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ABSTRACT Software reliability depends on the performed tests. Bug detection and diagnosis are based on 

test outcome (oracle) analysis. Most practical test reports do not provide sufficient information for localizing 

and correcting bugs. We have found the need to extend the space of test result observation in data and time 

perspectives. This resulted in tracing supplementary test result features in event logs. They are explored with 

combined text mining and log parsing techniques. Another important point is correlating test life cycle with 

project development history journaled in issue tracking and software version control repositories. Dealing 

with the outlined problems, neglected in the literature, we have introduced original analysis schemes. They 

focus on assessing test coverage, reasons of low diagnosability, and test result profiles. Multidimensional 

investigation of test features and their management is supported with the developed test infrastructure. This 

assures a holistic insight into the test efficiency to identify test scheme deficiencies (e.g., functional 

inadequacy, aging, insufficient coverage) and possible improvements (test set updates). Our studies have been 

verified in relevance to a real commercial project (industrial case study) and confronted with the experience 

of testers engaged in other projects. 

 

INDEX TERMS bug diagnostics, software defect repository, software testing, testing framework, test 

monitoring. 

I. INTRODUCTION 

Software testing is still a challenging problem. Many relevant 

studies are reported in the literature. They mostly focus on test 

algorithms, test models, test coverage and diagnosability [1]- 

[6]. An important and practical issue is tracing test progress 

and results. Referring to our practical experience we have 

identified the need of multidimensional test monitoring based 

on combined analysis of software repositories generated 

during program testing, development, and exploitation. We 

consider test reports, event and performance logs, software 

issue and version control repositories. In the literature these 

repositories were analyzed separately and targeted at specific 

aspects, e.g., software reliability, software production 

improvement [7] [8]. They were not correlated explicitly with 

test processes. 

Most test supporting tools facilitate managing test 

execution and collecting test results, typically stored in 

relevant repositories. They can also provide some statistical 

analysis tools. Examples of such systems are outlined in [2] 

[9] [10] and references therein. Executed test scenarios verify 

application functions and are composed of test steps which 

integrate some sets of test cases. Tests are executed in a 

specified sequence and produce results saved in a test 

repository. The results describe test progress and termination 

aspects, e.g., execution state (passed, non-passed), relevant 

test scenario step, test case. In the case of non-passed tests, we 

can get information on suspicious program modules, and 

optionally screen shots, stack traces, etc.  

Event and performance logs as well as other software 

repositories can enhance the analysis of test results. Here, 

derivation of general and application-oriented features 

characterizing tests is needed. This aspect is neglected in the 

literature. Hence, our research has been targeted at exploring 

test repository and its correlation with a wide spectrum of the 

other ones, to get deeper insight into test execution processes 

and their effectiveness. We have introduced special metrics 
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and analysis tools to assess test diagnosability. Unlike 

unidirectional studies of software testing in classical research 

(often targeted at a single specific problem – compare Section 

II) we propose a holistic approach integrating diverse 

observation perspectives. 

Our practical experience with software testing, including 

commercial projects, showed deficiencies of data comprised 

in test reports which delay diagnostics and the problem 

resolution. Our previous studies of software repositories and 

event logs induced an idea of using them to improve test 

observability and diagnostic capabilities. The gained 

experience resulted in three interleaving research goals: 

R1 Identifying limitations and possible enhancements of 

test oracles. 

R2 Developing a framework for tracing test execution 

context in project repositories. 

R3 Correlating test assessment and project development 

issues. 

Software repositories and event logs are ignored in testing 

processes due to lacking knowledge on their links with these 

processes and not available supporting tools. This issue was 

neglected in the literature and our paper fills this gap. It is 

focused on four tasks:   

• Creating a program framework which integrates 

diverse tools for test management, monitoring, and 

extracting correlated data from available project 

repositories.  

• Evaluation and taxonomy of software repository 

contents associated with testing aspects. It uses 

statistical and text mining techniques involving 

semantical aspects and relevant profile metrics (e.g., 

word usage, event keywords and sources). 

• Deriving dependencies and interactions between 

testing and project development processes in short 

and long-time perspectives (referred to issue and 

version control repositories). 

• Revealing test observability deficiencies and 

possible enhancements/upgrades of test sets (test 

result statistics, test coverage, test life cycle, test 

execution and diagnostic profiles). 

The key point in our studies is the introduced original 

analysis method supported with an efficient framework for test 

management and monitoring. It integrates some available 

tools with developed special software modules. Our study 

facilitates to acquire substantial artefacts of software 

repositories and on which aspects of data analytics to focus 

when improving development and testing processes. It has 

been verified using real data collected during development of 

a commercial project of transaction-oriented domain. It can be 

considered as an instructive reference for other projects. 

The rest of the paper is structured as follows. Section II 

provides the background and related works. Section III 

presents test management schemes and tools followed by an 

outline of the developed test framework. Section IV is devoted 

the analysis of event logs generated during test sessions. 

Section V outlines test execution schemes and results. The 

problem of correlating test features with issue and commit 

reports is studied in Section VI. Discussion of results and 

threats to validity are presented in Section VII followed by 

final conclusions in Section VIII. 

II. BACKGROUND AND RELATED WORKS 

In software development and maintenance effective testing is 

a crucial problem with several practical aspects. In many 

papers testing is correlated with software reliability. Software 

reliability growth models (SRGMs) are proposed to predict 

bugs in software, needed testing time to achieve an assumed 

quality level (release time), optimization of resources and test 

costs ([7] [11] and references therein). On the other hand, 

diverse publications focus on specific test problems: test 

algorithms based on structural, functional, and mixed 

approaches, test efficiency, software quality, etc. Test support 

tools have been developed to assess test efficiency and 

software quality [1] [4] [8] [10]. Software testability relates to 

costs of testing, and it is challenging to identify factors 

impacting these costs (e.g., basing on historical data in the 

company).  

A. TEST CHALLENGES 

Tests can be derived manually or in an automatic way based 

on application requirements, architectural and functional 

models, source code, etc. [2] [12] [13]. For this purpose, we 

can also use artificial intelligence [14]. Sometimes, the 

correctness of the program outcomes is not easy to specify – 

the test oracle problem. This problem was studied in [15] for 

scientific software and a metamorphic testing was proposed, it 

specifies output changes related to input changes.   

In many applications testing system performance is 

important. The problem of the performance regression caused 

by introduced code commits is discussed in [16]. Some 

metrics associated with code changes are proposed to facilitate 

finding tests that can manifest performance degradation 

(regression). Test capability to check system performance is 

explored in [17]. This study is based on selecting performance 

issues from repositories of two open-source projects and 

analyzing test effectiveness before and after the relevant code 

commit (targeted at performance improvement). This results 

in searching for tests demonstrating performance 

improvements related to performance issue fixes. In 

consequence we can optimize regression test suits.  

Some publications deal with test optimization issues: 

prioritization, reduction, and selection. Test prioritization is 

focused on test execution ordering to detect the highest 

number of faults at the earliest [18] – [21]. Test reduction and 

selection is correlated with checking their results and usage 

during project development [21]. Program diagnosability [22] 

can also impact quality of developed tests. Improving test 

observability by monitoring internal and output program 

variables is discussed in [23].  
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Ideal tests should detect and localize (diagnose) all bugs in 

the program. Considering bug manifestations (program 

behavior), software engineers distinguish Bohrbugs, 

Heisenbugs, Mandelbugs and Shrodingbugs. However, more 

practical is bug taxonomy related to diagnostic and repair 

aspects. Correlating issue tracking (e.g., Jira) and version 

control system reports (e.g., Git) we can classify bugs taking 

into account their impact on code. In [24] four bug types have 

been distinguished. Type 1 and Type 2 refer to bugs which are 

fixed by modifying a single or more than one location in the 

code, respectively. Type 3 and Type 4 refer to multiple bugs 

fixed in the same location or the same set of locations, 

respectively. This is related to the quality of the code, which 

can be assessed basing on historical data in the considered 

company. Usually, Type 3 and 4 are more difficult to diagnose 

as those of Type 1 and 2. Predicting such bug classes facilitates 

bug handling processes by appropriate issue allocation to 

experienced developers. Similarly, we can consider bug 

severity (e.g., blocker, critical, major, minor, undefined). We 

can further precise bug categories (compare Section V) to 

correlate them with sources and repair aspects.  

In practice, we should also examine incorrect behavior 

resulting from environment and system (hardware and 

software) interactions with the program, this may change in 

time, e.g., in relevance to introduced updates, functional 

extensions, etc. This should be inspected also during the test 

design and evolution, e.g., within the specified range of 

application versions (the oldest, the newest). In practice, tests 

are not perfect and should be systematically and continuously 

assessed as well as improved. In this process a wide scope 

monitoring is especially helpful.  

Commercial software projects provide rich repositories on 

their development and operations. They comprise information 

on code changes (commits due to bug corrections, added 

functionalities, performance improvement) and bug or other 

requested tasks (issues) reports, which constitute development 

and field (users) knowledge related to some historical 

project/company perspective [17] [25]. Issue tracking 

repositories comprise requests of developing new 

functionalities, code modifications, correcting bugs, merging 

codes, etc. Bug reports should comprise information helpful to 

locate and fix bugs [26]. It describes what is expected to 

happen and what happens, samples of relevant code, stack 

traces, optionally used test cases, etc. The problem of 

assessing and improving the quality of bug reports is discussed 

in [26]. We have also explored this in [25]. Historical analysis 

of software repositories is also helpful in optimal attributing 

bugs to programmers for fixing (bug triaging [27]). 

