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ABSTRACT 

Objective 

Mapping real-world practice patterns vs. deviations from intended guidelines and protocols is necessary to identify 

and improve the quality of care for emergent medical conditions like stroke. We propose a process mining algorithm 

applied to Electronic Health Record (EHR) event log data as a unique opportunity to more easily identify and 

compare real-world care processes. 

 

Materials 

Data was obtained from the event log of a major EHR vendor (Epic) for Stanford Health Care Hospital patients aged 

18 years and older presenting to the ED from January 1, 2010 through December 31, 2018 and receiving tPA within 

4.5 hours of presentation. Our algorithm was built using the Python programming language. 

 

Methods 

An unsupervised process-mining algorithm was developed and used to create a process map for our cohort. This 

map was then used to identify the most common path as well as individual and average conformity to this path 

across all encounters. 

 

Results 

Our automatically generated process mining graph, specifically its most common path, mimicked our institution’s 

recommended “code stroke” clinical pathway. The average conformity score for our cohort was 0.36 with a range 

from high of 0.64 and low of 0.20. 

 

Discussion 

This method allows for greater detail into common process measures to be more easily illustrated to evaluate the 

quality of care at a given institution. It may be extended to other, similarly well-defined processes or those which 

currently lack standardized clinical pathways. 

 

Conclusion 

Our mixed methods approach represents an essential data analysis step to improve complex care processes by 

automatically generating a qualitative and quantitative process measures from existing event log data which can then 

be used to target quality improvement initiatives. 

 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 8, 2021. ; https://doi.org/10.1101/2021.11.08.21266066doi: medRxiv preprint 

https://doi.org/10.1101/2021.11.08.21266066
http://creativecommons.org/licenses/by-nc-nd/4.0/


INTRODUCTION 

Many life-threatening emergent medical conditions require time-sensitive progression through multiple 

points of evaluation and management in order to deliver definitive, life-saving interventions. In the case of 

an acute ischemic stroke, for example, blood samples must be collected by a nurse, evaluation must be 

performed by a physician, the CT scanner must be prepared by a technician and a pharmacist must prepare 

critical ”clot-busting” medication like tissue plasminogen activator (tPA) for delivery as soon as the 

diagnosis is confirmed. Each step may rely on another and variation may result from institutional and 

contextual differences in the care environment[1]. Evaluating and improving care processes for conditions 

such as these underlies the vision of a learning healthcare system[2]. 

Before attempting to improve such processes, however, we must understand the status quo practices[3]. 

Only then can we begin to measure its variation and identify discrepancies between common versus 

intended practices to drive improvement initiatives. However, given the complexity of most real-world 

healthcare processes, it is difficult to obtain granular detail about how they actually occur in practice[4]. 

Defining clinical care processes currently tends to rely on recall and expert opinion rather than direct 

observation[5]. When they are directly observed, they tend to occur in-person, which can be time-

consuming and labor-intensive. Video surveillance may also be utilized, but managing emergent conditions 

often takes place in multiple simultaneous settings (ie. the ED, hallways, or the radiology suite), thus 

limiting their generalizability to those actions that occur at the bedside. 

Process mining, the method of determining the order of events from a log, may help to address these 

issues[6]. All that is required is time-stamped data, that is often generated at scale through passive data 

collection in electronic (health) record (EHR) systems. Process mining can help organizations easily 

capture workflow information from enterprise systems and provides detailed, data-driven insights about 

how key processes are being performed. 

In the clinical setting, process mining has been utilized for various purposes[7, 8, 9]. Most of these studies 

evaluate how closely a process matches recommended guidelines (ie. appropriate triage),[10, 11] while 

some assess variations in practice for poorly defined workflows (ie. what is an average day for a general 

surgeon)[12]. This methodology has been recommended as particularly useful in the ED setting, where 

practice and processes are highly variable and noisy, but limited existing investigation work has been done 

in this setting[7, 13]. Cho et. al. proposed several common ED process measures which could be evaluated 

through this method, yet recommendations for which data to use and what events to measure remains 

unclear[14].  

