
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3136138, IEEE Access

VOLUME XX, 2017 1

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.Doi Number

Extending the space of software test
monitoring: practical experience

Mykhailo Lasynskyi1, Janusz Sosnowski2, (Senior Member, IEEE)
1Warsaw University of Technology, Institute of Computer Science, Warsaw 00-665, Poland
2Warsaw University of Technology, Institute of Computer Science, Warsaw 00-665, Poland

Corresponding author: J. Sosnowski (e-mail: janusz.sosnowski@pw.edu.pl).

This work was supported in part by Warsaw University of Technologyt under FEIT Faculty Grant 2021.

ABSTRACT Software reliability depends on the performed tests. Bug detection and diagnosis are based on

test outcome (oracle) analysis. Most practical test reports do not provide sufficient information for localizing

and correcting bugs. We have found the need to extend the space of test result observation in data and time

perspectives. This resulted in tracing supplementary test result features in event logs. They are explored with

combined text mining and log parsing techniques. Another important point is correlating test life cycle with

project development history journaled in issue tracking and software version control repositories. Dealing

with the outlined problems, neglected in the literature, we have introduced original analysis schemes. They

focus on assessing test coverage, reasons of low diagnosability, and test result profiles. Multidimensional

investigation of test features and their management is supported with the developed test infrastructure. This

assures a holistic insight into the test efficiency to identify test scheme deficiencies (e.g., functional

inadequacy, aging, insufficient coverage) and possible improvements (test set updates). Our studies have been

verified in relevance to a real commercial project (industrial case study) and confronted with the experience

of testers engaged in other projects.

INDEX TERMS bug diagnostics, software defect repository, software testing, testing framework, test

monitoring.

I. INTRODUCTION

Software testing is still a challenging problem. Many relevant

studies are reported in the literature. They mostly focus on test

algorithms, test models, test coverage and diagnosability [1]-

[6]. An important and practical issue is tracing test progress

and results. Referring to our practical experience we have

identified the need of multidimensional test monitoring based

on combined analysis of software repositories generated

during program testing, development, and exploitation. We

consider test reports, event and performance logs, software

issue and version control repositories. In the literature these

repositories were analyzed separately and targeted at specific

aspects, e.g., software reliability, software production

improvement [7] [8]. They were not correlated explicitly with

test processes.

Most test supporting tools facilitate managing test

execution and collecting test results, typically stored in

relevant repositories. They can also provide some statistical

analysis tools. Examples of such systems are outlined in [2]

[9] [10] and references therein. Executed test scenarios verify

application functions and are composed of test steps which

integrate some sets of test cases. Tests are executed in a

specified sequence and produce results saved in a test

repository. The results describe test progress and termination

aspects, e.g., execution state (passed, non-passed), relevant

test scenario step, test case. In the case of non-passed tests, we

can get information on suspicious program modules, and

optionally screen shots, stack traces, etc.

Event and performance logs as well as other software

repositories can enhance the analysis of test results. Here,

derivation of general and application-oriented features

characterizing tests is needed. This aspect is neglected in the

literature. Hence, our research has been targeted at exploring

test repository and its correlation with a wide spectrum of the

other ones, to get deeper insight into test execution processes

and their effectiveness. We have introduced special metrics

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3136138, IEEE Access

 Author Name: Preparation of Papers for IEEE Access (February 2017)

2 VOLUME XX, 2017

and analysis tools to assess test diagnosability. Unlike

unidirectional studies of software testing in classical research

(often targeted at a single specific problem – compare Section

II) we propose a holistic approach integrating diverse

observation perspectives.

Our practical experience with software testing, including

commercial projects, showed deficiencies of data comprised

in test reports which delay diagnostics and the problem

resolution. Our previous studies of software repositories and

event logs induced an idea of using them to improve test

observability and diagnostic capabilities. The gained

experience resulted in three interleaving research goals:

R1 Identifying limitations and possible enhancements of

test oracles.

R2 Developing a framework for tracing test execution

context in project repositories.

R3 Correlating test assessment and project development

issues.

Software repositories and event logs are ignored in testing

processes due to lacking knowledge on their links with these

processes and not available supporting tools. This issue was

neglected in the literature and our paper fills this gap. It is

focused on four tasks:

• Creating a program framework which integrates

diverse tools for test management, monitoring, and

extracting correlated data from available project

repositories.

• Evaluation and taxonomy of software repository

contents associated with testing aspects. It uses

statistical and text mining techniques involving

semantical aspects and relevant profile metrics (e.g.,

word usage, event keywords and sources).

• Deriving dependencies and interactions between

testing and project development processes in short

and long-time perspectives (referred to issue and

version control repositories).

• Revealing test observability deficiencies and

possible enhancements/upgrades of test sets (test

result statistics, test coverage, test life cycle, test

execution and diagnostic profiles).

The key point in our studies is the introduced original

analysis method supported with an efficient framework for test

management and monitoring. It integrates some available

tools with developed special software modules. Our study

facilitates to acquire substantial artefacts of software

repositories and on which aspects of data analytics to focus

when improving development and testing processes. It has

been verified using real data collected during development of

a commercial project of transaction-oriented domain. It can be

considered as an instructive reference for other projects.

The rest of the paper is structured as follows. Section II

provides the background and related works. Section III

presents test management schemes and tools followed by an

outline of the developed test framework. Section IV is devoted

the analysis of event logs generated during test sessions.

Section V outlines test execution schemes and results. The

problem of correlating test features with issue and commit

reports is studied in Section VI. Discussion of results and

threats to validity are presented in Section VII followed by

final conclusions in Section VIII.

II. BACKGROUND AND RELATED WORKS

In software development and maintenance effective testing is

a crucial problem with several practical aspects. In many

papers testing is correlated with software reliability. Software

reliability growth models (SRGMs) are proposed to predict

bugs in software, needed testing time to achieve an assumed

quality level (release time), optimization of resources and test

costs ([7] [11] and references therein). On the other hand,

diverse publications focus on specific test problems: test

algorithms based on structural, functional, and mixed

approaches, test efficiency, software quality, etc. Test support

tools have been developed to assess test efficiency and

software quality [1] [4] [8] [10]. Software testability relates to

costs of testing, and it is challenging to identify factors

impacting these costs (e.g., basing on historical data in the

company).

A. TEST CHALLENGES

Tests can be derived manually or in an automatic way based

on application requirements, architectural and functional

models, source code, etc. [2] [12] [13]. For this purpose, we

can also use artificial intelligence [14]. Sometimes, the

correctness of the program outcomes is not easy to specify –

the test oracle problem. This problem was studied in [15] for

scientific software and a metamorphic testing was proposed, it

specifies output changes related to input changes.

In many applications testing system performance is

important. The problem of the performance regression caused

by introduced code commits is discussed in [16]. Some

metrics associated with code changes are proposed to facilitate

finding tests that can manifest performance degradation

(regression). Test capability to check system performance is

explored in [17]. This study is based on selecting performance

issues from repositories of two open-source projects and

analyzing test effectiveness before and after the relevant code

commit (targeted at performance improvement). This results

in searching for tests demonstrating performance

improvements related to performance issue fixes. In

consequence we can optimize regression test suits.

Some publications deal with test optimization issues:

prioritization, reduction, and selection. Test prioritization is

focused on test execution ordering to detect the highest

number of faults at the earliest [18] – [21]. Test reduction and

selection is correlated with checking their results and usage

during project development [21]. Program diagnosability [22]

can also impact quality of developed tests. Improving test

observability by monitoring internal and output program

variables is discussed in [23].

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3136138, IEEE Access

 Author Name: Preparation of Papers for IEEE Access (February 2017)

VOLUME XX, 2017 3

Ideal tests should detect and localize (diagnose) all bugs in

the program. Considering bug manifestations (program

behavior), software engineers distinguish Bohrbugs,

Heisenbugs, Mandelbugs and Shrodingbugs. However, more

practical is bug taxonomy related to diagnostic and repair

aspects. Correlating issue tracking (e.g., Jira) and version

control system reports (e.g., Git) we can classify bugs taking

into account their impact on code. In [24] four bug types have

been distinguished. Type 1 and Type 2 refer to bugs which are

fixed by modifying a single or more than one location in the

code, respectively. Type 3 and Type 4 refer to multiple bugs

fixed in the same location or the same set of locations,

respectively. This is related to the quality of the code, which

can be assessed basing on historical data in the considered

company. Usually, Type 3 and 4 are more difficult to diagnose

as those of Type 1 and 2. Predicting such bug classes facilitates

bug handling processes by appropriate issue allocation to

experienced developers. Similarly, we can consider bug

severity (e.g., blocker, critical, major, minor, undefined). We

can further precise bug categories (compare Section V) to

correlate them with sources and repair aspects.

In practice, we should also examine incorrect behavior

resulting from environment and system (hardware and

software) interactions with the program, this may change in

time, e.g., in relevance to introduced updates, functional

extensions, etc. This should be inspected also during the test

design and evolution, e.g., within the specified range of

application versions (the oldest, the newest). In practice, tests

are not perfect and should be systematically and continuously

assessed as well as improved. In this process a wide scope

monitoring is especially helpful.

Commercial software projects provide rich repositories on

their development and operations. They comprise information

on code changes (commits due to bug corrections, added

functionalities, performance improvement) and bug or other

requested tasks (issues) reports, which constitute development

and field (users) knowledge related to some historical

project/company perspective [17] [25]. Issue tracking

repositories comprise requests of developing new

functionalities, code modifications, correcting bugs, merging

codes, etc. Bug reports should comprise information helpful to

locate and fix bugs [26]. It describes what is expected to

happen and what happens, samples of relevant code, stack

traces, optionally used test cases, etc. The problem of

assessing and improving the quality of bug reports is discussed

in [26]. We have also explored this in [25]. Historical analysis

of software repositories is also helpful in optimal attributing

bugs to programmers for fixing (bug triaging [27]).

Another source of valuable data is the recorded run-time

information produced by logging statements included in the

code. Code changes may require appropriate log modifications

and updates within the project lifetime. This can be supported

with some quality metrics and classification methods [28]

[29]. Logs record events useful in detecting and diagnosing

anomalies [9] [30]. For this purpose, log parsing algorithms

and tools have been developed [31] [32]. Anomaly detection

can correlate with derived log classes, issues (e.g., task ids),

code modules and time windows. Here, we can produce event

count matrix, event sequence groups relevant to system

workflow, etc. [33].

Diverse anomaly detection algorithms have been proposed

based on machine learning, log classification, invariant

mining, etc. [23] [33]. Usually, they do not assure sufficient

capability to gain insight into the anomalies. This can be

improved by better correlation of logs with the application

(software) specificity (compare Section III and IV). The

problem of optimizing logging statements is studied in [28]. It

is based on automatically computed topics of code snippets as

candidates to include logging statements. Understanding and

interpreting log lines can be supported by tracing information

provided by other repositories: issue tracking systems and

referencing to source code (log statements, modules,

comments), event call graphs [34]. These issues were not

considered in relevance to software tests, which we include in

our approach.