Another source of valuable data is the recorded run-time 

information produced by logging statements included in the 

code. Code changes may require appropriate log modifications 

and updates within the project lifetime. This can be supported 

with some quality metrics and classification methods [28] 

[29]. Logs record events useful in detecting and diagnosing 

anomalies [9] [30]. For this purpose, log parsing algorithms 

and tools have been developed [31] [32]. Anomaly detection 

can correlate with derived log classes, issues (e.g., task ids), 

code modules and time windows. Here, we can produce event 

count matrix, event sequence groups relevant to system 

workflow, etc. [33].  

Diverse anomaly detection algorithms have been proposed 

based on machine learning, log classification, invariant 

mining, etc. [23] [33]. Usually, they do not assure sufficient 

capability to gain insight into the anomalies. This can be 

improved by better correlation of logs with the application 

(software) specificity (compare Section III and IV). The 

problem of optimizing logging statements is studied in [28]. It 

is based on automatically computed topics of code snippets as 

candidates to include logging statements. Understanding and 

interpreting log lines can be supported by tracing information 

provided by other repositories: issue tracking systems and 

referencing to source code (log statements, modules, 

comments), event call graphs [34]. These issues were not 

considered in relevance to software tests, which we include in 

our approach. 

B. TEST ASSESSMENT 

Special metrics are used to assess test quality. Most popular 

include branch and path coverage, decision/condition 

coverage, program mutation coverage [1] [2] [35] [36], and 

program version coverage [37]. They may suggest program 

components not sufficiently stressed by the test suite. This can 

be enhanced with the operational profile coverage expressed 

by application driven features (compare Section IV and V). In 

[37] test coverage is also considered in relevance to program 

versions. Test diagnosability evaluation needs deeper analysis. 

In [38] a spectrum-based approach is proposed which 

optimizes test suit sets in relevance to fault localization 

capabilities. It is based on an activity matrix correlating 

software components (e.g., class, method, branch) with 

stressing them test cases. This is some indirect approximation 

of test diagnosability.  

The problem of fault localization was studied in many 

papers. In [39] some techniques of fault localization are 

evaluated using artificial faults generated by program 

mutations or manually. The basic techniques refer to program 

logging targeted at monitoring variable values and program 

state information, assertions, execution speed and memory 

usage profiling. More advanced techniques identify which 

parts of the program pass tests, which fail and suggest rankings 

of possible code areas comprising faults. They are described 

in [40] [41]: SBFL - spectrum base fault localization, MBFL - 

mutation-based fault localization. All these techniques are 

targeted at unit tests and correlate test results only with code 

coverage features. Their localization capabilities are still 

relatively low, so they did not attract practitioners. Fault 

localization is more complex in behavioral and wide scope of 

regression tests. The available software repositories comprise 

many artefacts which can be used to assess diagnosability 

features of the test suite and show appearing difficulties or 
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possible improvements, which we study in the paper. Tracing 

links between test cases and the source code of units under test 

is also useful in diagnostic processes [42]. The correlation 

between test suite metrics and the quality of automatically 

generated software repairs (repair success, repair time) is 

studied in [43]. 

We have aggregated research topics on test issues based on 

the presented literature review. This resulted in a taxonomy of 

considered problems that is summarized in the first column of 

Table 1, it includes also representative references considered 

in the paper. Moreover, it facilitates to position the 

contribution of our research. Published studies on software 

repositories and event logs were not combined with testing 

issues. Nevertheless, in the second column of Table 1, we list 

indicative publications focused on research areas which, in our 

opinion, can be combined with testing. It is worth commenting 

the contents of the recent survey paper on software testing 

[21]. It covers over 170 positions (including some other 

surveys). Despite so wide and comprehensive survey we did 

not notice there such topics as: test life cycle, test 

observability, test outcome analysis, event logs and other 

software repositories. Similarly, in the review of 21 testing 

tools [44] these issues were not mentioned. In the other survey 

[1], event logs and assertions are only mentioned as helpful, 

without deeper insight in their treatment and significance. This 

additionally confirms negligence of the pointed problems in 

correlation with testing, which we found as important practical 

issues needing investigation. 

 
TABLE I 

PROBLEM PROFILES OF PUBLICATION 

Test issues Software repository issues 

Test design principles and tools 
[2, 5, 8, 12 - 14, 34-36, 44] 

Testing project performance 

[16, 17] 
Bug classification 

[17, 24-26, 28, 29] 

Test quality assessment 
[1 - 4, 6, 10, 11, 15, 21, 34-37] 

Fault localization and program 

diagnosability 
[3, 22, 23, 38, 39] 

Test optimization and prioritization 

[18 – 23, 42, 43] 

Logging schemes 
[9, 28, 30] 

Log analysis and parsing 

[9, 30 - 32] 
Anomaly detection 

[9, 33, 34] 

Log statement optimization 
[9, 34] 

Issue and version control 

tracking 
[7, 25, 30, 37] 

Bug triaging 

[27] 

 

The created test scenarios are upgraded during the 

development and maintenance of the program. Moreover, in a 

large extent they are used during regression testing in 

relevance to function upgrades, extensions, or corrections. 

Test quality should be evaluated considering detection and 

diagnosability aspects. Detectability can be assessed indirectly 

by module or code coverage, fault seeding (program mutation 

techniques) as well as by analyzing reported issues during 

exploitations (e.g., Jira repository). Test diagnosability 

features can be evaluated by tracing bug handling times 

including the number of exchanged comments between 

project actors and users up to the final problem resolution.  

Here, evaluation of the semantic contents of the software 

repository is helpful.  

Depending upon the developed test schemes, the relevant 

test oracles are more or less detailed. In the simplest case we 

have pass/no pass notion with the relevant test 

scenario/step/test case or code lines. This can be enhanced 

with registered events during test execution which is neglected 

in the literature. Hence, our research has been targeted at 

exploring test repositories and their correlation with other 

ones. This resulted in 3 goals of our studies: i) finding 

complementary data enhancing test diagnosability, ii) 

assessing test efficiency and test schemes, iii) revealing 

possible improvements. The project performance can be tested 

directly by checking response times of requested services or 

indirectly by monitoring usage of system resources (e.g., 

processors, memory, transmission links), queue lengths, etc. 

For this purpose, we can use available performance 

monitoring programs (e.g., IBM Tivoli) including the 

available ones in the operating systems. Designing tests, we 

must consider program functional and performance features. 

Moreover, in many developed systems some auto diagnostic 

functions are included to detect/mitigate incorrect user 

activities, abnormal environment interactions, testing these 

features needs complex simulations. To support our research, 

we have developed an original and universal test framework 

outlined in Section III.  

III. TEST ENVIRONMENT 

 

We consider the problem of monitoring software testing in 

relation to a commercial system oriented at financial 

transaction processing outlined in Section A. This is a quite 

complex and representative enterprise system. It handles 

requests from many clients and provides financial services. 

The system is systematically updated and adapted to new 

functional requirements and performance features appearing 

in its life cycle. It has been developed, maintained, expended, 

and upgraded for many years. Hence, efficient testing and 

issue handling were challenging problems, that resulted in 

developing a flexible and comprehensible test framework 

(Section B). This framework provides rich data (Section C) 

that is useful to assess and improve testing processes.  

A. TESTED SYSTEM FEATURES 

The tested system is dedicated for processing financial 

transactions related to accepted client orders, generating 

invoices on selected positions, handling money transfers, 

performing audits of the whole system or selected 

transactions, etc. It is a distributed system involving many 

servers installed on several machines combined into a cluster 

assuring efficient data communication for clients and system 

components (including product data bases). Different 

configurations of services are possible, they adapt to several 

software environments and the hardware infrastructure. High 

dependability, coherence, and auditing capabilities of 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3136138, IEEE Access

 Author Name: Preparation of Papers for IEEE Access (February 2017) 

VOLUME XX, 2017 5 

performed activities are assured. Within this system we 

distinguish three modules: MM1 – web application, MM2 – 

web services, MM3 – databases. 

MM1 module is written in Java and operates in an enterprise 

application server. It assures the execution environment for 

applications based on JVM (Java Virtual Machine). The 

application server handles executing Java servlets and Java 

Server Pages (JSP). JSP pages use XML markers and scriplets 

(a piece of Java code embedded in HTML-like JSP code) to 

separate page contents from their formatting logic level 

(which generates the servlet contents). All formatting tags 

(HTML and XML) are appended directly to the generated 

HTML page. Container Java EE handles additional functions 

such as server load distribution. It includes dynamic (servlets, 

Java Server pages, Java classes) and static (HTM pages, 

images) resources.  

MM2 relates to web services handled by Enterprise Service 

Bus which manages received messages and constitutes an 

intermediate programming for distributing jobs between 

connected components of the application. It assures product 

related tasks that include accepting, translating, and handling 

client requests to deal with messages between services, 

monitoring and controlling routing of messages, resolving 

communication problems, administering deployment and 

versioning of services. It also assures event, security, and 

exception handling, transforming, and mapping data, queuing, 

and sequencing messages, protocol conversion, etc.   

MM3 involves two relational databases The first one is used 

for operational and configuration data; the second database is 

used as a tool for integration with another financial system. 

The system consists of 1100 000 lines of source code not 

including libraries and used enterprise solutions. 