Furthermore, even when an ED process has been evaluated, as in the case of acute stroke, the 

methodologies thus far have not evaluated the granular details of diagnosis and treatment (e.g., medication 

ordering, administration and CT scanner availability) but rather the department-level identifiers like wait 

times and level of service[13], which limits their potential utility in affecting performance improvements at 
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the point of care. Finally, while there are many different process mining algorithms and software packages 

available for use, there is little consensus on which to use and for what purposes, few are able to tolerate the 

complexity and volume of data from raw healthcare event log data sets, and none employ unsupervised 

machine learning strategies to clean and present the most relevant data[7]. 

In this exploratory data analysis, we developed a process mining method to automatically analyze the event 

log from a common EHR vendor, Epic, at an academic medical center (Stanford Health Care) to build 

process maps for tPA management of acute stroke care solely from the event log data. We evaluated our 

model’s process maps to our institutional stroke guidelines to validate our proof of concept. Furthermore, 

we extended the visualizations and insights such maps can offer by providing additional summary views 

and statistics to illuminate variations in care practices. 

 

METHODS 

Process mining is based on a set of simple rules to create a graphical representation of actions. Actions are 

acquired from the event log of a particular outcome of interest (ie. tPA administration for stroke). Process 

mining results in a graph where events are represented by nodes, edges represent subsequent events, and 

edge labels show the probability of those two events occurring in that order. The nodes of the graph are 

time-ordered earliest to latest (top to bottom). This graph is then used to determine the most common 

pathway (MCP). The MCP is then used to calculate the conformity of an individual encounter as well as the 

average conformity of all encounters to it. 

 

Cohort Development 

First, a cohort of patients and data from their hospital encounters must be created based on inclusion criteria 

for a particular process or outcome of interest. We investigated patients receiving tPA treatment for acute 

stroke. As such, our cohort consisted of Stanford Health Care Hospital patients aged 18 years and older who 

presented to the ED from January 1, 2010 through December 31, 2018 and received tPA within 4.5 hours of 

presentation - the standard window for safe tPA administration recommended by the American Stroke 

Association (ASA). Given this cohort, data may be extracted or filtered from the EHR event log for their 

corresponding clinical encounters. 

 

Data Preparation 

Given the volume of clinical event log data is orders of magnitude greater than clinical data alone, feature 

selection is critical before creating a process map. 
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Table 1: The event log of a simulated patient. 

 

The event log for a unique patient encounter includes several columns such as “user ID”, ”time”, ”event 

name”, etc. The “user ID” specifies the unique ID for a provider (Table 1). The “time” column indicates the 

relative times of events. These relative times are the difference between the patients’ admission time and 

the time of the associated event. Negative times indicate events which have happened even before the 

admission time (ie. activation of stroke protocol from the field before patient arrival in the ED). We 

included data from the time of an encounter beginning through the administration of tPA. 

The ”event name” column contains specific names of the events (i.e. order name or result that was viewed). 

The event log table structure can contain additional columns to assign more information or labels for each 

event. In our example these event label columns are “event category”, “event type” and “user type.” 

 

Process Mining Algorithm 

Our implementation of process mining utilizes an unsupervised learning method to create the subsequent graph.
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Automatic Selection of Events 

Many unique event types can occur in a clinical process, most of which are captured in the clinical EHR 

data. Figure   2 illustrates the timing distribution of some of these most common events for our cohort. The 

corresponding event log data typically includes even more unique events of varying prevalence. Our 

proposed approach for selecting events that should appear as nodes in a process mining graph involves 

selecting the top n events that happen most frequently among all patients from the event log data. A larger n 

would result in a graph with more nodes, which captures a more granular set of events in the process. 

 

 

 
 

Figure 1: Histogram of the major events for stroke patients in the ED. 

 

Graph Construction 

There is a relatively normal distribution in timing of common events as seen in Figure 1. However, the 

temporal relationship of each order to its pro- and pre-ceding events cannot be determined from the summary 

timing data alone. Instead, all must be mapped from beginning to end for each patient encounter. Mapping 

relies on creating a graph of nodes and their related edges. 

Nodes: The nodes of the graph are the unique events from the event-log data. The node names can be 

defined based on any set of the event labels (associated with different columns in the event log data (Table 

1)). 

Edges: The edges of the process mining graph connect the pairs of events that happen sequentially in the 

event-log data. It is of course possible for many variations in the ordering of these events. Without applying 

a filter the output graph the resulting graph might appear complex and difficult to interpret. In order to 
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control the number of the edges we define two types of weights for each edge: 

Probability weight: The probability weight is proportional the number of occurrences of particular nodes 

pairs. The weights are then normalized. 

