
Secure Group Communication

A THESIS

SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL

OF THE UNIVERSITY OF MINNESOTA

BY

Michael L. Schliep

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

Doctor of Philosophy

Nicholas J. Hopper

May, 2021

© Michael L. Schliep 2021

ALL RIGHTS RESERVED

Acknowledgements

Many people were involved in this dissertation and I am ever grateful for your contri-

butions and support. First and foremost, my wife, Anna Wagner Schliep, thank you for

all of the support you provided for me to pursue my academic interests and conclude

this dissertation.

I would like to thank my advisor Nick Hopper for providing the opportunity and guid-

ance for this work. I would also like to thank my co-authors and collaborators: Max

Schuchard, John Geddes, Shuai Li, Se Eun Oh, Ian Kariniemi, Rahul Parhi, Eugene

Vasserman. Thank you for all of the conversations we have had and contributions you

have provided; your collaboration was essential to this dissertation.

Additionally, I am grateful for the other members of the committee, Stephen McCamant,

Kangjie Lu, and Andrew Odlyzko, for your volunteered time, feedback, and discussions.

Last, but certainly not least, I thank my parents, David and Denise Schliep. Your

continued support and encouragement has made this possible and I would not have

achieved this without you.

i

Dedication

To Anna,

I would never have finished this work without your endless support.

ii

Abstract

Communication privacy is constantly under threat from Nation State Adversaries (NSA).

This has led many platforms, such as Facebook and Apple, to implement secure conver-

sation cryptographic protocols in their messaging applications. However, many of the

protocols do not provide provable security and do not provide other security guarantees

about the conversation. One example of a missing security property is message order

consistency between all participants. In this dissertation I demonstrate practical at-

tacks against a popular private messaging protocol and application (Signal). I propose

two private group messing protocols with provable privacy properties for two network-

ing models; online instant messaging, and mobile messaging. I show the performance of

these models is practical for mutually authenticated groups ≤ 50 participants. Finally, I

propose an improvement to the DP5 private presence protocol that reduces the message

size from quadratic to logarithmic.

iii

Contents

Acknowledgements i

Dedication ii

Abstract iii

List of Tables ix

List of Figures x

1 Introduction 1

1.1 Thesis Statement . 3

1.2 Outline . 4

2 Background 6

2.1 Networking Models . 7

2.2 Threat Model . 7

2.3 Security Properties . 8

2.4 Related Work . 9

3 Signal Messaging Protocol 12

3.1 Signal Design . 15

3.1.1 Prior Security Analysis . 16

3.1.2 Threat Model . 18

3.1.3 Secure Conversation Properties 18

3.2 Protocol Usage Attacks . 21

iv

3.2.1 Confidentiality . 23

3.2.2 Speaker Consistency Attacks . 27

3.3 Group Conversation Attacks . 29

3.3.1 Mitigations . 32

3.4 Traffic Analysis . 34

3.4.1 Censorship Circumvention . 34

3.4.2 Conversation Metadata . 36

4 Synchronous Secure Communication 38

4.1 Private Group Instant Messaging . 41

4.1.1 Goals . 41

4.1.2 Prior Secure Messaging Protocols 43

4.1.3 System Model . 45

4.1.4 Threat Model . 45

4.2 Design . 46

4.2.1 Strawman Design . 46

4.2.2 Primitives . 47

4.2.3 Overview . 48

4.2.4 SYM-GOTR Protocol . 49

4.2.5 User Authentication . 55

4.3 Security . 57

4.3.1 Confidentiality . 58

4.3.2 Message Integrity and Authentication 58

4.3.3 Participant Consistency . 59

4.3.4 Forward and Backward Secrecy 59

4.3.5 Participant Repudiation . 59

4.3.6 Message Repudiation . 60

4.3.7 Message Unlinkability . 60

4.3.8 Global Transcript . 62

4.3.9 GOTR Improvements . 62

4.4 Performance Evaluation . 63

4.4.1 Setup . 65

v

4.4.2 Broadcast . 65

4.4.3 CPU Usage . 66

4.4.4 Complexity . 66

4.4.5 Practical Example . 66

4.5 Discussion . 67

4.5.1 Usability . 68

4.5.2 Key Verification . 68

4.6 Proofs of Security . 68

4.6.1 Assumptions . 71

4.6.2 Model . 72

4.6.3 Confidentiality . 73

4.6.4 Integrity and Authentication . 75

4.6.5 Participant Consistency . 77

4.6.6 Perfect Forward Secrecy . 78

4.6.7 Backward Secrecy . 79

4.7 Usability . 81

4.7.1 Secure Group Setup . 84

4.7.2 Receiving Messages . 85

5 Mobile Communication With Privacy and Integrity 88

5.1 Mobile Secure Messaging . 89

5.1.1 Mobile Messaging Model . 89

5.1.2 Multi-providers for conversation integrity 90

5.1.3 Service Availability . 91

5.1.4 Threat Model . 91

5.1.5 Security Properties . 92

5.2 Design . 93

5.2.1 Overview . 93

5.2.2 Message Order . 94

5.2.3 Primitives . 95

5.2.4 Registration . 96

5.2.5 Two Party Ciphertext Blocks . 96

vi

5.2.6 OES Authentication Block . 98

5.2.7 Setup Message . 99

5.2.8 Receipt Message . 100

5.2.9 Conversation Message . 101

5.2.10 Participant Update Message . 101

5.2.11 Two Party Channels . 102

5.2.12 Long-term Key Verification . 104

5.3 Security . 105

5.3.1 Message Confidentiality . 106

5.3.2 Message Authentication and Integrity 106

5.3.3 Forward Secrecy . 107

5.3.4 Post-Compromise Secrecy . 108

5.3.5 Conversation Integrity . 108

5.3.6 Participant Consistency . 110

5.3.7 Deniability . 110

5.4 Evaluation . 112

5.4.1 Scalability . 114

5.5 Discussion . 114

5.5.1 Limitations of Group Key Agreements 114

5.5.2 Multiple Providers . 115

5.5.3 Denial of Service . 116

5.6 Formal definitions and proofs . 116

5.6.1 Security Assumptions . 117

5.6.2 Message Confidentiality . 118

5.6.3 Message Integrity and Authentication 124

5.6.4 Conversation Integrity . 128

5.6.5 Deniability . 132

5.6.6 Message Unlinkability . 135

6 Private Presence 137

6.1 Goals . 139

6.1.1 DP5 Overview . 139

vii

6.1.2 Threat Model . 140

6.1.3 Security Goals . 141

6.1.4 Related Work . 142

6.2 The MP3 Protocol . 143

6.2.1 Overview . 143

6.2.2 Cryptographic Primitives . 144

6.2.3 Dynamic Broadcast Encryption 146

6.2.4 Setup . 147

6.2.5 Long-term Epoch . 148

6.2.6 Short-term Epoch . 152

6.2.7 Details . 153

6.3 Experimental Results . 157

6.4 Modifications to Dynamic Broadcast Encryption 158

6.5 Availability Against Malicious Parties 159

7 Future Work and Final Remarks 161

References 164

viii

List of Tables

3.1 Algorithms . 27

4.1 Asymptotic complexity for each operation. The top line is the size of the

broadcast message and the bottom is the maximum number of p2p mes-

sages sent by an individual. All p2p messages are of constant size. The

last two columns represent the computational complexity of the operation. 67

6.1 Bandwidth complexities comparing MP3 and DP5 as a function of N ,

Nfmax, Nrev, and Nunrev. 160

ix

List of Figures

1.1 Speaker inconsistency in a conversation. 3

3.1 Speaker inconsistency in a conversation. 14

3.2 Sender notification of successful message delivery 21

3.3 The top two images are always downloaded when the user makes a query

(assuming the images are not cached). 24

3.4 Dropped message attack experience by Alice and Bob. 28

3.5 Alice’s and Charlie’s view of a conversation without participant consistency 31

3.6 Bob and Charlies views of a conversation that does not preserve causality 33

3.7 Network traffic pattern for sending and receiving Signal messages. . . . 36

4.1 The time (25th, 50th, and 90th percentile) and network traffic to set up a

secure chat room with SYM-GOTR and GOTR. 63

4.2 The time (25th, 50th, and 90th percentile) and network traffic to broadcast

a message to a secure group chat. 64

4.3 IND-CPA Game . 69

4.4 INT-PTXT Game . 69

4.5 NAXOS Game . 70

4.6 DDH Game . 70

4.7 SYM-GOTR Game Functions . 72

4.8 SYM-GOTR Confidentiality Game . 73

4.9 SYM-GOTR Authentication Game . 75

4.10 SYM-GOTR Participant Consistency Game 77

4.11 SYM-GOTR Perfect Forward Secrecy Game 78

4.12 SYM-GOTR Backward Secrecy Game 80

x

4.13 Warning displayed when not all users in a secure group chat are authen-

ticated. 81

4.14 Notice of successful participant authentication. 82

4.15 Warning of participant authentication failure. 83

4.16 Warning that another participant requires authentication. 84

4.17 Warning shown when a user receives a message from an unauthenticated

participant. 85

4.18 Notice when a user receives a secure group message. 86

4.19 Warning displayed when a user detects a participant lied in the last digest

exchange. 87

5.3 IND$-CPA Game . 117

5.4 INT-CTXT Game . 118

5.5 NAXOS Game . 119

5.6 Message Confidentiality Game G0 . 120

5.7 Message Authentication Game . 125

5.8 Conversation Integrity Game G0 . 129

5.9 Deniability Game G0 . 133

6.1 Presence database sizes . 156

6.2 Lookup server bandwidth . 156

6.3 Client-facing lookup latency excluding RTT. N = 100000, Nfmax = 1000, Nrev = Nunrev = 5 157

xi

Chapter 1

Introduction

1

2

Recent disclosure of state level surveillance on citizens around the globe [1] has

caused an increased need for secure means of electronic communication. What it means

to have secure communication can be difficult to define with the myriad of devices and

services in use today, and many systems have been introduced to fill this need each with

varying adversarial models and security properties.

In response, many software developers and companies have been integrating end-

to-end encrypted messaging protocols into their chat applications. Some applications

implement a proprietary protocol, such as Apple iMessage [2]; others, such as Crypto-

cat [3], implement XMPP OMEMO [4]; but most implement the Signal protocol or a

protocol based on Signal, including Open Whisper Systems’ Signal [5], WhatsApp [6],

Facebook Messenger [7], and Google Allo [8]. These protocols have only recently started

to undergo formal security analysis.

The main objectives of existing secure messaging solutions is to protect the confi-

dentiality and integrity of the messages. However, these two security objectives alone

are insufficient to provided meaningfully private messaging. Consider the following two

scenarios.

Figure 1.1 contains screenshots from the perspective and Alice and Bob in a secure

conversation using the Signal application. Signal provides message confidentiality and

integrity but these screenshots demonstrate that even though the message integrity is

provided, conversation integrity is not provided which leads to an inconsistent view of

a conversation.

As a second example, consider the natural first approach to secure conversations is to

encrypt and sign the conversation messages. This is efficient and provides confidentiality

and authentication. But the act of signing the messages leaves a record that a user

participated in a conversation and what that user said. This record is a loss in security

from offline conversations. In the following conversation:

Reporter: What is your company doing illegally?

Whistleblower: They are dumping poison into the water.

The whistleblower’s participation would not be deniable in the encrypt and sign ap-

proach.

3

(a) Alice’s view of the conversation. (b) Bob’s view of the conversation.

Figure 1.1: Speaker inconsistency in a conversation.

1.1 Thesis Statement

This dissertation explores the following thesis:

There exists efficient protocols that provably provide strong privacy guarantees for

group communication in instant messaging and mobile network settings.

To support this thesis, we analyze the most prevalent secure messaging protocol and

identify weaknesses that reduce the confidentiality, integrity, and privacy goals of the

protocol. We propose two new protocols for private group communication with provable

privacy properties. The first protocol is in the instant messaging setting, that is all users

4

a online during the conversation, and the second protocol exists in the mobile messaging

setting where users may go offline and come back online at a later time without missing

messages. There are subtle differences in some of the privacy properties to capture the

expectations of the individual network models. Additionally, we explore an auxiliary

communication protocol for privately communicating the presence status of friends. We

provide an improvement to the private presence protocol that reduces the storage and

bandwidth costs significantly.

1.2 Outline

Signal Protocol Analyzes (Chapter 3)

In Chapter 3 we analyze the most prevalent secure messaging protocol and the authors

implementation; Signal by Open Whisper Systems. We identify the intended security

properties of the protocol and application. We then identify weaknesses and demonstrate

vulnerabilities in the protocol. We demonstrate conversation integrity and participant

consistency attacks against the protocol and a confidentiality attack due to additional

features of the application, specifically sending attachments and Giphy [9] integration.

Synchronous Secure Communication (Chapter 4)

In Chapter 4 we provide a formal definition for the security and privacy goals of secure

group communication in the instant messaging model. We design a secure messaging

protocol (SYM-GOTR) that provably achieves these goals. We implement this protocol

and show that is is effect under real world conditions. Going beyond the provably secure

protocol, we examine the usability of our implementation and confirm the user expertise

does not compromise the security provided by the protocol via a cognitive walkthrough.

Mobile Communication With Privacy and Integrity (Chapter 5)

In a similar fashion, in Chapter 5 we define group communication security and privacy

goals in a mobile messaging model where uses may go offline for a period of time. We

detail how these goals change compared to the instant messaging model and propose a

5

protocol (Mobile CoWPI) that provably achieves these goals. We implement the proto-

col as a Java library and demonstrate the performance of a deployment with Android

clients and servers running on Amazon Web Services [10] and Linode [11].

Private Presence (Chapter 6)

In Chapter 6 we explore an axially protocol to secure message, that of private presence.

Starting with an existing protocol DP5 [12] that provides a mechanism for users to re-

trieve the presence status of their friends without revealing their social graph or identity

to a server. We propose an improved protocol (MP3) that significantly improves the

network and bandwidth performance via careful utilization of Dynamic Broadcast En-

cryption(DBE) [13]. Due to these improvements we demonstrate our protocol requires

about half the bandwidth compared to DP5.

Chapter 2

Background

6

7

This chapter discusses two common networking models for secure messaging proto-

cols and discusses the threat model and security properties from a high level as they

relate to both deployment models. We then overview related literature and discuss how

it does and does not achieve the required security properties or deployment models.

2.1 Networking Models

We consider two networking models separately. The first be an instant messaging model

where all users are online during the entire conversation. Protocols in this model typi-

cally make use of a service provider to route messages between clients. The other model

is a mobile messaging model where clients may go offline for extended periods of time.

It is expected that when a client return online they receive all messages that were sent

while they were offline. This requires a service provider to route and store messages for

clients.

We must consider these models separately as the definition of some of the security

properties differ between the models. For example, consider conversation integrity, in

the instant messaging model the protocol can enforce that all users have received a

message before the next can be sent. However, in the mobile messaging model some

user may be offline when a message is sent and cannot enforce receipt without blocking

future messages.

2.2 Threat Model

In either networking model the security provided by any modern protocol needs to

withstand strong adversaries. We consider an adversary that may compromise multi-

ple service providers and multiple users. The adversary also has full network control

and may drop, modify, reorder, and add network traffic. In effect the adversary can

control the service providers any number of participants, unless it would trivially allow

the adversary to compromise a target security property. We specifically call out what

restrictions are placed on the adversary for each security property when discussing both

of the proposed protocols.

8

2.3 Security Properties

Unger et. al. [14] provide a comparison of security goals of different secure messaging

applications. We relate our security goals to the goals of their work where appropriate.

Message Confidentiality is the property that only conversation participants can read

a message. More formally, an adversary that does not control a participant in the con-

versation cannot learn the plaintext of a message. There are two additional properties

related to message confidentiality which limit the window of compromised messages

even if an adversary is able to compromise any or all participants.

Forward Secrecy is similar to message confidentiality but introduces the concept of

key ratcheting. After users have ratcheted their key material all messages sent prior to

the key ratchet are confidential even if the adversary is able to reveal the long-term and

session state information of any or all participants after the key ratchet.

Post-Compromise Secrecy is similar to message confidential but introduces the con-

cept of key healing. If an adversary is allowed to reveal the long-term and prior session

state of any or all of the users in a conversation, after the key healing, all future message

remain confidential. The forward and post-compromise secrecy properties bound the

window of exposure of any key compromise to a limited period.

Message Authentication is the security property that all participants can verify the

author of a message and that a message has not been modified in transit. Message

authentication implies message integrity.

Participant Authentication is the property that all honest participants can verify

all other honest participants are really who they claim to be. Participant verification

transfers between conversations. This is commonly accomplished by verifying long-term

key fingerprints in person.

Conversation Integrity is the property that all participants see the same conversa-

tion. This includes the order of messages in a conversation and the order of participant

changes in a conversation. In relation to Unger et. al. this goal implies speaker consis-

tency, causality preservation, and a global transcript.

Additionally, we consider post-compromise conversation integrity which introduces

key healing. A protocol provides post-compromise conversation integrity if after a key

healing process, the conversation integrity of future message is not compromised by an

9

adversary that may have revealed the long-term and session state of users or service

providers.

Participant Consistency guarantees all participants of a conversation agree on the

set of all participants in the conversation.

Deniability is the property that participants may deny taking part in a conversation.

Unger et al. refer to this as participant repudiation. They also discuss two additional

deniability properties: message repudiation and message unlinkability. Message repu-

diation allows participants to deny sending a message and is implied by participant

repudiation. Message unlinkability is the property that if a distinguisher can be con-

vinced a user authored one message, this should not prove the authorship of any other

message.

2.4 Related Work

Off-The-Record (OTR) [15] is the first academic work to look at providing private

instant messaging. OTR provides message confidently, integrity, authentication, repu-

diation, and unlinkability. However OTR does not provide participant repudiation or

conversation integrity. The main limitation of OTR is it only supports conversations

between two individuals. There is not a straight forward mechanism to apply OTR in

a group setting.

Multiparty OTR (mpOTR) [16] tries to provide the properties of OTR for group

conversations. At a high level it works as follows. First, All participants setup pairwise

secure channels using a deniable authenticated key agreement (DAKE). Then over the

secure channels the participants execute a Group Key Agreement (GKA) to compute

an ephemeral encryption key. The users also distribute ephemeral verification keys

used to sign conversation messages. The participants also compare a hash of the group

information to enforce participant consistency. When Alice wants to send a message

to the group she encrypts the message with the ephemeral group key then signs the

ciphertext with her ephemeral verification key. Then broadcasts the ciphertext and

signature to all participants of the conversation. All recipients can verify the signature

is from Alice and decrypt the message. To enforce conversation integrity, at the end

of a conversation the participants execute a byzantine agreement on a lexographically

10

ordered list of the messages. Even though mpOTR provides participant repudiation

via the DAKE during setup it does not provide message unlinkability due to the use of

the verification keys. With knowledge of a verification key a distinguished can verify all

messages authored by a particular user. mpOTR also lacks strong conversation integrity

since the transcript consistency is not checked until the conversation has ended and is

only checked on a lexographically order transcript. This requires mpOTR to operate in

the synchronous instant messaging model with static participants.