B. TEST FRAMEWORK 

Testing complex systems involves diverse supporting tools, 

such popular as: Junit library (for unit testing), Cucumber 

library (for preparing high abstract level test cases – behaviour 

driven development), Selenium for testing internet 

applications (focused on web page elements). Junit is a library 

which facilitates activating and checking unit tests from a 

pointed catalogue or a class file. Selenim is a high-level 

interface library implemented for many browsers to 

manipulate web page elements. Selenium Grid is a cluster of 

servers used to arrange a distributed network and activating 

simultaneously multiple browsers on diverse computers. A 

central server sends requests to distributed nodes. It facilitates 

complex testing in the distributed environment. The 

Cucumber library supports describing test cases at a higher 

abstract level, we use automatic functional and acceptance 

tests based on Behavioural Driven Development concept. Test 

cases specify actions and expected behaviour of the tested 

program (TP) in a logical business-oriented language 

(Gherkin syntax), e.g., entering login, page, user id, user 

password and activity, expected confirmation of correct login 

(or a missed one). Cucumber uses Selenium library covering 

many browsers (e.g., Firefox, Chrome, Internet Explorer, 

Safari). It supports such actions as clicking on a page element, 

selecting an element, entering some text, reading its contents, 

scrolling the window, etc. 

During test execution the tested system can be additionally 

monitored with Metricbeat which provides metrics and 

statistics on server resource usage, e.g., CPU, memory, 

network, discs, filesystem, services. Moreover, various types 

of logs (e.g., system, application, security, errors) are collected 

with the Filebeat program. Elasticsearch tool supports storing 

the collected data, searching and analysing their contents, this 

can be enhanced with Kibana providing visualization of 

results in diverse graphical forms.   

The outlined tools generate independently a lot of data. We 

found the need of coordinating operation of these tools, 

consolidating the collected data and analysing them in a 

holistic way. This resulted in developing Cucumber-

Monitoring-Plugin (CMP) which integrates the main testing 

system (Cucumber + Selenium) with the set of tools for 

monitoring virtual machines. This constitutes the main part of 

the developed test framework, as shown in fig.1. CMP bases 

on Java version 8, which facilitates integration with testing 

systems. It was built using Apache Maven v.3.6 and relevant 

Project Object Model concept, so it can be used for a wider 

scope of projects based on Cucumber technology. Integration 

with the main testing system (Cucumber + Selenium) is 

performed via specially defined and implemented interfaces to 

three modules. This scheme was verified with a real complex 

project developed according to typical software engineering 

rules used by many IT companies. It is quite universal and can 

be applied in a wide spectrum of projects. 

The data flow in the test framework (FT) is as follows: the 

main testing system generates requests on pages (activities on 

pages), analyses responses of the system and page behaviour. 

This activity results from executed test case specification 

which may involve simulation of system users and invoked 

reaction of relevant services. Moreover, Elasticstack handles 

collected monitored data by Filebeat and Metricbeat. The 

developed CMP plugin correlates monitored data with 

executed test cases as illustrated in Figure 1.  

CMP program includes the following features: i) analysis of 

test progress (initialization/completion times of executed test 

steps, storing relevant artefacts, test results, etc.), ii) extracting 

values of monitored performance parameters (provided by 

Elasticsearch) relevant to test case execution, iii) integration 

with Kibana module facilitating visualization of specified 

statistical features. The collected data in diverse repositories 

are processed (explored) with the specially developed analitic 

module (DAS – Data Analysis Scripts), it derives statistics of 

specified metrics and also comprises special scripts to detect 

nonstandard situations. 

The developed test set is composed of functional test 

groups, each comprising some set of test scenarios involving 

predefined test steps (test cases). As compared with classical 

test approaches targeted at direct test control and oracle 
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checking/interpretation we significantly extend the 

observation space in data and time perspectives. This is 

assured by the developed CMP and DAS modules. Depending 

on the organization of data repositories we must extract data 

relevant to test processing and its environment, if needed 

perform data anonymization, identify/compensate time skews 

of reports in different repositories (based on context analysis), 

archiving data for long time behavioural analysis. Developing 

the analytic module (DAS) needed investigation of a wide 

scope of repositories and adaptation to the specificity of 

collected data. This process has been supported with the 

introduced original text mining schemes in DAS dealing with 

peculiarities of registered reports incompatible with classical 

document text mining approaches. This allowed us to identify 

report features providing valuable information in assessing 

test detectability and diagnosability. The proposed analysis 

absorbs our previous experience with monitoring system 

operation, software development and maintenance processes 

[7] [25] [30] [37]. 

 

FIGURE 1.  Block diagram of the test framework (TF). 

C. SCOPE OF DATA ANALYSIS 

The collected data during test executions create a quite 

complex repository which comprises diverse logs on executed 

test elements, results, generated events, etc. An important 

issue is analyzing their contents, derive short and long period 

statistics, find correlations between different logs, identify 

abnormalities, derive some metrics characterizing test 

efficiency, etc. Beyond data repositories directly related to 

testing processes we also have software repositories related to 

issue/task requests (e.g., Jira) and software version control 

(e.g., Git) with specification of performed code commits, 

configuration changes, etc. They describe development 

process progress and the range of code changes. This can be 

correlated with test repositories to get a better insight on the 

test cost and effectiveness during the software lifecycle. Test 

relevant data are interspersed with a bulk of other project data 

and their extraction needs tracing time and context 

dependencies. 

Analyzing a wide scope of repositories allows us to reveal 

test deficiencies, imperfections of reports in repositories and 

formulate recommendations for their improvements. For 

example, reported bugs by users may be attributed to skipped 

or obsolete tests (needing refinement), the project usage 

profile can differ from the testing one, some needed functions 

can be missed. Introducing new functionalities or modifying 

some of older ones needs not only tests targeted at these 

changes but also regression tests checking the impact of these 

changes on the remaining not modified functionalities. 

Moreover, we can predict the cost of bug repairs basing on 

historical test results and involved commits (bug handling 

time, range of code modifications).  

The above-listed problems and our practical experience 

with testing resulted in enhancing classical testing schemes 

with monitoring their execution at different observation 

perspectives (test oracles, generated events, performance 

metrics) and tracing historical reports in diverse software 

repositories (issue tracking and software version control). The 

developed test framework provides a multidimensional 

perception of test progress. Basing on the integrated extraction 

of characteristic features from a wide scope of relevant 

software repositories, we have introduced original quality 

metrics covering different dimensions. This results in a 

holistic view on test effectiveness and revealing possible 

enhancements. As opposed to other publication on testing our 

approach is characterized by two features: 1) assuring high 

attention to extract useful data details (fine-grained), 2) a 

wide-scope (spread over diverse data sources) exploration of 

testing and software development repositories. Correlating test 

results with other software repositories we take into account 

timestamps (including estimated time skews), report sources 

and semantical context (based on text mining), non-relevant 

reports are filtered out. Checking the impact of executed tests 

on issue handling processes (e.g., in Jira repository) and the 

range of code changes gives new additional criteria to evaluate 

test efficiency. The presented problems are discussed in 

Sections IV-VI. 

IV. EVENT LOG ANALYSIS 

Depending upon the system diverse logs are generated, e.g., 

system, security, application logs. They can also be partitioned 

into diverse groups covering relevant issues. During testing 

processes especially interesting are application logs, we 

experienced this in our practice. An important issue is to adapt 

log analysis processes to their specificity in the real project. 

Hence, we explored software repositories correlated with 

regression test scenarios executed during development of a 

complex transaction-oriented system.  Typically, each testing 

session was performed in the night (about 6 hours) and 

generated about 5MBs of application logs (about 350 000 

words, 19-32 thousand events). Analyzing event logs 
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correlated with executed tests we identified three research 

goals: 

1) General text mining – focused on log dictionary 

analysis, word and n-gram (phrase) frequency 

profiles (Section IV A) 

2) Structural/semantical log analysis – log parsing, 

application-oriented keywords, log feature profiles 

(Section IV B) 

3) Log profile analysis in time - log feature distributions 

and comparative studies (Section IV C). 

A. GENERAL TEXT MINING 

In classical text mining we deal with documents based on 

natural language. The specificity of the text in log entries is 

quite different and needs cognitive studies of used word 

dictionary aspects. Exploring dictionary taxonomy 

(morphology) and profiles we focus on word syntactical and 

semantical issues. Typically, a word is considered as a 

sequence of characters bounded by space or other specified 

characters (e.g., dot, semicolon). At the morphology level we 

can distinguish words comprising only letters, numbers, 

mixture of alphanumeric and special characters. Next, it is 

reasonable to classify them in relevance to composition 

structure, e.g., single words and complex words, which 

constitute a concatenation of simple words using or not some 

linking characters (e.g. _, +, ., :). The complex words can refer 

to some predefined patterns (usually specified with regular 

expressions), e.g., file paths, Ip addresses, resource identifiers 

(e.g., URI). Basing on semantical properties we distinguish 4 

classes of words: A - natural language words (compatible with 

thesaurus dictionaries), B - special IT words (e.g., thread, 

exception, commit), C - specific terms for the analyzed 

application (acronyms, names of components), D - code words 

(numerical, hexadecimal, typically used for timestamps, event 

ids, error codes). It is also worth mentioning that sometimes 

registered words have incorrect spelling.  