B. TEST ASSESSMENT

Special metrics are used to assess test quality. Most popular

include branch and path coverage, decision/condition

coverage, program mutation coverage [1] [2] [35] [36], and

program version coverage [37]. They may suggest program

components not sufficiently stressed by the test suite. This can

be enhanced with the operational profile coverage expressed

by application driven features (compare Section IV and V). In

[37] test coverage is also considered in relevance to program

versions. Test diagnosability evaluation needs deeper analysis.

In [38] a spectrum-based approach is proposed which

optimizes test suit sets in relevance to fault localization

capabilities. It is based on an activity matrix correlating

software components (e.g., class, method, branch) with

stressing them test cases. This is some indirect approximation

of test diagnosability.

The problem of fault localization was studied in many

papers. In [39] some techniques of fault localization are

evaluated using artificial faults generated by program

mutations or manually. The basic techniques refer to program

logging targeted at monitoring variable values and program

state information, assertions, execution speed and memory

usage profiling. More advanced techniques identify which

parts of the program pass tests, which fail and suggest rankings

of possible code areas comprising faults. They are described

in [40] [41]: SBFL - spectrum base fault localization, MBFL -

mutation-based fault localization. All these techniques are

targeted at unit tests and correlate test results only with code

coverage features. Their localization capabilities are still

relatively low, so they did not attract practitioners. Fault

localization is more complex in behavioral and wide scope of

regression tests. The available software repositories comprise

many artefacts which can be used to assess diagnosability

features of the test suite and show appearing difficulties or

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3136138, IEEE Access

 Author Name: Preparation of Papers for IEEE Access (February 2017)

4 VOLUME XX, 2017

possible improvements, which we study in the paper. Tracing

links between test cases and the source code of units under test

is also useful in diagnostic processes [42]. The correlation

between test suite metrics and the quality of automatically

generated software repairs (repair success, repair time) is

studied in [43].

We have aggregated research topics on test issues based on

the presented literature review. This resulted in a taxonomy of

considered problems that is summarized in the first column of

Table 1, it includes also representative references considered

in the paper. Moreover, it facilitates to position the

contribution of our research. Published studies on software

repositories and event logs were not combined with testing

issues. Nevertheless, in the second column of Table 1, we list

indicative publications focused on research areas which, in our

opinion, can be combined with testing. It is worth commenting

the contents of the recent survey paper on software testing

[21]. It covers over 170 positions (including some other

surveys). Despite so wide and comprehensive survey we did

not notice there such topics as: test life cycle, test

observability, test outcome analysis, event logs and other

software repositories. Similarly, in the review of 21 testing

tools [44] these issues were not mentioned. In the other survey

[1], event logs and assertions are only mentioned as helpful,

without deeper insight in their treatment and significance. This

additionally confirms negligence of the pointed problems in

correlation with testing, which we found as important practical

issues needing investigation.

TABLE I

PROBLEM PROFILES OF PUBLICATION

Test issues Software repository issues

Test design principles and tools
[2, 5, 8, 12 - 14, 34-36, 44]

Testing project performance

[16, 17]
Bug classification

[17, 24-26, 28, 29]

Test quality assessment
[1 - 4, 6, 10, 11, 15, 21, 34-37]

Fault localization and program

diagnosability
[3, 22, 23, 38, 39]

Test optimization and prioritization

[18 – 23, 42, 43]

Logging schemes
[9, 28, 30]

Log analysis and parsing

[9, 30 - 32]
Anomaly detection

[9, 33, 34]

Log statement optimization
[9, 34]

Issue and version control

tracking
[7, 25, 30, 37]

Bug triaging

[27]

The created test scenarios are upgraded during the

development and maintenance of the program. Moreover, in a

large extent they are used during regression testing in

relevance to function upgrades, extensions, or corrections.

Test quality should be evaluated considering detection and

diagnosability aspects. Detectability can be assessed indirectly

by module or code coverage, fault seeding (program mutation

techniques) as well as by analyzing reported issues during

exploitations (e.g., Jira repository). Test diagnosability

features can be evaluated by tracing bug handling times

including the number of exchanged comments between

project actors and users up to the final problem resolution.

Here, evaluation of the semantic contents of the software

repository is helpful.

Depending upon the developed test schemes, the relevant

test oracles are more or less detailed. In the simplest case we

have pass/no pass notion with the relevant test

scenario/step/test case or code lines. This can be enhanced

with registered events during test execution which is neglected

in the literature. Hence, our research has been targeted at

exploring test repositories and their correlation with other

ones. This resulted in 3 goals of our studies: i) finding

complementary data enhancing test diagnosability, ii)

assessing test efficiency and test schemes, iii) revealing

possible improvements. The project performance can be tested

directly by checking response times of requested services or

indirectly by monitoring usage of system resources (e.g.,

processors, memory, transmission links), queue lengths, etc.

For this purpose, we can use available performance

monitoring programs (e.g., IBM Tivoli) including the

available ones in the operating systems. Designing tests, we

must consider program functional and performance features.

Moreover, in many developed systems some auto diagnostic

functions are included to detect/mitigate incorrect user

activities, abnormal environment interactions, testing these

features needs complex simulations. To support our research,

we have developed an original and universal test framework

outlined in Section III.

III. TEST ENVIRONMENT

We consider the problem of monitoring software testing in

relation to a commercial system oriented at financial

transaction processing outlined in Section A. This is a quite

complex and representative enterprise system. It handles

requests from many clients and provides financial services.

The system is systematically updated and adapted to new

functional requirements and performance features appearing

in its life cycle. It has been developed, maintained, expended,

and upgraded for many years. Hence, efficient testing and

issue handling were challenging problems, that resulted in

developing a flexible and comprehensible test framework

(Section B). This framework provides rich data (Section C)

that is useful to assess and improve testing processes.

A. TESTED SYSTEM FEATURES

The tested system is dedicated for processing financial

transactions related to accepted client orders, generating

invoices on selected positions, handling money transfers,

performing audits of the whole system or selected

transactions, etc. It is a distributed system involving many

servers installed on several machines combined into a cluster

assuring efficient data communication for clients and system

components (including product data bases). Different

configurations of services are possible, they adapt to several

software environments and the hardware infrastructure. High

dependability, coherence, and auditing capabilities of

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3136138, IEEE Access

 Author Name: Preparation of Papers for IEEE Access (February 2017)

VOLUME XX, 2017 5

performed activities are assured. Within this system we

distinguish three modules: MM1 – web application, MM2 –

web services, MM3 – databases.

MM1 module is written in Java and operates in an enterprise

application server. It assures the execution environment for

applications based on JVM (Java Virtual Machine). The

application server handles executing Java servlets and Java

Server Pages (JSP). JSP pages use XML markers and scriplets

(a piece of Java code embedded in HTML-like JSP code) to

separate page contents from their formatting logic level

(which generates the servlet contents). All formatting tags

(HTML and XML) are appended directly to the generated

HTML page. Container Java EE handles additional functions

such as server load distribution. It includes dynamic (servlets,

Java Server pages, Java classes) and static (HTM pages,

images) resources.

MM2 relates to web services handled by Enterprise Service

Bus which manages received messages and constitutes an

intermediate programming for distributing jobs between

connected components of the application. It assures product

related tasks that include accepting, translating, and handling

client requests to deal with messages between services,

monitoring and controlling routing of messages, resolving

communication problems, administering deployment and

versioning of services. It also assures event, security, and

exception handling, transforming, and mapping data, queuing,

and sequencing messages, protocol conversion, etc.

MM3 involves two relational databases The first one is used

for operational and configuration data; the second database is

used as a tool for integration with another financial system.

The system consists of 1100 000 lines of source code not

including libraries and used enterprise solutions.

B. TEST FRAMEWORK

Testing complex systems involves diverse supporting tools,

such popular as: Junit library (for unit testing), Cucumber

library (for preparing high abstract level test cases – behaviour

driven development), Selenium for testing internet

applications (focused on web page elements). Junit is a library

which facilitates activating and checking unit tests from a

pointed catalogue or a class file. Selenim is a high-level

interface library implemented for many browsers to

manipulate web page elements. Selenium Grid is a cluster of

servers used to arrange a distributed network and activating

simultaneously multiple browsers on diverse computers. A

central server sends requests to distributed nodes. It facilitates

complex testing in the distributed environment. The

Cucumber library supports describing test cases at a higher

abstract level, we use automatic functional and acceptance

tests based on Behavioural Driven Development concept. Test

cases specify actions and expected behaviour of the tested

program (TP) in a logical business-oriented language

(Gherkin syntax), e.g., entering login, page, user id, user

password and activity, expected confirmation of correct login

(or a missed one). Cucumber uses Selenium library covering

many browsers (e.g., Firefox, Chrome, Internet Explorer,

Safari). It supports such actions as clicking on a page element,

selecting an element, entering some text, reading its contents,

scrolling the window, etc.

During test execution the tested system can be additionally

monitored with Metricbeat which provides metrics and

statistics on server resource usage, e.g., CPU, memory,

network, discs, filesystem, services. Moreover, various types

of logs (e.g., system, application, security, errors) are collected

with the Filebeat program. Elasticsearch tool supports storing

the collected data, searching and analysing their contents, this

can be enhanced with Kibana providing visualization of

results in diverse graphical forms.

The outlined tools generate independently a lot of data. We

found the need of coordinating operation of these tools,

consolidating the collected data and analysing them in a

holistic way. This resulted in developing Cucumber-

Monitoring-Plugin (CMP) which integrates the main testing

system (Cucumber + Selenium) with the set of tools for

monitoring virtual machines. This constitutes the main part of

the developed test framework, as shown in fig.1. CMP bases

on Java version 8, which facilitates integration with testing

systems. It was built using Apache Maven v.3.6 and relevant

Project Object Model concept, so it can be used for a wider

scope of projects based on Cucumber technology. Integration

with the main testing system (Cucumber + Selenium) is

performed via specially defined and implemented interfaces to

three modules. This scheme was verified with a real complex

project developed according to typical software engineering

rules used by many IT companies. It is quite universal and can

be applied in a wide spectrum of projects.

The data flow in the test framework (FT) is as follows: the

main testing system generates requests on pages (activities on

pages), analyses responses of the system and page behaviour.

This activity results from executed test case specification

which may involve simulation of system users and invoked

reaction of relevant services. Moreover, Elasticstack handles

collected monitored data by Filebeat and Metricbeat. The

developed CMP plugin correlates monitored data with

executed test cases as illustrated in Figure 1.