Group Off-The-Record (GOTR)[17] utilizes a “hotplugable” Bermister-Desmedt GKA

to provide secure messaging for dynamic groups. To set up a conversation all the users

first set up secure pairwise channels. Then over those channels the participants execute

the GKA. When sending a message Alice encrypts the message with her sending key

generated by the GKA. Then periodically the participants perform a transcript con-

sistency check to verify all users have seen the same conversation. The details of the

consistency check are not addressed in the paper. GOTR only works in the instant mes-

saging model as all users must be online to execute the GKA and consistency checks,

making it not suitable for mobile communication.

Signal [5] (formerly TextSecure) is the most widely deployed protocol for secure

mobile messaging. However it has only recently received formal analysis of its security

properties [18, 19, 20]. With [21, 22] identifying multiple participant consistency and

conversation integrity vulnerabilities in two-party and group conversations. We now

quickly describe the group conversation protocol of Signal. When Alice registers with the

Signal server she uploads pre-keys allowing other users (Bob) to execute an X3DH [23]

two-party key agreement with her while she is offline. When Bob wants to start a

conversation with Alice and Charlie he fetches a pre-key for each of them, then executes

the X3DH key agreement and sends each a secure “Group Setup” message. Conversation

messages are sent in the same fashion, setting up or ratcheting forward a two-party

symmetric key with every pair of users, then sending an encryption of the conversation

message to each user individually. When Alice receives a group message from Bob she

sends a receipt of the message back to Bob. When Bob’s phone receives the first receipt

of a messages it indicates to Bob the message was delivered. Signal lacks conversation

consistency of messages and receipts, Charlie can not verify if Alice has received Bob’s

message and no order of messages is enforced. We explore Signal in more detail in

11

Chapter 3.

(n+1)sec [24] is a published draft of a secure group communication protocol. The

goals of (n+1)sec are similar to ours with eventual transcript consistency. (n+1)sec

utilizes an mBD+P GKA [25] to generate a group sending key and pairwise secrets be-

tween all participants. Each group member generates a signing key used to authenticate

messages. Periodically participants send a consistency check message that contains their

view of the conversation. The delayed consistency checks allow for low latency when

displaying message but messages are displayed before a global transcript is enforced.

(n+1)sec does not provide a formal security analysis or proofs that the desired security

properties are provided. In comparison to (n+1)sec, our protocols favor simplicity and

security at the expense of performance.

Asynchronous Ratcheting Trees (ART) [26] describes a group key agreement protocol

with forward and backward—Post Compromise—secrecy. The protocol is asynchronous

in that it allows a single user to set up the group key while the other users are offline.

ART is only a group key agreement and not a full messaging protocol. It does not provide

authentication of the author of a message, support for dynamic groups, or conversation

integrity. ART works by bootstrapping on secure two-party channels similar to our

NAXOS two-party channels. When setting up a group all participants are added one

at a time. The group key agreement forms a DH tree where the root node is the group

key. Setting up a group with ART is O(n) but performing a single user key ratchet is

O(log(n)) where n is the number of users in the group.

Recently, the IETF has formed a working group to provide a standard for Message

Layer Security (MLS) [27, 28]. The focus of the working group has been on improving

scalability to thousands of users with limited security trade offs. The two major trade

offs is the lack of conversation integrity and deniability of MLS. These security properties

are currently considered open issues by the working group.

Chapter 3

Signal Messaging Protocol

12

13

This chapter details the Signal protocol as implemented by the Singal messaging

Android application and a multitude of attacks and limitations to the privacy properties

of the protocol.

Signal was known as TextSecure for versions 1 and 2 of the protocol but changed the

name at version 3. TextSecure was developed to provided end-to-end secure messaging

over SMS. This required TextSecure to support asynchronous conversations that are

tolerable to delayed, out-of-order, and dropped messages. Version 2 of TextSecure

added support for group conversations and the capability to send messages over the

internet instead of SMS. TextSecure version 3 made a few changes to the cryptographic

primitives and protocol along with dropping support for SMS transport.

To support asynchronous conversations Signal and protocols based on it follow a

consistent design. They assume a trusted central server that handles key distribution

and message routing and caching. Most implementations provide a user interface to

verify or authenticate the keys of conversation participants. To use one of these appli-

cations, a user, Alice, registers and uploads a collection of public keys and an identity

key to the server. To send a message to Alice, Bob downloads the public key material

from the server and initiates a protocol session, encrypting the first message and send-

ing it along with all the necessary data for Alice to initialize her protocol session. The

message is cached at the trusted server until Alice is able to retrieve it. The application

provides a method to verify that the server has distributed the correct public keys but

not to verify any other functionality of the server.

There are many other properties that the server is blindly trusted to provide e.g.

participant consistency and speaker consistency. However, in many cases these proper-

ties are nearly as important as message authentication. For example, Figure 3.1 shows

Alice’s and Bob’s differing views of a single Signal conversation. These screenshots

demonstrate the need for additional security properties. The first transcript demon-

strates Alice’s view of the conversation in which she asks two questions of Bob. Without

speaker consistency Bob may see the second transcript, which has drastically different

meaning than the first.

This work demonstrates that a blindly trusted server is not a realistic threat model

for secure communication: if a protocol designer does not trust the server to protect

the content of messages, why should the server be trusted to protect the order of their

14

(a) Alice’s view of the conversation. (b) Bob’s view of the conversation.

Figure 3.1: Speaker inconsistency in a conversation.

15

delivery, or the list of their recipients? Nation State Adversaries have previously coerced

private companies to provide access to servers or in the case of Lavabit [29] to provide the

private keys for a secure email platform. Even without coercion, the Signal application

has pinned Google’s TLS certificate to allow for censorship circumvention via domain

fronting, intentionally providing a third party with strong Man-In-The-Middle (MITM)

capabilities. We will show that in some cases, even this restricted model of server

compromise can be sufficient to compromise the confidentiality and integrity of a Signal

conversation.

In this work we analyze Signal with respect to conversations, from the standpoint

of a compromised server or server connection. Other work has looked at the Signal

messaging protocol and provided formal proofs for various properties of the protocol,

sometimes requiring slight modifications. Since Signal does not document a formal

threat model we describe one we believe to be consistent with the Signal developers’

decisions, along with a stronger practical threat model. We analyze the conversation

properties provided by signal under these threat models. Our work does not focus on the

usability of Signal, but on whether the application provides any indication of violations

of these conversation properties.

Our primary conclusion is that the Signal application puts too much trust in a

single entity. We describe attacks against the confidentiality of messages, and integrity

of conversations, along with simple application modifications to mitigate these attacks

by detecting their presence and alerting the user. We emphasize future applications

with a single provider should use an untrusted server model or at least a trust but

verify model. Chapters 4 and 5 detail two protocols in this untrusted server model.

In Section 3.1 we discuss related work and detail the security and conversation goals

we consider. Section 3.2 and 3.3 detail the Signal protocol and attacks we demonstrate

against the Android and desktop applications. Section 3.2 focuses on two party con-

versations with Section 3.3 looking at group conversations. Finally, we discuss traffic

analysis of Signal in Section 3.4.

3.1 Signal Design

Briefly the Signal protocol works as follows for the user Alice:

16

1. When installing, Alice registers her device with the Signal server using SMS or

voice to verify she owns the phone number.

2. Alice generates a handful of public-private key pairs. An identity key, a signed

prekey, a last resort prekey, and 100 prekeys. She signs the signed prekey with

her identity key.

3. She uploads the public keys to the server.

Next we quickly describe Alice sending a message to Bob. We describe the process in

greater detail in Section 3.2

1. The first time Alice sends a message to Bob she fetches his public identity key,

signed prekey, last resort prekey, and a single prekey from the server. The server

should not hand out a prekey more than once.

2. Alice then initiates a Signal session on her device and produces a symmetric en-

cryption key. She encrypts her message with this key.

3. Alice uploads her encrypted message along with the key material required for Bob

to initialize his corresponding session.

4. Bob fetches this material and ciphertext from the server, initializes his view of the

session and decrypts the message.

There is only a single protocol session between Alice and Bob. Multiple types of mes-

sages may be sent using this single session e.g. two party conversation, attachments,

group messages. For a more detailed description of the protocol [23] describes the key

exchange, [30] describes the key ratcheting, and [31] details the protocol as implemented

in the Signal application.

3.1.1 Prior Security Analysis

Frosch et. al. [18] were the first to formally analyze the TextSecure messaging protocol.

Their work was performed before TextSecure changed its name to Signal. The authors

show the key chaining of Signal is an authenticated encryption scheme. They also

describe an Unknown Key Share Attack(̃UKS).

17

The goal of the Unknown Key Share Attack is to have an adversarial user Bob

convince Alice his keys are those of Charlie. Then when Alice sends a message to Bob,

Bob can forward the message to Charlie as if Alice sent it to Charlie. Charlie then

believes that Alice has sent the message. This attack could be mitigated by simply

including the phone numbers of the participants in the Key Derivation Function (KDF)

of the Authenticated Key Exchange (AKE). If Alice was to included Bob’s phone number

in the KDF Charlie would compute a different decryption key than Alice’s encryption

key. This attack seems to be out of scope of the Signal developers [32]. For Bob to

perform the attack in Signal, Bob downloads Charlie’s public keys from the server and

uploads them as his own. The server does not require proof of knowledge of private

keys while uploading public keys.

Cohn-Gordon et. al. [31] formally analyze the Signal protocol as a multi-stage key

exchange protocol. They provide the most detailed and up-to-date description of the

protocol. They also define and analyze a freshness model for considering forward secrecy

in Signal.

Kobeissi et. al. [33] provide a novel method for automated verification of protocols

and implementations. They implement a variation of Signal in their framework and

apply their automated analysis. They also demonstrate the UKS attack exists in the

protocol and a message replay attack exists when a prekey is not used in the initial

message of a session.

Rösler et. al. [34] recently analyzed security properties of group conversations in

three common messaging applications including Signal. They describe a new model

for considering the security of group messaging and define similar properties to ours.

Their properties are end-to-end confidentiality, perfect forward secrecy, future secrecy,

message authentication, traceable delivery, no duplication, no creation, and closeness.

Traceable delivery is the property that a sender is notified of successful or unsuccess-

ful deliver of a message. No duplication or creation are the properties that a message

can not be replayed and an outside user can not send a message to the group. Finally

closeness is the property that only administrative users can modify the group partici-

pants.

They identify and demonstrate two attacks we identified in parallel in this work.

One attack allows a non-participating user to update group membership and the other

18

allows an adversary to forge receipt of a message. They also identify a potential message

ordering vulnerability but describe the attack incorrectly. We discovered these attacks

independent of their work.

3.1.2 Threat Model

Signal does not have a formally documented threat model. We first describe five ad-

versaries with differing capabilities and indicate which ones we believe to be included

Signals original threat model.

Adversary 1 is that of a passive Internet Service Provider. The adversary can mon-

itor all internet traffic originating from and distend for a target device. We assume the

adversary can not monitor SMS or voice data.

Adversary 2 has the capabilities of a Signal user participating in a target conversa-

tion. The adversary may only control messages originating from its own device.

Adversary 3 is that of an active Internet Service Provider. The adversary may drop,

inject, delay, or reorder network traffic but can not break any of the cryptographic

assumptions of Signal or TLS.

Adversary 4 is an adversary that has access to the private TLS keys of Signal or a

domain front of Signal. This adversary may intercept a target TLS session between a

device and the Signal infrastructure.

Adversary 5 is capable of corrupting the Signal servers. The adversary may modify,

inject, drop, or reorder any message between any pair of users.

We assume that Signal’s threat model only includes Adversaries 1 and 3. A more

realistic threat model would include all of our adversaries. These adversaries represent

the capabilities of Nation State Adversaries that are known to exist.

3.1.3 Secure Conversation Properties

We now describe the security and usability properties of Section 2.3 and how to specif-

ically relate to Signal. This section also discusses the academic research related to each

property in Signal.

Confidentiality is the property that only the intended recipients are able to read

a message. [18] and [31] show that the Signal protocol provides confidentiality but in

19

Section 3.2.1 we show a passive adversary can learn the contents of some attachments.

Integrity guarantees that a message will not be accepted if it has been modified

in transit. Since Signal provides authenticated encryption it also provides message

integrity.

Message Authentication implies all recipients can verify the source of a message.

Authenticated encryption also implies message authentication.

Participant Authentication implies all participants in a conversation receive proof of

possession of a long-term secret from all other participants. The Unknown Key Share

Attack is an attack against participant authentication.

Participant Consistency is the property that all participants agree on the partici-

pants in a conversation. The UKS attack is an attack against participant consistency.

We demonstrate another attack against participant consistency of group conversations

that is easier to exploit in Section 3.3.

Destination Validation is provided when a recipient of a message can verify they are

an intended recipient of the message. The existence of the Unknown Key Share attack

violates destination validation. Since the attack may have been performed the recipient

can not be convinced they were the intended recipient.

Forward Secrecy guarantees all previously encrypted messages remain confidential

after all key material has been compromised. [31] and [33] show Signal is forward secure

under a passive network adversary that may corrupt past messages.

Backward Secrecy guarantees future encrypted messages remain confidential after

compromising key material. [33] shows Signal is backward secret under a passive adver-

sary that may reveal past key material.

Anonymity Preserving is the property that the protocol does not undermine any

privacy preserving features of the underling transport protocol. This is not a stated

goal of Signal but the application does attempt to circumvent state level censorship.

We describe a theoretical attack against this circumvention along with a participant

correlation attack in Section 3.4.

Speaker Consistency implies all participants agree on the order of messages as sent

by an individual participant. We demonstrate an attack against speaker consistency

under Adversaries 2, 4, and 5 in Section 3.2

Causality Preserving is provided if messages are only displayed after messages that

20

causally proceed them. We demonstrate an attack against causality preservation under

Adversaries 2, 4, and 5 in Section 3.3.

Global Transcript is the property that all participants see all the messages in the

same order. Since Signal is not speaker consistent or causality preserving it can not

provide a global transcript.

Message Unlinkability is the property that proving ownership of one messages does

not prove ownership of another.

Message Repudiation exists if there does not exist a cryptographic proof that a user

authored a message. [18] discusses message repudiation and argues Signal provides this

property.

Participant Repudiation exists if there does not exists a cryptographic proof that a

user participated in a conversation.

Out-of-Order Resilience is provided if a message is displayed when it has been de-

layed in transit. This was an important goal of Signal’s design.

Dropped Message Resilience is provided if a message can be decrypted without re-

ceipt of all previous messages. This was another important goal for Signal.

Asynchronicity is provided if messages can be sent and received when other partic-

ipants are offline. Asynchronicity was a requirement of the Signal protocol.

Multi-Device Support implies an individual user may participate in a conversation

under the same identity from multiple devices. Signal supports multiple devices.

No Additional Service. Signal requires a central service for user key distribution,

and message routing and caching.

Computation Equality is the property that all participants in a conversation perform

computation equivalent operations. Signal provides computational equality between

participants.

Trust Equality is provided if all participants ave equivalent responsibility. Signal is

trust equivalent.

Subgroup Messaging allows messages to be sent to a subset of the participants of a

group conversation. We show Signal can provide subgroup messaging but these messages

appear as normal messages in the group conversation effecting the transcript consistency.

There does not exist a user interface to subgroup messaging.

Contractable groups are supported if participants may leave a group conversation

21

(a) Sender notification of sent message.
(b) Sender notification of received message.

Figure 3.2: Sender notification of successful message delivery

without restarting the protocol. Signal provides contractible groups.

Expandable group are supported if participants can join a group without restarting

the protocol. Signal provides expandable groups. We demonstrate a vulnerability in

Section 3.3 where Signal allows participants to be added to a group by non-participating

Signal users.

3.2 Protocol Usage Attacks

The process of Alice sending an encrypted message to Bob via the Signal application is

as follows:

1. Alice computes a ciphertext for her message and assigns it an ID of her current

timestamp. She then uploads the message and ID to the server addressed for Bob.

2. The server notifies Alice when the message has been stored for delivery to Bob.

The application notifies the user via a checkmark next to the outgoing message.

3. If the server has an open websocket channel with Bob the server will send the

message to Bob over this channel. If not the server will send a notification to Bob

via Google Cloud Messenger (GCM) then Bob will download the message via an

HTTP GET request to the server.

4. After receiving the message Bob notifies the server of receipt via the websocket

22

channel or an HTTP DELETE request. Bob then processes the ciphertext for

display.

5. When the server receives Bob’s notification it creates a receipt message with a

source of Bob and destination of Alice. The server sets the ID for the receipt to

the ID of the message. The server sends this receipt to Alice.

6. When Alice receives the receipt the application adds a second checkmark to the

outgoing message.

Figure 3.2 shows the user interface of Alice when sending a message. The single check-

mark in (a) represents the message was received by the server. The double checkmark

in (b) informs Alice the message has been delivered to Bob.

The encrypted message format is

key material||counter||ciphertext

where the key material is used to ratchet the encryption keys, the counter is the sequence

number of messages sent from Alice to Bob. The message plaintext is formatted as

flags||body||attachment pointers||group context||expiration timer

The relevant fields of the plaintext are the body which contains the message to display,

the attachment pointers which contain the ID, key, and digest of an attachment along

with other information that is not relevant to this work, and the group context which

is described later.

When Alice includes an attachment in a message to Bob the following happens.

1. Alice request an attachment ID and an attachment pointer URL from the server.

2. Alice then generates a symmetric encryption key, encrypts the attachment with

this key, and uploads the ciphertext to the attachment URL.

3. Alice then creates an attachment pointer which contains the ID, key, and digest

of the attachment.

4. Alice sends an encrypted message to Bob which contains this attachment pointer.

23

5. Bob requests the attachment URL from the server for the ID in the attachment

pointer and downloads the attachment ciphertext.

6. Bob then verifies the digest, decrypts the ciphertext, and displays the attachment.

Our goal in rest of this section is to demonstrate our attacks against the Android Sig-

nal application downloaded from the Google Play Store. The application is distributed

with a pinned TLS certificate for the Signal server. We modified the APK to include

our own pinned certificate. This allowed us to intercept communication between the

application and the server and demonstrate attacks as adversaries 4 and 5. We used

mitmproxy to intercept and modify the connections between the application and the

server. We clearly state when we intercept or modify communication in this manner, it

is only required for two of our attacks.