The log dictionary used in the considered set of log files (L) 

can be characterized by the set of unique words DL, its 

cardinality |DL| and profiles of word usage. We introduce three 

types of such profiles as sets of values in descending order 

(denoted with sharp brackets <….>): 

 

• Frequency profile gives the number of occurrences 

of each word wi ϶ D in the set of log files L: 

𝐹𝑃(𝐿) =< 𝑓(𝑤𝑖|𝐿): 𝑤𝑖   ϶ 𝐷𝐿 >  (1) 

• Relative usage profile, i.e., FP(L) expressed in 

percent 

𝑅𝑃(𝐿) =<
𝑓(𝑤𝑖|𝐿)

|𝐷𝐿|
: 𝑤𝑖   ϶ 𝐷𝐿 >   (2) 

• Aggregated usage profile AP(L) is defined in 

relevance to ordered sets of n value ranges Rj = [rj-, 

rj+], rj-, rj+ ϶ RP(L) = { r1… rk}, k=|RP(L)|,  rj- ≤ rj+, 

j=1…n, r1+ = r1, rn+ = r|RP(L)|, DLj is the set of all 

unique words corresponding to Rj,(i.e. {wi: ri ϶ Rj } 

than the aggregated profile is: 

𝐴𝑃(𝐿) =< < 𝑅𝑗 , 𝑢𝑗 > : 𝑢𝑗 =  ∑
𝑓(𝑤𝑖 |𝐿)

𝑖϶ 𝐷𝐿𝑗
|𝐷𝐿|, 𝑗 =

1 … 𝑛 >     (3) 

For an illustration we give the derived aggregated word usage 

profile for the set of 25 daily log files (L25): 

 

AP(L25) = < <[9.7%-10.5%], 0.5%>; <[1.5%-2.2%], 0.8%>; 

<[0.4%-0.8%],1.8%>; <[0.05%-0.4%], 4.9%>;  

<[0.01%-0.05%], 16%>; <[0.006%-0.01%], 75%>> 

 

The aggregation ranges can be selected to reflect similar 

frequency values. In practice, this profile is neither uniform 

nor compatible with usage profiles of texts in natural language. 

Relatively small group of words shows high frequency (e.g., 

for-10.5%, INFO- 10.0%, ExecuteThread – 9.2%, queue – 

9.2%, ACTIVE – 9.2%). They are not important in log 

classification and result from the logger configuration. Many 

application oriented technical words dominate, however their 

frequency is low. Some semantic grouping of words can be 

useful to derive interesting log features (compare Section IV 

B). Having analyzed identified words in generated application 

logs we found 28.5% of complex words of various structures 

(some examples are given later). Log entries comprised mostly 

English words, however 8% were Polish (which complicates 

the analysis). The text in related logs was based on dictionary 

of several thousand of unique words. We observed these 

features also in logs of other projects [30].   

Due to the mixture of comprised information, raw log data 

usually looks a little bit strange, as in the following examples 

(transaction accept, and alert message): 

2019-03-08 00:32:17,866 [[ACTIVE] ExecuteThread: '0' for 

queue: 'self.tuning.ClassName (self-tuning)'] INFO  

com.package.ClassName - transactionStatus – AC 

2019-04-01 20:09:02,677 [[ACTIVE] ExecuteThread: ‘1’ for 

queue: ‘self.tuning.ClassName (self-tuning)’] INFO 

com.package.ClassName - Alert args: alertType: 

TransactionResponseTimeout, source: REST,  Details null, 

Args: {transactionId = 00000000000XX0000000000, 

agentCode = 00000000} 

Quite often complex words relate to C category and may 

comprise words from other categories (including A). Hence, 

partitioning these words may enhance text mining, e.g., 

“exception” component (expressing some general event) can 

be concatenated with other precising words. For an illustration 

we give an excerpt of complex words:  

FileProcessingServiceCriticalException, 

SourceDirectoryNotFoundException 

Java.lang.NullpointerException, 

java.lang.illegalArgumentEception, 

org.springframework.web.client.HttpsServerErrorException 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3136138, IEEE Access

 Author Name: Preparation of Papers for IEEE Access (February 2017) 

8 VOLUME XX, 2017 

org.hibernate.util.JBDCExceptionReporter 

NetworkAvailabilityErrorHandler 

 

Many other examples are given in Section IV B. Complex 

words are created by simple concatenation of words, a string 

of words separated with non-alphanumeric characters (e.g., 

hyphen, underline, dot), letter case separated words (upper 

case for the first character of the word). In practice, complex 

words are defined by accepted conventions related to software 

architecture, program language (e.g., class and method names) 

or company. Hence, they can be easily analyzed with simple 

regular expressions. 

Combining log parsing with text mining techniques gives a 

deeper insight in their meaning. Derived keywords can be 

correlated with fixed log parts which are followed by variables 

specified using other word categories, sometimes they are 

preceded with the colon character (:). Description parts of logs 

base mostly on natural language words, however those from 

other classes also appear sporadically.  The text mining 

process is supported with a set of regular expressions targeted 

at specific character patterns, e.g., date, time, IP addresses, file 

paths. This process can be performed in some hierarchical 

way, e.g., we can split complex words into simple word 

components and perform their semantical classification. The 

next step is to use other text mining techniques, e.g., targeted 

at identifying keywords or characteristic n-grams. Here, we 

can use word frequency, context, tf-idf and other text mining 

metrics (compare Section IV B). Some complex words or 

sequences of words express values of specified parameters. 

The name of the parameter can be identified with parsing 

techniques that extract the fixed text part (appearing 

frequently). In classical parsing schemes the variable part is 

usually replaced by * character [30,32], below we give an 

excerpt of log messages: 

(*) executed command from host (*) at (*) 

Failed login attempt from host (*) at (*) by (*) 

In our approach, we do not skip the parameters (neglected 

in other approaches), we also focus on analyzing their 

distribution, anomalies etc. They can contain important data 

with significant semantical values (e.g., error code, alarm type, 

event source). Searching for keywords can be preceded with 

introducing some set of predefined keywords based on 

developer knowledge, which can be further extended.  As 

compared with classical log analysis based on parsing 

algorithms our approach assures deeper insight in their 

contents and facilitates interpretation, which is helpful in test 

diagnosis.  Some optimization process is included after 

preliminary log profile studies related to derived dictionaries, 

frequencies of used terms, etc. 

The basic text mining (word frequency analysis) allowed us 

to identify major keywords, for example: transactionId, 

filePath, eventId, reason code (code of transaction rejection), 

eventtimestamp (time of sending the message by the system), 

remoteTimestamp (time specified by the sender), 

transactionStatus. Some other keywords related to application 

server, e.g., INFO (level of log), Executionthread, queue. 

Usually, such keywords are followed by some variable texts 

(parameters) correlated with them. They can be single words 

or a set of words sometimes comprising special characters, 

embraced by brackets, etc. Beyond that log entries may 

comprise non structured text messages. For example, a 

descriptive part of an alert log entry comprised the following 

text (it also includes Polish word at the end – “Blad skladni”): 

ValidationError, severity Major, details: filename:xxxxxxxxx 

full/file/path, Blad skladni: Attempt to access field 

’parseException’ with null value 

The classical text mining analysis based on tf-idf 

parameters did not provide interesting words. Hence, we 

decided to analyze phrases (n-grams). Some 7- or 8-word 

phrases with low tf-idf related to interesting events signaling 

some critical issues, they comprise negative words (marked in 

bold) and relevant tf-idf of the n-gram.  

 

cannot create claim incorrect related credit transfer ( 3.83) 

caused http response fiddler lookup failed when (2.31) 

active recovered another instance this cause inconsistent 

(1.22) 

couldn read message file neither from directory (1.15) 

error zasób zajęty zlecono uzyskanie nowait upłynął (1.15) 

error occurred during error handling give up (0.71) 

details blad aplikacyjny podczas rejestracji reklamacji oraz 

reklamacja ( 0.41) 

 

Looking for such critical events we have specified a set of 

negative words: 25 English words (error, alert, fail, failed, 

abort, reject, rejected, invalid, incorrect, cannot, interrupt, 

interrupted, inaccessible, break, stop, not, phrases) and 25 

polish words (including blad denoting error). Having selected 

log entries comprising these words we looked for 7-word 

phrases comprising them. We have identified 691 such 

negative phrases (with relatively high if-idf), they suggested 

some problems.  Logs comprising Alert keyword provide 

valuable application specific diagnostic information, similarly 

as complex words comprising Exception, this is analyzed in 

Section IV B.   

B. STRUCTURAL/SEMANTICAL ANALYSIS 

The identified keywords correlate log entries with specific 

issues, e.g., exceptions, alerts, errors appearance, performed 

activities in the application (e.g., transactions). Some 

keywords are followed by a related variable value (digital or 

alphanumeric character strings). In classical log parsing 

schemes (e.g. [31] [32]) log templates are derived with fixed 

parts (equivalent to keywords) and variables specified with * 

character. In our approach keywords are correlated with 

application specificity. Usually, identified variables comprise 

valuable data (neglected in other approaches), worth deeper 

analysis, in particular, statistical distribution of reported 
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values. For an illustration in Table 2 we give distribution of 

some basic keyword’s appearance in 25 log files from the 

executed regression testing in 25 subsequent days.  We give 

minimal, average, and maximal number of specified keywords 

within daily log files. This can be confronted with the number 

of entries in a log file in the range 18000-24000. Hence, these 

keywords appear in 5-20% of log entries. Here, it is worth 

noting that most log events are single line with average 20 

words. However, some events, e.g., related to exceptions may 

comprise from tenths to hundred lines (e.g., due to included 

stack trace). 

