 1), j ∈ D(i) . (17)

3.3 Active secure polar coding scheme

Next we present the active secure polar coding scheme by
combining the HMM-based CSI-learning scheme and secure polar
code (Fig. 3). 

The framework of the active secure polar coding scheme is
illustrated in Fig. 4. Every time when adversary Eve changes the
CSI St according to the CSI pattern ℙH(5), legitimate parties, Alice
and Bob, observes the detected information as O1 − ω

t  by the CSI
detecting OH(6). Then by CSI pattern learning LH (9) and the CSI
decoding DH (10), the current CSI can be estimated from the
detected information as S

^

t. Therefore, with the estimated CSI S
^

t

legitimate parties can perform the polarised subset division (15)
and (16) of the secure polar code and then establish the multi-block
chaining structure for secure and reliable communication.

Now we present the active secure polar coding scheme in detail.
Consider a T blocks secure communication from time 1 to time T
over the HMM-based detectable WTC model

Fig. 3௒ Framework of the active secure coding scheme
 

Fig. 4௒ Construction of secure polar code with estimated CSI
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(X, Y, Z, S, O, A, B, π) with pre-collected information O1 − ω
0

and confidential message M1
T ∈ ℳ. Assume that legitimate parties

know the full set of S, O and the optimal channel input distribution
for each CSI value. Then the structure of active secure polar coding
scheme is as follows.

(i) CSI learning: For tth time, legitimate parties have the detected
information sequence as o1 − ω

t . They learn the CSI pattern from
o1 − ω

t  by

λ
^

H = LH(o1 − ω
t , S, O) . (18)

Then they decode the estimated CSI sequence s^1
t  from o1 − ω

t  by

s^1
t = DH(o1 − ω

t , λ
^

H, S, O) . (19)
(ii) Polarised subsets division: For tth time, based on the estimated
CSI s^t, perform the polar subsets division of channel index N to
obtain (ℐ

^

t, ℱ
^

t, ℛ
^

t, ℬ
^

t, D
^

t, ℰ
^

t).
(iii) Encoding: For tth time, assign the uN as follows:

• uℐ
^

t ∖ ℰ
^

t: Assigned with information bits of Mt.
• uℱ

^
t: Assigned with frozen bits.

• uℛ
^

t: Assigned with uniformly distributed random bits.
• uℰ

^
t: Assigned with uniformly distributed random bits.

• uD
^

t: Assigned with deterministic bits calculated by (17).
• uℬ

^
t: If t = 1, assigned with a pre-shared random bits; if t > 1,

assigned with the first ℬ
^

t  bits of uℰ
^

t − 1 in time t − 1.

Then encode uN into the optimally distributed channel input xN by
polar encoding xN = uN

GN, and transmit xN over the main channel
block.
(iv) Decoding: For tth time, legitimate user Bob receives yN and
decodes it into the estimated u^N with the estimated CSI s^t by the
succussive cancellation decoding [1].

• for j ∈ ℐ
^

t ∪ ℛ
^

t

u^ j = arg max
u ∈ 0, 1

pU j U1
j − 1

Y
N u u^1

j − 1
yN (20)

• for j ∈ ℱ
^

t, u^ j is directly decoded as the frozen bits;
• for j ∈ ℬ

^

t, if t = 1, u^ j is directly decoded as the pre-shared bits,

if t > 1, u^ j is directly decoded as the correspondent bit of u^ℰ
^

i − 1

in time i − 1;
• for t ∈ D

^

t

u^ j = arg max
u ∈ 0, 1

pU j U1
j − 1 u u^1

j − 1 (21)

4௑Simulations
In this section, we test the performance of the active secure polar
coding scheme. Particularly, we build a concrete 1-HMM-based
detected WTC model for the simulation.

• For CSI pattern: Let A = [0.95, 0.05; 0.10, 0.90],
π = [0.95, 0.05] and CSI uncertain set
S = {(0.2, 0.5), (0.3, 0.6)}, where each CSI si = (ϵm, ϵw) means a
BEC pair with erase probabilities ϵm and ϵw, respectively, for the
main channel and WTC.

• For CSI detecting: Let B = [1/6, 1/6, 1/6, 1/6, 1/6, 1/6; 1/10,
1/10, 1/10, 1/10, 1/10, 1/2] and O = {1, 2, 3, 4, 5, 6} that
represents the six possible values of detected information.

Note that all the above parameters and values are arbitrarily
chosen.

4.1 Performance of CSI learning scheme

First we test the performance of the HMM-based CSI-learning
scheme, including both HMM-based CSI pattern learning and CSI
decoding.