3.2.1 Confidentiality

Signal, like other messaging applications, is commonly used to send animated images

in GIF format. Many messaging services provide integration with databases of gifs,

allowing for convenient search of gifs within the app. Signal introduced GIF searching

in January 2016, giving users access to the Giphy database inside the Signal application

and using Giphy’s network API [9]. In order to retain privacy for its users, Signal

deployed an HTTP proxy through which a TLS Tunnel is negotiated to Giphy servers.

The user’s query and Giphy’s response flows through this tunnel. According to Signal,

this arrangement prevents them from seeing the plaintext content of the search term or

the GIF being selected. Giphy sees the search term but not the address of the user who

issued the request [9]. We evaluated the strength of this approach against fingerprinting

attacks and found it to be lacking.

For an average user, the experience of sending a GIF is simple. She selects Giphy

from the attachments menu, opening a pane with a search box and beginning the proxied

phase of the transaction. She searches and selects an image, which downloads the image

to her phone. Once she clicks send, her connection is no longer proxied through an

HTTP proxy and the image is sent like any other attachment in Signal.

However, this approach presents an avenue for fingerprinting of Signal traffic. Signal

24

Figure 3.3: The top two images are always downloaded when the user makes a query
(assuming the images are not cached).

reveals the fact that an attachment exists by communicating directly with the attach-

ment server on both sides of the transaction. Both the sender and receiver use the same

amount of bandwidth in their communication with the attachment server and attach-

ments are padded deterministically to 16 bit alignment (in order to satisfy block cipher

requirements).

This makes it possible for adversaries 1, 3, 4 and 5 to fingerprint a victim’s traffic and

obtain with reasonable accuracy the image and the search term that the user entered.

This is made easier by the following conditions:

• Users are most likely to pick items that occur earlier in the list of search results.

If users cannot see the image they are looking for, they are more likely to modify

their search term than scroll down a significant amount.

• There are very few collisions (Our scrapes returned 30 cases) of image ciphertext

sizes between terms on the first two images.

25

• The Signal application downloads images as the user scrolls through the list, al-

lowing the adversary to select an image from a smaller subset of images that are

loaded rather than the set of all images in the database.

As a proof of concept, we developed a low cost method for scraping Giphy servers

to obtain a database of images to correlate against Signal traffic. Our script queries

Giphy in the same manner as Signal. Each query returns a list of 100 items encoded

in JSON format, including sizes. It iterates through a list of search terms, parsing and

enumerating 100 items from each search (Signal requests 100 results at a time). For

each image the size, ciphertext size, and position in the displayed list is recorded. This

makes for a database of about 92,000 images. We note that some searches returned less

than 100 results.

The list of search terms was obtained from Giphy by scraping for hashtag terms on

each of the categories subpages on giphy.com. There are about 25 categories, which

include ‘actions’, ‘emotions’, ‘reactions’, and ‘animals’ among others. At the time of

writing our script resulted in 1030 unique search terms. These terms remained consistent

for the duration of our research.

The database was inexpensive to build. The script had a run time of 423 seconds

on average running on an Intel Xeon 5500 Core i7 CPU. Making search queries to

Giphy was the bottleneck in the process, taking on average 361 seconds. Each scrape

downloaded 47 kB of data.

We also studied the long term relevance of our scraped data. We ran our script

hourly to determine the consistency of the Giphy database. We considered images to

be consistent if they remained in the same position in the list using the same search

term as before. Under this definition, 90% of images remained consistent after 7 hours.

We also looked at the consistency of the top two images in each search, as these images

are always loaded for every query. 90% of those images remained consistent after 87

hours (3 days and 15 hours). Therefore, an adversary can scrape every 7 hours for high

consistency, or scrape every 87 hours for lower but manageable consistency.

We offer two algorithms for fingerprinting Giphy images from a trace of Signal traffic.

We consider a naive algorithm, which returns an exact image and term 65% of the time

and otherwise narrows it down to a range of images. We also consider a similar algorithm

that expends slightly more resources to get nearly exact results. We refer to this as the

26

‘Precise Algorithm’. Both algorithms are enumerated below. We assume the victim

searched with a term within the adversary’s list of terms and that the adversary has

scraped Giphy at the same time. We also assume the user has not cached any images.

1. Find the ciphertext size of the image from network flows between the devices and

the Signal attachment server.

2. If the ciphertext size is unique in our database then the process is complete. If

there is a collision create a set of the first two image sizes downloaded after the

search. The Naive Algorithm will stop here and not investigate collisions.

3. Compare this set with corresponding sets inside our database to obtain the term.

4. Find an image with the same size within the subset of images you have in our

database for that search term.

We see in Table 3.1 a demonstration of the precision that can be expected from

both algorithms. Both algorithms can only give a range of images due to collisions of

image size, but the expected range differs between algorithms. The Naive Algorithm will

return a range of less than five images in 99.29% of cases, while The Precise Algorithm

provides an adversary with 2 or less images in all cases. The Precise Algorithm will

also return the search term used to find the image, which is not the case with the Naive

Algorithm.

Size collisions of images that appear in the same search term are the reason the

Precise Algorithm cannot obtain the exact image, but these cases are rare. In one

scrape, we discovered 430 pairs of images which had size collisions within the same

search term. 339 of these pairs were instances of duplicate images, which we discovered

by hashing the downloaded images. This left 91 pairs of genuine collisions of different

images which are linked by appearing in the same search term.

Mitigating this attack is difficult as there is only a limited plaintext space of images

on Giphy. Since the HTTPS connection between the application and Giphy leaks so

much information any mitigation would require Giphy to pad the HTTP response sent

to the client. This is unrealistic to assume of Giphy so Signal should stop tunneling

Giphy connections and consider dropping Giphy integration completely.

27

Table 3.1: Algorithms

Adversary
Algo-
rithm

Range of Images
≤ 5 ≤ 4 ≤ 3 ≤ 2 1

Naive 99.29% 97.89% 92.8% 75.93% 65.33%

Precise 100% 100% 100% 100% 99.85%

3.2.2 Speaker Consistency Attacks

We demonstrate two speaker consistency attacks. These attacks can be performed by

adversaries 4 and 5, that is an active MITM or a corrupt server.

Dropped Messages

The Signal application is vulnerable to dropped messages. An adversary with the ca-

pability to intercept and modify communication between the message recipient and the

server can selectively drop messages while going unnoticed by the sender and receiver.

We describe the attack on a conversation where the adversary drops a message sent

from Alice to Bob. When Bob downloads the message from the server in step (3),

the adversary modifies the response to contain an empty list of messages. Then the

adversary acts as Bob in step (4) and sends a receipt to the server for the message.

The server will then act as though Bob issued the delete request by sending a receipt to

Alice for the message. The conversation appears as though the messages was delivered

correctly to both Alice and the server but Bob has not seen the message.

Message Order

The Signal application does not verify the order of messages when retrieving the list

from the server. We detail an attack on message order in a conversation between Alice

and Bob.

To break the speaker consistency property our adversary intercepts the message

retrieval list from the server to the Bob in step (3). If there is only a single item in the

list, the adversary can send an empty list to the Bob. If there is two or more items in

the list our adversary reverses the order of the list. Bob will display these messages in

the order they appear in the list. Bob will then acknowledge receipt of these messages

28

(a) Alice’s view of the conversation. (b) Bob’s view of the conversation.

Figure 3.4: Dropped message attack experience by Alice and Bob.

29

to the server in reverse order in step (4). Our adversary simply reverses the order of

these acknowledgments. Alice and the server assume the messages were displayed in the

correct order. Figure 1.1 shows the conversation as seen by Alice and Bob when this

attack is carried out.

Mitigations

To mitigate these two attacks the application should trust but verify the server. Receipts

of messages should be end-to-end authenticated and include enough information for the

sender to verify in-order delivery.

The sequence number of the message should be used to guarantee in-order delivery.

An early goal of Signal is to support asynchronous channels for encrypted messages.

Since version 2.7.0 Signal no longer supports SMS and only allows communicating with

the server over TCP. There is no need to display messages out-of-order anymore. Mes-

sages should never be dropped or delayed.

The receipt of a message should be end-to-end authenticated. As it stands the

Signal server creates the receipt that is sent to the sender. It should be generated on

the receiving device and authenticated in the same manner as encrypted messages.

We stress that there is currently to much trust in the server. With simple changes

to the application it could be a stronger trust but verify model.

3.3 Group Conversation Attacks

Group conversations were added to Signal in an ad hoc manner. The application only

maintains a single Signal protocol session between any two parties. Group conversations

are tunneled over these two party protocol sessions.

Recall the encrypted and plaintext message formats from Section 3.2. The group

context data is formatted as

ID||type||name||members||avatar

where ID is the ID of the group. The type field is one of unknown, update, deliver, quit,

or request info. The name is the group name displayed to the user. Members is a list

30

of phone numbers of the participant in the conversation, and avatar is an attachment

pointer to an image for the group avatar.

In this work we focus on update and deliver messages. A group message of type

deliver indicates the body of the plaintext is to be displayed to the group. Update

messages are used to setup or add participants to a group conversation.

The process of Alice setting up a group with Bob and Charlie is as follows:

1. Alice generates a random group ID and creates a group context message of update

type. She sets the members to include Alice, Bob, and Charlie.

2. She then encrypts and sends the message to Bob and Charlie individually using

the Signal protocol session she maintains with each. The messages are sent in the

same manner as two party messages discussed prior.

3. Bob and Charlie receive the messages and create a group with all three participants

and the ID, name, and avatar provided.

Updating a group is the same as setting up a group except the existing group ID is used

instead of generating a new one. Sending a message to a group is similar except the

message has type deliver and the body of the plaintext holds the message to display.

The speaker consistency attacks discussed earlier exist in both two party and group

conversations. We now describe three attacks that can be performed by an adversary

that can corrupt a participant, intercept communication between a single participant

and the server, or corrupt the server. The adversary only needs one of those capabili-

ties (adversaries 2, 4, and 5).

Participant Consistency

A malicious participant would perform the attack as follows. In our attack an adversary

Eve constructs a group that contains Alice, Bob, Charlie, and Eve. Eve convinces Alice

and Bob that the group contains all four participants while convincing Charlie that the

group contains Alice, Charlie, and Eve but not Bob. To create the group Eve creates

a group update message containing the phone numbers for Alice, Bob, Charlie, and

Eve with a random group ID. Eve encrypts and sends this message to Alice and Bob.

Then Eve constructs a new group update message with the same ID but with only the

31

(a) Alice’s view of the conversation. (b) Charlie’s view of the conversation.

Figure 3.5: Alice’s and Charlie’s view of a conversation without participant consistency

32

phone numbers of Alice and Eve. She then encrypts and sends this message to Charlie.

Figure 3.5 shows Bob’s and Charlie’s views of the group under this attack.

There currently exists an open vulnerability in Android and desktop clients where

the author of a group update message is not verified to be in the group. This allows any

Signal user with knowledge of the group ID to add any new participants to the group.

To obtain the group ID the user must have at some point participated in the group or

corrupted a participant. This vulnerability was independently discovered by Rösler et.

al. [34]; they refer to it as group burgling.

A MITM adversary may perform a similar participant consistency attack. For a

group setup by Alice between Alice, Bob, and Charlie. When Alice sends the encrypted

group update messages to the server, she will send two at the same time: one addressed

to Bob and one addressed to Charlie. The adversary drops the message for Charlie.

Alice and Bob will believe they are in a group conversation with each other and Charlie

but Charlie does not participate in the group.

Causality Preserving Attack

Signal also does not preserve casuality of messages. We describe an attack from an

adversary with MITM capabilities. The goal of the adversary is to convince Charlie

that Bob has responded to his message when in fact Bob replies to Alice’s.

The adversary only needs to MITM connections between a single participant, Alice,

and the server. First Charlie then Alice send a message to the group. When the

adversary sees two messages from Alice, one destined for Bob and the other for Charlie,

the adversary stores the message for Charlie and only forwards the message for Bob

to the server. Bob then replies to Alice’s message, sending the reply to both Alice

and Charlie. After the reply is received by Charlie, the adversary forwards the stored

message to the server. The transcript for Alice and Bob will contain the conversation

as intended by Alice and Bob but Charlie’s conversation will have a different meaning.

Figure 3.6 depicts Bob’s and Charlie’s view of the conversation.

3.3.1 Mitigations

To provide participant consistency all users should participate in setup and updates

to come to a consensus on the group similar to [16]. This mitigation will not allow

33

(a) Bobs view of the conversation. (b) Charlies view of the conversation.

Figure 3.6: Bob and Charlies views of a conversation that does not preserve causality

34

asynchronous group setup. Consistent asynchronous group communication is still an

open research problem.

Currently the Signal application creates a single Signal protocol session between any

two participants. This protocol session is used to send all two party conversation mes-

sages and all group messages between the two users. To mitigate the speaker consistency

attacks a new Signal protocol session should be created for the two party conversation

and for each group conversation between the participants.

Causality preservation of group conversations requires more information to be en-

coded within the encrypted message. Each group message should include a reference to

the most recently received message. This reference could be a hash of the most recently

received message. Since there does not exist a global ordering of messages, a simple

sequence number does not exist to use for message order. The digest can be verified

to exist in the transcript before the new message is displayed. These mitigations move

away from a blindly trusted server to a stronger trust but verify model.

3.4 Traffic Analysis

Former Director of the Central Intelligence Agency General Michael Hayden is quoted

stating ”We kill people based on metadata.” [35] It is not sufficient to provide only con-

fidentiality of messages. We should also consider the metadata of a conversation, such

as who is participating in a conversation and when messages are being sent. There is an

ongoing research effort to provide private communication but little work has attempted

to do so for end-to-end secure messaging.

Although it is not a goal of Signal to hide metadata, we quickly discuss what is

being leaked to a passive network adversary and potential mitigations for these leaks.

These mitigations may not be difficult to implement with a trusted server model.

3.4.1 Censorship Circumvention

Signal implements domain fronting [36] to circumvent censorship in repressive countries.

Domain fronting is automatically applied by the application when associated with phone

numbers from those countries. Domain fronting is a censorship circumvention technique

that has been implemented by multiple applications [36]. The technique works by

35

connecting to an overt host in a hard to censor cloud provider, then routing the traffic

to the covert host. When using domain fronting the Signal application will connect

to one of five google.com hosts at random and included a Host header field used by

Google servers to reroute the connection to the correct host within Google’s cloud. The

application has a separate Google certificate pinned when accessing Signal via a fronting

domain. This provides Google with the capabilities of adversary 4.

Previous research has looked at how effective domain fronting is in other applications.

Wang et. al. [37] applied theoretical fingerprinting attacks to a campus network traffic

dataset to evaluate each attack and finds the domain fronted services to be highly

fingerprintable with low false positive. We believe Signal to be highly fingerprintable as

well due to its traffic pattern being fairly distinct from normal HTTP web traffic.

Signals traffic pattern is consistent between connections to the server while sending

or receiving messages. We discuss the traffic pattern in enough detail to fingerprint

the application but can not perform a qualitative analysis without representative back-

ground traffic which we were not able to procure for this research.

When the application is launched it first creates a websocket connection to the

server that stays idle except for heartbeat messages. To send a message the client sends

a relatively constant sized message to the server over the websocket channel and receives

a short OK message in response. When an encrypted message is received, the server

pushes a relatively constant sized message to the client over the websocket channel and

a short OK is sent to the server in response. When receiving a message while the

application is closed, the phone receives a Google Cloud Messaging (GCM) notification

then makes an HTTP GET request to the server for all messages in the client’s inbox.

The server sends a response with all the requested messages. After parsing the list,

the client issues an HTTP DELETE for each message individually. These messages

have consistent sizes and consistent timings. This differs from normal web traffic, which

downloads a file and may optionally create more connections or download more files

after the initial download.

Finally, the application does not use domain fronting for the Giphy proxy or for

attachment downloads, leaving the users vulnerable to detection.

To increase the censorship resistance of domain fronting in Signal, the application

should use domain fronting for all network traffic. Avoiding fingerprinting is still an

36

Figure 3.7: Network traffic pattern for sending and receiving Signal messages.

ongoing research problem.

3.4.2 Conversation Metadata

We assume an adversarial network provider. The adversary may record information

about network traffic but not modify or delay it in any way. These are the capabilities

of an ISP. The adversary has knowledge of all DNS traffic of the clients and all size and

timing of packets in a network stream.

When Alice sends a message to the server to be delivered to Bob, the server sends

the message if there is an open websocket channel between Bob and the server. Then

the server sends a receipt to Alice. The only time this pattern differs is if there is not a

websocket channel between the server and Bob, in which case the server sends a GSM

message to Bob. Then Bob fetches the message and deletes it, causing the server to send

a receipt to Alice. The clients and the server try to minimize the latency and network

traffic produced by Signal. This traffic pattern should allow a passive adversary to infer

participants of a conversation.

To demonstrate Signals network traffic patterns we sent 100 message from a sending

client to a receiving client and recorded the timing and size of TCP packets. Figure 3.7

represents the network traffic of these messages. Positive values represent outgoing

traffic and negative incoming traffic. We summed all traffic in 100ms windows of sending.

The plots show that there is very little delay in sending messages and both the sender

and receiver have consistent spikes in the first 200ms.

37

Mitigating these metadata leaks may not be too difficult. Since Signal relies on

a trusted server, it can simply inject delays and noisy messages between clients to

degrade the accuracy of these simple attacks. Without an accurate model of Signal’s

deployment and usage we cannot provide further information on how much noise to add

to the communication.

The application may also provide access to Signal via Tor. This would hide the

destination of the client from the adversary and help hide the traffic pattern of Signal.

This may not hide all the metadata from a determined adversary but will raise the bar

for mass surveillance.

Chapter 4

Synchronous Secure

Communication

38

39

In this chapter we propose a novel protocol for secure group instant messaging.

A natural first approach to secure electronic conversations is to encrypt and sign the

chat messages. This is efficient and provides confidentiality and authentication. But

the act of signing the messages leaves a record that a user participated in a conversation

and what that user said. This record is a loss in security from offline conversations. In

addition to maintaining repudiability, online group conversations present further chal-

lenges; there is also an implicit agreement to the participants of an offline conversation

by seeing everyone involved, and an agreement on the transcript of the conversation by

virtue of every user hearing the same conversation.

Earlier works have attempted to address these problems. Borisov, Goldberg, and

Brewer [15] introduced the challenges of providing similar security properties for on-

line conversations and offline conversations, and proposed the original OTR proto-

col, which provides these properties but is limited to a two user setting. Multi-party

OTR (mpOTR) [16] was introduced for secure group conversations. While offering con-

fidentiality, authentication, participant consistency and repudiation, mpOTR does not

provide message unlinkability, since all messages from the same sender in a transcript

can be linked together; transcript consistency, since an adversary controlling the net-

work can cause participants to terminate with differing transcripts; or a mechanism for

dynamic groups.