Lag weight: The lag weight for each edges shows the relative time between the corresponding end-nodes. 

As a direct pruning measure, less frequent edges with a probability weight below specified thresholds may be 

removed from the graph. 

 

Node Aggregation 

Limiting the number of edges is one way to reduce noise and improve the readability of the process mining 

graph. Many separate events often occur simultaneously or with an extremely small time lag (ie. using an 

order set to place many simultaneous orders). In these situations aggregation of the events into a single node 

better represents the action associated with this process. Detecting the set of nodes which need aggregation is 

based on a graph-theoretical concept of graph clustering14. Node aggregation is based on the time-lag 

between the events as well as the event labeling - to avoid unique but simultaneous events from being 

aggregated. We refer to the new graph with aggregated nodes as the summarized graph. 

Aggregation occurs as follows: 

1. Filter edges: Filter out the edges with time-lag weights greater than a predefined threshold. 

2. Aggregate Nodes: Identify nodes that belong to the same cluster and aggregate them into single nodes. 

a. Identify the connected components: After removing the edges with larger time-lags, the 

resulting graph has several connected components (clusters). Larger weight thresholds leads 

to larger clusters and more node aggregations. 

b. Exclude the nodes from the minority types: The nodes with different types (e.g. with different 

categories, users, etc.) are not usually associated with similar sets of events. Thus, nodes 

with different types from each connected node set are excluded. 

c. The nodes within each cluster are then grouped into a single node representing the whole cluster. 

3. Aggregate Edges: The final step is to aggregate the edges connected to the aggregated nodes. This 

includes two types of edges: 

Internal edges: An edge that connects two nodes within a cluster is called an internal node. These 

edges disappear in the summarized graph. 

External edges: An edge that connects two nodes from a cluster to another node outside the cluster 

is called an external edge. In the summarized graph, all of the edges between two clusters would be 

aggregated into a single edge. The lag-weight and probability weights of the new edge are 
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respectively equal to the average lag-weights and probability weights of the original edges between 

those clusters. Node aggregation is demonstrated in Figure 2. 

 

Most Common Path 

One of the main outcomes of a process mining graph is to show the many common pathways among all users. 

However, it may be useful to identify the MOST common path given many possible routes. The probability 

weights indicate which order of events most commonly happened among all patients. Based on the 

probability weights of edges in the process mining graph, we define the MCP as the path from the start node 

(admission) to the end node (tPA given) with the greatest probability of occurring. 
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Figure 2: Node aggregation example. Step 0: the original process mining graph, Step 1: filter the edges, 

Step 3: node aggregation, Step 4: edge aggregation. 

 

Pathway Conformity Scores 

While the primary application of the proposed process mining graph is to qualitatively represent common 

pathways for a process of interest, it may also be helpful to quantitatively measure the conformance of the 

pathways across patients or encounters for a given outcome of interest. This provides a measure of how 

similar an individual or cohort of encounters is with the MCP. The conformity score allows for a summary 

statistic of the totality of individual events from an encounter to be compared against all other encounters for 

that outcome of interest. Here, we define the pathway conformity score for a particular patient encounter as 

well as the average conformity score for all encounters of a particular outcome. 

 

Patient-Level Conformity Score 

We define the conformity score for an individual patient encounter P using the probability weights of the 

edges as follows: 

                     (1) 

where P represents a path for a patient, EP is the set of all of the edges for the patient P, and pe are the 

probability weights for the edge e. The score is normalized and represents the weighting of a pathway against all 

other possibilities. For example, if there were three possible unique pathways to take based on three unique 

encounters, the conformity score for any one pathway would be 1/3 (0.33). A higher conformity score 

means the encounter is more similar to the most common path, whereas lower conformity scores are 

associated with encounters that proceeded through a much different series of events. 
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Average Conformity Score 

It may be helpful to determine how variable all encounters are to the MCP. Thus, we define the average 

conformity score, which measures the average conformity across all encounters as follows: 

 

�� �
�

|�|
∑ ����� ,                    (2)

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 8, 2021. ; https://doi.org/10.1101/2021.11.08.21266066doi: medRxiv preprint 

https://doi.org/10.1101/2021.11.08.21266066
http://creativecommons.org/licenses/by-nc-nd/4.0/


where L is the set of all patients. Higher scores imply that the processes are very consistent across different 

cases - where each encounter has a high conformity with any other on average. If the number is very low, the 

process is highly variable, or inconsistent, across individual encounters - meaning each encounter has little 

conformity with any other. 