 
TABLE II 

STATISTICS OF BASIC KEYWORDS 

 Trans 

Id 

File 

Path 

Reason 

Code 

Even 

tId 

Alert 

Type 

Source 

Min 1255 840 763 763 0 0 

Av.  4603.0 3427.2 3015.2 3015.2 558.8 588.9 

Max 5823 4593 4029 4029 2205 2205 

 
TABLE III 

DISTRIBUTION OF KEYWORD RELATED VALUES 

 TransId Reason 

Code 

Eventid Alert  

Type 

Source 

Range 473-2283 5-14 8-11 0-17 0-15 

Min. 1 1-7 3-208 0-4 0-15 

Max. 6-10 3-237 123-625 0-2048 0-2047 

 

An illustrative distribution of 5 main keyword values is 

given in Table 3. For each considered keyword we give the 

range of unique values registered over all entries of the 25 

files, followed by the number of minimal and maximal 

occurrence of the same value. The most interesting are the 

reason code, alert type, and source variables, especially those 

which appeared less and most frequently.  

Another group of logs relates to errors with specified thread 

name, exception class within this thread, short description and 

optionally stack trace. Typically, such log entries comprised 

65 lines (about 400 words separated by space or dot). In 

addition, an alert (type and source) is given for every error 

with the domain meaning.  

In Java an exception can be caused by another exception, 

hence in the error report we have specification of the recent 

exception and a sequence of causing it higher level exceptions 

(up to the class of the primary one). For each of them the stack 

tracing is included. Some statistics of exceptions is given in 

Figure 2. X-axis shows the number of lines comprised within 

the entries and y-axis shows the number of their appearance. 

Moreover, the entry severity is denoted by appropriate color: 

i) yellow - exceptions with short description (0-10 lines) 

without stack trace; ii) blue – exceptions with localization in 

code, the name of relevant class (11-50 lines); iii) green – 

exceptions with a single primary exception (51-1000 lines); 

iv) red - exceptions with 2 or more primary exceptions (101 

and more lines). The biggest is the first group with a single line 

(3052 cases – beyond the scale of the plot). In fact, it relates to 

standard not critical behavior, e.g.: errors related to validation, 

user actions, configuration checking. The second group refers 

to local errors (of lower significance), the third group specifies 

application problems previewed by developers. These 

problems relate to several layers of the application, e.g., 

exception informing about unsuccessful configuration 

changes caused by inaccessibility to the database. The last red 

group relates to unforeseen errors, the exception propagated 

for a longer time in the stack trace. This may result from errors 

not announced in application (not intercepted by the 

application and logged at the level of application server) or 

recursive method calling or looping. In the case of generating 

many exceptions and relevant stack traces, log entries can 

show only a limited number of them. If needed detailed 

analysis can be resumed in the debug mode.  

 

FIGURE 2.  Exception size/severity profile diagram. 

 

Logs with alerts, beyond basic components of event logs, 

comprise the following specifications (fields): alertType, 

source, details (optional textual description), args – 

arguments, transactionId, agentCode – identifier of the 

message sending unit.  We distinguish 7 alert type groups 

listed in Table 4. They facilitate to identify reported problems. 

For the better problem localization, we can also use the alert 

source, here we have 6 source groups, listed in Table 5. Table 

4 and 5 also specify (in brackets) the numbers of distinguished 

alert types and sources for each category, respectively.  
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TABLE IV 

ALERT TYPES 
Group type Description (number of types) 

AccountJob Planned processes correlated with running operations 
on accounts (3) 

Clearing Alert correlated with account debit (3) 

Provisioning Alerts correlated with account credit or debit (4) 

Scheduler Alerts related to errors during planned processes (3): 
SchedulerCriticalError, SchedulerError, SchedulerInfo  

Transaction Errors related to money transfer process (7): 

TransactionAgentInactive, TransactionBadFormat, 

TransactionBadMessage, TransactionClaimCreated, 
TransactionDuplicated, TransactionResponseTimeout, 

TransactionTimeExceeded 

Unavilabale Alerts related to actor inaccessibility (5) 

Others Positive confirmations and some negative  alerts (17), 
e.g. ClearingStatusUnknown, 

DuplicatedTransLimitExceeded, 

InconsistentTransaction, SecurityViolated, 
UnknownError,  

 
TABLE VI 

ALERT SOURCES 
Source category Description (number of sources) 

Application error Application errors during network operations, 

resulting from processing algorithms (8) 

Confirmation Validation errors related to message confirmation 
(2) 

Scheduler Errors of planned processes (7 scheduler 

functions) 

Timeouts Crossing waiting time limitations (4) 

Transactions Errors related to specified transaction processes 
(5) 

Others Related to diverse functions (17) 

 

Distribution of reported alerts for all test sessions performed 

per one year period was as follows:  

SchedulerCriticalError (50.33%), TransactionTimeExceeded 

(22.92%), TransactionResponseTimeout (19.16%), 

TransactionsClaimCreated (4.28%), others (3.31%). 

However, this distribution for each session may differ, for 

example for one day test sessions (6 hours) it was:  

SchedulerCriticalError (70.04%), SecurityViolated (10.65%), 

TransactionAgentInactive (8.53%), UnknownError (5.49%)  

and others (4.29%). This is a consequence of code changes in 

the tested application or test changes. Hence, tracing 

fluctuations of report features can provide useful knowledge 

on test strategies. 

C. LOG PROFILE ANALYSIS IN TIME 

The log profile analysis (in time) can be targeted at tracing 

changes (or stability) of specified features. This can be focused 

on dictionary changes within specified categories (e.g., file 

paths, thread, method names). Here, we can consider long or 

short time perspectives, correlate them with application 

development life cycle, e.g., in relevance to test monitoring, 

issue and software version control repositories (Section V and 

VI).  

FIGURE 3.  Heatmap covering transaction rejection reason codes.  

 

In this section we focus on analyzing logs using cross 

section heat maps to trace differences in specified types of 

features. They form 2 dimensional matrices with x-axis 

(columns) specifying considered features (e.g., alert types, 

exceptions, transaction termination codes), y-axis shows 

subsequent log files (e.g., relevant to one test run). The matrix 

entry H(i,j) shows the number of identified features 

(corresponding to the j-th column) within the considered i-th 

log file. The entry background color can be correlated with this 

number, to facilitate revealing some regularities or 

irregularities. Subsequent values H(i,j) of the j-th column 

show distribution in time (test runs) of the j-th feature. We can 

trace cross section heat maps H(i,j)TS by filtering logs in 

relevance to test scenarios (TS). Disappearance or reduction 

of some features in time can be correlated with code 

corrections (new version, bug correction). On the other hand, 

the appearance or a significant increase of some features may 

result from new functionalities, imperfect bug corrections, 

system configuration changes, etc. The identified suspected 
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feature deviations can be explained/interpreted by correlating 

their appearance with other software logs. 

Figure 3 shows a heatmap related to transaction rejection 

reason code. For the most log files, low values of each code 

(0-10) dominate. Only one log file (log-17) comprised all 

reason codes (in total 420 entries): RUP, RUT – receiver 

unavailable permanently, temporarily; RI - receiver inactive; 

IA1, IA2 inappropriate amount; D1, D2, D3, D4, D5 – diverse 

duplicates; SI – sender inactive; SUP – sender unavailable 

permanently, temporarily; VE validation error; NE network 

error.  The highest number of registered reason codes related 

to SUP (216, 237) and RUT (120) codes.  In a similar way we 

analyzed other keywords. Transactionid assumed the 

following values: SRAC – send request of account charging; 

RCAC – received confirmation of account charging; TMT - 

timeout; SR – sent rejections; RR1, RR2 - received rejection 

type1, 2; RPA – returned positive answer; SA – sent 

authorization; SRCA – sent request for credit acknowledge; 

RA – receiver authorization; RCA – received credit 

acknowledgement.  We observed relatively uniform (200-400) 

distribution for 7 values (SRAC, RPA, SA, SRCA, RCAC, 

RA, RCA), 3 with very low values (TMT, SR, RR2) and one 

(RR1) with the medium average value (50), however large 

dispersion (3-470).  

The heat map for alert types revealed bigger number of 

some critical types: unavailable sender (187 and 146 for log11 

and 12, respectively), SenderCriticalError (533-2045 for logs 

13-15), AccountJobinactive (555-1405 for logs 11 and 10), 

transactioBad Message (218-251 for logs 1-3), 

securityviolation (200-604 for logs 18, 11, 12), 

transactionResponseTimeout (100-604 for logs 13). Five logs 

did not comprise alerts, for 4 logs alerts constituted a fraction 

of percent, 3 logs with about 2-5%, the remaining ones below 

2%. The heat map for identified alert sources (20) revealed 

most alerts related to Scheduler (500-2007 for log 13-15 and 

10-11), other 6 sources related to several timeout generators 

and bad message validation with significant values (50-250) 

for about 30% of logs.  The heatmaps for registered exceptions 

(25 types) showed for most logs low values (0-10) per 

exception, and 10-50 exceptions per log file in total. However, 

two exceptions FileProcessingFileServer criticalerror and 

SourceDirectorynotFoundError showed very big values (533-

2045 for logs 13-15). They correlated with Source Scheduler 

(552-2047) and alert type SchedulerErrorCritical (533-2045) 

for the same logs. For these logs, the percentage of entries 

comprising exceptions (in fact double ones) was 2-5%. We 

can analyze other correlations, e.g., logs with abnormal values 

with test reports (Section V).  