Two more recent systems have the functionality to handle dynamic groups, GOTR [17]

and Signal [5]. GOTR is similar to our work, but lacks message unlinkability and does

not provide participant consistency or strong transcript consistency. Signal’s goals are

different from the previously mentioned works, in that Signal focuses on asynchronous

messaging. In Chapter 3 we have shown Signal does not provided speaker integrity, a

global transcript, or participant consistency.

We describe a new protocol for group OTR instant messaging, Symmetric Group-Off-

the-Record (SYM-GOTR). SYM-GOTR is the first protocol to simultaneously provide

message unlinkability, participant consistency, and strong transcript consistency for

dynamic groups, allowing an online group chat with similar properties to private offline

conversations. SYM-GOTR provides high-security for small synchronous groups where

as previous protocols have made a trade-off in terms of security properties provided to

support larger or asynchronous groups. Compared to previous work, SYM-GOTR is

40

efficient in terms of the number and size of protocol messages; under benign conditions

all operations require a constant number of messages sent between all pairs of users and

all messages are of constant size.

At a high level, SYM-GOTR works as follows. First, each pair of users constructs

a secure deniable peer-to-peer (p2p) channel between them. Using these p2p channels,

each user shares a group-wide secret, and each pair perform a participant consistency

check to verify that all users agree on the participants of the group. To send a broad-

cast message, a symmetric key for each user is derived from the shared secrets of all

participants. This key is used to encrypt the message, then it is broadcast to all users –

in contrast to GOTR, the broadcast message has constant size in the number of partic-

ipants. Because any group member can compute the encryption key of any other group

member, these broadcasts are deniable. To achieve the global transcript property users

then pairwise compare the digest of the received broadcast – message origin is authen-

ticated in this step. The p2p digest sharing messages are signed with an ephemeral

key which encourages participants to behave honestly or be detected and exposed as

malicious. When a user joins or leaves the group, users share new group secrets and

perform another participant consistency check. With these new secrets the group can

again send secure broadcast messages.

Along with the protocol description we provide an open-source Java library imple-

menting SYM-GOTR1 . We analyze the overhead of this implementation and show its

practicality for everyday use. We also provide a plugin2 for the Jitsi instant messaging

client to bring SYM-GOTR to XMPP Multi-User Chats.

In Section 4.1 we formally describe the goals of SYM-GOTR and discuss the current

state of related private group messaging protocols. Section 4.2 describes the proto-

col with Section 4.3 overviewing the security of SYM-GOTR with the full proofs in

Section 4.6. We analyze our implementation’s performance in Section 4.4. Finally we

discuss some challenges of implementing a secure messaging application in Section 4.5.

1 https://github.com/mschliep/gotr4j
2 https://github.com/mschliep/jitsi

https://github.com/mschliep/gotr4j
https://github.com/mschliep/jitsi

41

4.1 Private Group Instant Messaging

4.1.1 Goals

In Section 2.3 we presented a list of goals a secure messaging protocol may provide.

Below we describe the goals as they relate to the secure instant messaging model and

specifically SYM-GOTR. In this chapter we separate the Conversation Integrity and

Deniability properties to be consistent with Unger et al. [14].

Conversation properties. Basic properties of a secure group conversation protocol

should include:

• Confidentiality A message may only be read by conversation participants.

• Integrity No honest party will accept a modified message.

• Authentication Participants receive proof of possession of a long term secret

from every other participant. Additionally, all participants can verify the author

of a broadcast message.

• Participant Consistency All honest parties agree on the set of participants.

• Destination Validation Honest parties can verify they are an intended recipient

of a message.

• Forward and Backward Secrecy Previous and future messages are secure when

the key material is compromised.

• Speaker Consistency All honest parties agree on the sequence of messages sent

by any one participant.

• Causality Preserving Messages may only be displayed after messages that

causally proceed them have been displayed. If two messages (m2, m3) are both

sent in response to m1, a causality-preserving protocol can display the messages

in the order (m1, m2, m3) or (m1, m3, m2), even if m2 arrives before m3.

• Global Transcript All participants agree on the order of all messages before

processing the next message. A global transcript implies speaker consistency and

causality preservation.

42

• Anonymity Preserving The protocol does not undermine the anonymity fea-

tures of the underlying messaging service or transport.

Deniability properties. Unger et al. also enumerate several properties related to

deniability of conversations. Adapted to our setting these include:

• Message Unlinkability Proving authorship on one message does not prove au-

thorship of any other message.

• Message Repudiation There is no way to prove a user authored any message.

• Participation Repudiation There is no way to prove a user participated in a

chat.

Group properties. Finally, we also include the following goals that make sense when

a conversation has three or more participants, as this is an explicit goal of SYM-GOTR.

• Computation Equality All participants perform the same computations.

• Trust Equality All participants are trusted to the same degree.

• Contractible Membership Participants can leave without restarting the pro-

tocol.

• Expandable Membership Participants can join without restarting the protocol.

Unger et al. [14] discussed additional properties that are sometimes mutually exclu-

sive to ours. The properties we do not offer focus on asynchronous protocols without a

global transcript. These properties are:

• Out-of-Order Resilient The ability to process a message that has been delayed

in transit.

• Dropped Message Resilient Messages may be processed without receipt of all

previous messages

• Multi-Device Support Users can participate in a conversation from multiple

devices. This is a technical detail that we do not address in this work. With

SYM-GOTR users can act as a unique participant for each device used in the

session.

43

• Subgroup Messaging All messages in SYM-GOTR must be sent to all partici-

pants of the conversation. If users wish to communicate with a subgroup they can

form a new SYM-GOTR session with the subgroup of participants.

Finally, SYM-GOTR cannot protect against Denial of Service (DoS). DoS is trivial

in a group communication system with computation and trust equality. To provide a

global transcript every user must see a receipt for a message from every other participant.

If an adversary can cause a DoS of this receipt the protocol cannot guarantee transcript

consistency. SYM-GOTR halts until the DoS ends or the user is removed from the group.

We draw an analogy to an in person group conversation. If a member of the conversation

does not wish to participate and abstains from the group that member is causing a DoS

on the group conversation. The group can simply continue the conversation without the

disruptive participant, SYM-GOTR can be continued in a similar fashion. This is an

inherent problem of group conversations without a leader. A weaker global transcript

definition could allow conversations to make progress while under DoS. This weaker

property is akin to an asynchronous communication model.

4.1.2 Prior Secure Messaging Protocols

The original OTR protocol [15] provided the security properties we desire for two party

communication but there does not exist a mechanism to scale the protocol to a group

setting. Goldberg et al. proposed a multi-party OTR protocol (mpOTR) [16] with a

subset of our goals. They were the first to discuss deniability in the group setting, both

in terms of message deniability and also the requirement of participant repudiation.

mpOTR provides secure group messaging for a static set of users. Briefly, the mpOTR

protocol operates as follows. Out of band, users agree to the set of participants. Then

in-band, users perform a group consistency check, set up deniable peer-to-peer (p2p)

channels between each pair of users, and then share an ephemeral signature verification

key. After this the group performs a Group Key Agreement (GKA), the details of which

are not addressed. When a user wishes to send a message, they encrypt it with the group

key, and sign it with their ephemeral signing key. After the conversation is complete,

users sign and share the lexicographical ordered digest of the entire chat, along with

any unreceived messages.

44

In regards to transcript consistency mpOTR assumes a weaker adversarial model

than SYM-GOTR. Their adversarial model does not consider an adversary with full

control of the network. Additionally mpOTR can only accommodate conversations

between a static group. mpOTR does not provide message unlinkability, causality con-

sistency, or a global transcript. In particular, message unlinkability is violated by the

use of a single ephemeral signing key for an entire session. Moreover, causality con-

sistency and global transcript consistency is violated since the signed digests are over

lexicographically ordered messages. Finally, mpOTR only provides partial forward and

backward secrecy between sessions, not during a single session.

Liu, Vasserman, and Hopper [17] proposed an improved group OTR (GOTR) pro-

tocol which we refer to as GOTR due to its use of the Burmester-Desmedt group key

agreement protocol. The design and goals of their protocol are most similar to our work.

As we will discuss, however, GOTR provides only partial message unlinkability and does

not offer participant consistency, or strong guarantees about a global transcript. The

protocol provides optional forward and backward secrecy at the cost of re-executing the

setup phase. Finally, the size of some messages in GOTR scales linearly with the size

of the group, which makes the protocol inefficient for larger group conversations.

GOTR works as follows. Out of band, users agree to the list of chat participants.

Users set up secure p2p channels between every pair of users Ui and Uj . Then Ui and Uj

perform a three step process to compute a Burmester-Desmedt GKA [38] between the

pair. Each user then uses a “Hotplugging” property to combine their n − 1 (pairwise)

group keys into a single “circle” key. Each user broadcasts their circle public key, and

all other users are able to compute the circle key from having participated in a single

BD-GKA with that user. To send a secure message a participant uses a Key Derivation

Function (KDF) to generate a symmetric encryption and MAC key from their circle

key, then encrypts the message and chat transcript digest with the keys. The user

then broadcasts the encrypted message along with their circle public key to the group.

Upon receiving the broadcast all users perform a digest consistency check over the p2p

channels. This allows the participants to agree upon the author of the message.

GOTR provides partial message unlinkability in that if it can be shown that user Ui

contributed some message to a conversation, the user’s confirmation of the conversation

digest implicitly confirms any previous messages attributed to the user in the transcript,

45

while not linking the user to messages appearing later in the transcript (in contrast to

mpOTR, in which confirming one message sent by Ui confirms all messages sent by Ui

in the transcript).

4.1.3 System Model

The system model of SYM-GOTR consists of clients and a server. No client is trusted

more than any other and all operations are communication and computationally equiv-

alent. The server is used for group coordination and routing messages between the

clients. There are two types of messages, peer-to-peer (p2p) and broadcast. Peer-to-

peer messages may be sent between any pair of clients. Broadcast messages should be

broadcast from one client to every other client in the group. The server should main-

tain a global order of broadcast messages within the group. Client agreement of the

broadcast message order is enforced by the protocol.

In practice we provide a plugin for the Jitsi IM client that allows SYM-GOTR

conversations with existing XMPP servers. The server requires no modifications. The

conversation takes place in an XMPP Multi-User-Chat (MUC). The clients rely on

the server to broadcast message and participant changes but the conversation cannot

progress until all clients agree on the participants and transcript.

4.1.4 Threat Model

The properties of SYM-GOTR are provided under a realistic threat model. We describe

three threat models and the properties that hold under each. Multiple threat models are

needed because some properties are trivially broken by a strong adversary. For example,

an adversary with the ability to corrupt SYM-GOTR participants can trivially decrypt

messages and break the confidentiality property.

The first adversary we consider has the abilities to perform active and passive net-

work attacks. The adversary may intercept, drop, inject, and delay messages between

any participants or the routing server. The adversary may also corrupt a subset of the

participants. Finally, this adversary may kick any participant from the SYM-GOTR

session and participate in multiple SYM-GOTR sessions with the participants. These

abilities are those of an adversarial routing server with corrupt participants.

46

Under this first model SYM-GOTR provides message integrity, authenticity of par-

ticipants and their messages, consistency in the set of participants and their secrets

among participants, destination validation, speaker consistency, causality preservation,

a global transcript, message unlinkability and repudiation along with participant repu-

diation.

The second adversary we consider is that of a malicious routing server. The ad-

versary may perform passive and active network level attacks, kick participants from a

SYM-GOTR session, and participate in multiple non-target SYM-GOTR sessions with

the victim(s). Message confidentiality is provided under this threat model.

Our third threat model is that of a passive network level adversary with access to

any participant’s keys at a given time. This may be an adversary with passive network

access while the SYM-GOTR session is ongoing, or an adversary that has stored all

SYM-GOTR session network traffic for later attacks. The adversary may participate in

non-target SYM-GOTR sessions with the victim. Forward and backward secrecy hold

under this third adversarial model.

4.2 Design

4.2.1 Strawman Design

A simple protocol would utilize deniable and authenticated two party channels between

all pairs of users in a group to generate ephemeral encryption keys along with ephemeral

signing and verification keys for each user. Then to send a message the users would

simply encrypt and sign the message then broadcast it to the group. The group then

performs a consistency check on the broadcast before processing the next message. This

approach is similar to mpOTR with consistency checks after every broadcast. However,

this simple protocol does not achieve message unlinkability. Messages by the same

author within a single session are linked together via the author’s signatures.

To provide unlinkability, new signing and verification keys need to be generated and

distributed for every message. Distributing these new verification keys in an authenti-

cated and unlinkable manner is not cheap. The first idea would be to include them in

the plaintext of the previous message. However, this method does not provide unlink-

ability. The signature on the previous ciphertext commits to the next verification key.

47

These verification keys must be sent over pairwise deniable, unlinkable, authenticated,

and confidential channels. This increases the communication cost of the protocol but is

needed to achieve all of the properties we want in secure group communication.

We now present the SYM-GOTR protocol.

4.2.2 Primitives

We rely on existing cryptographic primitives for SYM-GOTR. Let l be the system wide

security level in bits. Symmetric Authenticated Encryption(AEncK(M) andADecK(C))

is used to provide confidentiality and integrity of messages. For authentication we make

use of a group G of prime order p with generator g, where the Computational Diffie-

Hellman assumption holds.

Four collision resistant hash functions H{1,2,3,4} are used as follows. H1 : {0, 1}∗ 7→
Zp is used during the secure channel set up and H{2,3,4} : {0, 1}∗ 7→ {0, 1}l for participant

consistency, message consistency, and signature consistency respectively.

SYM-GOTR requires three cryptographically secure pseudo-random functions as

Key Derivation Functions(KDF): KDF1 : (G,G,G,U, U) 7→ {0, 1}l where U is the set of

all possible user identities, is used during secure channel set up; KDF2 : (S,G,U, U) 7→
{0, 1}l for key ratcheting; and finally, KDF3 : {0, 1}∗ 7→ {0, 1}l for broadcast message

keys.

SYM-GOTR uses a signature scheme for accusation of malicious group members.

The signature scheme consists of three functions: KeyGen() to generate a random

signing and verification key pair (ski, vki) for user i, Signsk(m) to sign the message m

with key sk, and V erifyvk(m, sig) to verify the signature sig of m with verification key

vk.

In our implementation the authenticated encryption scheme uses AES in Counter

Mode along with an HMAC of the ciphertext in an Encrypt-then-MAC fashion as de-

scribed by Bellare and Namprempre [39]. The IV is always 0 because symmetric keys

are never reused. The hash functions and KDFs are built upon SHA-256. The group G

is NIST-p256 and ECDSA is used for the signature scheme.

We also assume a messaging server. The server provides group coordination such as

group set up and participant change notification as well as peer-to-peer (p2p) commu-

nication channels between all participants and a broadcast channel for the group. We

48

also assume the server attempts to send broadcast messages in a consistent order. This

order is verified by all clients before message are displayed and the conversation can

progress.

When user Ui calls Send(Sid, Uj ,m) the server sends m to Uj for session Sid from

Ui. Similarly when Ui calls Recv(Sid, Uj) the function returns the next message m

sent by Uj in session Sid to Ui. The broadcast channel provides BcastSend(Sid,m)

which broadcasts the sender Ui and the message m to all users of session Sid. Finally

the broadcast channel also provides BcastRecv(Sid) returning the next broadcast

message m for session Sid along with the claimed sender Ui. These methods are not

trusted and do not need to provide any security properties. Sid is a unique session

identifier that is determined out-of-band (chatroom name). Users must only initiate

a single SYM-GOTR session per Sid. The users U of a SYM-GOTR session are also

determined out-of-band. The protocol enforces all participants agree on the Sid and

participants.

4.2.3 Overview

The high level view of our protocol is to set up deniable, unlinkable, forward and back-

ward secure, authenticated channels between every pair of users. Then use these secure

p2p channels to communicate group state and check the consistency of the transcript.

Each user Ui generates a long-term DH public-private key pair (lpki, lski). This key pair

may be used between protocol sessions to maintain the same identity. Ui also generates

an ephemeral secret si of l random bits and an ephemeral signing key pair (ski, pki)

that will be used when performing the message consistency checks later. Ui shares the

secret, the verification key, and a digest of the group participants over a secure p2p

channel with all other participants of the session.

Using the shared values of all participants, symmetric encryption keys are generated

with a Key Derivation Function. Each participant has a unique sending key that every

other participant can generate. When Ui wishes to send a secure group message she

encrypts the message with her sending key and broadcasts the ciphertext to all other

participants. Since SYM-GOTR requires secure pairwise channels we do not need a

complicated Group Key Agreement protocol. We simply compute symmetric keys from

the secret input of all participants.

49

Upon receiving a secure broadcast message a consistency check is performed. To

perform the consistency check all participants share, over the secure p2p channel, a

digest of the received broadcast message. Ui will sign her consistency check message with

her ephemeral signing key. Then users compare all signed consistency check messages

they have received to detect any dishonest participants. A user must only perform a

consistency check on a single message at any one time. This enforces ordering of the

messages. New key inputs are shared during the consistency check allowing SYM-GOTR

to be forward and backward secure. All protocol messages are encrypted with unique

keys, resisting replay attacks.

Algorithm 1 describes the SYM-GOTR protocol. There are four main steps to the

protocol: secure p2p channel setup (lines 1-2), group setup (line 3), broadcast consis-

tency check (line 6), and signature consistency check (line 7). The secure p2p channel

setup builds the deniable, authenticated, forward, and backward secure channels. The

group setup phase shares the keys to be used for communication. The message con-

sistency check guarantees that every user has seen the same message and agree on the

authorship of the message. Finally, the signature consistency check guarantees that the

whole group has accepted the message.

Algorithm 1 SYM-GOTR protocol

1: for all Uj ∈ U \ {Ui} do
2: ChannelSetup(Sid, Uj)

3: state← GroupSetup(Sid, U)
4: while state 6= ⊥ do
5: (Uj , c,m)← SecRecvBcast(Sid, state)
6: sigs← BcastConCheck(Sid, Uj , c,m, state)
7: state← SigConCheck(Sid, Uj , c, sigs, state)

4.2.4 SYM-GOTR Protocol

We first describe the SYM-GOTR protocol assuming we have a protocol for a confiden-

tial, deniable, unlinkable, authenticated p2p channel. With a secure p2p channel the

group setup phase is simple. User Ui generates a group-wide secret si ∈ {0, 1}l. These

group-wide secrets are used to generate the ephemeral encryption keys used for secure

group messages. Ui also generates a signing key ski and a corresponding verification key

50

vki for message consistency checks. Finally, Ui generates a group view gvi as a hash of

all group participants. This group view is used to check that honest participants agree

on the group. The group-wide secrets, verification keys, and group views are shared

over the secure p2p channels.

Algorithm 2 describes the GroupSetup function as executed by user Ui. GroupSetup

outputs the list of group-wide secrets S, list of verification keys V K, and the users sign-

ing key ski.