 

RESULTS 

Process Map 

Using the above-described method, we created a process map for acute stroke management with tPA. There 

were a total of 269 patients in our above-described cohort, with 140 identified as female and 129 as male 

gender. The majority of the patients (80%, 214/269) were aged 60 or older. The average measured time to 

tPA is 54 min from admission and the standard deviation is 17 min. 
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Figure 3: A sample process mining graph of the tPA-treated stroke patients. The following abbreviations 

are used in the node names: ’OP’ for ’Order for Procedure’, ’LR’ for ’Lab Result’, ’ISTAT’ for ’iSTAT 

point-of-care testing’. Every edge is labeled by a two-component weight; probability of the sequence (the 

first weight component) and the lag between events (the second weight component). 

 

Our process map (Figure 3) showed that admission to the Emergency Department was most often the first 

clinical event in the stroke care process occurring at time zero (the reference time of our data set). Ordering 

Admission - Registration 
 
 

(1.0, 3.42) 

OP [ CT HEAD PERFUSION W CONTRAST , 
PROTHROMBIN TIME , 

CT HEAD , 
SALINE LOCK AND FLUSH , 

METABOLIC PANEL, COMPREHENSIVE , 
OXYGEN NASAL CANNULA(NURSING ONLY) , 

SWALLOW ASSESSSMENT , 
CARDIAC MONITOR , 

ECG 12 ] 

(0.16, 5.71) (0.47, 10.77) 
 
 

(1.0, 12.54) LR - ECG 12-LEAD 
 
 

(0.52, 7.79) 
 
 
OP - ISTAT INR AND PROTIME 
 
 

(1.0, 1.41) 
 
 

LR - ISTAT INR AND PROTIME 

(0.11, 5.39) (0.58, 10.94) 

OP - PATIENT ON ACTIVE PROTOCOL 

(1.0, 1.08) (0.41, 14.46) 

Order Medication - ALTEPLASE (tPA) 100 MG IV SOLR (0.24, 13.25) 
 
 
(0.42, 22.63) (0.24, 7.9) 

(0.11, 6.45) LR - PROTHROMBIN TIME 

(0.52, 13.1) (0.4, 9.95) 
 
 

LR - METABOLIC PANEL, COMPREHENSIVE (0.35, 4.73) 

(0.57, 9.8) 
 
 
Medication Given - ALTEPLASE (tPA) 100 MG IV SOLR 
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of head CT occurred on average in the first minute of the encounter, followed by coagulation studies, basic 

labs, ECG, and Chest X-Ray, respectively. These orders were then followed by their results: basic lab 

studies, ECG and coagulation studies, respectively. Based on the node aggregation feature of our process 

mining method, 10 events related to the initial order procedures such as CT Head Perfusion With Contrast, 

Prothrombin Time, CT Head, etc. are aggregated into   a single node.  Clinically all of these events 

correspond to the same checklist.   The next most common event was the identification of the start of the 

Head CT an average of 18 minutes later. The result of the head CT followed, concluding the primary 

diagnostic testing of these acute stroke patients. 

Subsequent placement on an active stroke/tPA protocol (including neurologic exam and blood pressure 

monitoring) followed at about 38 minutes from admission, and tPA was ordered on an average at 39 minutes 

from admission. tPA was then given on average at about 64 minutes into the encounter. 

Evaluation of our cohort showed a subset of acute stroke cases were managed in under 25 minutes (See 

Figure 3). A process map was also created for these cases to compare to overall results and identify possible 

differences in management. 

For those cases which were managed in under 25 minutes. Head CT’s for these patients were begun at 

about six minutes from arrival. By minute seven, tPA was ordered and they were started on a protocol. tPA 

was subsequently given to these patients at an average of the 17th minute. Although these cases progressed 

faster through the acute stroke pathway, they showed a similar order of events to other cases. 

 

Conformance 

As expected, some encounters varied greatly from the MCP to provide definitive treatment. Some 

differences resulted from delays in ordering CT scans until after lab results or waiting for radiology result 

before medication administration. 