To run the simulation for the CSI pattern learning, we arbitrarily
setup an initial estimated parameter set λ

^

H as
A
^

= [0.80, 0.20; 0.20, 0.80],
B

^
= [1/5, 1/5, 1/5, 1/5, 1/10, 1/10; 1/8, 1/8, 1/8, 1/8, 1/4, 1/4] and

π
^ = [0.80, 0.20]. Then the CSI pattern learning is the updating
process of this estimated parameter set λ

^

H based on the detected
information O1 − ω

t . We use the Euclidean distance between λH and
λ
^

H to measure the accuracy of the estimation, which is denoted as
∥ λH − λ

^

H ∥.
The simulation result of the CSI pattern learning is illustrated in

Fig. 5. We can observe that when the length of detected
information O1 − ω

t  increasees, the estimated parameter set λ
^

H gets
closer to the actual parameter set λH, which indicates that the
estimation of λH can reach an acceptable high level of accuracy
with enough detected information.

Then we run the simulation for the CSI decoding based on the
estimated parameter set λ

^

H from the CSI-learning simulation, and

analyse the CSI error rate of decoding S
^

1 − ω

t
 from detected

information O1 − ω
t .

The simulation result of the CSI decoding is illustrated in Fig.
6. We can observe that with the increasing of detected information
O1 − ω

t , the error rate of CSI decoding is decreasing to a relatively
low level and then remains. Note that for the CSI-learning scheme,
the CSI S is coded into detected information O and then decoded
into estimated CSI S^ which forms a Markov chain S → O → S

^ that
takes values in S → O → S. We define the CSI error rate as

Pe_csi = Pr (S ≠ S
^
) . (22)

Then according to the Fano's inequation, Pe_csi satisfies

H(S O) ≤ H(Pe_csi) + Pe_csilog( S − 1) . (23)

Thus there is a lower bound of the CSI error rate for the CSI
decoding.

Fig. 5௒ Distance between λH and λ^H
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4.2 Performance of active secure polar coding scheme

Next, we analyse the performance of the active secure polar coding
scheme, including both reliability and security.

Let M be the binary confidential message which is uniformly
distributed on {0, 1}. Let ω = 2000 be the rounds of pre-collecting
stage and T = 8000 be the number of channel blocks for secure
communication. Let β = 0.25 for the polarised subset division of
secure polar codes. Then we run the simulation of active secure
polar coding with n = 7, 8, 9, 10 successively.

Fig. 7 illustrates the bit error rate of legitimate parties decoding
the confidential message M1

t. We can observe that with the
increasee in the block number ω + t, the bit error rate drops < 0.1
and then remains on a relatively low-level compareed with the
average main channel erase probability, which indicates that an
acceptable level of reliability can be achieved.

However, on the other hand, with the increasing of block length
N = 2n, there is no obvious vanishing tendency for the bit error
rate, thus the perfect reliability criterion limN → ∞ Pe = 0 cannot be
achieved. The main reason of this failure is the existence of lower
bound for the CSI error rate while estimating the CSI from the
detected information.

Fig. 8 illustrates the bit error rate of adversary decoding the
confidential message M1

t, and the corresponding information
leakage rate of M1

t is illustrated in Fig. 9. From Fig. 8, we can
observe that the bit error rate of adversary decoding the message
M1

t remains closeer to 0.5 when the block number ω + t is
increasing. Note that message M is uniformly distributed over
{0, 1}, if the bit error rate gets closer to 0.5, the information
leakage rate will get lower. Thus, in Fig. 8 the information leakage
rate remains at a low level which indicates that an acceptable level
of security can be achieved.

However, also because of the lower bound for the CSI error
rate, there is no trend for bit error rate approaching 0.5 or
information leakage rate vanishing with an increasing block length
N = 2n. Thus, the perfect security criterion limN → ∞ Lr = 0 also
cannot be achieved.

5௑Conclusion
In this paper, we have proposed a new solution for the uncertain
CSI problem called active secure coding, which combines the
machine-learning methods with the traditional physical-layer
secure coding scheme to achieve secure and reliable
communication.

First, we use HMM to model the CSI pattern and CSI detecting,
that the varying of channel block CSI is a Markov process, and the
detected information is a stochastic emission from the current CSI.
Then we combine the HMM with the compound WTC model to
build the HMM-based detectable WTC model. Next, we present a
CSI-learning scheme to learn the CSI from the detected
information by applying the Baum–Welch algorithm and the
Viterbi algorithm. Besides, we set up a pre-collecting stage to
collect training data prior to secure communication. Further, we
construct the explicit secure polar codes based on the learned CSI,
and combine it with the CSI-learning scheme to form our active
secure polar coding scheme.