Algorithm 2 Group Setup

1: function GroupSetup(Sid, U)
2: S ← [], V K ← []
3: si ← {0, 1}l
4: (ski, vki)← KeyGen()
5: S[i] = si, V K[i] = vki
6: gvi = H2(Sid, U)
7: for all Uj ∈ U \ {Ui} do
8: SecSend(Sid, Uj , si, vki, gvi)
9: sj , vkj , gvj ←SecRecv(Uj , Sid)

10: if gvj 6= gvi then
11: return ⊥
12: S[j] = sj , V K[j] = vkj

13: return (S, V K, ski)

After GroupSetup completes users can now send and receive secure broadcast

messages. When user Ui wishes to broadcast a secure message m, she first computes

ephemeral sending key Ki = KDF3(Sid, (Ui, si), (U1, s1) . . . , (Un, sn)). In KDF3 she

places herself at the front of the input as well as in the list of all inputs. This approach

allows a recipient to infer the sender and receivers. It also ensures that a key will never

be reused even if two participants attempt to send a message at the same time. This

approach is used consistently throughout the protocol. She then encrypts the message

as c = AEncKi(m) and broadcasts the ciphertext, BcastSend(Sid, c).

When Ui receives a broadcast message c from Uj , Ui computesKj = KDF3(Sid, (Uj , sj), (U1, s1), . . . , (Un, sn))

and checks that c is an authenticated encryption with Kj . If c does not authenticate

it is dropped and the next broadcast is received. Algorithm 3 describes the process.

When an authentic c is received a broadcast consistency check is performed (Alg. 1,

51

line 6).

Algorithm 3 Receive Secure Broadcast

1: function SecRecvBcast(Sid, (S, V K, ski))
2: Uj , c← BcastRecv(Sid)
3: Kj ← KDF3(Sid, (Uj , S[j]), (U1, S[1]), . . . , (Un, S[n]))
4: m← ADecKj (c)
5: if m 6= ⊥ then
6: return (Uj , c,m)
7: else
8: SecRecvBcast(Sid, (S, V K, ski))

The broadcast consistency check guarantees all participants have received the same

c from Uj and that Uj authored the message, then the plaintext m = ADecKj (c)

is displayed. Algorithm 4 describes the broadcast consistency check. To check the

consistency of a ciphertext c, Ui computes a digest of the ciphertext along with the

string “accept” or “reject”. This digest is then signed with the ephemeral signing key

ski and shared to all participants over the secure p2p channels. The message is only

displayed for Ui if all participants notified Ui that they have “accept”ed the broadcast

as valid from Uj . If Uj did not author c, Uj should “reject” the ciphertext. If there is

a malicious participant and they try to convince Ui to display the message and another

user to not display the message, the malicious participant will be identified in the next

phase.

Following the broadcast consistency check a signature consistency check is performed

to identify misbehaving participants or confirm the message was displayed to all users.

The simplest method would be to share all of the received signatures sigs, but this is

expensive as it grows with the size of the group. We perform an optimistic optimization

by hashing all of the entries of sigs that “accept” the broadcast, then share all entries

that do not. Under benign conditions this optimization shares a small constant sized

message. This method also distributes new ephemeral group-wide secrets (si, vki) to

provide forward and backward secrecy of group messages.

Algorithm 5 describes the signature consistency check. Algorithm 6 describes how

the optimization is computed.

52

Algorithm 4 Broadcast Consistency Check

1: function BcastConCheck(Sid, Uj , c,m, (S, V K, ski))
2: valid = []
3: invalid = []
4: if Ui = Uj and Ui did not send c then
5: di ← H3(“reject”||c)
6: sigi ← Signski(di)
7: invalid[i]← (Ui, di, sigi)
8: m← ⊥
9: else

10: di ← H3(“accept”||c)
11: sigi ← Signski(di)
12: valid[i]← (Ui, di, sigi)

13: for all Uk ∈ U \ {Ui} do
14: SecSend(Sid, Uk, di, sigi)
15: dk, sigk ←SecRecv(Sid, Uk)
16: if dk 6= di or not verifyV K[k](dk, sigk) then
17: invalid[k]← (Uk, dk, sigk)
18: m← ⊥
19: else
20: valid[k]← (Uk, dk, sigk)

21: if m 6= ⊥ then
22: DisplayBcast(Uj ,m)

23: return (valid, invalid)

53

Algorithm 5 Signature Consistency Check

1: function SigConCheck(Sid, Uj , c, (S, V K, ski))
2: S′ ← [], V K ′ ← []
3: S′[i]← {0, 1}l
4: (sk′i, V K

′[i])← KeyGen()
5: sharei ← OptimizeShare(c, sigs)
6: sucess← true
7: for all Uk ∈ U \ {Ui} do
8: SecSend(Sid, Uk, share, S

′[i], V K ′[i])
9: sharek, S

′[k], V K ′[k]←SecRecv(Sid, Uk)
10: if sharek 6= sharei then
11: sucess← false
12: Warn the user.
13: Share inconsistent signatures.

14: if success = true then
15: ConfirmBcast(Uj ,m)

16: return (S′, V K ′, sk′i)

Algorithm 6 Optimize Share

1: function OptimizeShare(c, (valid, invalid))
2: input = “”
3: for all (Uj , dj , sigj) ∈ valid do
4: input← input||(Uj , sigj)
5: h = H4(input)
6: dvalid ← H3(“accept”||c)
7: return (dvalid, h, invalid)

54

Churn

We describe how SYM-GOTR handles churn in regards to a single user. We discuss

handling churn in reference to Algorithm 1. When a new user is added to an existing

SYM-GOTR session each existing user simply executes ChannelSetup with the new

user and continues execution from line 3. If the session is in the middle of the processing

a broadcast, lines 6-8, the existing users finish processing the broadcast before adding

the new user.

Removing a user is not as simple, e.g. a user may lose network connectivity while

processing a message. If a user Uj is notified of a user leaving the group before line

5, they can simple remove the user from their list and continue execution from line 3.

If a user is removed after a broadcast is received but before the broadcast consistency

check the broadcast cannot be guaranteed to be seen by all users and must be dropped.

If a user is removed while performing the broadcast consistency check or the signature

consistency check some users may have already displayed the broadcast, so a warning

should be displayed notifying the users that the previous message may not have been

seen by all participants. In any case execution should continue from line 3.

P2P Secure Channel

The SYM-GOTR protocol does not require a specific secure p2p channel protocol. It

only requires that the p2p channel be encrypted, authenticated, forward and backward

secure, deniable, and unlinkable. We could have used OTR as the p2p channel but for

efficiency we implemented a simpler secure p2p protocol that meets our needs.

P2P Channel Setup

Set up of the secure p2p channel uses the NAXOS [40] deniable Authenticated Key

Exchange. Since we do not assume a Public Key Infrastructure we simply send the

long-term key with the ephemeral key in the first message. User identity and key

verification are addressed later.

Algorithm 7 describes the deniable AKE between user Ui and Uj where lski is the

long-term secret key of user Ui.

After the deniable AKE completes, each user Ui can generate a pair of ephemeral,

55

Algorithm 7 P2P Secure Channel Setup

1: function ChannelSetup(Sid, Uj)
2: eski ← {0, 1}l
3: hi ← H1(eski, lski)
4: Send(Sid, Uj , g

hi , glski)
5: epkj , lpkj ← Recv(Sid, Uj)

6: Kij ← KDF1(epk
lski
j , lpkhij , epk

hi
j Ui, Uj)

7: Kji ← KDF1(epk
lski
j , lpkhij , epk

hi
j Uj , Ui)

deniable, and authenticated sending and receiving keys Kij ,Kji with every other par-

ticipant ∀Uj ∈ U \ {Ui}

P2P Key Ratcheting

The keys for the p2p channels are ratcheted forward every message to provide forward

and backward secrecy. SYM-GOTR ratchets these keys similar to OTR [15]. When Alice

sends a message to Bob she includes a new DH public key. To send the next message she

uses her last sent DH share and the DH public key she most recently received from Bob

to compute a shared secret and encrypt the message. All p2p protocol messages sent

in SYM-GOTR expect a response. This allows SYM-GOTR to use the keys generated

during the secure p2p channel setup phase as the first sending and receiving keys to

bootstrap the DH key ratcheting. Algorithm 8 describes the functions of the secure

p2p channel and key ratcheting. SecSend describes Ui sending m to Uj and SecRecv

describes Ui receiving m from Uj , Sid is the session id for the SYM-GOTR session.

Participants must only maintain a single p2p channel per pair of user per session.

4.2.5 User Authentication

The deniable AKE between all participants does not provide full user authentication.

The AKE only guarantees that the remote party knows the long-term secret that cor-

responds to the long-term public key. To authenticate a remote user and associate that

user with their long-term public key we use the Socialist Millionaire Protocol (SMP) [41].

SMP must be executed between every pair of participants with inputs being their long-

term public keys and a pre-shared secret. If SMP is successful the pair of users can

56

Algorithm 8 P2P Key Ratchet

Require: idi is the id of last sent DH public key and idj is the id of the most recently
received DH public key. Si contains DH private keys of i for j and Sj contains the
DH public keys of j for i.

1: function SecSend(Sid, Uj ,m)
2: r ∈R Zp
3: Si[idi + 1]← r
4: priv ← Si[idi]
5: pub← Sj [idj]
6: Kij ← KDF2(pub

priv, Ui, Uj)
7: c← AEncKij (m, g

r)
8: Send(Uj , Sid, idj , c)

9: function SecRecv(Sid, Uj)
10: idi, c← Recv(Uj , Sid)
11: priv ← Si[idi]
12: pub← Sj [idj]
13: Kji ← KDF2(pub

priv, Uj , Ui)
14: m, pubnew ← ADecKji(c)
15: Sj [idj + 1]← pubnew
16: Delete old key ratchet material.
17: return m

57

trust the remote user is the expected party. This trust is linked to the long-term public

key of a user and may be applied in future SYM-GOTR sessions. That is the SMP need

only be executed once between a pair of users to build trust in a user seen in multiple

sessions.

4.3 Security

In this section we discuss the security properties of SYM-GOTR under the threat models

described in Section 4.1.

In terms of our goals stated earlier, we achieve confidentiality, integrity, and message

authentication through the underlying authenticated encryption scheme. Forward and

backward secrecy are provided by the key ratcheting of the p2p channels and the new

group keys generated before every broadcast message.

SYM-GOTR provides participant consistency with the simple consistency check on

line 10 of Algorithm 2. Participant Authentication is enforced by the NAXOS AKE

executed between all pairs of participants.

The anonymity preserving property is provided because SYM-GOTR does not in-

corporate any information about the transport channels and a participant may generate

fresh long-term keys and pseudonyms for every session. To avoid generating fresh long-

term keys and pseudonyms the two party secure channel setup may be modified to

provide anonymity preservation. As described in Section 4.2 the first step is to send an

ephemeral DH public key and the long-term DH public key in plaintext. To preserve

anonymity an anonymous DH key exchange may be executed first, then the long-term

public key can be hidden within the resulting anonymous encrypted channel.

Destination validation is implied by the broadcast sending key derivation requiring

input from all intended recipients.

Since the consistency checks are performed after every broadcast message and only

on a single message at a time, SYM-GOTR is speaker consistent, causality preserving,

and maintains a global transcript. These consistency checks only contain information

about a single broadcast, thus providing message unlinkability.

SYM-GOTR can be simulated by anyone who possess the long-term public keys of

the participants, all encryption and signing keys used for communication are ephemeral.

58

Because of this the sessions have participant repudiation and message repudiation.

We now sketch in more detail proofs of the security properties specific to SYM-

GOTR. Due to space constraints full proofs of the security properties are deferred to

Appendix 4.6.

Our properties rely on standard security assumptions and we prove them in a series of

games. We assume our authenticated encryption scheme is IND-CPA and INT-PTXT

secure. We also assume NAXOS is secure, that is, an adversary cannot distinguish

between a valid symmetric key generated with NAXOS and a random bit string. The

last assumption we make is the Decisional Diffie-Hellman problem is hard. An adversary

given (gx, gy, gz) cannot distinguish between gz = gxy or gz ←R G.

4.3.1 Confidentiality

Confidentiality is similar to the IND-CPA of symmetric encryption. To break the confi-

dentiality of SYM-GOTR an adversary M must either learn the group sending key of a

user or break the confidentiality of our authenticated encryption scheme. To learn the

group sending key M must learn all of the inputs to KDF4. These inputs are sent over

the secure p2p channels, so to learn these inputs M must either learn the p2p channel

keys(breaking NAXOS) or break the confidentiality of the p2p channels. If M cannot

break the confidentiality of the p2p channels M must break the confidentiality of the

broadcast channel encryption.

4.3.2 Message Integrity and Authentication

Message Integrity and Authentication are similar to the INT-PTXT game for symmetric

encryption and integrity. If an adversary M can cause an honest party to accept a

forged message from another honest party, M must be able to inject forged consistency

checks into the secure p2p channel between the two honest parties. For M to forge p2p

messages, M must either learn the p2p sending keys(by breaking NAXOS) or break the

integrity of the authenticated encryption scheme.

59

4.3.3 Participant Consistency

Participant consistency relies on the integrity of the p2p channels. If two honest par-

ties complete the setup phase with differing participant lists for the same session, an

adversary M must have forged their p2p communication that sends the group view key.

Similarly to message authentication, for M to forge p2p channel message M must learn

the p2p sending keys or break the integrity of the authenticated encryption scheme.

4.3.4 Forward and Backward Secrecy

Forward and Backward Secrecy are the properties that if the state of an honest partici-

pant is leaked a limited number of messages are compromised. In SYM-GOTR forward

and backward secrecy rely on the confidentiality of our authenticated encryption scheme

and the Decisional Diffie-Hellman Assumption(DDH). To break forward and backward

secrecy an adversary must either break the confidentiality of the symmetric encryption

scheme or learn the Diffie-Hellman shared secrets used to compute the symmetric keys

of the p2p channels.

4.3.5 Participant Repudiation

We describe participant and message repudiation in a similar manner to that of Rai-

mondo, Gennaro, and Krawczyk [42] deniable authentication and key exchange. We

show that SYM-GOTR is deniable because a session can be simulated to produce a

transcript that is identically distributed to a transcript of a real SYM-GOTR session.

All simulators are simple extensions to the simulator for the p2p deniable AKE.

We define participant repudiation under two threat models. One where the adversary

has knowledge of the long-term secret key of corrupt participants and one where the

judge only knows the public keys. The adversary produces a protocol transcript T by

executing SYM-GOTR with a single honest party. A simulator S takes as input T and

the adversary’s long-term secrets s for session T . S generates a protocol transcript T ′

that includes the honest party where T 6= T ′. A judge that takes as inputs T ∗ and the

adversary’s secrets s outputs a single bit guess on the input being T or T ′. Participant

repudiation requires that for every adversary there is a simulator such that no judge

can distinguish between T and T ′.

60

A sketch of the simple simulator S follows. The simulator runs the SYM-GOTR

protocol using the secrets of the corrupt parties and generating random values for the

honest party as described in the protocol. The simulator uses the user identifier and

long-term public key of the honest user. Since NAXOS is a deniable AKE it can be

simulated. We omit the details here, but it is a simple 3-DHE protocol. The output T ′

is identically distributed to T , so the judge has no advantage.

4.3.6 Message Repudiation

Message repudiation is similar to participant repudiation, except that the adversary

produces a chat transcript τ . The protocol transcript T is produced by running a

SYM-GOTR session with an honest party. The simulator’s input is the same as the

participant repudiation simulator and also includes the chat transcript and produces

T ′ to be a protocol transcript of τ . The judge takes τ and T ∗ as input and guesses if

T ∗ = T or T ′.

The simulator is almost identical to the simulator for participant repudiation. The

message repudiation simulator executes the participant repudiation simulator then fol-

lows the protocol as described in Section 4.2 to produce a transcript for τ that is

identically distributed to T . It is a simple extension to the participant repudiation sim-

ulator because all inputs of the message and signature consistency checks are ephemeral

values generated during the SYM-GOTR session. Message repudiation is provided for

the group conversation since the underlying p2p protocol provides message repudiation.

4.3.7 Message Unlinkability

Message unlinkability is the property that proving authorship of a message to a third

party does not prove authorship of any other message to the third party. It is similar

to message repudiation and is achieved in SYM-GOTR due to the fact that any com-

munication in SYM-GOTR relates to only a single broadcast. The message consistency

check only includes the digest of the current broadcast and no information about the

rest of the chat transcript. SYM-GOTR also maintains forward and backward secrecy

for every chat message, so no broadcast messages are encrypted or signed with the same

keys.

61

More formally assume an adversary can convince a judge that a message was au-

thored by a user. This provides the judge with knowledge of the ephemeral symmetric

key inputs and ephemeral public verification keys used to encrypt and sign the mes-

sage and the consistency checks, i.e. the state of the adversary. Message unlinkability

is provided if the adversary cannot prove these keys are linked to another message

and the messages consistency checks. To show an adversary cannot prove linkability

two simulators are needed. One that produces a transcript up until and including the

compromised message that is identically distributed to that of the real transcript. This

simulator provides unlinkability for all previous messages. The other simulator produces

a transcript that is identically distributed to that of the real transcript including and

after the compromised message. This simulator provides unlinkability for all messages

after the compromise. We quickly sketch the simulators as they are almost identical to

the simulator for message repudiation.

Both simulators take as input a chat transcript τ and protocol transcript T . For the

first simulator the transcripts are all messages before the compromised message. The

second simulator transcripts are for all messages after the compromised message. The

simulators also takes as input c the ciphertext of the message and state the state of the

adversary including all si, vki,Kij ,Kji and keys used to ratchet forward all of the p2p

channels.

The first simulator simply executes the message repudiation simulator for all mes-

sages before the compromise and uses the adversary’s state for all ephemeral keys shared

in the last consistency check before the compromise. The second simulator executes the

message repudiation simulator using the compromised state as the keys for the first mes-

sage. Both simulators simply execute the protocol with the adversary’s provided inputs

for the single compromised message. These simulators produce protocol transcripts T ′

that are identically distributed to that of a real transcript and contain the compromised

message and state.

Message repudiation and unlinkability is trivial when all operations on messages use

ephemeral keys distributed over deniable and unlinkable p2p channels and all protocol

operations only operate on inputs provided by a single message.

62

4.3.8 Global Transcript

We define global transcript as all participants agreeing on the order of all broadcast

messages sent during a chat, and the guarantee that all participants see every broadcast.

An adversary cannot convince a subset of the participants to accept a message without

being caught.