The average conformity score for our cohort was measured at 0.36. The scores for the patients with the 

highest and lowest conformity scores are respectively 0.64 and 0.20. Figure 4 represents the process for the 

patient with the highest conformity score (also referred to as most common path). 
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Figure 4: The process mining graph of the stroke patients with green path representing MCP; the path for 

the patient with the highest conformity score (0.64). The average conformity score for this cohort was 

measured as 0.36, which is within the expected range. Based on the definition of the average conformity 

score this means that each node has an average probability of about 0.36, which is in agreement with the 

fact that every node is connected to about 3 subsequent nodes for this graph. 

 

One of the most obvious examples of deviation from the average pathway lead to the definition of a specific 

patient cohort subgroup. Given that a subset of all tPA-treated stroke patients were managed from out-of-
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hospital stroke activation, their ordering and timing of events (as described above) tended to deviate the 

most from the average tPA process. 

 

DISCUSSION 

Process mining offers a unique opportunity for easily producing human-interpretable results through 

unsupervised machine learning methods on commonly available data. Our model produced both visual and 

statistical results that were consistent with the expected order of key interventions in the management of 

acute stroke as described by our hospital’s “Code Stroke” policy. Ordering and results of lab studies and CT 

scans as well as ordering and delivery of tPA occurred in the expected order and within the expected 

window for our institution, providing confidence in the accuracy of this methodology. 

This methodology has many possible use cases. Here, we used it to elucidate deeper insight into a common 

quality measures, which tend to offer limited granular insight into real-world processes. Currently, 

measurement and reporting of the quality of acute treatment for stroke care at most institutions relies on a 

single number: the time-to- tPA.[16] However, as we have seen here, this number is made up of an 

amalgamation of multiple interactions, orders, results and assessments. But there are many other quality 

measures like “door-to-needle time” or “time to antibiotic administration” which have similar processes and 

are broadly used throughout medicine. Our process mining method offers a simple way for hospitals to 

illuminate these events and their impact on care. It may be applied to the events surrounding patient care or 

any or any common processes - like lab throughput or patient preparation for surgery. 

More than just the time and order of events, however, it may also help an institution measure the breadth, or 

variability, of these pathways. There are generally  “common” pathways through a particular process which 

can be used to determine the status-quo. It may then be useful to determine if that process follows an 

expected path or deviates from the norm. At our institution, the MCP followed the recommended 

guidelines. But what if it did not? What, then, is an acceptable amount of deviation from the guidelines? 

Traditionally, this has not been a quantifiable result, but rather a binary “yes” or ”no” answer. Here, we 

showed that process mining can be used to measure the conformance to recommendations of an entire 

cohort or between individual encounters. This offers a poignant quality improvement avenue in the age of 

the EHR. 

Deviations and delays in care, or highly variable pathways, may illuminate the need for high-yield, 

evidence-based interventions. They may be due to lack of knowledge of the guidelines, meaning an 

opportunity for education, or there may be inherent systematic issues that prevent the medical team from 

fulfilling them consistently or efficiently, like how labs are ordered or how the CT scanner is made 

available. Deviations in care might result from patients presenting with ambiguous complaints, making a 

detailed history and physical more time-consuming. Or a provider may have anchored to a different 

diagnosis before stroke became obvious – thus presenting as a completely different path to ultimate 

diagnosis and management. Many stroke patients do not present as clearly as having frank, lateralizing 
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symptoms with a facial droop, but rather with mental status changes that can obfuscate the ultimate 

diagnosis. This is the case for many medical conditions which require timely, expedited care like “atypical 

chest pain” or “altered mental status” as a sign of severe sepsis. While all of these cases may seem to result 

in delayed care, the series of steps along the diagnostic and management pathway might at least be 

evaluated and inferred, allowing institutions to determine if delays in care result from a changing clinical 

scenario versus a simple lack of following institutional practice guidelines. 

Conversely, patterns in conformity or deviation may serve to illuminate leading-edge care pathways. We 

found that a set of cases which had particularly low conformity scores may have actually represented higher 

quality care. Patients who received rapid (< 25 minute) management of their strokes occurred with clustered 

orders and narrow time windows, resulting in low conformity scores with the MCP, but overall improved 

care by the quality metric of choice. While they deviated from the average pathway, these cases represent 

the best possible care which can be provided. Analysis of these cases revealed that they likely resulted from 

out-of-hospital stroke activations - given that the first orders were placed minutes before the patient was 

registered in the ED. This allows one to infer variation in care processes simply from the automatically-

recorded data which can then be quantified to determine the relative impact that variation has on timing and 

subsequent process measures. Given this application of process mining, an institution might benefit from 

evaluating not just the bottlenecks but the particularly streamlined cases to determine of practice changes 

might be implemented to improve overall care.  