V. TEST EXECUTION MONITORING 

Tests can be structured at three levels: test step, test scenario 

(a set of subsequent test steps related to a test case), test block 

(group) – set of test scenarios on a specified functionality. We 

define 5 states of test steps: passed (positive execution), failed 

(negative test result), skipped (not executed), undefined (e.g., 

not implemented in the test), pending (test step under 

execution). The test scenario is passed while all relevant test 

steps were passed or failed if any test step failed. We define 

the test run as the complete set of test blocks covering all 

software functionalities. Typically, it includes 500-1000 test 

cases, each comprising 10-20 test steps. Reports on the test 

execution are stored in test result files. In the considered 

project regression test runs were executed in nights by about 6 

hours.  

A. BASIC TEST STATISTICS 

Table 6 shows distribution of test results of one day run 

covering 31 test groups generated by the test management 

module. For each test group we give the number of relevant 

test steps (followed by the number of failed and skipped ones), 

the number of test scenarios (with specified failed ones) and 

the test execution time (minutes). For correctly executed test 

groups we give only ranges of relevant values. The total 

execution time was 6 hours 11 minutes. The aggregated 

statistics of the whole test session (numbers of test steps, test 

scenarios and relevant distribution in percent) are given in 

bottom table rows. The summarized test report is analyzed, in 

consequence of this analysis not passed tests are verified to 

check the reason of negative result. Sometimes this is caused 

by an inappropriate or incorrect test (e.g., wrong assertion), 

test or its environment configuration flow (e.g., inaccurate 

usage of the testing framework), etc.  Negative results need 

transferring them for further processing, e.g., labelling issue id 

in Jira, etc. Test result presentation assures hierarchical access 

to detailed data via CMP module (Section III).  

 
TABLE VI 

EXCERPT OF A SYNTHETIC TEST REPORT 
Test 

Group 

Test steps Test scenarios Test 

time 

[min] 
Passed Failed Skipped Passed Failed 

G1 432 18 192 14 18 72 

G2 815 17 90 42 17 80 

G3 175 6 23 25 6 85 

G4 180 6 10 20 6 05 

G5 82 5 8 9 5 11 

G6 180 4 3 23 4 10 

G7 41 3 3 4 3 07 

G8 409 2 0 136 2 11 

G9 30 2 2 4 2 05 

G10 878 1 12 60 1 44 

G11 35 1 0 2 1 05 

G12-31 1-649 0 0 1-144 0 0.1-17 

Total 6181 65 343 821 65 371 

Distrib. 93.8% 1.0% 5.2% 92.7% 7.3%  

 

Test session profiles can differ in time. This is illustrated in 

Figure 4 for subsequent daily regression session tests covering 

about 600 days (long term statistics). The percentage of the 

negative tests ranged from 5 to 42%. The x-axis specifies 

subsequent test runs, y-axis shows the percentage of the 

negative tests (average value aggregated over consecutive 30 

test runs). Higher values were correlated with bigger code 

changes (new functionalities, major code corrections). Such 
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analysis can be performed for a shorter time perspective and a 

lower aggregation window (e.g., 1 day). We can also focus on 

other test features, e.g., the first use (execution) of the test and 

its expiration date (due to irrelevant code, new functionalities, 

updates), confirmed skipped faults reported by users.  

 

FIGURE 4. Distribution of negative test results (aggregation per 30 days). 

 

 

FIGURE 5.  Distribution of correctly completed test steps (in percent) over 

test scenarios executed in 5 subsequent days. 

 

Studying test executions, we should refer to the application 

lifecycle due to the development of subsequent versions, code 

modifications or corrections, introduced new functionalities, 

etc. Hence, we trace negative test results in time (as in Figure 

4). Figure 5 presents distribution of faulty test steps related to 

negative test scenarios over 5 days. The y-axis shows the 

number of faulty test scenarios, the x-axis shows the 

percentage of correctly executed test steps within these 

scenarios. In the case of stabilizing software versions, the bars 

are moved towards higher percentage values and lower 

number of test scenarios. Significant values related to newly 

introduced functionalities. They were identified by correlating 

commits with added functionalities and the number of failed 

scenarios. Analysing such profiles, we can perform deeper 

exploration related to higher values to derive the reasons of 

these anomalies.  

 

B. EXPLORING TEST REPORTS 

Tracing test executions we have introduced some metrics 

related to three aspects: test coverage, test productivity and 

result outcome. The test coverage can be correlated with 

application features, e.g., the number of executed transactions 

(in total or per transaction class), code coverage. For an 

illustration, we give statistics of the performed transactions in 

the regression test suites executed each day in 6-hour sessions. 

This statistics for subsequent 6 hours over 10 days was as 

follows (h: a-b; where h denotes hour, a and b denote 

transaction ranges): 

TC (6/10) = {1: 8-12; 2: 8-12; 3: 180-210; 4: 150-162; 5: 410-

500; 6: 38-42}  

This is some measure of application stresses. The quality of 

the test-suite (TS) can be assessed by statement or branch 

coverage, test suite size, application stressing, mutation score, 

etc. In [43] mutation score (the number of killed mutants) has 

been extended by TS capability ratio, i.e., the ratio of the 

number of tests in TS that kill at least one mutant over the total 

number of tests in TS. This was applied in controlling the 

reliability of repairs (related to involved regressions). Test 

productivity we define as the percentage of passed tests, 

executed test steps, test scenarios, test execution time, etc. In 

the case of failed test elements (e.g., steps) we can admit their 

repetition for a specified number of times. False tests may 

relate to activated faults (errors). In general, we distinguish the 

following error classes: 

1) Application logic errors – incorrect algorithm, not 

predicted handling of an erroneous situation, not specified 

behavior. 

2) Implementation errors: 

- User interface fault – incorrect graphical display of 

data, inconsistency between expected and real 

interaction behavior,  

- Calculation faults – wrong program coding, 

inaccurate calculations, 

- Thread management errors – synchronization 

problems. 

3) Environment configuration errors – lacking or incorrect 

environment or authentication variables, incorrect project 

profile build, incorrect IP or URL addresses. 

4) Test data configuration errors – e.g., lacking account of 

senders or receivers. 

5) Test errors: 

- test scenario logic error – incorrect test steps, wrong 

sequence of executions, inconsistency with 

application specification, 

- test scenario implementation fault – test code error, 

test library error, technology instability (e.g., related 

to time dependencies),  

- test configuration errors – incorrect test data, or 

environmental variables. 
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Analyzing test execution, we should correlate it with the 

application lifecycle taking into account appearance of 

subsequent versions, error corrections, modifications, updates, 

etc., which impact test runs. 

The distribution of detected errors in the project lifecycle 

may differ, as well as the required effort to fix them. Typically, 

the distribution of the error classes 1-5 was 10%, 30%, 20%, 

35% and 5%, respectively. Most of application logic errors 

(class 1) appeared in the initial phase of the project and for test 

scenarios with big branch coverage (related to diverse 

configurations and releases). The implementation faults (class 

2) are rarely announced during exploitation, they are detected 

with sophisticated test scenarios. These scenarios cover 

diverse aspects of the tested system, e.g., uncommon 

configuration and operation conditions which even rarely 

appear in production. The environment configuration errors 

(class 3) are strongly coupled with introducing new releases 

including applications redeployments, running migration 

tools, choosing right environment profiles (e.g., resulting from 

some deficiencies in documentation), etc. Test data 

configuration errors (class 4) dominated and increased with 

higher complexity of system functions. This resulted from test 

scenarios becoming more complex and involving more 

modules, parameters, and test data (difficult to grasp in short 

time). Quite often the test data is elaborated in relevance to the 

tested code which can be incorrect. Test errors (class 5) have 

a quite short lifecycle as most of them are eliminated during 

the test development, moreover they are quite easy to fix. The 

presented error taxonomy and the relevant investigation 

triggered fruitful discussion within the project team meetings 

and provided useful hints for possible improvements.    

Sometimes negative tests relate to timeout crossing, due to 

waiting for some expected events (e.g., waiting for generation 

of an invoice by a system component). Timeouts can trigger 

repetitions of the test, changing timeout limit or modifying test 

parameters. More difficult is handling errors resulting from 

framework incompatibilities with used libraries or technology 

changes in the tested application.  

The developed test framework (TF - Section III) provides 

the capability of more detailed test result statistics in relevance 

to test steps, scenarios and runs correlated with specified 

functionalities. It is illustrated in Table 6 ordered according to 

the number of negative tests.  It assures hierarchical access to 

test reports from upper to lower levels (test steps). We can 

generate cross-sectional statistics, e.g., distribution in time of 

negative test results for specified test runs, scenarios. We can 

create heat map with y-axis showing test identifier (e.g., test 

case) and x axis alert type or exception, the entries can specify 

the number of negative tests (of specified types). Basing on 

this we can provide a retrospective view on the test efficiency 

(detectability and diagnosability), performed updates, 

modifications or deletions of test cases in the used test sets. 

This can be done in relevance to the tested system lifecycle 

(revisions, etc.).  

The test result repository comprises valuable data which can 

be explored and analyzed with relevant metrics targeted at 

diverse aspects, e.g.: 

• Tracing historical changes of test sets (at different levels, 

groups, test cases and steps) due to application life cycle 

development and maintenance phase.   

• Test modifications resulting from detected faults in tests,  

• Error detection score per tests in time.  

• Correlation of code correction triggered by a test A with 

failed tests after correction, this may provide information 

to reduce the needed tests in regression testing after 

corrections of specified application areas.  

• Test modification analysis in software life cycle, may 

provide the range of changes, e.g., on the level of steps, 

test cases or test oracle specification. 