A global transcript is provided by construction of the protocol only processing a

single message at a time. The two part consistency check and the ephemeral signing

keys guarantee message receipt and display. A message is not accepted until it has been

approved by all participants, indicating all participants have received the message. For

a message to be rejected by a subset of participants, an adversary would have to send a

reject message to them signed with the adversary’s ephemeral signing key. The signature

consistency check performed next would reveal the adversary has signed two messages,

one accepting and one rejecting the broadcast. Our protocol does not guarantee all

participants have seen a broadcast under strong adversarial conditions but does allow

us to identify the adversary and notify the users that not all participants have seen the

previous broadcast. We can guarantee that all users have seen the broadcast under the

covert model.

4.3.9 GOTR Improvements

We quickly discuss the differences between SYM-GOTR, GOTR, and Signal in terms

of security properties.

Participant Consistency exists in SYM-GOTR due to the participant consistency

check during group setup. GOTR and Signal do not provide a similar mechanism and

are vulnerable to participants not sharing the same view of the group.

Participant Repudiation is not provided by GOTR as described in [17]. The au-

thors claim the p2p channels do not need to be deniable. Only that they are confidential

and authenticated channels. If GOTR is implemented with deniable p2p channels then

the protocol provides participant repudiation.

Message Unlinkability only partially exists in GOTR. The broadcast messages

of GOTR contain the digest of the chat transcript thus far. This builds a chain of all

the broadcast messages. Once authorship of a single message is proven acceptance of all

63

10 20 30 40
Group Size

0

1000

2000

3000

4000

5000

6000

Ti
m

e
(m

s)

sym
bd
sym-cpu
bd-cpu

Setup Time

10 20 30 40
Group Size

0

200

400

600

800

KB
yt

es

sym sent
bd sent
sym recv
bd recv

Setup Network Usage

Figure 4.1: The time (25th, 50th, and 90th percentile) and network traffic to set up a
secure chat room with SYM-GOTR and GOTR.

previous messages is proven as well as authorship of all messages using the same keys.

Global Transcript is not clear in GOTR. The GOTR protocol relies on a transcript

consistency check but does not describe how it should be implemented or the properties

it provides. SYM-GOTR provides a global transcript due to our two part consistency

check and can identify an adversary via the signatures on the consistency check message.

Signal does not make any guarantees about a global transcript.

Forward and Backward Secrecy is only partially provided by GOTR. GOTR

only ratchets keys when requested. In comparison SYM-GOTR ratchets all keys on

every message with little additional overhead. Due to Signal assuming an asynchronous

model it cannot provide forward and backward secrecy for every message.

4.4 Performance Evaluation

We implemented the SYM-GOTR protocol as a Java library and a plugin for the Jitsi

IM client. We measured the performance using the library and a $10/month virtual

private server hosted on linode [11]. Our clients ran across a cluster of ten machines

each with an Intel i7 3.4GHz Quad-Core processor and 32 GB of RAM. Our server was

an ejabberd XMPP server. The server had a 1 Gb network connection and the clients

shared a 1 Gb connection. The round trip time between the clients and server was

approximately 100 ms. Care needs to be taken when choosing a communication service

64

10 20 30 40
Group Size

0

250

500

750

1000

1250

Ti
m

e
(m

s)

sym
bd
sym-cpu
bd-cpu

Broadcast Time

10 20 30 40
Group Size

0

20

40

60

80

KB
yt

es

sym sent
bd sent
sym recv
bd recv

Broadcast Network Usage

Figure 4.2: The time (25th, 50th, and 90th percentile) and network traffic to broadcast
a message to a secure group chat.

due to SYM-GOTR benefiting from consistent ordering of broadcast messages. The two

common group messaging standards; XMPP and IRC do not enforce this property, but

some server implementations provide consistent ordering.

For performance analysis we consider groups of a practical size to enforce authenti-

cation between all participants. We base our groups sizes on analysis of social graphs

in the Facebook social network [43]. We would like to know the average clique size for

a set of friends. If the participants did not form a clique they would not be able to

pairwise authenticate, negating the security provided by SYM-GOTR. The results of

the study did not reveal the clique size but did discuss the median degree of a user and

a local clustering coefficient. The median degree of a user is 100 with a local clustering

coefficient of 14%. This implies that the maximum clique size for an average user is

∼37.

For comparison we also implemented GOTR with a single round consistency check

executed after every broadcast. The GOTR paper does not describe the details of the

consistency check or how often to perform it. We executed 100 runs of each operation

for both SYM-GOTR and GOTR. To coexist with current XMPP servers and clients

when SYM-GOTR users would like to start or join a SYM-GOTR session they send an

insecure broadcast message to inform the group. Clients not supporting SYM-GOTR

will simply display the message while clients supporting SYM-GOTR will broadcast

their support and proceed to set up secure p2p channels with other supported clients.

65

This adds a small amount of overhead which describes the lack of symmetry between

received and sent network traffic during setup and participant changes.

4.4.1 Setup

For each round of secure chat setup we created a Multi-User-Chat (MUC) with n par-

ticipants then initiated the GOTR protocol. After the protocol reached the secure state

we shutdown the protocol. We measured the cost as the time it takes from initiating

the protocol to reaching the secure state.

Figure 4.1 compares the cost of setting up a secure chat session with n users. The

number of messages a user sends during the setup phase is O(n) for both SYM-GOTR

and GOTR. SYM-GOTR sees a significant improvement in time and network traffic as

a result of constant sized messages compared to message sizes of O(n) with GOTR.

We also analyzed the performance of participant modification events in established

SYM-GOTR conversation. For 10, 20, 30, and 40 participants SYM-GOTR required

approximately 275, 420, 660, and 980 ms to add a participant and 150, 305, 545, and

780 ms to remove a participant. The network overhead is similar to that of setting put

the conversation.

4.4.2 Broadcast

We measured the cost of a broadcast message to be sent and a consistency check per-

formed by all participants in the group. We wait for the signature consistency check

to complete providing a full representation of the time and network overhead of SYM-

GOTR. We first set up a secure chat of n users, then we start our measurements and

instruct a single client to broadcast a message. Once the message has been received and

both consistency checks have completed we end our measurement. We perform this 100

times for groups of each size. The same measurement is performed for GOTR but there

is only a single consistency check.

Figure 4.2 shows a group of 30 users takes 820ms and 65 KB of network traffic

down to perform a secure broadcast with SYM-GOTR. GOTR is faster for broadcast

operations due to a weaker single round consistency check that does not offer message

unlinkability or digest accountability. It requires only sending n−1 p2p messages where

66

as SYM-GOTR requires 2(n − 1). The difference is small enough to be worth the ad-

ditional properties. This difference is also not noticeable to the user due to broadcasts

being displayed after the message consistency check. The signature consistency check

only warns the user on failures which should not normally occur. The message consis-

tency check of SYM-GOTR and GOTR have the same size and complete in the same

time. The network overhead of GOTR comes from broadcast messages being O(n) in

size.

4.4.3 CPU Usage

The plots also include the median CPU time of each operation. Finally we analyze

the CPU time of each operation. All operations have p2p pairwise communication that

execute in parallel but the total CPU time is represented in the plots. The “Setup”

and “Add” operations are cheaper for SYM-GOTR due to the symmetric group key

agreement. The main computation expense for SYM-GOTR “Broadcast” is due to the

signing, verification, and signature key generation. The “Remove” CPU cost is less for

GOTR since existing users do not need to generate new group keys.

4.4.4 Complexity

Due to lack of control of the Signal network we cannot produce a meaningful compar-

ison of SYM-GOTR and Signal but we do provide an asymptotic comparison of each

operation. In comparison to Signal, SYM-GOTR requires sending more p2p messages

to offer the additional consistency properties. Signal does not attempt to offer group

consistency which allows for efficient setup and participant changes. Signal also does not

guarantee message consistency or ordering allowing for cheaper message broadcasts. Ta-

ble 4.1 shows the asymptotic complexity for each operation under SYM-GOTR, GOTR,

and Signal.

4.4.5 Practical Example

To show SYM-GOTR performs well in practice, we simulated one year’s worth of IRC

meetings from the OpenStack High Availability group [44]. We simulated all meetings

from 2016. There are 38 meetings between January 04, 2016 and December 21, 2016.

67

Table 4.1: Asymptotic complexity for each operation. The top line is the size of the
broadcast message and the bottom is the maximum number of p2p messages sent by an
individual. All p2p messages are of constant size. The last two columns represent the
computational complexity of the operation.

Setup Broadcast Add Remove Sending Receiving

SYM-GOTR 0 1 0 0 O(n) O(n)
2(n− 1) 2(n− 1) 2(n− 1) (n− 1)

GOTR 8n 8n 8n 8n O(n) O(n)
5(n− 1) (n− 1) 5(n− 1) 0

Signal 0 0 0 0 O(n) O(1)
(n− 1) (n− 1) (n− 1) (n− 1)

Each meeting had on average 5 participants with 127 messages and lasted 35 minutes.

We first replayed the meeting log without SYM-GOTR to record statistics under our

network conditions. Then we replayed the meeting logs using SYM-GOTR. SYM-GOTR

introduced an average delay of 127 milliseconds to display a message which extended

the conversation by 16 seconds on average. This experiment demonstrates a realistic

deployment of SYM-GOTR and shows it is practical for day-to-day use.

As expected, participants did not join or leave during the meetings. Churn is an

uncommon occurrence in these synchronized messaging applications. We analyzed the

churn of the OpenStack Ansible channel. We choose the Ansible channel because outside

of meetings the High Availability channel is generally idle. For the year of 2016 there

was on average 539 join and leave events per day in the channel with 137 seconds before

and after each event and the next event or message. This shows churn is relatively

uncommon and our performance is practical.

4.5 Discussion

Implementing a secure messaging application is difficult to do in practice even if the un-

derlying protocol is secure. We quickly discuss the challenges faced by these applications

and layout future work.

68

4.5.1 Usability

From a usability perspective developers attempt to accommodate unmotivated users.

These users impose many challenges to secure software. Thinking only of user authen-

tication there does not exist a consistent user interface to inform a local user that a

remote user(friend) is who they claim to be. The problem becomes even more difficult

for messages. A user can receive a message from an unauthenticated user or an authen-

ticated user. The distinction must be apparent in the user interface and also consistent

for messages received prior to authentication. In group communication sessions not all

users may have seen a given message. This is also important information that may be

relevant to the participants. A developer must consider these security concerns when

designing the user interface but must also not add a bright red error for every situation.

This will only cause warning fatigue and encourage users to ignore the security concerns

the application intends to address.

4.5.2 Key Verification

Key verification is another challenge without a clear solution. In terms of SYM-GOTR

we choose to utilize the Socialist Millionaire Protocol allowing users to authenticate each

other using a pre-shared secret. We do not claim this is the best or only mechanism for

key verification. Any other technique could be deployed with SYM-GOTR. Another ex-

isting system attempting to address this problem is keybase.io which links a users online

identity to a long-term public key by connecting it to a users Twitter [45], reddit [46],

facebook [47], or a handful of other online accounts. Other solutions include a web-of-

trust, Public Key Infrastructure, or a Password Authenticated Key Exchanges (PAKE).

4.6 Proofs of Security

We prove the properties of SYM-GOTR with a series of games approach. All games

have an Initialize function that sets up the game and a Finalize function that returns

the result of the game. All other functions of the games perform a specific operation.

69

Figure 4.3: IND-CPA Game

function Initialize(l)
k ←R {0, 1}l
b←R {0, 1}

function LR(M0,M1)
c← Enck(Mb)
return c

function Finalize(d)
return (d = b)

Figure 4.4: INT-PTXT Game

function Initialize(l)
k ←R {0, 1}l
S ←R {}

function Enc(m)
c← Enck(m)
S getsS ∪ {m}
return c

function VF(c)
M ← Deck(c)
if m 6= ⊥ and m /∈ S then

win← true
return (m 6= ⊥)

function Finalize(d)
return win

70

Figure 4.5: NAXOS Game

function Initialize(U)
b←R {0, 1}
Initialize PKI for all users in U .

function Send(A,B, comm)
Send comm to A on behalf of B
return A’s response

function Long-Term Key Reveal(A)
return Long-term key of A

function Ephemeral Key Reveal(sid)
return Returns the ephemeral key of a possibly incomplete session si.

function Reveal(sid)
return Session key of completed session sid

function Test(sid)
if b = 1 then

C ←Reveal(sid)
else

C ←R {0, 1}l

return C

function Finalize(d)
return (d = b)

Figure 4.6: DDH Game

function Initialize
b←R {0, 1}
x←R Zp∗
y ←R Zp∗
if b = 0 then

z ← x ∗ y
else

z ←R Zp∗
return (gx, gy, gz)

function Finalize(d)
return (d = b)

71

4.6.1 Assumptions

We base our proofs of the security properties of SYM-GOTR on standard security

assumptions under the Random Oracle Model.

First we assume our authenticated encryption scheme (Encrypt-Then-MAC) is IND-

CPA and INT-PTXT secure as shown by Bellare and Chanathip [39].

Figure 4.3 details the IND-CPA game. An adversary M is said to win the game if

M can determine which of two chosen plaintext has been encrypted. The advantage of

M is defined as AdvIND−CPA(M) = Pr[Mwins]− 1
2 .

Figure 4.4 details the INT-PTXT game. An adversary M is said to win the game if

M can forge a valid ciphertext of a plaintext that has not been queried. The advantage

of M is defined as AdvIND−PTXT (M) = Pr[Mwins].

We also assume the NAXOS AKE is secure in the game detailed in [40]. The authors

of NAXOS define an extended Canetti-Krawczyk [48] model (eCK) to prove NAXOS

secure under a stronger adversary.

Figure 4.5 describes the NAXOS AKE game. An adversary M is allowed to cre-

ate multiple sessions and reveal the long-term, ephemeral, and session keys of users.

Defining Session IDs is a important part of key agreement models. Our definition is

consistent with the eCK model. That is the Session ID of a p2p session is defined as the

transcript of messages sent between the parties. This p2p Session ID is different from

SYM-GOTR group Session IDs. The adversary wins the game if M can distinguish

between a valid NAXOS session key and a random bit string if both parties are not

compromised. The advantage of M is defined as AdvNAXOS(M) = Pr[Mwins]− 1
2 .

We assume the Decisional Diffie-Hellman(DDH) problem is hard. Figure 4.6 de-

scribes the DDH problem in terms of a game. An adversary wins the DDH game if

given (gx, gy, gz) the adversary can distinguish between gz = gxy and gz ←R G. The

advantage of an adversary M is defined as AdvDDH = Pr[Mwins]− 1
2 .

Finally, since SYM-GOTR does not require a specific key verification mechanism we

assume a trusted PKI in the proofs. We assume all users have secure access to the PKI

and verify the long-term public key of remote users for every secure p2p session. If the

long-term key sent during channel setup is incorrect the session terminates. In all of our

games we allow the adversary to corrupt a user and reveal the long-term private key.

72

Figure 4.7: SYM-GOTR Game Functions

function SetupSession(Sid, Ui, U)
Setup session Sid with Ui for group U
return Ui’s response to session setup

function AddUser(Sid, Ui, Uj)
Add user Uj to session Sid of user Ui

return Ui’s response to adding Uj .

function RemoveUser(Sid, Ui, Uj)
Remove user Uj to session Sid of user Ui

return Ui’s response to removing Uj .

function Broadcast(Sid, Ui,m)
Ui sends m securely in session Sid.
return Ui’s network traffic to send the message

function RevealLongTermKey(Ui)
return Ui’s long-term key

function RevealSessionState(Sid, Ui)
return Ui’s session state for session Sid.

function Send(Ui, Uj , comm)
Ui sends comm to Uj

return Uj ’s response to comm
—

4.6.2 Model

The SYM-GOTR security properties are proved with the following games. The games

contain common operations setup, adding/removing users, and sending messages. These

functions all return the network traffic generated by the session. In an active network

adversary game these functions do not send the traffic to the users, instead they return

the traffic and await for it to be sent by the adversary with the Send function. Send

will return any new network traffic generated from receiving the input. Under a passive

adversary the SYM-GOTR operation functions perform the entire operation and return

all network traffic.

These games also have reveal functions when appropriate. These functions reveal

information to the adversary e.g. long-term keys or session state. We define a corrupt

user to be a user whom has had the long-term secret key revealed by the adversary.

When revealing session state for Ui in session Sid the adversary learns all session state

from line 3 of Algorithm 1 along with all of the p2p ephemeral key material in use,

that is Ui’s current ephemeral secret key and the remote parties ephemeral public key.

73

Figure 4.8: SYM-GOTR Confidentiality Game

function Initialize(U)
b←R {0, 1}
Initialize PKI for all users in U .

function Test(Sid, Ui,M0,M1)
Ui sends Mb in session Sid.
return Ui’s network traffic to send the message

function Finalize(d)
return (d = b)

Figure 4.7 describes the functions that are consistent between all SYM-GOTR games.

4.6.3 Confidentiality

The confidentiality property states a message may only be read by a conversation par-

ticipant. This is equivalent to the indistinguishable chosen plaintext game. Figure

4.8 describes the additional functions of the confidentiality game for SYM-GOTR. The

Test function allows the adversary to force Ui to send a test secure broadcast in session

Sid. The adversary may then guess the bit b by calling Finalize. A session is defined

as clean if the adversary has not revealed the long-term key or the session state for any

participant in the session. The adversary wins if the session is clean and the guess is

correct. The advantage of adversary M is defined as Advconf (M) = Pr[Mwins]− 1
2 .

SYM-GOTR is confidential if all hash and key derivation functions are modeled

as random oracles. For any confidentiality adversary M that runs in time at most t,

establishes at most s sessions with at most w users per session and establishes at most n

p2p channels. We show that there exists a NAXOS adversary N , an IND-CPA adversary

P0, and an IND-CPA adversary B such that

Advconf (M) ≤ n ·AdvNAXOS(N) + n ·AdvIND−CPA(P0)

+ sw ·AdvIND−CPA(B)

Where N , P0, and B run in time O(t).

Proof. The adversary M can win the confidentiality game in two ways. They can

learn the group sending key of the target user or win the IND-CPA game against our

authenticated encryption. Since KDF3 is modeled as a random oracle to learn the group

74

sending key, M must query the random oracle with the same inputs as the sending user.

These inputs are shared over the secure p2p channels. For M to learn these inputs

M must either brake the NAXOS protocol or win the IND-CPA game against our

authenticated encryption. We construct an adversary N that can win the NAXOS

game and an adversary P0 that can win the IND-CPA game of the p2p channels and an

adversary B that can win the IND-CPA game against the broadcast ciphertext given

an adversary M that can win the confidentiality game.

First, we assume M wins by computing the p2p keys. M can then decrypt the

p2p traffic and compute the group sending key. Using the group sending key M can

trivially win the confidentiality game. For M to compute the p2p keys M must break

NAXOS. We can use M to construct an adversary N that wins the NAXOS game.