Unfortunately, most medical conditions do not have well-defined, institutional guidelines from which to 

compare the quality of care. But perhaps this offers even more compelling potential for such unsupervised 

learning methods. Process mining could be used to gain early insights into patient management variability 

which could then be used to coordinate care, orders and resources as needed where delays or bottlenecks 

occur. Heterogeneously managed conditions that may currently lack guidelines, such as neonatal fever or 

even COVID-19, might in fact be ripe for identifying practice-based interventions which are most related to 

high-quality outcomes. Our process-mining approach could be used to identify transitions of care or patient 

movement through the hospital which makes nosocomial infections more likely. Alternatively, it could be 

used at the provider level to limit those transitions of care or exposure opportunities. Process mining might 

also be used to identify the most efficient triage or distribution of resources during a disaster when care is 

provided in an evolving context. 

It is important to note that while allowing for these more unsupervised methods can help reveal in-vivo 

practice patterns, they may have unexpected results which require further investigation. For example, loops 

may develop in the pathway, which might seem difficult in the real-world. We noted a loop existed late in 

our stroke pathway where tPA was ordered and then PT/INR was ordered again (Figure 3). This initially 

seemed counter-intuitive, but further clinical review indicated that these orders are not part of the diagnostic 

and management process, but rather ordered for continued evaluation and monitoring after clot lysing 

medications are given. Thus, it is important to recognize that process mining is heavily reliant on the timing 
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of an order and when it is expected to be carried out as in the case of those events which are not part of the 

primary diagnostic process but rather observation and monitoring. Similarly, process maps show overall 

average most common edge sequences, but their inherent variability means no single consistent 

interpretation can be drawn, as reflected by need to delete many sparse edges to allow for interpretability as 

well as the aforementioned loops. This is particularly confounding when the map includes the manual entry 

of test orders (like point-of-care tests) or back-dating verbal orders (which may occur for some acutely ill 

patients) which may result in confusion at minute-level resolution.  

Furthermore, while we specifically chose to evaluate the acute management of stroke, an emergent 

condition which had a consensus pathway from which to compare our automatically generated map, the 

very existence of a consensus policy within our institution presents a possible catch-22. Process mining 

techniques may only serve to identify the care which has already been predicted to be most efficacious or 

which has been clearly defined with minimal room for variation. However, it is in these cases where the 

process is already known that make our mixed method approach, utilizing conformity and variation, more 

poignant, as discussed above.  

While this study was performed at a single institution, limiting the broader generalizability of our particular 

graphical and conformity results given differences in practice pattern, data availability and labeling which 

might result in more or less interpretable results. However, this method should be replicable from data 

available from most other EHR’s with minimal effort required to identify how key events are stored and 

labeled.  

 

CONCLUSION 

Process mining may be used not only to easily illustrate complex treatment pathways but to also identify 

process variability across encounters. We were able to automatically create a graphical representation for 

the care of acute stroke patients receiving tPA in our hospital by utilizing event log data captured in our 

EHR through process mining techniques. Notably, we were able to qualitatively map the order and timing of 

key events like admission, lab testing, CT scan ordering and delivery of tPA as well as visualize differences 

in these processes for fast and slow progression through the pathway. Our graphical results also allowed for 

quantitative evaluation of conformity at the encounter and cohort levels. 

This mixed methods approach represents an essential data analysis step to improve complex care processes 

by automatically generating a map of them through process mining of existing event log data. It sets the 

stage for future work to identify high yield processes, bottlenecks, or where work happens in ways that 

deviate from best practice guidelines. Furthermore, its use may be broadened to those conditions which 

currently lack recommended processes to gain insights necessary to develop best practices. 
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Figure 5: A sample process mining graph of the tPA-treated stroke patients, without applying the node clustering 

technique. 
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Figure 6: A sample process mining graph of the tPA-treated stroke patients with tPA administration with 25 min of 

their admission 
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