CMP program includes the following features: i) analysis of

test progress (initialization/completion times of executed test

steps, storing relevant artefacts, test results, etc.), ii) extracting

values of monitored performance parameters (provided by

Elasticsearch) relevant to test case execution, iii) integration

with Kibana module facilitating visualization of specified

statistical features. The collected data in diverse repositories

are processed (explored) with the specially developed analitic

module (DAS – Data Analysis Scripts), it derives statistics of

specified metrics and also comprises special scripts to detect

nonstandard situations.

The developed test set is composed of functional test

groups, each comprising some set of test scenarios involving

predefined test steps (test cases). As compared with classical

test approaches targeted at direct test control and oracle

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3136138, IEEE Access

 Author Name: Preparation of Papers for IEEE Access (February 2017)

6 VOLUME XX, 2017

checking/interpretation we significantly extend the

observation space in data and time perspectives. This is

assured by the developed CMP and DAS modules. Depending

on the organization of data repositories we must extract data

relevant to test processing and its environment, if needed

perform data anonymization, identify/compensate time skews

of reports in different repositories (based on context analysis),

archiving data for long time behavioural analysis. Developing

the analytic module (DAS) needed investigation of a wide

scope of repositories and adaptation to the specificity of

collected data. This process has been supported with the

introduced original text mining schemes in DAS dealing with

peculiarities of registered reports incompatible with classical

document text mining approaches. This allowed us to identify

report features providing valuable information in assessing

test detectability and diagnosability. The proposed analysis

absorbs our previous experience with monitoring system

operation, software development and maintenance processes

[7] [25] [30] [37].

FIGURE 1. Block diagram of the test framework (TF).

C. SCOPE OF DATA ANALYSIS

The collected data during test executions create a quite

complex repository which comprises diverse logs on executed

test elements, results, generated events, etc. An important

issue is analyzing their contents, derive short and long period

statistics, find correlations between different logs, identify

abnormalities, derive some metrics characterizing test

efficiency, etc. Beyond data repositories directly related to

testing processes we also have software repositories related to

issue/task requests (e.g., Jira) and software version control

(e.g., Git) with specification of performed code commits,

configuration changes, etc. They describe development

process progress and the range of code changes. This can be

correlated with test repositories to get a better insight on the

test cost and effectiveness during the software lifecycle. Test

relevant data are interspersed with a bulk of other project data

and their extraction needs tracing time and context

dependencies.

Analyzing a wide scope of repositories allows us to reveal

test deficiencies, imperfections of reports in repositories and

formulate recommendations for their improvements. For

example, reported bugs by users may be attributed to skipped

or obsolete tests (needing refinement), the project usage

profile can differ from the testing one, some needed functions

can be missed. Introducing new functionalities or modifying

some of older ones needs not only tests targeted at these

changes but also regression tests checking the impact of these

changes on the remaining not modified functionalities.

Moreover, we can predict the cost of bug repairs basing on

historical test results and involved commits (bug handling

time, range of code modifications).

The above-listed problems and our practical experience

with testing resulted in enhancing classical testing schemes

with monitoring their execution at different observation

perspectives (test oracles, generated events, performance

metrics) and tracing historical reports in diverse software

repositories (issue tracking and software version control). The

developed test framework provides a multidimensional

perception of test progress. Basing on the integrated extraction

of characteristic features from a wide scope of relevant

software repositories, we have introduced original quality

metrics covering different dimensions. This results in a

holistic view on test effectiveness and revealing possible

enhancements. As opposed to other publication on testing our

approach is characterized by two features: 1) assuring high

attention to extract useful data details (fine-grained), 2) a

wide-scope (spread over diverse data sources) exploration of

testing and software development repositories. Correlating test

results with other software repositories we take into account

timestamps (including estimated time skews), report sources

and semantical context (based on text mining), non-relevant

reports are filtered out. Checking the impact of executed tests

on issue handling processes (e.g., in Jira repository) and the

range of code changes gives new additional criteria to evaluate

test efficiency. The presented problems are discussed in

Sections IV-VI.

IV. EVENT LOG ANALYSIS

Depending upon the system diverse logs are generated, e.g.,

system, security, application logs. They can also be partitioned

into diverse groups covering relevant issues. During testing

processes especially interesting are application logs, we

experienced this in our practice. An important issue is to adapt

log analysis processes to their specificity in the real project.

Hence, we explored software repositories correlated with

regression test scenarios executed during development of a

complex transaction-oriented system. Typically, each testing

session was performed in the night (about 6 hours) and

generated about 5MBs of application logs (about 350 000

words, 19-32 thousand events). Analyzing event logs

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3136138, IEEE Access

 Author Name: Preparation of Papers for IEEE Access (February 2017)

VOLUME XX, 2017 7

correlated with executed tests we identified three research

goals:

1) General text mining – focused on log dictionary

analysis, word and n-gram (phrase) frequency

profiles (Section IV A)

2) Structural/semantical log analysis – log parsing,

application-oriented keywords, log feature profiles

(Section IV B)

3) Log profile analysis in time - log feature distributions

and comparative studies (Section IV C).

A. GENERAL TEXT MINING

In classical text mining we deal with documents based on

natural language. The specificity of the text in log entries is

quite different and needs cognitive studies of used word

dictionary aspects. Exploring dictionary taxonomy

(morphology) and profiles we focus on word syntactical and

semantical issues. Typically, a word is considered as a

sequence of characters bounded by space or other specified

characters (e.g., dot, semicolon). At the morphology level we

can distinguish words comprising only letters, numbers,

mixture of alphanumeric and special characters. Next, it is

reasonable to classify them in relevance to composition

structure, e.g., single words and complex words, which

constitute a concatenation of simple words using or not some

linking characters (e.g. _, +, ., :). The complex words can refer

to some predefined patterns (usually specified with regular

expressions), e.g., file paths, Ip addresses, resource identifiers

(e.g., URI). Basing on semantical properties we distinguish 4

classes of words: A - natural language words (compatible with

thesaurus dictionaries), B - special IT words (e.g., thread,

exception, commit), C - specific terms for the analyzed

application (acronyms, names of components), D - code words

(numerical, hexadecimal, typically used for timestamps, event

ids, error codes). It is also worth mentioning that sometimes

registered words have incorrect spelling.

The log dictionary used in the considered set of log files (L)

can be characterized by the set of unique words DL, its

cardinality |DL| and profiles of word usage. We introduce three

types of such profiles as sets of values in descending order

(denoted with sharp brackets <….>):

• Frequency profile gives the number of occurrences

of each word wi ϶ D in the set of log files L:

𝐹𝑃(𝐿) =< 𝑓(𝑤𝑖|𝐿): 𝑤𝑖 ϶ 𝐷𝐿 > (1)

• Relative usage profile, i.e., FP(L) expressed in

percent

𝑅𝑃(𝐿) =<
𝑓(𝑤𝑖|𝐿)

|𝐷𝐿|
: 𝑤𝑖 ϶ 𝐷𝐿 > (2)

• Aggregated usage profile AP(L) is defined in

relevance to ordered sets of n value ranges Rj = [rj-,

rj+], rj-, rj+ ϶ RP(L) = { r1… rk}, k=|RP(L)|, rj- ≤ rj+,

j=1…n, r1+ = r1, rn+ = r|RP(L)|, DLj is the set of all

unique words corresponding to Rj,(i.e. {wi: ri ϶ Rj }

than the aggregated profile is:

𝐴𝑃(𝐿) =< < 𝑅𝑗 , 𝑢𝑗 > : 𝑢𝑗 = ∑
𝑓(𝑤𝑖 |𝐿)

𝑖϶ 𝐷𝐿𝑗
|𝐷𝐿|, 𝑗 =

1 … 𝑛 > (3)

For an illustration we give the derived aggregated word usage

profile for the set of 25 daily log files (L25):

AP(L25) = < <[9.7%-10.5%], 0.5%>; <[1.5%-2.2%], 0.8%>;

<[0.4%-0.8%],1.8%>; <[0.05%-0.4%], 4.9%>;

<[0.01%-0.05%], 16%>; <[0.006%-0.01%], 75%>>

The aggregation ranges can be selected to reflect similar

frequency values. In practice, this profile is neither uniform

nor compatible with usage profiles of texts in natural language.

Relatively small group of words shows high frequency (e.g.,

for-10.5%, INFO- 10.0%, ExecuteThread – 9.2%, queue –

9.2%, ACTIVE – 9.2%). They are not important in log

classification and result from the logger configuration. Many

application oriented technical words dominate, however their

frequency is low. Some semantic grouping of words can be

useful to derive interesting log features (compare Section IV

B). Having analyzed identified words in generated application

logs we found 28.5% of complex words of various structures

(some examples are given later). Log entries comprised mostly

English words, however 8% were Polish (which complicates

the analysis). The text in related logs was based on dictionary

of several thousand of unique words. We observed these

features also in logs of other projects [30].

Due to the mixture of comprised information, raw log data

usually looks a little bit strange, as in the following examples

(transaction accept, and alert message):

2019-03-08 00:32:17,866 [[ACTIVE] ExecuteThread: '0' for

queue: 'self.tuning.ClassName (self-tuning)'] INFO

com.package.ClassName - transactionStatus – AC

2019-04-01 20:09:02,677 [[ACTIVE] ExecuteThread: ‘1’ for

queue: ‘self.tuning.ClassName (self-tuning)’] INFO

com.package.ClassName - Alert args: alertType:

TransactionResponseTimeout, source: REST, Details null,

Args: {transactionId = 00000000000XX0000000000,

agentCode = 00000000}

Quite often complex words relate to C category and may

comprise words from other categories (including A). Hence,

partitioning these words may enhance text mining, e.g.,

“exception” component (expressing some general event) can

be concatenated with other precising words. For an illustration

we give an excerpt of complex words:

FileProcessingServiceCriticalException,

SourceDirectoryNotFoundException

Java.lang.NullpointerException,

java.lang.illegalArgumentEception,

org.springframework.web.client.HttpsServerErrorException

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3136138, IEEE Access

 Author Name: Preparation of Papers for IEEE Access (February 2017)

8 VOLUME XX, 2017

org.hibernate.util.JBDCExceptionReporter

NetworkAvailabilityErrorHandler

Many other examples are given in Section IV B. Complex

words are created by simple concatenation of words, a string

of words separated with non-alphanumeric characters (e.g.,

hyphen, underline, dot), letter case separated words (upper

case for the first character of the word). In practice, complex

words are defined by accepted conventions related to software

architecture, program language (e.g., class and method names)

or company. Hence, they can be easily analyzed with simple

regular expressions.