At last, we carry out simulations to test the performance of the
active secure polar coding scheme. For the CSI-learning scheme,
simulation results show that the parameter λH can be correctly
learned from the detected information, but the lower bound of CSI

Fig. 6௒ CSI error rate
 

Fig. 7௒ Bit error rate of message M1
t  for Bob

 

Fig. 8௒ Bit error rate of message M1
t  for Eve

 

Fig. 9௒ Information leakage rate of message M1
t for Eve
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error rate exists for estimating the CSI from detected information.
Owing to this lower bound, the secure coding scheme can achieve
an acceptable level of reliability and security (low bit error rate and
information leakage rate), but fails to achieve perfect reliability or
perfect security.

Our future work will focus on the remaining problem of
achieving perfect reliability and security. Particularly, instead of
decoding CSI from detected information, we will try to construct
secure polar codes only with the correctly learned parameter λH.
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8௑Appendix
௑
8.1 Appendix 1: Baum–Welch algorithm for CSI pattern
learning

Considering the HMM model (S, O, A, B, π) introduced in Section
2 with unknown CSI time sequence s1

t and detected observation
time sequence o1

t. Assume we know the full set of S and O. Define
bi(oj) = p(oj si) and set random initial conditions to λH = (A, B, π).

Then, the Baum–Welch algorithm [18] for CSI pattern learning is
as follows.

(i) Forward procedure: For i ∈ [[1, α]], k ∈ [[1, t]], denote

μi(k) = p(o1
k, Sk = si λH) (24)

initialisation

μi(1) = πibi(o1) (25)

recursion

μi(k + 1) = bj(ok + 1) ∑
j = 1

α

μj(k)aji (26)

(ii) Backward procedure: For i ∈ [[1, α]], k ∈ [[1, t]], denote

ρi(k) = p(o1
k Sk = si, λH) (27)

initialisation

ρi(t) = 1 (28)

recursion

ρi(k) = ∑
j = 1

α

ρj(k + 1)ai jbj(ok + 1) (29)

(iii) Update: Denote υi(k) = p(Sk = si o1
k, λH) and

ϕi j(k) = p(Sk = si, Sk + 1 = sj o1
k, λH). Then according to the Bayes'

theorem, we have

υi(k) =
p(Sk = si, o1

k λH)

p(o1
k λH)

=
μi(k)ρi(k)

∑ j = 1
α

μj(k)ρj(k)
(30)

ϕi j(k) =
p(Sk = si, Sk + 1 = sj, o1

k λH)

p(o1
k λH)

=
μi(k)ai jρj(k + 1)bj(ok + 1)

∑i = 1
α ∑ j = 1

α
μi(k)ai jρj(k + 1)bj(ok + 1)

(31)

Then, the parameter set λH of the HMM can be updated by

πi
∗ = υi(1) (32)

ai j
∗ =

∑k = 1
t − 1

ϕi j(k)

∑k = 1
t − 1

υi(k)
(33)

bi j
∗ =

∑k + 1
t 1ok = oj

υi(k)

∑k + 1
t

υi(k)
(34)

where i ∈ [[1, α]], j ∈ [[1, γ]], k ∈ [[1, t]]

1ok = oj
=

1, if ok = oj

0, otherwise
(35)

8.2 Appendix 2: Viterbi algorithm for CSI decoding

Following the notation for HMM in Appendix 1, assume that we
know the full set of S, O and the parameter set λH and have the
observation o1

t.
For i ∈ [[1, α]], k ∈ [[1, t]], denote κi(t) as the probability of the

most likely path s^1
k with s^t = si that generates the observation o1

k,
denote τi(k) as the s^k − 1 of the most likely path s^1

k − 1 with s^k = si, we
have
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κi(k) = max
s ∈ S

p(s^1
k, s^t = si, o1

k, λH) (36)

Then the Viterbi algorithm [19] for CSI decoding is as follows:

(i) Initialisation with

κi(1) = πibi(o1)

τi(1) = 0
(37)

(ii) Recursion for i ∈ [[1, α]], k ∈ [[2, t]]

κi(k) = max
i ∈ [[1, α]]

κi(k − 1)ai jbj(ok)

τi(k) = arg max
i ∈ [[1, α]]

κi(k − 1)ai jbj(ok)
(38)

(iii) End for

p
∗ = max

i ∈ [[1, α]]
κi(t)

st
∗ = arg max

i ∈ [[1, α]]
κi(t)

(39)

(vi) Path trace, for k = t − 1, t − 2, …, 1

sk
∗ = τsk + 1

∗ (k + 1) (40)

IET Commun., 2020, Vol. 14 Iss. 16, pp. 2786-2793
© The Institution of Engineering and Technology 2020

2793