• Identification of newly introduced tests due to errors 

reported by users and not detected by the existing set of 

tests.  

• Correlating executed tests with the relevant issue 

handling time, the number of exchanged comments, time 

needed for analysis or resolution, etc. It allows to assess 

diagnosability features. Here, we can add suggestions on 

how the diagnosis could be improved, what kind of 

information was lacking as helpful (feedback from issue 

analyzers and code correctors).   

• Impact of application updates on the test management. 

For example, identifying the impact of test A results on 

other tests (failed correlation steps, cases, groups).  

It is interesting to trace the impact of introduced code 

changes on the test outcome, e.g., what is the manifestation of 

tests targeted at the introduced code changes, was there any 

impact on tests for other functionalities. This allows us to 

identify functional/code interrelationship. Having identified 

such dependencies, it is easier to identify regression subtests 

targeted at specified functionalities. Historical data of 

performed test facilitates this process, this needs referring to 

issue and commit repositories (Section VI).  

Testing processes are correlated with the project 

development, and we can observe their mutual impact in time. 

Hence, it is reasonable to monitor the distribution of detected 

error classes (Section V) and correlate them with introduced 

new functionalities, used sets of test scenarios and actors 

involved in these processes. Staff fluctuations may also have 

a significant impact. Test suit sets are improved, corrected or 

adapted to the progress of the project live cycle. Hence, tracing 

test relevant software repositories (issue and code version 

control) is also useful to assess the efficiency of the test 

processes. The developed test framework (TF) is helpful in 

this process. We can derive test suit fluctuations for selected 

time periods Tp in relevance to four classes of test suits:  

• TSS - set of stable test scenarios, i.e., such which were 

used constantly within period Tp . 

• TSM - set of modified test scenarios, i.e., changed at some 

point within Tp (e.g., adaptation to functionality or 
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configuration changes of the tested project, improved 

functionality description, remarks provided by project 

end users). 

• TSR - set of removed test scenarios, i.e., used up to some 

point within Tp and then abandoned (e.g., due to low 

efficiency, significant code or configuration changes, lack 

of maintenance due to staff fluctuation). 

• TSA - set of added test scenarios, i.e., appearing after 

some point within Tp (e.g., covering added new 

functionality, replacing previously used test scenarios). 

Statistics of these classes can be derived using the 

developed framework by referring to issue and software 

version control entries of tests. Their interpretation needs 

referring to software repositories of the tested project. 

Typically, for Tp = 1 month, the distribution of test classes 

TSS, TSM, TSR and TSA was: 75-85%, 15-20%, 0-2% and 0-

4%, respectively. 

VI. CODE AND TEST DEPENDANCIES 

In the software life cycle the code is changed due to releases 

of subsequent versions, fixing detected errors, functional 

modifications/extensions, performance improvements, etc. 

This has a significant impact on test processes. Hence, it is 

reasonable to analyze software version control (SVC) 

repositories in accordance with issue tracking system (Jira). 

We have quite rich experience with such analysis presented in 

[7,25] in relation to open source and commercial projects. This 

resulted in the original concept of the problem handling graph 

(PHG) and software development monitoring, which is also 

useful in tracing links with testing processes.  

A. EXPLORING REPOSITORY DATA 

Analyzing software lifecycle repositories and the distribution 

of performed commits including the scope of the relevant code 

changes (modification, deletion, addition), we focus on four 

aspects triggered by the negative test results: 

1) Tracing handling issue reports triggered by negative tests. 

2) Identifying reported bugs (e.g., by users) which were 

skipped by tests and filling this gap by improving or 

adding supplementary test scenarios.  

3) Tracing used test sets in relevance to software 

development progress, deployed releases and user reports 

(profiles of test sets TSS, TSM, TSR and TSA). 

4) Developers autocorrections or code refactoring. 

 

 

FIGURE 7.  Distribution of file changes in commits  

 

Figure 6 presents distribution of registered commits within 

the scope of 10-year project lifecycle. The first 2 years relate 

to development phase (75% of created files), subsequent years 

correspond to maintenance and improvement period (25% of 

files). In the initial phase a significant increase of newly 

introduced tests was observed, while in the stable phase this 

was about 10-20% per year. The registered commits resulted 

in changes, deletions, and addition of new files in the range: 

1-4, 2-10, and 0.5-2, respectively. The distribution of commits 

involving specified number of changed files is given in Figure 

7. Commits with single file changes dominate, this confirms 

efficient problem handling processes (involving testing). Each 

file is changed on average 3.83 times.  However, some of the 

issues trigger high numbers of changes (exceeding 10), 

typically, this occurs in relation to new functionalities. 

 
 

FIGURE 6.  Time distribution of performed commits (average values per day). 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3136138, IEEE Access

 Author Name: Preparation of Papers for IEEE Access (February 2017) 

VOLUME XX, 2017 15 

Sometimes a simple modification appears in many files, and it 

is classified as a multiple file change, e.g., caused by a new 

name of a file updated in many places (hence maximum 296 

file changes were reported).  

Each commit is triggered by a registered issue in Jira 

repository. Figure 8 shows the distribution of the number of 

performed commits correlated with a single issue. The x-axis 

specifies subsequent issue ids, the y-axis shows the average 

number of relevant commits over aggregated subsequent 100 

issue chunks. For each bar we give also the minimal and 

maximal values observed within the chunk (min/max). The 

first and second quartile for the first, second and 5th chunks 

were: (1,6), (1,3) and (1,4), respectively. For the remaining 

ones it was (1,2). The analyzed issues triggered 1-58 commits; 

on average a single issue is correlated with 2.33 commits. A 

single issue usually triggers a single commit, but it may also 

result in a sequence of commits which at first glance seems to 

be strange. This results from the fact of involving a group of 

issue resolving programmers (big problems) as well as from 

partial resolution of the problem. Generating a partial commit 

is useful to not block other project contributors for longer time, 

they can proceed their work. A single issue resulted in 

maximum 58 commits (relevant to introducing a significant 

range of new functionalities). 

 

 

FIGURE 8.  Distribution of performed commits in relevance to reported 

issues. 

 

SVC repository gives some view on the cost of performed 

code changes. Many of them are the consequence of negative 

tests which triggered appropriate issues. We can trace 

handling these issues in Jira repository. Typically, they are 

handled according to the following scheme defined by the 

sequence of issue state processing (PHG graph): 

New → Workaround → open → in analysis → accepted → 

in_progress →  in review → resolved → closed 

An issue in Workaround or in in-analysis states can be 

considered as irrelevant and transferred to reject state (not 

shown branch). The accepted state corresponds to positive 

detection and diagnosis of the problem. The time needed to 

attain this state in a large extent depends upon the test 

diagnosis quality. Nevertheless, it can also depend upon 

available resources or the issue handling organization. Some 

indirect metrics of diagnosis capability are the number and the 

size of exchanged comments included in the considered issue. 

The issue handling process can also depend on external actors 

correlated with the project. For example, staying in in-

progress state is conditioned by human reactions. They refer 

to activities (including comment exchanges) of project users, 

vendors (external provider of some software modules) or 

technical support. More complex problem handling paths 

(with several branches and loops) we have observed in other 

projects [7,25] 

B. CORRELATING REPOSITORY DATA 

Correlating issues and commits with test reports needs some 

effort, due to often neglected references to negative tests in 

repository entry descriptions. In such case the correlation can 

base on context analysis supported with text mining. 

Assessing report quality in this aspect we calculate the ratio of 

entries with direct test references, those with needed deeper 

analysis and ambiguous ones. In the analyzed project only 5-

20% reported issues in Jira comprised explicit references to 

relevant test scenarios. Another view on this problem is 

checking the size of the entry descriptions. The commit 

description provides some information on its reason, this can 

also facilitate correlation with relevant issue or test reports, 

however many programmers neglect this. For an illustration 

we give derived statistics of commit descriptions. For 6000 

commits (23000 file changes within 5 years) we found on 

average 9.7 words (minimum 0 and maximum 206 words) in 

the description fields. However, we observed an increasing 

trend in time (average values 5-12 words) and interquartile 

ranges for consecutive 500 commit groups stretched from 13 

to 37 words. Commits related to new functionalities showed 

longer description fields.  

Typically, a logging statement in the code contains static 

and dynamic part. The static part is a fixed character string and 

variable part is determined during the code execution of the 

run time. Associating development knowledge to test results 

and generated logs is helpful in diagnostic processes. 

Interactions between developers and users provide additional 

information in repositories. The report of an issue comprises 

its description, resolution and development discussion about it 

(comments), history of processing stages. An issue which is 

related to event logs may be helpful in its interpretation 

(rationale of log), moreover it can be correlated with log line 

in the source code which generated the log entry. A code 

commit describes the changes of the code and other 

corresponding (associated) information, a logging statement 

may provide the meaning of the code line, etc. Hence, we can 

trace the following associations: log line-log statement (file, 

method location, code comment) – code commit – issue report, 
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in addition we can trace emails from users on the registered 

logs.  

Log repositories form a rich source of information 

(knowledge) on testing, neglected in the literature. Systematic 

processing of a wide scope repositories leads to improvement 

of testing and diagnosis. Dealing with diverse types of 

repositories, we trace their interactions and information 

associations. Code corrections or new functions may trigger 

inclusion or modification of relevant log statements in the 

code, this results in log profile changes or updates during the 

testing processes. In addition, we can investigate user reports 

and correlate them with possible test gaps.   