Combining log parsing with text mining techniques gives a

deeper insight in their meaning. Derived keywords can be

correlated with fixed log parts which are followed by variables

specified using other word categories, sometimes they are

preceded with the colon character (:). Description parts of logs

base mostly on natural language words, however those from

other classes also appear sporadically. The text mining

process is supported with a set of regular expressions targeted

at specific character patterns, e.g., date, time, IP addresses, file

paths. This process can be performed in some hierarchical

way, e.g., we can split complex words into simple word

components and perform their semantical classification. The

next step is to use other text mining techniques, e.g., targeted

at identifying keywords or characteristic n-grams. Here, we

can use word frequency, context, tf-idf and other text mining

metrics (compare Section IV B). Some complex words or

sequences of words express values of specified parameters.

The name of the parameter can be identified with parsing

techniques that extract the fixed text part (appearing

frequently). In classical parsing schemes the variable part is

usually replaced by * character [30,32], below we give an

excerpt of log messages:

(*) executed command from host (*) at (*)

Failed login attempt from host (*) at (*) by (*)

In our approach, we do not skip the parameters (neglected

in other approaches), we also focus on analyzing their

distribution, anomalies etc. They can contain important data

with significant semantical values (e.g., error code, alarm type,

event source). Searching for keywords can be preceded with

introducing some set of predefined keywords based on

developer knowledge, which can be further extended. As

compared with classical log analysis based on parsing

algorithms our approach assures deeper insight in their

contents and facilitates interpretation, which is helpful in test

diagnosis. Some optimization process is included after

preliminary log profile studies related to derived dictionaries,

frequencies of used terms, etc.

The basic text mining (word frequency analysis) allowed us

to identify major keywords, for example: transactionId,

filePath, eventId, reason code (code of transaction rejection),

eventtimestamp (time of sending the message by the system),

remoteTimestamp (time specified by the sender),

transactionStatus. Some other keywords related to application

server, e.g., INFO (level of log), Executionthread, queue.

Usually, such keywords are followed by some variable texts

(parameters) correlated with them. They can be single words

or a set of words sometimes comprising special characters,

embraced by brackets, etc. Beyond that log entries may

comprise non structured text messages. For example, a

descriptive part of an alert log entry comprised the following

text (it also includes Polish word at the end – “Blad skladni”):

ValidationError, severity Major, details: filename:xxxxxxxxx

full/file/path, Blad skladni: Attempt to access field

’parseException’ with null value

The classical text mining analysis based on tf-idf

parameters did not provide interesting words. Hence, we

decided to analyze phrases (n-grams). Some 7- or 8-word

phrases with low tf-idf related to interesting events signaling

some critical issues, they comprise negative words (marked in

bold) and relevant tf-idf of the n-gram.

cannot create claim incorrect related credit transfer (3.83)

caused http response fiddler lookup failed when (2.31)

active recovered another instance this cause inconsistent

(1.22)

couldn read message file neither from directory (1.15)

error zasób zajęty zlecono uzyskanie nowait upłynął (1.15)

error occurred during error handling give up (0.71)

details blad aplikacyjny podczas rejestracji reklamacji oraz

reklamacja (0.41)

Looking for such critical events we have specified a set of

negative words: 25 English words (error, alert, fail, failed,

abort, reject, rejected, invalid, incorrect, cannot, interrupt,

interrupted, inaccessible, break, stop, not, phrases) and 25

polish words (including blad denoting error). Having selected

log entries comprising these words we looked for 7-word

phrases comprising them. We have identified 691 such

negative phrases (with relatively high if-idf), they suggested

some problems. Logs comprising Alert keyword provide

valuable application specific diagnostic information, similarly

as complex words comprising Exception, this is analyzed in

Section IV B.

B. STRUCTURAL/SEMANTICAL ANALYSIS

The identified keywords correlate log entries with specific

issues, e.g., exceptions, alerts, errors appearance, performed

activities in the application (e.g., transactions). Some

keywords are followed by a related variable value (digital or

alphanumeric character strings). In classical log parsing

schemes (e.g. [31] [32]) log templates are derived with fixed

parts (equivalent to keywords) and variables specified with *

character. In our approach keywords are correlated with

application specificity. Usually, identified variables comprise

valuable data (neglected in other approaches), worth deeper

analysis, in particular, statistical distribution of reported

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3136138, IEEE Access

 Author Name: Preparation of Papers for IEEE Access (February 2017)

VOLUME XX, 2017 9

values. For an illustration in Table 2 we give distribution of

some basic keyword’s appearance in 25 log files from the

executed regression testing in 25 subsequent days. We give

minimal, average, and maximal number of specified keywords

within daily log files. This can be confronted with the number

of entries in a log file in the range 18000-24000. Hence, these

keywords appear in 5-20% of log entries. Here, it is worth

noting that most log events are single line with average 20

words. However, some events, e.g., related to exceptions may

comprise from tenths to hundred lines (e.g., due to included

stack trace).

TABLE II

STATISTICS OF BASIC KEYWORDS

 Trans

Id

File

Path

Reason

Code

Even

tId

Alert

Type

Source

Min 1255 840 763 763 0 0

Av. 4603.0 3427.2 3015.2 3015.2 558.8 588.9

Max 5823 4593 4029 4029 2205 2205

TABLE III

DISTRIBUTION OF KEYWORD RELATED VALUES

 TransId Reason

Code

Eventid Alert

Type

Source

Range 473-2283 5-14 8-11 0-17 0-15

Min. 1 1-7 3-208 0-4 0-15

Max. 6-10 3-237 123-625 0-2048 0-2047

An illustrative distribution of 5 main keyword values is

given in Table 3. For each considered keyword we give the

range of unique values registered over all entries of the 25

files, followed by the number of minimal and maximal

occurrence of the same value. The most interesting are the

reason code, alert type, and source variables, especially those

which appeared less and most frequently.

Another group of logs relates to errors with specified thread

name, exception class within this thread, short description and

optionally stack trace. Typically, such log entries comprised

65 lines (about 400 words separated by space or dot). In

addition, an alert (type and source) is given for every error

with the domain meaning.

In Java an exception can be caused by another exception,

hence in the error report we have specification of the recent

exception and a sequence of causing it higher level exceptions

(up to the class of the primary one). For each of them the stack

tracing is included. Some statistics of exceptions is given in

Figure 2. X-axis shows the number of lines comprised within

the entries and y-axis shows the number of their appearance.

Moreover, the entry severity is denoted by appropriate color:

i) yellow - exceptions with short description (0-10 lines)

without stack trace; ii) blue – exceptions with localization in

code, the name of relevant class (11-50 lines); iii) green –

exceptions with a single primary exception (51-1000 lines);

iv) red - exceptions with 2 or more primary exceptions (101

and more lines). The biggest is the first group with a single line

(3052 cases – beyond the scale of the plot). In fact, it relates to

standard not critical behavior, e.g.: errors related to validation,

user actions, configuration checking. The second group refers

to local errors (of lower significance), the third group specifies

application problems previewed by developers. These

problems relate to several layers of the application, e.g.,

exception informing about unsuccessful configuration

changes caused by inaccessibility to the database. The last red

group relates to unforeseen errors, the exception propagated

for a longer time in the stack trace. This may result from errors

not announced in application (not intercepted by the

application and logged at the level of application server) or

recursive method calling or looping. In the case of generating

many exceptions and relevant stack traces, log entries can

show only a limited number of them. If needed detailed

analysis can be resumed in the debug mode.

FIGURE 2. Exception size/severity profile diagram.

Logs with alerts, beyond basic components of event logs,

comprise the following specifications (fields): alertType,

source, details (optional textual description), args –

arguments, transactionId, agentCode – identifier of the

message sending unit. We distinguish 7 alert type groups

listed in Table 4. They facilitate to identify reported problems.

For the better problem localization, we can also use the alert

source, here we have 6 source groups, listed in Table 5. Table

4 and 5 also specify (in brackets) the numbers of distinguished

alert types and sources for each category, respectively.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3136138, IEEE Access

 Author Name: Preparation of Papers for IEEE Access (February 2017)

10 VOLUME XX, 2017

TABLE IV

ALERT TYPES
Group type Description (number of types)

AccountJob Planned processes correlated with running operations
on accounts (3)

Clearing Alert correlated with account debit (3)

Provisioning Alerts correlated with account credit or debit (4)

Scheduler Alerts related to errors during planned processes (3):
SchedulerCriticalError, SchedulerError, SchedulerInfo

Transaction Errors related to money transfer process (7):

TransactionAgentInactive, TransactionBadFormat,

TransactionBadMessage, TransactionClaimCreated,
TransactionDuplicated, TransactionResponseTimeout,

TransactionTimeExceeded

Unavilabale Alerts related to actor inaccessibility (5)

Others Positive confirmations and some negative alerts (17),
e.g. ClearingStatusUnknown,

DuplicatedTransLimitExceeded,

InconsistentTransaction, SecurityViolated,
UnknownError,

TABLE VI

ALERT SOURCES
Source category Description (number of sources)

Application error Application errors during network operations,

resulting from processing algorithms (8)

Confirmation Validation errors related to message confirmation
(2)

Scheduler Errors of planned processes (7 scheduler

functions)

Timeouts Crossing waiting time limitations (4)

Transactions Errors related to specified transaction processes
(5)

Others Related to diverse functions (17)

Distribution of reported alerts for all test sessions performed

per one year period was as follows:

SchedulerCriticalError (50.33%), TransactionTimeExceeded

(22.92%), TransactionResponseTimeout (19.16%),

TransactionsClaimCreated (4.28%), others (3.31%).

However, this distribution for each session may differ, for

example for one day test sessions (6 hours) it was:

SchedulerCriticalError (70.04%), SecurityViolated (10.65%),

TransactionAgentInactive (8.53%), UnknownError (5.49%)

and others (4.29%). This is a consequence of code changes in

the tested application or test changes. Hence, tracing

fluctuations of report features can provide useful knowledge

on test strategies.

C. LOG PROFILE ANALYSIS IN TIME

The log profile analysis (in time) can be targeted at tracing

changes (or stability) of specified features. This can be focused

on dictionary changes within specified categories (e.g., file

paths, thread, method names). Here, we can consider long or

short time perspectives, correlate them with application

development life cycle, e.g., in relevance to test monitoring,

issue and software version control repositories (Section V and

VI).

FIGURE 3. Heatmap covering transaction rejection reason codes.

In this section we focus on analyzing logs using cross

section heat maps to trace differences in specified types of

features. They form 2 dimensional matrices with x-axis

(columns) specifying considered features (e.g., alert types,

exceptions, transaction termination codes), y-axis shows

subsequent log files (e.g., relevant to one test run). The matrix

entry H(i,j) shows the number of identified features

(corresponding to the j-th column) within the considered i-th

log file. The entry background color can be correlated with this

number, to facilitate revealing some regularities or

irregularities. Subsequent values H(i,j) of the j-th column

show distribution in time (test runs) of the j-th feature. We can

trace cross section heat maps H(i,j)TS by filtering logs in

relevance to test scenarios (TS). Disappearance or reduction

of some features in time can be correlated with code

corrections (new version, bug correction). On the other hand,

the appearance or a significant increase of some features may

result from new functionalities, imperfect bug corrections,

system configuration changes, etc. The identified suspected

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3136138, IEEE Access

 Author Name: Preparation of Papers for IEEE Access (February 2017)

VOLUME XX, 2017 11

feature deviations can be explained/interpreted by correlating

their appearance with other software logs.