N is defined as follows, N behaves as a normal SYM-GOTR confidential challenger

except during p2p channel setup. During initialization N initializes a NAXOS game.

When N would normally setup a NAXOS session at line 2 of Algorithm 1, N sends

the start communication to the NAXOS game between Ui and Uj . When M Sends

p2p channel setup communication to N , N forwards it along to the Naxos game. N

chooses one session at random invokes Kij ← Test on NAXOS session between Ui and

Uj to retrieve a test p2p key for the session. When M calls RevealLongTermKey N

returns Long-Term Key Reveal. When M calls RevealSessionState N returns

both Ephemeral Key Reveal and Reveal of the NAXOS game. N executes Reveal

on the other NAXOS sessions to learn their p2p keys. N continues the SYM-GOTR

protocol as normal. For M to compute the p2p key for a pair of user (Ua, Ub M must

have queried the KDF1 random oracle for (epklskab , lpkhab , epk
ha
b , Ua, Ub). N watches M ’s

random oracle queries and checks if any of the outputs match Kij if so N guesses 1 else

N guesses 0. N has probability 1
n of guessing the correct p2p session. The advantage

is Advconf (M) ≤ n ·AdvNAXOS(N).

The second game assumes M cannot break NAXOS but instead can learn the inputs

to the group sending key derivation function. We now describe a challenger P0, given M ,

that acts as an adversary to the IND-CPA game. P0 behaves as a normal confidentiality

challenger and initializes an IND-CPA game for a random p2p session between Ui and

Uj . P0 generates two sets of group secrets(lsecrets, rsecrets) for Ui. When Ui shares

the secrets over the p2p channel to Uj , P0 makes a LR(lsecrets, rsecrets) query to

75

Figure 4.9: SYM-GOTR Authentication Game

function Initialize(U)
b←R {0, 1}
Initialize PKI for all users in U .

function Finalize()
return true if a message m′ was displayed by U ′

j with author U ′
i in session Sid′ that

was not broadcast with Broadcast(Sid′, U ′
i ,m

′) and U ′
i and U ′

j are honest.

the IND-CPA game and sends the response to the remote peer. P0 then watches M ’s

queries to the KDF3 random oracle. M must query the output on either the left or

right secrets. P0 then guesses left or right based on M ’s oracle query and wins with

Advconf (M) ≤ n · AdvIND−CPA(P0). P0 has probability 1
n of guessing the right p2p

session.

If all p2p traffic appears random to M , he must be able to win the IND-CPA game

with our authenticated encryption scheme over the broadcast channel. We construct

a challenger B that plays the confidentiality game with M and wins the IND-CPA

game. B behaves as a normal SYM-GOTR challenger and initializes an IND-CPA

game during initialization for a random user Ui of a random session Sid. When M

calls Test(Sid, Ui,M0,M1) B executes c← LR(M0,M1). B uses c as the ciphertext to

broadcast Mb. When M guesses d, B guesses d to the IND-CPA challenger. B will win

with advantage Advconf (M) ≤ sw ·AdvIND−CPA(B). B has probability 1
sw of guessing

the correct user and session.

If M cannot distinguish between the p2p messages or the broadcast messages and

random. The network traffic must be independent of b.

4.6.4 Integrity and Authentication

Integrity and message authentication are captured in the same game. Integrity is the

property that all messages displayed were not modified in transit and message authen-

tication is the property that participants agree on the authorship of a message.

Figure 4.9 describes the additional functions of the game that captures the integrity

and authentication properties. The game is similar to the game for confidentiality but

differs in the Broadcast function. The adversary can ask user Ui to broadcast a mes-

sage securely to session Sid. The adversary wins the game if an honest user U ′j displays

a message m′ from an honest user U ′i in session Sid′ where Broadcast(Sid′, U ′i ,m
′)

76

was not invoked by the adversary. Users are said to be honest if they have not had their

long-term key or session state revealed for session Sid′. The advantage of adversary M

at wining the message authentication game is defined as Advint(M) = Pr[Mwins].

SYM-GOTR provides integrity and message authentication if all hash and key

derivation functions are modeled as random oracles. For any authentication adversary

M that runs in time at most t, establishes at most s SYM-GOTR sessions, and at most

n p2p channels, we show that there exists a NAXOS adversary N and an INT-PTXT

adversary P1 such that

Advauth(M) ≤ n ·AdvNAXOS(N) + n ·AdvINT−PTXT (P1)

Where N and P1 run in time O(t).

Proof. Since all users perform a message consistency check over the p2p channels (line

6, Alg. 1 for M to win the authentication game M must learn U ′i and U ′j ’s p2p sending

keys or win the INT-PTXT game against the p2p authenticated encryption scheme.

Similarly to confidential for M to learn a p2p channels sending keys M must be able to

win the NAXOS game. Given M , the NAXOS adversary N described above can win

the NAXOS AKE game.

If M cannot break NAXOS M must produce a valid ciphertext under (U ′i , U
′
j) p2p

sending keys. We construct P1 an authentication challenger that can win the INT-

PTXT game given M . P1 acts as a normal SYM-GOTR challenger. When setup is

complete P1 initializes an INT-PTXT for a random p2p session between Ui and Uj .

When a protocol message m is to be sent over the p2p channel from Ui to Uj P1 invokes

c ← Enc(m) of the INT-PTXT game and returns c as the ciphertext. For M to win

M must send a ciphertext c′ from Ui to Uj where c′ 6= c. P1 submits this to VF(c′) of

the p2p INT-PTXT game. P1 wins the INT-PTXT game if M wins the authentication

game by forging valid secure p2p messages between Ui and Uj . The advantage of N

is Advint(M) ≤ n · AdvINT−PTXT (P1). If M cannot create a valid p2p message SYM-

GOTR must provide integrity and authentication.

77

Figure 4.10: SYM-GOTR Participant Consistency Game

function Initialize(U)
b←R {0, 1}
Initialize PKI for all users in U .

function Finalize(Sid, Ui, Uj)
return true if Ui and Uj are honest and have completed the setup phase with differing

views of participants for session Sid.

4.6.5 Participant Consistency

The participant consistency property ensures that all users agree on the set of partic-

ipants in a group conversation. Figure 4.10 describes the additional functions for the

participant consistency game. The participant consistency game is similar to the previ-

ous games. The adversary M wins the game by producing a (Sid, Ui, Uj) 3-tuple where

Ui and Uj are honest parties that have completed the setup phase(line 3 of Alg. 1)

for session Sid with different sets of users. Users a honest if they have not had their

long-term key revealed or session state for session Sid. The advantage of M is defined

as Advpart(M) = Pr[Mwins].

SYM-GOTR provides participant consistency if all hash and key derivation functions

are modeled as random oracles. For any participant consistency adversary M that

runs in time at most t, establishes at most s SYM-GOTR sessions, and at most n

p2p channels, we show that there exists a NAXOS adversary N and an INT-PTXT

adversary P1 such that

Advpart(M) ≤ n ·AdvNAXOS(N) + n ·AdvINT−PTXT (P1)

Where N and P1 run in time O(t).

Proof. For M to win Ui must be sent a gvj (line 9, Alg. 2) value that matches gvi. M

must either learn the p2p sending key of Uj or win the INT-PTXT game against our

authenticated encryption scheme for the p2p channel between Ui and Uj . Adversaries

N and P1 described earliers function as valid adversaries given M to win the NAXOS

game or INT-PTXT game of a p2p session. If M cannot learn the sending keys or

cannot forge valid p2p messages, SYM-GOTR must provide participant consistency.

78

Figure 4.11: SYM-GOTR Perfect Forward Secrecy Game

function Initialize(U)
b←R {0, 1}
Initialize PKI for all users in U .

function Test(Sid, Ui,m0,m1)
Ui securely sends mb in session Sid
Test may only be called once and must be called before RevealState
return All network traffic generated for Ui to send mb to session Sid

function RevealState(Sid, Ui)
May only be called after Test
return All of Ui’s current state for session Sid along with Ui’s long-term key

function Finalize(d)
return (d = b)

4.6.6 Perfect Forward Secrecy

Forward Secrecy is the property that any message sent prior to an honest user state

reveal is secure against a passive adversary. Figure 4.11 details the additional functions

of the forward secrecy game. All methods return the network traffic generated by the

group to perform an operation. An adversary M may request an honest party to send a

message with Broadcast. When ready M may request Ui to send a test message with

Test to a clean session. After sending a test message M may query for the internal

state of a user. M must then guess if the challenger sent m0 or m1. An adversary’s

advantage is defined as Advpfs(M) = Pr[Mwins]− 1
2 .

SYM-GOTR provides forward secrecy if all hash and key derivation functions are

modeled as random oracles. For any adversary M that wins the forward secrecy game

and runs in time at most t, establishes at most s sessions with at most w users per

session, establishes at most n p2p sessions, and sends at most r p2p messages, we show

that there exists a DDH adversary D, an IND-CPA adversary P0, and an IND-CPA

adversary B such that

Advfs(M) ≤ r ·AdvDDH(D0) + n ·AdvIND−CPA(P0)

+ sw ·AdvIND−CPA(B)

Where D0, P0, and B run in time O(t).

Proof. For M to win the game he must either compute a previous sending key which

79

requires knowledge of previous p2p channel plaintexts. M may either compute previous

p2p channel keys or break the confidentiality of our authenticated encryption scheme,

M may also break the confidentiality of the authenticated encryption for broadcast

messages.

If M computes previous p2p keys we can construct a challenger D0 for the forward

secrecy game that can solve the DDH problem if given an adversary that can win the

forward secrecy game. D behaves as a normal SYM-GOTR challenger. For a random

p2p message between Ui and Uj before Test is invoked, D0 requests a DDH challenge

(gx, gy, gz) and uses gx as Ui’s next key ratchet pubic key with gy as Uj ’s next key

ratchet public key. gz is the input for the next key derivation function between the

pair. For M to compute the p2p key used to share the next sending key inputs, M must

query KDF2(g
h, Ui, Uj). D0 watches M ’s random oracle queries, if gh = gz D guesses

gz = gxy. If M computes the p2p key Advpfs(M) = r ·Advpfs(D0). D0 has probability
1
r of guessing the correct p2p message.

If M cannot compute previous keys M may break the authenticated encryption of

the p2p channel, in which case adversary P0 applies. Finally, if the p2p channels are

secure M must break the authenticated encryption of the group messages adversary B

from earlier can be used to win the IND-CPA game against our authenticated encryption

scheme.

If the DDH problem is hard and our authenticated encryption scheme is secure,

SYM-GOTR must be forward secure.

4.6.7 Backward Secrecy

The backward secrecy property guarantees that after a users state is revealed only

the next message is compromised by a passive adversary. Figure 4.12 describes the

additional functions of the backward secrecy game. An adversary M may reveal the

state of a user with the RevealState query. After revealing a state M may issue

Test to instruct Ui to send a message m followed by test message mb to a clean session.

The adversary then guesses if m0 or m1 was sent. The advantage of M is defined as

Advbs(M) = Pr[Mwins]− 1
2 .

SYM-GOTR provides backward secrecy if all hash and key derivation functions are

modeled as random oracles. For any adversary M that that wins the backward secrecy

80

Figure 4.12: SYM-GOTR Backward Secrecy Game

function Initialize(U)
b←R {0, 1}
Initialize PKI for all users in U .

function Test(Sid, Ui,m,m0,m1)
Ui first securely sends m then securely sends mb in session Sid
Test may only be called once
return All network traffic generated for Ui to send m then mb to session Sid

function RevealState(Sid, Ui)
May only be called before Test
return All of Ui’s long-term key and current state for session Sid

function Finalize(d)
return (d = b)

game and runs in time at most t, establishes at most s sessions with at most w users

per session, and establishes at most n p2p sessions, we show that there exists a DDH

adversary D1, an IND-CPA adversary P0, and an IND-CPA adversary B such that

Advbs(M) ≤ n ·AdvDDH(D1) + n ·AdvIND−CPA(P0)

+ sw ·AdvIND−CPA(B)

Where D1, P0, and B run in time O(t).

Proof. For adversaryM to win the backward secrecy game they must be able to compute

the next sending key of Ui or win the IND-CPA game of the broadcast channel. If M

can compute the next sending key M must either compute the next p2p channel keys

or win the IND-CPA game against the p2p channels.

If M can compute the next p2p sending key we construct a challenger D1 that can

win the DDH problem. D1 acts as a normal SYM-GOTR challenger before Test is

invoked. When Test is invoked, D1 securely sends m as normal and queries the DDH

challenger for (gx, gy, gz) for a random pair of users (Ui, Uj). D1 uses gx as Ui’s next

p2p channel public key and gy for Uj . The next p2p channel sending key for Ui is

computed as Kij = KDF2(g
z, Ui, Uj). For M to learn Kij , M must query the random

oracle KDF2(g
xy, Ui, Uj). D1 watches M ’s random oracle queries and if M queries

KDF2(g
z, Ui, Uj), D1 guesses gxy = gz to the DDH challenger. D0 wins if the correct

p2p channel was selected. The advantage of D1 is Advbs(M) = n · Advbs(M). D1 has

probability n of guessing the correct p2p session.

81

The adversaries P0 and B discussed previously demonstrate how to construct a chal-

lenger that can win the IND-CPA game against the p2p channel and broadcast channel

respectively given an adversary that can win the backward secrecy game. If M cannot

compute the next p2p sending key or break the IND-CPA game of our authenticated

encryption, SYM-GOTR must be backward secure.

4.7 Usability

Figure 4.13: Warning displayed when not all users in a secure group chat are authenti-
cated.

We evaluate the usability of our SYM-GOTR plugin. While implementing our plu-

gin we focus on maintaining consistency with the overall Jitsi user experience while

focusing on the safe usability of SYM-GOTR. We analyzed our implementation with a

cognitive walkthrough [49] and resolved usability issue we discovered during the process.

A cognitive walkthrough is a standard first step [50] used to evaluate the usability of

software. Gujrati and Vasserman [51] show a cognitive walkthrough is a simple tech-

nique that can provide dramatic improvements to the usability of security software that

they then validate with a user study.

During the cognitive walkthrough we focused on the four main actions a user will

82

Figure 4.14: Notice of successful participant authentication.

perform with SYM-GOTR; secure group setup, group member authentication, receiv-

ing group messages, and sending group messages. In this section we present two key

properties that need to consider the user experience when implementing SYM-GOTR.

These properties are participant authentication and global transcript consistency.

We consider four usability properties during the walkthrough:

p1 The user should be able to achieve the correct effect.

p2 The user should be able to notice the correct action is available.

p3 The user should be able to associate the correct action with the effect he or she

is trying to achieve.

p4 If the users performs the correct action, he or she should be able to see progress

is being made towards it.

We also consider the security properties of the secure group communication.

s1 Unmotivated users property Users should be able to use the system with

minimal additional effort.

83

Figure 4.15: Warning of participant authentication failure.

s2 Lack of feedback property Lack of feedback from a secure system will leave

the user wondering if they have performed the right tasks and performed the task

correctly.

s3 Barn door property If a user creates an insecure environment the security of

the system may be compromised even if the environment is brought back to a

secure state.

s4 Weakest link property Mistakes in the use of security software may lead the

user to an insecure environment. Users should be guided to use the software

correctly so the chance of failure is minimal.

We have adopted the usability and security properties from the seminal work of

Whitten and Tygar [50]. Along with the usability and security properties of the system

we want to consider the SYM-GOTR usability goals of the system.

1. Users understand the privacy provided (encryption, authentication).

2. Users understand the privacy of messages(plaintext, encrypted, authenticated).

3. Users understand the warnings when an adversary is present.

84

Figure 4.16: Warning that another participant requires authentication.

In our cognitive walkthrough we considered novice users, users with an interest in

private communication but unwilling to read a manual. In the expected use case for

SYM-GOTR, a user first starts a secure chat room. Then multiple users join the room.

Finally secure messages are broadcast to the room. At anytime during the session users

may join and leave the secure chat room.

We give users multiple consistent feedback indicators for each action, notice the lock

icon on the toolbar and in the participant list and how these icon updates reflect the

messages presented during each task.

4.7.1 Secure Group Setup

There are two ways a user can setup a private chat. They can initialize a chatroom that

requires connected clients to implement SYM-GOTR or they can promote an unsecured

chat to a SYM-GOTR chat. For this cognitive walkthrough we only describe our walk-

through of required SYM-GOTR chats and how it relates to participant authentication.

85

Figure 4.17: Warning shown when a user receives a message from an unauthenticated
participant.

After two or more users have joined a secure chat room SYM-GOTR can perform

the setup phase but the users remain unauthenticated. In maintaining the usability

properties the user is alerted to this and provided with an action to authenticate the

participants. Figure 4.13 is a screen shot of this alert.

After authentication the users are notified of the success: Figure 4.14, or failure:

Figure 4.15. When more than two participants are in a secure chat the users are

prompted to authenticate every user one at a time. Figure 4.16 demonstrates this

process. This maintains the usability properties by providing a single correct action at

a time.

4.7.2 Receiving Messages

There are three types of messages a user can receive. A plaintext message can only

be received when a SYM-GOTR session is in the plaintext state. An unauthenticated

message is a message that has been broadcast and been confirmed in the message con-

sistency check but originated from an unauthenticated user. Figure 4.17 is a screen

shot showing the warning displayed when an unauthenticated message is received. If

a message has been confirmed in the message consistency check and was sent by an

86

Figure 4.18: Notice when a user receives a secure group message.

authenticated user we consider it an authenticated message. When a user receives a

message but it fails the digest exchange we silently drop the message. We choose to

drop the message instead of warn the user to maintain the usability properties and a

warning of this type is not actionable.

A signature consistency error may be detected in an adversarial environment which

would allow an adversary to confirm a message reception with a subset of users only.

This attack will be detected by the signature consistency check. The detection of this

attack implies the previous message may not have been seen by all participants and the

user is warned as shown in Figure 4.19. The adversary in this attack must generate two

conflicting signed messages and will be noticed. We warn the user about this adversary

so they can decide how to handle them.

87

Figure 4.19: Warning displayed when a user detects a participant lied in the last digest
exchange.

Chapter 5

Mobile Communication With

Privacy and Integrity

88

89

In this chapter we address the problem of designing a deployable, end-to-end secure

mobile group messaging application. We identify key constraints of the mobile end-

to-end secure messaging model as well as describe the security properties a protocol

should provide. We also identify a real-world threat model a protocol must provide

these properties under (Section 5.1). We describe a relatively simple and provably se-

cure protocol for Mobile Conversations With Privacy and Integrity (Mobile CoWPI) in

Section 5.2. We show in Section 5.3 that Mobile CoWPI provides the desired security

properties. We then analyze the security properties of our mobile messaging model

and show the restrictions they impose on any mobile end-to-end secure messaging pro-

tocol (Section 5.5). We argue that under these restrictions, Mobile CoWPI is within

a constant factor of optimal in terms of message size. Finally, We implement Mobile

CoWPI as a Java server and library and show that it performs well in a realistic inter-

net environment (Section 5.4) deployed on Amazon AWS[10] and Linode [11] with both

desktop and Android [52] clients.