Correlating issue tracking and version control repositories 

with testing processes needs appropriate filtering. Test reports 

should comprise the specification of the tested software 

version (including the merged commits); hence we can trace 

issues to correlate them with issue requests related to new 

functionalities, corrections resulting from previous negative 

tests, corrections triggered by project users, etc. In the case of 

confirmed missed errors, it is important to identify the reasons 

of their skipping by regression tests and produce requests for 

test set updates. Tracing the handling process (depicted by 

PHG graph) of recorded issues triggered by the test outcome, 

we can check the exchange of messages, comments which can 

reflect the precision of bug specification and localization. We 

can check the time between the issue registration and problem 

allocation as well as the identified decision looping. This can 

provide some indirect metric of test diagnosability. However, 

they can be obfuscated by project actors’ allocation policies, 

their capabilities or practical competence and workload load. 

We can derive positive correlations of project actors with test 

subsets (successful and fast handling). In the case of projects 

with recommendation repositories filled by users [37] we can 

correlate them with project functionalities and relevant test 

suites to check why there were not detected during 

development/maintenance phase, and specify, if needed, test 

drawbacks. 

VII. DISCUSSION 

The developed test framework (TF – Section III) allowed us 

to extend the observation perspective of test results over a 

wide scope of software repositories. It provides the capability 

of extracting detailed and important features of test execution. 

This is useful to assess test diagnostic efficiency and reveal 

imperfections in the context of the project development and 

maintenance by correlating test reports with issue and commit 

repositories.  Insufficient accuracy and negligence in reporting 

(automatic or manual) creates problems in extracting 

appropriate data, hence discovering some time and semantic 

contexts is helpful.  In relevance to this we showed the 

usefulness of deriving structural and semantic features of 

dictionaries used in repositories, keywords, and profiles (in 

time and value - heatmaps) of associated variables or other 

statistics. Log dictionary and keywords can be investigated (in 

long time perspective) to determine their impact on diagnostic 

capabilities and point out possible improvements. (Section 

IV). 

The presented approach significantly expands the 

observation space of assessment processes related to 

regression, acceptance, and integration tests (Section V). This 

exceeds the capability of common approaches of unit testing 

based on finding links between test cases and related 

production classes ([42] and references therein). Diagnostic 

capabilities can be enhanced by correlating test reports with 

other software repositories (e.g., issue tracking and version 

control). Test set optimization and upgrades need tracing test 

impact in these repositories in time perspective (Section VI). 

Test diagnosability and efficiency can be evaluated by 

correlating detected problems (by tests) with relevant handling 

paths (PHG graph) and software fix ranges. Identified long or 

complex handling paths (e.g., involving state looping, 

comment exchanges [25]) we can drill down test outcome 

deficiencies (test reports and generated event logs) to reveal 

possible improvements.  

We can increase not only test diagnosability, but the 

supplementary advantage of our approach is also identifying 

and controlling the consistency of tests with 

project/environment changes or updates during the life cycle. 

For this we explore test set profiles (TSS, TSM, TSR and TSA), 

distribution of test results (at test scenario and test step levels, 

e.g., Table 4) and detected defect classes, skipped errors, etc. 

The presented monitoring process covers project and test 

lifecycles (including their mutual interactions) taking into 

account relevant issue and version control repositories. 

Tracing detected and skipped defect classes for test runs 

(application logic, implementation, configuration, test flaws) 

facilitates to identify and counteract suspicious trends (Section 

V B).  

 Another issue is qualification of test importance, test 

strength and enhanced test outcome taxonomy. Depending 

upon the test targets we can attribute test importance 

correlated with potential bug severity levels (critical, major, 

minor, cosmetic, etc.). More sophisticated tests can provide 

multilevel outcomes instead of binary results (passed, non-

passed steps). Hence, the outcome of non-passed tests can be 

further précised showing detailed deficiency specification 

which can be categorized according to bug criticality. This can 

be combined with tracing the progress of handling registered 

negative test results (in issue repository) in correlation with the 

attributed issue state and relevant impact on code commits 

(version control repository). Here, we can distinguish issues 

disqualified due to non-possible reactivating the fault, rejected 

due to negligent importance, postponed because of the 

previewed future function replacement/modification. On the 

other hand, we have tests triggering many bugs which usually 

are considered as the most effective and attributed higher 

priority. Monitoring issue handling we should link them with 

relevant tests and trace the resolution progress, e.g., rejection 

decisions, time needed for diagnosis, number of correlated 

comment exchanges, scope of triggered commits (number of 
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identified bugs, number of changed files or code lines). This 

provides data for fine-grained test outcome categorization 

(compare specifications in Section V), which can be 

aggregated in a longer time perspective to identify behavioral 

trends. Many postponed, rejected minor or negligible faults 

can cumulate in time resulting in complex problems or hide 

detection of other important problems. In another e-commerce 

project, developed in SCRUM technology with weekly 

iteration periods (sprints), this problem appeared with a delay 

of 5-10 months. Hence, it is useful to control the range of 

piling not resolved issues and perform periodical revisions. 

The presented methodology of analyzing test processes and 

their interaction with project development is based on holistic 

investigation of wide scope and detailed features derived from 

diverse software repositories. This involves tracing 

correlations between reports in repositories. In practice, this 

process can be simplified and more effective by improving 

report descriptions. The proposed statistics and diverse metrics 

are helpful to monitor report quality and provide feedback to 

actors involved in project development/testing (Sections V 

and VI).  

The presented studies based on our experience with 

monitoring several software projects, however the developed 

test analysis methodology was referred to a single commercial 

project systematically upgraded and maintained for many 

years. It assured access to rich software repositories. Hence, 

we include some comments on validity threats of our 

investigation.   

External validity. The presented investigation was 

performed on data collected by one industrial partner which 

accepted installation of our plugins into the used test 

infrastructure (comprising cucumber, etc.). The derived test 

features and relevant software repositories related to a specific 

software project developed with assumed technology in the 

company. Nevertheless, the gained experience and assessment 

methodology can be considered as sufficiently representative 

for many medium size companies and transaction-oriented 

applications. Moreover, the presented metrics, analysis 

methodology can be generalized for a wider scope of projects 

and development technologies. Retrospective view on testing 

from software repositories perspectives can show lacking data 

in repositories, drawbacks of testing processes which can 

impact development improvements.  

We have confronted our results with the experience of 

testers in two other companies targeted at complex e-

commerce and disc controller software. Tests were managed 

by proprietary software with similar capability to Cucumber. 

Regression tests (test cases with specified steps) were 

executed in weekly and several day periods, and they involved 

many hours in the night. Test reports were synthetic at 

functional level, sometimes supported with screen shots. 

Event and other software repositories were not correlated 

directly with the test reports. This lacking feature is available 

in our test framework (TF) including the analytical 

component. It has been assessed by interviewed project testers 

as promising for investigating test properties in a wider data 

context and longer time perspective observation. They found 

it helpful in tracing such problems as faulty and obsolete tests 

(causing losses in testing time), sources of skipping faults 

reported by product customers using their own tests. Another 

issue relates to faults of purchased software modules from 

other providers, which usually are considered as reliable 

within a long period of time. However, they showed some 

problems with delay, e.g., in the context of added or improved 

functionalities, changed environment. In the considered 

projects it was observed that a relatively small percent of tests 

( ̴ 20%) reveal most faults (60 - 80%), which can be considered 

in test optimization, e.g. appropriate execution ordering 

(prioritization). The presented problems can be effectively 

studied using our test framework by correlating data from 

diverse repositories. 

Internal validity. The research goal was verified on the 

available data sets and using the developed plugins to the 

available test support tools and software repositories. 

Unfortunately, some data were screened due to their 

sensitivity touching the developers and users (customers).  

Nevertheless, this was not significant restriction in our studies, 

which have been also positively accepted by the industrial 

partner. 

Construct validity. The used test management 

infrastructure is quite universal. The developed plugin 

components integrate collection, correlation, and analysis of 

monitored data. They can be adapted to other test/monitor 

platforms and software development technologies. Depending 

upon the organization of repositories we face the problem of 

getting access to relevant repositories (sometimes managed by 

different groups in the company or outsourced), selecting test 

relevant data, crossing data confidentiality restrictions 

(anonymization preprocessing).  

VIII. CONCLUSION 

We have analyzed a wide scope of collected data during 

testing a complex industrial project. This study proved the 

usefulness of software repositories in assessing and improving 

software test processes. Test report interpretation is enhanced 

by correlating registered entries with application logs, which 

needed adaptation of log parsing to their specificity including 

structural and semantic features of used words and phrases (n-

grams). This is supported with a hierarchical text mining 

analysis targeted at used word classes (dictionary), keywords 

and associated variable parts. The presented analysis in short 

and long-time perspectives refers to issue and version control 

repositories. It provides an insight on test set consistency with 

the application and points outs needed adjustments during the 

system lifecycle. It is based on extensive investigation of a 

wide scope of test and development features complemented 

with specified statistical metrics and profiles.  

The introduced metrics and statistics can positively affect 

test quality progress in time, which is important in projects 

with long live perspective (systematically introduced updates 
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and new versions of the tested project and system 

environment). The gained experience revealed the necessary 

improvements in quality and the range of registered reports 

(automatically or manually). Our future research will be 

directed towards deeper empirical studies, in particular tracing 

the impact of tests on created issues and relevant handling 

times. This will result in periodical revisions of testing 

processes and data repositories considering context changes. 

Another issue is extending our approach on performance tests 

taking into account supplementary resource usage and timing 

monitors.  
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