Figure 3 shows a heatmap related to transaction rejection

reason code. For the most log files, low values of each code

(0-10) dominate. Only one log file (log-17) comprised all

reason codes (in total 420 entries): RUP, RUT – receiver

unavailable permanently, temporarily; RI - receiver inactive;

IA1, IA2 inappropriate amount; D1, D2, D3, D4, D5 – diverse

duplicates; SI – sender inactive; SUP – sender unavailable

permanently, temporarily; VE validation error; NE network

error. The highest number of registered reason codes related

to SUP (216, 237) and RUT (120) codes. In a similar way we

analyzed other keywords. Transactionid assumed the

following values: SRAC – send request of account charging;

RCAC – received confirmation of account charging; TMT -

timeout; SR – sent rejections; RR1, RR2 - received rejection

type1, 2; RPA – returned positive answer; SA – sent

authorization; SRCA – sent request for credit acknowledge;

RA – receiver authorization; RCA – received credit

acknowledgement. We observed relatively uniform (200-400)

distribution for 7 values (SRAC, RPA, SA, SRCA, RCAC,

RA, RCA), 3 with very low values (TMT, SR, RR2) and one

(RR1) with the medium average value (50), however large

dispersion (3-470).

The heat map for alert types revealed bigger number of

some critical types: unavailable sender (187 and 146 for log11

and 12, respectively), SenderCriticalError (533-2045 for logs

13-15), AccountJobinactive (555-1405 for logs 11 and 10),

transactioBad Message (218-251 for logs 1-3),

securityviolation (200-604 for logs 18, 11, 12),

transactionResponseTimeout (100-604 for logs 13). Five logs

did not comprise alerts, for 4 logs alerts constituted a fraction

of percent, 3 logs with about 2-5%, the remaining ones below

2%. The heat map for identified alert sources (20) revealed

most alerts related to Scheduler (500-2007 for log 13-15 and

10-11), other 6 sources related to several timeout generators

and bad message validation with significant values (50-250)

for about 30% of logs. The heatmaps for registered exceptions

(25 types) showed for most logs low values (0-10) per

exception, and 10-50 exceptions per log file in total. However,

two exceptions FileProcessingFileServer criticalerror and

SourceDirectorynotFoundError showed very big values (533-

2045 for logs 13-15). They correlated with Source Scheduler

(552-2047) and alert type SchedulerErrorCritical (533-2045)

for the same logs. For these logs, the percentage of entries

comprising exceptions (in fact double ones) was 2-5%. We

can analyze other correlations, e.g., logs with abnormal values

with test reports (Section V).

V. TEST EXECUTION MONITORING

Tests can be structured at three levels: test step, test scenario

(a set of subsequent test steps related to a test case), test block

(group) – set of test scenarios on a specified functionality. We

define 5 states of test steps: passed (positive execution), failed

(negative test result), skipped (not executed), undefined (e.g.,

not implemented in the test), pending (test step under

execution). The test scenario is passed while all relevant test

steps were passed or failed if any test step failed. We define

the test run as the complete set of test blocks covering all

software functionalities. Typically, it includes 500-1000 test

cases, each comprising 10-20 test steps. Reports on the test

execution are stored in test result files. In the considered

project regression test runs were executed in nights by about 6

hours.

A. BASIC TEST STATISTICS

Table 6 shows distribution of test results of one day run

covering 31 test groups generated by the test management

module. For each test group we give the number of relevant

test steps (followed by the number of failed and skipped ones),

the number of test scenarios (with specified failed ones) and

the test execution time (minutes). For correctly executed test

groups we give only ranges of relevant values. The total

execution time was 6 hours 11 minutes. The aggregated

statistics of the whole test session (numbers of test steps, test

scenarios and relevant distribution in percent) are given in

bottom table rows. The summarized test report is analyzed, in

consequence of this analysis not passed tests are verified to

check the reason of negative result. Sometimes this is caused

by an inappropriate or incorrect test (e.g., wrong assertion),

test or its environment configuration flow (e.g., inaccurate

usage of the testing framework), etc. Negative results need

transferring them for further processing, e.g., labelling issue id

in Jira, etc. Test result presentation assures hierarchical access

to detailed data via CMP module (Section III).

TABLE VI

EXCERPT OF A SYNTHETIC TEST REPORT
Test

Group

Test steps Test scenarios Test

time

[min]
Passed Failed Skipped Passed Failed

G1 432 18 192 14 18 72

G2 815 17 90 42 17 80

G3 175 6 23 25 6 85

G4 180 6 10 20 6 05

G5 82 5 8 9 5 11

G6 180 4 3 23 4 10

G7 41 3 3 4 3 07

G8 409 2 0 136 2 11

G9 30 2 2 4 2 05

G10 878 1 12 60 1 44

G11 35 1 0 2 1 05

G12-31 1-649 0 0 1-144 0 0.1-17

Total 6181 65 343 821 65 371

Distrib. 93.8% 1.0% 5.2% 92.7% 7.3%

Test session profiles can differ in time. This is illustrated in

Figure 4 for subsequent daily regression session tests covering

about 600 days (long term statistics). The percentage of the

negative tests ranged from 5 to 42%. The x-axis specifies

subsequent test runs, y-axis shows the percentage of the

negative tests (average value aggregated over consecutive 30

test runs). Higher values were correlated with bigger code

changes (new functionalities, major code corrections). Such

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3136138, IEEE Access

 Author Name: Preparation of Papers for IEEE Access (February 2017)

12 VOLUME XX, 2017

analysis can be performed for a shorter time perspective and a

lower aggregation window (e.g., 1 day). We can also focus on

other test features, e.g., the first use (execution) of the test and

its expiration date (due to irrelevant code, new functionalities,

updates), confirmed skipped faults reported by users.

FIGURE 4. Distribution of negative test results (aggregation per 30 days).

FIGURE 5. Distribution of correctly completed test steps (in percent) over

test scenarios executed in 5 subsequent days.

Studying test executions, we should refer to the application

lifecycle due to the development of subsequent versions, code

modifications or corrections, introduced new functionalities,

etc. Hence, we trace negative test results in time (as in Figure

4). Figure 5 presents distribution of faulty test steps related to

negative test scenarios over 5 days. The y-axis shows the

number of faulty test scenarios, the x-axis shows the

percentage of correctly executed test steps within these

scenarios. In the case of stabilizing software versions, the bars

are moved towards higher percentage values and lower

number of test scenarios. Significant values related to newly

introduced functionalities. They were identified by correlating

commits with added functionalities and the number of failed

scenarios. Analysing such profiles, we can perform deeper

exploration related to higher values to derive the reasons of

these anomalies.

B. EXPLORING TEST REPORTS

Tracing test executions we have introduced some metrics

related to three aspects: test coverage, test productivity and

result outcome. The test coverage can be correlated with

application features, e.g., the number of executed transactions

(in total or per transaction class), code coverage. For an

illustration, we give statistics of the performed transactions in

the regression test suites executed each day in 6-hour sessions.

This statistics for subsequent 6 hours over 10 days was as

follows (h: a-b; where h denotes hour, a and b denote

transaction ranges):

TC (6/10) = {1: 8-12; 2: 8-12; 3: 180-210; 4: 150-162; 5: 410-

500; 6: 38-42}

This is some measure of application stresses. The quality of

the test-suite (TS) can be assessed by statement or branch

coverage, test suite size, application stressing, mutation score,

etc. In [43] mutation score (the number of killed mutants) has

been extended by TS capability ratio, i.e., the ratio of the

number of tests in TS that kill at least one mutant over the total

number of tests in TS. This was applied in controlling the

reliability of repairs (related to involved regressions). Test

productivity we define as the percentage of passed tests,

executed test steps, test scenarios, test execution time, etc. In

the case of failed test elements (e.g., steps) we can admit their

repetition for a specified number of times. False tests may

relate to activated faults (errors). In general, we distinguish the

following error classes:

1) Application logic errors – incorrect algorithm, not

predicted handling of an erroneous situation, not specified

behavior.

2) Implementation errors:

- User interface fault – incorrect graphical display of

data, inconsistency between expected and real

interaction behavior,

- Calculation faults – wrong program coding,

inaccurate calculations,

- Thread management errors – synchronization

problems.

3) Environment configuration errors – lacking or incorrect

environment or authentication variables, incorrect project

profile build, incorrect IP or URL addresses.

4) Test data configuration errors – e.g., lacking account of

senders or receivers.

5) Test errors:

- test scenario logic error – incorrect test steps, wrong

sequence of executions, inconsistency with

application specification,

- test scenario implementation fault – test code error,

test library error, technology instability (e.g., related

to time dependencies),

- test configuration errors – incorrect test data, or

environmental variables.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3136138, IEEE Access

 Author Name: Preparation of Papers for IEEE Access (February 2017)

VOLUME XX, 2017 13

Analyzing test execution, we should correlate it with the

application lifecycle taking into account appearance of

subsequent versions, error corrections, modifications, updates,

etc., which impact test runs.

The distribution of detected errors in the project lifecycle

may differ, as well as the required effort to fix them. Typically,

the distribution of the error classes 1-5 was 10%, 30%, 20%,

35% and 5%, respectively. Most of application logic errors

(class 1) appeared in the initial phase of the project and for test

scenarios with big branch coverage (related to diverse

configurations and releases). The implementation faults (class

2) are rarely announced during exploitation, they are detected

with sophisticated test scenarios. These scenarios cover

diverse aspects of the tested system, e.g., uncommon

configuration and operation conditions which even rarely

appear in production. The environment configuration errors

(class 3) are strongly coupled with introducing new releases

including applications redeployments, running migration

tools, choosing right environment profiles (e.g., resulting from

some deficiencies in documentation), etc. Test data

configuration errors (class 4) dominated and increased with

higher complexity of system functions. This resulted from test

scenarios becoming more complex and involving more

modules, parameters, and test data (difficult to grasp in short

time). Quite often the test data is elaborated in relevance to the

tested code which can be incorrect. Test errors (class 5) have

a quite short lifecycle as most of them are eliminated during

the test development, moreover they are quite easy to fix. The

presented error taxonomy and the relevant investigation

triggered fruitful discussion within the project team meetings

and provided useful hints for possible improvements.

Sometimes negative tests relate to timeout crossing, due to

waiting for some expected events (e.g., waiting for generation

of an invoice by a system component). Timeouts can trigger

repetitions of the test, changing timeout limit or modifying test

parameters. More difficult is handling errors resulting from

framework incompatibilities with used libraries or technology

changes in the tested application.

The developed test framework (TF - Section III) provides

the capability of more detailed test result statistics in relevance

to test steps, scenarios and runs correlated with specified

functionalities. It is illustrated in Table 6 ordered according to

the number of negative tests. It assures hierarchical access to

test reports from upper to lower levels (test steps). We can

generate cross-sectional statistics, e.g., distribution in time of

negative test results for specified test runs, scenarios. We can

create heat map with y-axis showing test identifier (e.g., test

case) and x axis alert type or exception, the entries can specify

the number of negative tests (of specified types). Basing on

this we can provide a retrospective view on the test efficiency

(detectability and diagnosability), performed updates,

modifications or deletions of test cases in the used test sets.

This can be done in relevance to the tested system lifecycle

(revisions, etc.).

The test result repository comprises valuable data which can

be explored and analyzed with relevant metrics targeted at

diverse aspects, e.g.:

• Tracing historical changes of test sets (at different levels,

groups, test cases and steps) due to application life cycle

development and maintenance phase.

• Test modifications resulting from detected faults in tests,

• Error detection score per tests in time.

• Correlation of code correction triggered by a test A with

failed tests after correction, this may provide information

to reduce the needed tests in regression testing after

corrections of specified application areas.

• Test modification analysis in software life cycle, may

provide the range of changes, e.g., on the level of steps,

test cases or test oracle specification.

• Identification of newly introduced tests due to errors

reported by users and not detected by the existing set of

tests.

• Correlating executed tests with the relevant issue

handling time, the number of exchanged comments, time

needed for analysis or resolution, etc. It allows to assess

diagnosability features. Here, we can add suggestions on

how the diagnosis could be improved, what kind of

information was lacking as helpful (feedback from issue

analyzers and code correctors).

• Impact of application updates on the test management.

For example, identifying the impact of test A results on

other tests (failed correlation steps, cases, groups).

It is interesting to trace the impact of introduced code

changes on the test outcome, e.g., what is the manifestation of

tests targeted at the introduced code changes, was there any

impact on tests for other functionalities. This allows us to

identify functional/code interrelationship. Having identified

such dependencies, it is easier to identify regression subtests

targeted at specified functionalities. Historical data of

performed test facilitates this process, this needs referring to

issue and commit repositories (Section VI).

Testing processes are correlated with the project

development, and we can observe their mutual impact in time.

Hence, it is reasonable to monitor the distribution of detected

error classes (Section V) and correlate them with introduced

new functionalities, used sets of test scenarios and actors

involved in these processes. Staff fluctuations may also have

a significant impact. Test suit sets are improved, corrected or

adapted to the progress of the project live cycle. Hence, tracing

test relevant software repositories (issue and code version

control) is also useful to assess the efficiency of the test

processes. The developed test framework (TF) is helpful in

this process. We can derive test suit fluctuations for selected

time periods Tp in relevance to four classes of test suits:

• TSS - set of stable test scenarios, i.e., such which were

used constantly within period Tp .

• TSM - set of modified test scenarios, i.e., changed at some

point within Tp (e.g., adaptation to functionality or

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3136138, IEEE Access

 Author Name: Preparation of Papers for IEEE Access (February 2017)

14 VOLUME XX, 2017

configuration changes of the tested project, improved

functionality description, remarks provided by project

end users).

• TSR - set of removed test scenarios, i.e., used up to some

point within Tp and then abandoned (e.g., due to low

efficiency, significant code or configuration changes, lack

of maintenance due to staff fluctuation).

• TSA - set of added test scenarios, i.e., appearing after

some point within Tp (e.g., covering added new

functionality, replacing previously used test scenarios).

Statistics of these classes can be derived using the

developed framework by referring to issue and software

version control entries of tests. Their interpretation needs

referring to software repositories of the tested project.

Typically, for Tp = 1 month, the distribution of test classes

TSS, TSM, TSR and TSA was: 75-85%, 15-20%, 0-2% and 0-

4%, respectively.

VI. CODE AND TEST DEPENDANCIES

In the software life cycle the code is changed due to releases

of subsequent versions, fixing detected errors, functional

modifications/extensions, performance improvements, etc.

This has a significant impact on test processes. Hence, it is

reasonable to analyze software version control (SVC)

repositories in accordance with issue tracking system (Jira).

We have quite rich experience with such analysis presented in

[7,25] in relation to open source and commercial projects. This

resulted in the original concept of the problem handling graph

(PHG) and software development monitoring, which is also

useful in tracing links with testing processes.

A. EXPLORING REPOSITORY DATA

Analyzing software lifecycle repositories and the distribution

of performed commits including the scope of the relevant code

changes (modification, deletion, addition), we focus on four

aspects triggered by the negative test results:

1) Tracing handling issue reports triggered by negative tests.

2) Identifying reported bugs (e.g., by users) which were

skipped by tests and filling this gap by improving or

adding supplementary test scenarios.

3) Tracing used test sets in relevance to software

development progress, deployed releases and user reports

(profiles of test sets TSS, TSM, TSR and TSA).

4) Developers autocorrections or code refactoring.

FIGURE 7. Distribution of file changes in commits

Figure 6 presents distribution of registered commits within

the scope of 10-year project lifecycle. The first 2 years relate

to development phase (75% of created files), subsequent years

correspond to maintenance and improvement period (25% of

files). In the initial phase a significant increase of newly

introduced tests was observed, while in the stable phase this

was about 10-20% per year. The registered commits resulted

in changes, deletions, and addition of new files in the range:

1-4, 2-10, and 0.5-2, respectively. The distribution of commits

involving specified number of changed files is given in Figure

7. Commits with single file changes dominate, this confirms

efficient problem handling processes (involving testing). Each

file is changed on average 3.83 times. However, some of the

issues trigger high numbers of changes (exceeding 10),

typically, this occurs in relation to new functionalities.

FIGURE 6. Time distribution of performed commits (average values per day).

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3136138, IEEE Access

 Author Name: Preparation of Papers for IEEE Access (February 2017)

VOLUME XX, 2017 15

Sometimes a simple modification appears in many files, and it

is classified as a multiple file change, e.g., caused by a new

name of a file updated in many places (hence maximum 296

file changes were reported).

Each commit is triggered by a registered issue in Jira

repository. Figure 8 shows the distribution of the number of

performed commits correlated with a single issue. The x-axis

specifies subsequent issue ids, the y-axis shows the average

number of relevant commits over aggregated subsequent 100

issue chunks. For each bar we give also the minimal and

maximal values observed within the chunk (min/max). The

first and second quartile for the first, second and 5th chunks

were: (1,6), (1,3) and (1,4), respectively. For the remaining

ones it was (1,2). The analyzed issues triggered 1-58 commits;

on average a single issue is correlated with 2.33 commits. A

single issue usually triggers a single commit, but it may also

result in a sequence of commits which at first glance seems to

be strange. This results from the fact of involving a group of

issue resolving programmers (big problems) as well as from

partial resolution of the problem. Generating a partial commit

is useful to not block other project contributors for longer time,

they can proceed their work. A single issue resulted in

maximum 58 commits (relevant to introducing a significant

range of new functionalities).

FIGURE 8. Distribution of performed commits in relevance to reported

issues.

SVC repository gives some view on the cost of performed

code changes. Many of them are the consequence of negative

tests which triggered appropriate issues. We can trace

handling these issues in Jira repository. Typically, they are

handled according to the following scheme defined by the

sequence of issue state processing (PHG graph):

New → Workaround → open → in analysis → accepted →

in_progress → in review → resolved → closed

An issue in Workaround or in in-analysis states can be

considered as irrelevant and transferred to reject state (not

shown branch). The accepted state corresponds to positive

detection and diagnosis of the problem. The time needed to

attain this state in a large extent depends upon the test

diagnosis quality. Nevertheless, it can also depend upon

available resources or the issue handling organization. Some

indirect metrics of diagnosis capability are the number and the

size of exchanged comments included in the considered issue.

The issue handling process can also depend on external actors

correlated with the project. For example, staying in in-

progress state is conditioned by human reactions. They refer

to activities (including comment exchanges) of project users,

vendors (external provider of some software modules) or

technical support. More complex problem handling paths

(with several branches and loops) we have observed in other

projects [7,25]

B. CORRELATING REPOSITORY DATA

Correlating issues and commits with test reports needs some

effort, due to often neglected references to negative tests in

repository entry descriptions. In such case the correlation can

base on context analysis supported with text mining.

Assessing report quality in this aspect we calculate the ratio of

entries with direct test references, those with needed deeper

analysis and ambiguous ones. In the analyzed project only 5-

20% reported issues in Jira comprised explicit references to

relevant test scenarios. Another view on this problem is

checking the size of the entry descriptions. The commit

description provides some information on its reason, this can

also facilitate correlation with relevant issue or test reports,

however many programmers neglect this. For an illustration

we give derived statistics of commit descriptions. For 6000

commits (23000 file changes within 5 years) we found on

average 9.7 words (minimum 0 and maximum 206 words) in

the description fields. However, we observed an increasing

trend in time (average values 5-12 words) and interquartile

ranges for consecutive 500 commit groups stretched from 13

to 37 words. Commits related to new functionalities showed

longer description fields.

Typically, a logging statement in the code contains static

and dynamic part. The static part is a fixed character string and

variable part is determined during the code execution of the

run time. Associating development knowledge to test results

and generated logs is helpful in diagnostic processes.

Interactions between developers and users provide additional

information in repositories. The report of an issue comprises

its description, resolution and development discussion about it

(comments), history of processing stages. An issue which is

related to event logs may be helpful in its interpretation

(rationale of log), moreover it can be correlated with log line

in the source code which generated the log entry. A code

commit describes the changes of the code and other

corresponding (associated) information, a logging statement

may provide the meaning of the code line, etc. Hence, we can

trace the following associations: log line-log statement (file,

method location, code comment) – code commit – issue report,

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3136138, IEEE Access

 Author Name: Preparation of Papers for IEEE Access (February 2017)

16 VOLUME XX, 2017

in addition we can trace emails from users on the registered

logs.

Log repositories form a rich source of information

(knowledge) on testing, neglected in the literature. Systematic

processing of a wide scope repositories leads to improvement

of testing and diagnosis. Dealing with diverse types of

repositories, we trace their interactions and information

associations. Code corrections or new functions may trigger

inclusion or modification of relevant log statements in the

code, this results in log profile changes or updates during the

testing processes. In addition, we can investigate user reports

and correlate them with possible test gaps.

Correlating issue tracking and version control repositories

with testing processes needs appropriate filtering. Test reports

should comprise the specification of the tested software

version (including the merged commits); hence we can trace

issues to correlate them with issue requests related to new

functionalities, corrections resulting from previous negative

tests, corrections triggered by project users, etc. In the case of

confirmed missed errors, it is important to identify the reasons

of their skipping by regression tests and produce requests for

test set updates. Tracing the handling process (depicted by

PHG graph) of recorded issues triggered by the test outcome,

we can check the exchange of messages, comments which can

reflect the precision of bug specification and localization. We

can check the time between the issue registration and problem

allocation as well as the identified decision looping. This can

provide some indirect metric of test diagnosability. However,

they can be obfuscated by project actors’ allocation policies,

their capabilities or practical competence and workload load.

We can derive positive correlations of project actors with test

subsets (successful and fast handling). In the case of projects

with recommendation repositories filled by users [37] we can

correlate them with project functionalities and relevant test

suites to check why there were not detected during

development/maintenance phase, and specify, if needed, test

drawbacks.

VII. DISCUSSION

The developed test framework (TF – Section III) allowed us

to extend the observation perspective of test results over a

wide scope of software repositories. It provides the capability

of extracting detailed and important features of test execution.

This is useful to assess test diagnostic efficiency and reveal

imperfections in the context of the project development and

maintenance by correlating test reports with issue and commit

repositories. Insufficient accuracy and negligence in reporting

(automatic or manual) creates problems in extracting

appropriate data, hence discovering some time and semantic

contexts is helpful. In relevance to this we showed the

usefulness of deriving structural and semantic features of

dictionaries used in repositories, keywords, and profiles (in

time and value - heatmaps) of associated variables or other

statistics. Log dictionary and keywords can be investigated (in

long time perspective) to determine their impact on diagnostic

capabilities and point out possible improvements. (Section

IV).

The presented approach significantly expands the

observation space of assessment processes related to

regression, acceptance, and integration tests (Section V). This

exceeds the capability of common approaches of unit testing

based on finding links between test cases and related

production classes ([42] and references therein). Diagnostic

capabilities can be enhanced by correlating test reports with

other software repositories (e.g., issue tracking and version

control). Test set optimization and upgrades need tracing test

impact in these repositories in time perspective (Section VI).

Test diagnosability and efficiency can be evaluated by

correlating detected problems (by tests) with relevant handling

paths (PHG graph) and software fix ranges. Identified long or

complex handling paths (e.g., involving state looping,

comment exchanges [25]) we can drill down test outcome

deficiencies (test reports and generated event logs) to reveal

possible improvements.

We can increase not only test diagnosability, but the

supplementary advantage of our approach is also identifying

and controlling the consistency of tests with

project/environment changes or updates during the life cycle.

For this we explore test set profiles (TSS, TSM, TSR and TSA),

distribution of test results (at test scenario and test step levels,

e.g., Table 4) and detected defect classes, skipped errors, etc.

The presented monitoring process covers project and test

lifecycles (including their mutual interactions) taking into

account relevant issue and version control repositories.

Tracing detected and skipped defect classes for test runs

(application logic, implementation, configuration, test flaws)

facilitates to identify and counteract suspicious trends (Section

V B).

 Another issue is qualification of test importance, test

strength and enhanced test outcome taxonomy. Depending

upon the test targets we can attribute test importance

correlated with potential bug severity levels (critical, major,

minor, cosmetic, etc.). More sophisticated tests can provide

multilevel outcomes instead of binary results (passed, non-

passed steps). Hence, the outcome of non-passed tests can be

further précised showing detailed deficiency specification

which can be categorized according to bug criticality. This can

be combined with tracing the progress of handling registered

negative test results (in issue repository) in correlation with the

attributed issue state and relevant impact on code commits

(version control repository). Here, we can distinguish issues

disqualified due to non-possible reactivating the fault, rejected

due to negligent importance, postponed because of the

previewed future function replacement/modification. On the

other hand, we have tests triggering many bugs which usually

are considered as the most effective and attributed higher

priority. Monitoring issue handling we should link them with

relevant tests and trace the resolution progress, e.g., rejection

decisions, time needed for diagnosis, number of correlated

comment exchanges, scope of triggered commits (number of

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3136138, IEEE Access

 Author Name: Preparation of Papers for IEEE Access (February 2017)

VOLUME XX, 2017 17

identified bugs, number of changed files or code lines). This

provides data for fine-grained test outcome categorization

(compare specifications in Section V), which can be

aggregated in a longer time perspective to identify behavioral

trends. Many postponed, rejected minor or negligible faults

can cumulate in time resulting in complex problems or hide

detection of other important problems. In another e-commerce

project, developed in SCRUM technology with weekly

iteration periods (sprints), this problem appeared with a delay

of 5-10 months. Hence, it is useful to control the range of

piling not resolved issues and perform periodical revisions.

The presented methodology of analyzing test processes and

their interaction with project development is based on holistic

investigation of wide scope and detailed features derived from

diverse software repositories. This involves tracing

correlations between reports in repositories. In practice, this

process can be simplified and more effective by improving

report descriptions. The proposed statistics and diverse metrics

are helpful to monitor report quality and provide feedback to

actors involved in project development/testing (Sections V

and VI).

The presented studies based on our experience with

monitoring several software projects, however the developed

test analysis methodology was referred to a single commercial

project systematically upgraded and maintained for many

years. It assured access to rich software repositories. Hence,

we include some comments on validity threats of our

investigation.

External validity. The presented investigation was

performed on data collected by one industrial partner which

accepted installation of our plugins into the used test

infrastructure (comprising cucumber, etc.). The derived test

features and relevant software repositories related to a specific

software project developed with assumed technology in the

company. Nevertheless, the gained experience and assessment

methodology can be considered as sufficiently representative

for many medium size companies and transaction-oriented

applications. Moreover, the presented metrics, analysis

methodology can be generalized for a wider scope of projects

and development technologies. Retrospective view on testing

from software repositories perspectives can show lacking data

in repositories, drawbacks of testing processes which can

impact development improvements.

We have confronted our results with the experience of

testers in two other companies targeted at complex e-

commerce and disc controller software. Tests were managed

by proprietary software with similar capability to Cucumber.

Regression tests (test cases with specified steps) were

executed in weekly and several day periods, and they involved

many hours in the night. Test reports were synthetic at

functional level, sometimes supported with screen shots.

Event and other software repositories were not correlated

directly with the test reports. This lacking feature is available

in our test framework (TF) including the analytical

component. It has been assessed by interviewed project testers

as promising for investigating test properties in a wider data

context and longer time perspective observation. They found

it helpful in tracing such problems as faulty and obsolete tests

(causing losses in testing time), sources of skipping faults

reported by product customers using their own tests. Another

issue relates to faults of purchased software modules from

other providers, which usually are considered as reliable

within a long period of time. However, they showed some

problems with delay, e.g., in the context of added or improved

functionalities, changed environment. In the considered

projects it was observed that a relatively small percent of tests

(̴ 20%) reveal most faults (60 - 80%), which can be considered

in test optimization, e.g. appropriate execution ordering

(prioritization). The presented problems can be effectively

studied using our test framework by correlating data from

diverse repositories.

Internal validity. The research goal was verified on the

available data sets and using the developed plugins to the

available test support tools and software repositories.

Unfortunately, some data were screened due to their

sensitivity touching the developers and users (customers).

Nevertheless, this was not significant restriction in our studies,

which have been also positively accepted by the industrial

partner.

Construct validity. The used test management

infrastructure is quite universal. The developed plugin

components integrate collection, correlation, and analysis of

monitored data. They can be adapted to other test/monitor

platforms and software development technologies. Depending

upon the organization of repositories we face the problem of

getting access to relevant repositories (sometimes managed by

different groups in the company or outsourced), selecting test

relevant data, crossing data confidentiality restrictions

(anonymization preprocessing).

VIII. CONCLUSION

We have analyzed a wide scope of collected data during

testing a complex industrial project. This study proved the

usefulness of software repositories in assessing and improving

software test processes. Test report interpretation is enhanced

by correlating registered entries with application logs, which

needed adaptation of log parsing to their specificity including

structural and semantic features of used words and phrases (n-

grams). This is supported with a hierarchical text mining

analysis targeted at used word classes (dictionary), keywords

and associated variable parts. The presented analysis in short

and long-time perspectives refers to issue and version control

repositories. It provides an insight on test set consistency with

the application and points outs needed adjustments during the

system lifecycle. It is based on extensive investigation of a

wide scope of test and development features complemented

with specified statistical metrics and profiles.

The introduced metrics and statistics can positively affect

test quality progress in time, which is important in projects

with long live perspective (systematically introduced updates

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3136138, IEEE Access

 Author Name: Preparation of Papers for IEEE Access (February 2017)

18 VOLUME XX, 2017

and new versions of the tested project and system

environment). The gained experience revealed the necessary

improvements in quality and the range of registered reports

(automatically or manually). Our future research will be

directed towards deeper empirical studies, in particular tracing

the impact of tests on created issues and relevant handling

times. This will result in periodical revisions of testing

processes and data repositories considering context changes.

Another issue is extending our approach on performance tests

taking into account supplementary resource usage and timing

monitors.

REFERENCES

[1] V. Garousi, M. Felderer, F. N. Kilicaslan , “A survey on software

testability”, Information and Software Technology 108, 2019, pp. 35-64,

DOI: · 10.1016/j.infsof.2018.12.003

[2] P. C. Jorgensen, Software testing, a craftsman’s approach, Taylor and

Francis Group, 2007.

[3] A. Perez, R. Abreu, A. van Deursen, “A test-suite diagnosability metric for

spectrum-based fault localization approaches”, in Proc. IEEE/ACM 39th

International Conference on Software Engineering (ICSE), 2017, 1558-

1225, DOI: 10.1109/ICSE.2017.66 .

[4] V. Antinyan, J. Derehag, A. Sandberg, M. Staron, “Mythical unit test

coverage”, IEEE Software 35(3):73-79, 2018, DOI: ·

10.1109/MS.2017.3281318.

[5] C. Smidts, Ch. Mutha, M. Rodriguez, M. J. Gerber, “Software testing with

an operational profile: OP definition”, ACM Computing Surveys,

February 2014, 46(3), DOI: · 10.1145/2518106.

[6] G. Tebes, D. Peppino, P. Becker, G. Matturro, M. Solari, “Analyzing and

documenting the systematic review results of software testing

ontologies”, Information and Software Technology, Volume 123, July

2020, 106298.

[7] J. Sosnowski, B. Dobrzyński, P. Janczarek, “Analysing problem handling

schemes in software projects”, Information and Software Technology

Volume 91, November 2017, pp.56-71,

https://doi.org/10.1016/j.infsof.2017.06.006.

[8] S. Martinez-Fernandez, A. M. Vollmer, A. Jedlitschka, X. Franch, L.

Lopez, P. Ram, et al., "Continuously assessing and improving software

quality with software analytics tools: A case study", IEEE Access, vol. 7,

pp. 68219-68239, 2019.

[9] C. Jeanderson, A. Maur´ıcio i A. Deursen, „Contemporary software

monitoring: A systematic literature review,” CoRR abs/1912.05878,

2019.

[10] S. Almugrin, W. Albattah, A. Melton, “Using indirect coupling metrics

to predict package maintainability and testability”, Journal of Systems

and Software, Volume 121, November 2016, pp. 298-310.

[11] K. Gao, „Simulated software testing process and its optimization

considering heterogeneous debuggers and release time”, IEEE Access

vol. 9, 3849-59, 2021.

[12] R. Ibrahim, A. Aminuddin, B. Amin, S. Jamel, J. A. Wahab, “A software

testing tool for generation of test cases automatically”, International

Journal of Engineering Trends and Technology 68(7):8-12, July 2020,

DOI: 10.14445/22315381/IJETT-V68I7P202S.

[13] D. Graham, M. Fewster, Experience of test automation, case studies of

test automation, Pearson Education, Inc. (2012), ISBN: 9780321754066.

[14] M. Nosrati, H. Haghighi, M. V. Asl, “Test data generation using genetic

programming”, Information and Software Technology, Volume 130,

February 2021, 106446.

[15] P. Saha, U. Kanewala, “Fault detection effectiveness of source test case

generation strategies for metamorphic testing”, in Proc. of MET '18:

Proceedings of the 3rd International Workshop on Metamorphic Testing,

May 2018, pp. 2–9, https://doi.org/10.1145/3193977.3193982.

[16] J. Chen, W. Shang, E. Shihab, “PerfJIT: Test-level just-in-time prediction

for performance regression introducing commits”, Journal of Latex

Class Files, IEEE Transactions on Software Engineering, vol. 14, no. 8,

August 2019, DOI 10.1109/TSE.2020.3023955.

[17] Z. Ding, J. Chen, W. Shang, “Towards the use of the readily available

tests from the release pipeline as performance tests. are we there yet?”

In. Proc. of the ACM/IEEE 42nd International Conference on Software

Engineering, June 2020, pp. 1435–1446,

https://doi.org/10.1145/3377811.3380351.

[18] G. Kumar, P. K. Bhatia, “Software testing optimization through test suite

reduction using fuzzy clustering”. CSI Trans. ICT 1, 3, 2013, pp. 253–

260. DOI:10.1007/s40012-013-0023-3.

[19] B. Miranda and A. Bertolino, “Scope-aided test prioritization, selection

and minimization for software reuse”, J. Syst. Softw. 131, 2017, pp. 528–

549. DOI:10.1016/j.jss.2016.06.058.

[20] M. Reider, S. Magnus, and J. Krause, “Feature-based testing by using

model synthesis, test generation and parameterizable test prioritization”,

in Proc. of the IEEE 11th International Conference on Software Testing,

Verification and Validation Workshops, 2018, pp. 130–137.

DOI:10.1109/ICSTW.2018.00041.

[21] Bluemke, I., “Software testing effort estimation and related problems: A

systematic literature review, ACM Computing Surveys, Volume 54, Issue

3, June 2021, Article No.: 53, pp. 1–38,

https://doi.org/10.1145/3442694.

[22] A. Perez, R. Abreu, A. van Deursen, “A theoretical and empirical analysis

of program spectra diagnosability," IEEE Transactions on Software

Engineering, vol. 47, no. 2, pp. 412-431, 1 Feb. 2021, doi:

10.1109/TSE.2019.2895640.

[23] Y. Meng, G. Gay and M. Whalen, "Ensuring the observability of

structural test obligations," IEEE Transactions on Software Engineering,

vol. 46, no. 7, pp. 748-772, 1 July 2020, doi:

10.1109/TSE.2018.2869146.

[24] M. Nayrolles, A. Hamou-Lhadj, “Towards a classification of bugs to

facilitate software maintainability tasks”, in Proc. of the 1st International

Workshop on Software Qualities and their Dependencies, May 2018, pp.

25–32 https://doi.org/10.1145/3194095.3194101.

[25] J. Polaczek, J. Sosnowski, „Exploring the software repositories of

embedded systems: An industrial experience”, Information and Software

Technology, vol. 131, March 2021, 106489,

DOI:10.1016/j.infsof.2020.106489.

[26] R. Karim, A. Ihara, X. Yang, H. Iida, K. Marsumoto, “Understanding key

features of high-impact bug report”, in Proc. of 8th International

Workshop on Empirical Software Engineering in Practice (IWESEP),

pp. 53-58, DOI:10.1109/IWESEP.2017.17Corpus ID: 6372261Tokyo,

2017.

[27] A. Sarkar, P. C. Rigby and B. Bartalos, "Improving bug triaging with high

confidence predictions at Ericsson, in Proc. of IEEE International

https://doi.org/10.1109/ICSE.2017.66
https://www.sciencedirect.com/science/journal/09505849/91/supp/C
https://doi.org/10.1145/3377811.3380351

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3136138, IEEE Access

 Author Name: Preparation of Papers for IEEE Access (February 2017)

VOLUME XX, 2017 19

Conference on Software Maintenance and Evolution (ICSME), 2019, pp.

81-91, doi: 10.1109/ICSME.2019.00018.

[28] H. Li, C. Tse-Hsun, S. Weiyi, A. Hassan, „Studying software logging

using topic models,” Empirical Software Engineering, 2018, 23, pp.

2655–2694(2018), https://doi.org/10.1007/s10664-018-9595-8.

[29] Z. Li, Z. Jiang, X. Chen, K. Cao, Q. Gu, “Laprob: A label propagation-

based software bug localization method”, Information and Software

Technology, Vol. 130, February 2021, 106410 ,

https://doi.org/10.1016/j.infsof.2020.106410.

[30] M. Kubacki i J. Sosnowski, „Holistic processing and exploring event

logs,” in Romanovsky A., Troubitsyna E. (eds) Software Engineering for

Resilient Systems. SERENE 2017. Lecture Notes in Computer Science,

10479, 183-199, 2017.

[31] J. Zhou, S. Hey, j. Liuz, P. Hex, Q. Xiek, Z. Zhengz, M. R. Lyu , “Tools

and benchmarks for automated log parsing”, in Proc. of the 41st

International Conference on Software Engineering: Software

Engineering in Practice, May 2019, pp. 121–130,

https://doi.org/10.1109/ICSE-SEIP.2019.00021.

[32] P. He, J. Zhu, S. He, J. Li, M. R. Lyu, “Towards automated log parsing

for large scale log data analysis”, IEEE Transactions on Dependable and

Secure Computing, vol. 15, no. 6, November/December 2018, pp. 931-

944.

[33] B. Zhang, H. Zhang, P. Moscato, P. Zhang, “Anomaly detection via

mining numerical workflow relations from logs”, June 2020, TechRxiv.

Preprint. https://doi.org/10.36227/techrxiv.12570926.v2.

[34] W. Shang, M. Nagappan, A. E. Hassan, Z. M. Jiang: “Understanding log

lines using development knowledge”, in Proc. 30th IEEE International

Conference on Software Maintenance and Evolution, Victoria, BC,

Canada, September 29 - October 3, 2014. IEEE Computer Society 2014,

ISBN 978-0-7695-5303-0.

[35] A. Roman, M. Mnich, “Test‑driven development with mutation testing –

an experimental study”, Software Quality Journal 29, 1–38 (2021).

https://doi.org/10.1007/s11219-020-09534-x.

[36] J. Yan, H. Zhou, X. Deng, P. Wang, R. Yan, J. Zhang, “Efficient testing

of GUI applications by event sequence reduction”, Science of Computer

Programming, Volume 201, 1 January 2021, 102522

https://doi.org/10.1016/j.scico.2020.102522.

[37] M. Jeleński, J. Sosnowski, “Mobile application testing and assessment”

in: Advances in Intelligent Systems and Computing, vol 1173. Springer,

2020, pp. 283-292, https://doi.org/10.1007/978-3-030-48256-5_28.

[38] C. M. Rosenberg, L. Moonen, „Spectrum-based log diagnosis,” in Proc.

ACM/IEEE International Symposium on Empirical Software

Engineering and Measurement (ESEM), 2020, ISBN: 978-1-4503-

7580-1, October 2020, Article No.: 18, pp. 1–12,

https://doi.org/10.1145/3382494.3410684.

[39] S. Pearson et al., "Evaluating and improving fault localization," in Proc.

Of IEEE/ACM 39th International Conference on Software Engineering

(ICSE), Buenos Aires, Argentina, 2017, pp. 609-620, doi:

10.1109/ICSE.2017.62.

[40] Z. Cui, M. Jia, X. Chen, L. Zheng and X. Liu, "Improving software fault

localization by combining spectrum and mutation," IEEE Access, vol. 8,

pp. 172296-172307, 2020, doi: 10.1109/ACCESS.2020.3025460.

[41] D. Zou, J. Liang, Y. Xiong, M. D. Ernst, L. Zhang, „An empirical study

of fault localization families and their combinations”, IEEE Transactions

on Software Engineering, vol. 47, issue 2, February 1 2021, pp.332-347

https://doi.org/10.1109/TSE.2019.2892102.

[42] J. Yi, S. H. Tan, S. Mechtaev, M. Böhme, A. Roychoudhury. “A

correlation study between automated program repair and test-suite

metrics”, Empirical Soft. Eng. 2018 23:2948-2979, DOI

https;//doi.org/10.1007/s10664-017-9552-y.

[43] N. Ajawabrah, T. Gergely; S. Misra; L. Fernandez-Sanz, „Automated

recovery and visualization of test to code traceability links, an

evaluation”, IEEE Access vol. 9, 2021 pp. 40111 – 40123, DOI:

10.1109/ACCESS.2021.3063158.

[44] D. Ateşoğulları, A. Mishra, “Automation testing tools: a comparative

view”, International Journal on Information Technologies & Security,

no. 4, vol. 12, 2020 pp. 63 – 76.

MYKHAILO LASYNSKYI received the

B.Eng. degree in 2017 from the National

Aviation University of Ukraine in Kyiv

and M.Sc. degree in computer science

from Warsaw University of Technology in

Poland. Currently he cooperates with the

University and is working as a software

engineer in a commercial company

developing transactional systems for the

financial sector. His research and

professional interests include software engineering, project development and

testing.

JANUSZ SOSNOWSKI (Senior Member,

IEEE) received M.Sc. and Ph.D. degrees in
computer science from Warsaw University

of Technology in Poland. He is currently a

Professor with the Institute of Computer
Science of this University. He has

published more than 150 research articles in

international refereed conference
proceedings or journals and several books.

He has been on many program committees

of international conferences and reviewer
for diverse scientific publications

worldwide. His research interests include dependable computing, system

testing, diagnosis, performance, and fault handling issues. He has managed
and participated in many scientific and industrial projects.

.

https://doi.org/10.1007/s11219-020-09534-x
https://doi.org/10.1016/j.scico.2020.102522