5.1 Mobile Secure Messaging

In this section we lay out the system model of modern secure messaging applications and

show how this model is insufficient to provide conversation integrity. We then detail our

system model and discuss how it enforces conversation integrity. We also overview our

strong threat model along with all of the security properties we provide in our protocol.

5.1.1 Mobile Messaging Model

All popular mobile messaging applications provide the same core features using a con-

sistent system model. The key feature is providing a conversation for two or more

participants. These applications allow participants to start a new conversation, send

messages, and add or remove participants from a conversation even while other partici-

pants are offline. When the offline participants return they are updated with all missed

messages in the conversation. To improve conversation flow with offline participants

the members of the conversation are notified when other participants have received the

messages. This informs the author of a message not to expect a response until the

recipients have received the message.

90

To provide these conversation properties the service provider handles routing and

caching messages in the conversation. The messages are cached for delivery to offline

participants. All popular secure messaging applications rely on a single service provider

to perform the message routing and caching.

Unfortunately, if the server providing this service to a particular conversation is com-

promised, it can break the conversation integrity property1 of any protocol that allows

a conversation to progress while some participants are offline. The service provider sim-

ply needs to “fork” the conversation (into two separate sub-conversations) after a target

message and can partition the group into multiple views of the same conversation. We

illustrate this with an example. Consider a conversation between Alice, Bob, Charlie,

and Dave. The service provider forks the conversation after Alice’s second message.

The group is partitioned into two views, one where Alice and Bob believe they are the

only participants online and the other where Charlie and Dave believe they are the only

participants online.

Alice’s and Bob’s View:

Alice: Lets go to the protest if 3 people want to?

Alice: I want to go.

Bob: I cannot make it.

Charlie’s and Dave’s View:

Alice: Lets go to the protest if 3 people want to?

Alice: I want to go.

Charlie: I am in.

Dave: Yes, me too.

5.1.2 Multi-providers for conversation integrity

To avoid this conversation integrity attack the system model of Mobile CoWPI con-

sists of a routing/caching service provider with multiple order-enforcing-service (OES)

1 Informally, that all participants should have the same view of a conversation.

91

providers. In this model, users register and communicate directly only with the routing

service provider. However, when sending the ith message in a conversation, the user

uploads it to the routing service provider, who forwards the message to each OES, re-

ceiving a confirmation binding the message to index i. Since service providers should

only confirm a single message at each index i, if users only accept messages confirmed

by all OES providers, the protocol can ensure that messages are handled in an order

that preserves the integrity of the conversation if at least one provider is honest. In

this “any trust” model we believe a single routing provider and two OES providers are

sufficient to provide practical conversation integrity; we discuss some limitations of this

model in Section 5.5.

5.1.3 Service Availability

Service availability is not a security goal of Mobile CoWPI. When discussing the protocol

we describe multiple service providers. We do not necessarily expect each service to be

provided by a single machine, but require each service to be provided by a separate

entity. Standard techniques for achieving high availability can be deployed to ensure

the service is reliably available.

Denial of Service protection is also a non-goal of Mobile CoWPI. It is trivial for a

service provider to deny service to a client by not processing or forwarding messages. It

is possible for a malicious provider to behave incorrectly and send malformed or incorrect

messages to a client and cause a denial of service. This is equivalent to not sending the

messages at all. All messaging applications that rely on a service provider are vulnerable

to this type of denial of service. Additionally, if any participants are offline or cannot

process a message, all other participants can still progress the conversation. They are

not blocked on the offline/denial of serviced participants.

5.1.4 Threat Model

In relation to the threat model described in Section 2.2. The security provided by

Mobile CoWPI needs to withstand strong adversaries. We consider an adversary that

may compromise multiple service providers and multiple users. The adversary also has

full network control and may drop, modify, reorder, and add network traffic. In effect

92

the adversary can control the routing service provider and all OES providers as well as

any number of participants, unless it would trivially allow the adversary to compromise

a target security property. Each security property is provided under the strongest

adversary that cannot trivially break the property.

5.1.5 Security Properties

Besides the system goals of offline users and message receipts we now quickly restate the

security goals of Mobile CoWPI as they relate to the goals introduced in Section 2.3. In

Section 5.3 we provide sketches of the security proofs for these properties and provide

both the formal definitions of these properties and the full proofs that Mobile CoWPI

achieves these properties in Section 5.6.

Message Confidentiality is the property that only conversation participants can read

a message.

Forward Secrecy is the property that, after users have ratcheted their key material

all messages sent prior to the key ratchet are confidential.

Post-Compromise Secrecy is provided if an adversary is allowed to reveal the long-

term and session state of any or all of the users in a conversation, after the key healing,

all future message remain confidential.

Message Authentication is the security property that all participants can verify the

author of a message and that a message has not been modified in transit.

Participant Authentication is the property that all honest participants can verify

all other honest participants are really who they claim to be.

Conversation Integrity is the property that all participants see the same conversa-

tion. This includes the order of messages in a conversation and the order of partic-

ipant changes in a conversation. As we showed earlier, conversation integrity cannot

be achieved if the adversary controls all of the routing and OES providers. Thus, the

adversary is allowed to control all but one of the OES providers.

Also recall, post-compromise conversation integrity which introduces key healing. A

protocol provides post-compromise conversation integrity if after a key healing process,

the conversation integrity of future message is not compromised by an adversary that

may have revealed the long-term and session state of users or OES providers.

Participant Consistency guarantees all participants of a conversation agree on the set

93

of all participants in the conversation. In Mobile CoWPI, setup and participant change

messages are handled in the same manner as conversation messages. Thus, conversation

integrity implies participant consistency.

Deniability is the property that participants may deny taking part in a conversation

and authoring any particular message.

5.2 Design

5.2.1 Overview

At a high level Mobile CoWPI is designed as follows. Users register with the routing

service provider out-of-band. This registration links a user identity, a long-term public

key, and multiple single use pre-keys. When messages are sent as part of a conversation

they are uploaded to the routing provider. The routing service then forwards the mes-

sage to all of the OES providers, each OES returns a confirmation binding the message

to its index in the conversation. The routing server then delivers the message and OES

confirmations to the clients. The participants do not process a message until it has been

received from the routing service provider and has an order confirmation from all of the

OES providers. As long as a single OES provider is honest conversation integrity and

participant consistency are enforced.

There are 4 types of protocol messages in Mobile CoWPI; setup, conversation, partic-

ipant update, and receipt. Setup messages are used to instantiate a new Mobile CoWPI

session and are detailed in Section 5.2.7. Conversation messages contain a message to

be displayed to the participants of the session, detailed in Section 5.2.9. Participant Up-

date message allow adding and removing participants from a conversation, detailed in

Section 5.2.10. Finally, Receipt messages indicate a participant has received, accepted,

and processed all prior messages, detailed in Section 5.2.8.

For a conversation between Alice, Bob, and Charlie. All messages sent by Alice are

of the form:

Sid, “TY PE”, Alice, idx, P, cab, cac, authas1 , . . . , authasm

All messages received by Bob from Alice will be of the form:

Sid, “TY PE”, Alice, idx, P, cab, authbs1 , . . . , authbsm

94

Where Sid is the session identifier, idx is the index of the message, ca∗ is a pairwise ci-

phertext block between Alice and each participant detailed in Section 5.2.5 and authas∗ ,

authbs∗ are pairwise authentication blocks between Alice or Bob and each OES provider

detailed in Section 5.2.6. Sending a message is linear in the number of participants plus

the number of OES providers, while receiving a message is constant in the number of

participants and linear only in the number of OES providers. This linear size does not

limit the scalability of the Mobile CoWPI as Snapchat’s end-to-end encrypted snaps are

also linear in size and more than a Billion are sent a day [53].

5.2.2 Message Order

To enforce conversation integrity there are seven rules to message ordering.

1. An OES confirmation must be received from every OES provider for a proto-

col message before processing the message. The protocol messages must also be

processed in the order they are received and confirmed.

2. All conversations start with a setup message.

3. When Alice sends a receipt, it must acknowledge all setup, conversation, and par-

ticipant update messages prior to the receipt that she has not yet acknowledged.

Typically they are sent shortly after every message is received.

4. Prior to Alice sending a conversation or participant update message, Alice must

have sent a receipt.

5. When Alice sends a receipt, she acknowledges messages with every participant

separately. If Bob has just joined the conversation she only acknowledges the

messages that she and Bob have in common.

6. When Alice sends a conversation or participant update message, she must acknowl-

edge the most recent prior setup, conversation or participant update message. She

must also acknowledge all receipts received after that prior message in order.

7. If Alice receives an invalid protocol message from the routing server she terminates

the conversation on her client and does not process any future messages.

95

Rule (1) implies that even the author of a message must wait until they have received

confirmation of the message order from all OES providers before processing it. Other-

wise, if two users sent a message at the same time, both users would think their message

would come first, causing an order inconsistency.

Rule (6) implies strong ordering of setup, conversation, and participant update mes-

sages but not receipts. This was a design choice as requiring receipts to acknowledge

receipts would cause significant overhead and excess network traffic when every client

sends a receipt at the same time, forcing n− 1 receipts to be outdated and resent.

Rules (3) and (4) restrict the amount of time a message is vulnerable if the keys

used to encrypt it are compromised. We discuss this more as it relates to forward and

post-compromise secrecy in Section 5.3.

5.2.3 Primitives

We assume standard cryptographic primitives. Let l be the security level in bits of

Mobile CoWPI. All primitives are assumed to provide at least l bits of security. Let

G be a group of prime order p generated by g where the decisional Diffie-Hellman

assumption is hard.

We assume a hash function and three key derivation functions:

H : {0, 1}l × Zp 7→ Z∗p

KDF1 : S ×G×G×G× U × U 7→ {0, 1}l

KDF2 : {0, 1}l 7→ {0, 1}l

KDF3 : G×G×G× U × U 7→ {0, 1}l

Where H and KDF1 are used for two-party NAXOS [40] key agreements, KDF2 is

used to produce a random symmetric key from an input string, and KDF3 is used for

the secure channel between the clients and routing service provider. S is the set of

possible session identifiers and U is the set of possible participant identifiers. That is,

KDF1 takes as input a session identifier, three group elements and two user identities,

the sender and receiver. These functions are modeled as random oracles. We choose

NAXOS as it has the property that to distinguish between a random key and a NAXOS

key the distinguisher must know both the long-term and ephemeral secret keys of one

96

of the participants. KDF1 is a minor modification of the NAXOS KDF that also

includes the session identifier of the current Mobile CoWPI session, where as, KDF3 is

the original NAXOS key agreement.

We assume a symmetric authenticated encryption with associated data (AEAD)

scheme. AEAD consists of two functions, Enck(m, d) 7→ c, and Deck(c, d) 7→ m, or ⊥ if

c and d do not authenticate with key k. The AEAD scheme must provide indistinguish-

able from random chosen-plaintext-attack security (IND$−CPA) [54] and integrity of

ciphertext security (INT − CTXT) [39]. We choose AES-GCM with random IVs for

our AEAD scheme.

5.2.4 Registration

To register with the providers Alice generates a long-term public private key pair:

lska ←R Z
∗
p , lpka ← glska

She also generates a list of ephemeral pre-keys where i is the id of the pre-key:

eska[i]←R {0, 1}l, epka[i]← gH(eska[i],lska)

Alice registers her identity, public long-term key lpka and public ephemeral pre-keys

epka with the providers out-of-band. Alice should generate enough pre-keys to support

as many conversations as she expects to start while she is offline. She can always upload

new pre-keys in the future. Each pre-key may only be used once. The participants must

enforce this rule.

5.2.5 Two Party Ciphertext Blocks

All protocol messages contain pairwise ciphertext blocks cab where a is the sender and b is

the receiving participant. These blocks are used to send additional key information and

authenticate the protocol message. They are computed using a simple key ratchet where

the initial block uses a pre-key to perform a NAXOS authenticated key agreement and

then utilizes AEAD to encrypt and authenticate the message. All subsequent blocks

after the initial block use ephemeral keys sent in the previous block to derive a new

NAXOS key and then encrypt with AEAD as in the initial block. In this section we

describe how to compute these ciphertext blocks in terms of Alice sending to Bob.

97

Here we describe how Alice computes the initial ciphertext block cab to send to Bob

in session Sid. This ciphertext block encrypts message m and authenticates associated

data d. m is only used when sending conversation messages, in which case it is random

symmetric key material. When sending setup, receipt, and participant update message

m is empty.

First, Alice fetches Bob’s long-term public key lpkb and an ephemeral pre-key epkb

from the routing service provider where idb is the id of epkb. Alice generates a new

ephemeral key:

eskab ← {0, 1}l, epkab ← gH(eskab,lska)

Then Alice computes a symmetric key:

ki1 ← epklskab

ki2 ← lpk
H(eskab,lska)
b

ki3 ← epk
H(eskab,lska)
b

k ← KDF1(Sid, ki1, ki2, ki3, a, b)

Alice generates her next ephemeral key pair:

id′ab ← 1

esk′ab ←R Z
∗
p

epk′ab ← gH(esk′ab,lska)

She computes the ciphertext block as:

cab ← epkab, idb, Enck((m, id
′
ab, epk

′
ab), d)

When Bob receives cab = epkab, idb, c from the providers he first fetches Alice’s long-

term public key lpka and looks up the ephemeral secret key eskb associated with idb

and computes the symmetric key as:

ki1 ← lpkH(eskb,lskb)
a

ki2 ← epklskbab

ki3 ← epk
H(eskb,lskb)
ab

k ← KDF1(Sid, ki1, ki2, ki3, a, b)

98

Then he verifies c and d with k and decrypts:

(m, id′ab, epk
′
ab)← Deck(c, d)

and stores id′ab and epk′ab for latter use. Note that the implicit authentication of NAXOS

key exchange authenticates that the message originated from someone with knowledge

of Alice’s long-term secret key.

All subsequent ciphertext blocks are generated and processed in the same manner as

the initial ciphertext block replacing the pre-keys with the ephemeral keys received in

the previous block. This key ratcheting provides the self healing necessary for forward

and post-compromise secrecy. The users do not send the ephemeral public keys in the

clear in subsequent ciphertext blocks. That is the ciphertext block has the form:

cab ← id′b, Enck′((m, id
′′
ab, epk

′′
ab), d)

Alice and Bob may try to initialize the two-party key ratchet at the same time. If

this happens the providers will enforce an order to the messages and future ciphertext

blocks should use the most recently initialized key ratchet.

These ciphertext blocks are what provide message integrity and authentication. This

is due to the NAXOS key agreement implicitly authenticating the symmetric keys.

5.2.6 OES Authentication Block

Every protocol message that Alice sends contains an OES authentication block authaj

for every OES provider j ∈ S where S is the set of OES providers. The authentication

blocks are necessary since Alice only uploads the message to the routing service provider.

The routing service provider then forwards the message to the OES providers. The

authentication blocks allow the OES providers to verify that the message is from Alice

and for Alice to verify the index a message she receives.

These OES authentication blocks are generated and handled in the same way as the

two-party ciphertext blocks discussed earlier. The key ratcheting provides self healing

for post-compromise conversation integrity.

99

5.2.7 Setup Message

All conversation messages are similar in format. For Alice to setup a conversation she

first fetches ephemeral pre-keys for every other particpant and each OES provider. Then

she generates a random Sid and computes the setup message:

data0 ← Sid,Alice, “SETUP”, idx, P

where idx is the index of the message in the session. For setup messages the index is

always 0. Next, Alice computes the two party ciphertext block cai for every participant

i ∈ P \ {Alice} as described in Section 5.2.5, where data0 is the associated data to

authenticate in those ciphertext blocks. Let n = |P | and :

data1 ← data0, ca0, . . . , can−1

Next, Alice computes the OES authentication block authaj for every OES provider

j ∈ S as described in Section 5.2.6 where data1 is the associated data to authenticate.

Alice then sends to the routing service provider:

data1, autha0, . . . , authas

where s = |S|.
The routing provider sends to each OES provider j the message data1, authaj along

with an ephemeral pre-key for every participant except for Alice. Each OES provider

verifies the message data1 is from Alice. Then every provider for every participant i ∈ P
generates an authji as described in Section 5.2.6 with data0, cai as the associated data.

Each OES provider then returns all of the authj∗ blocks back to the routing service.

The routing service forwards data0, cai, auth∗i to every user i ∈ P . Every user

verifies the auth∗i blocks for every OES provider and that that data0, cai is from Alice.

The routing service only send data0, auth∗a to Alice as there is not a ciphertext block

for herself.

Once a participant has received the setup message along with an OES authentication

block from the routing service provider and verified the message, they setup a new

Mobile CoWPI session with session identifier Sid. All providers must verify Sid is not

used for any existing session before processing the message.

100

5.2.8 Receipt Message

Participants send receipts after they have accepted any setup, conversation, or partic-

ipant update message. If multiple messages are sent while Alice is offline she sends a

single receipt that acknowledges all messages mi with participant i ∈ P \ {Alice}. The

messages to acknowledge depend on the participant they are being acknowledged to.

mi is composed of all protocol message, excluding receipts more recent than the last

setup, conversation, or participant update message, that have not been acknowledge

previously and have been sent after participant i has been added to the conversation.

This is because i cannot acknowledge messages they have not seen. mi should be a list

of all data0 blocks from the messages to acknowledge in order.

A receipt is similar to a setup message. When Alice generates a receipt for messages

she computes:

data0 ← Sid,Alice, “RCPT”, pidx

where pidx is the index of the previous setup, conversation, or participant update mes-

sage. Then she computes the two party ciphertext block cai for every participant

i ∈ P {Alice} as detailed in Section 5.2.5 with the associated data to authenticated

as data0,mi. Let

data1 ← data0, ca0, . . . , can−1

She then computes the OES authentication blocks as detailed in Section 5.2.6 with the

associated data as data1. Finally, she sends data1 and the authentication blocks to the

routing provider.

The routing service provender and OES providers handle the message in the same

way as a setup message detailed earlier. Except this the routing server sends the index

of the receipt (idx) to the OES providers. They verify that pidx and idx are correct

and generate the OES block for user i with data0, cai, idx as the associated data.

When a participant receives a receipt they first verify the OES authentication blocks

then verify that the receipt authenticates the correct messages. If anything does not

verify, they terminate the session.

101

5.2.9 Conversation Message

Conversation messages are similar to receipts except they contain a ciphertext. Let

idx be the index of the next message in the session Sid. When Alice wants to send

the conversation message m. She first generates a random symmetric key input ka ←R

{0, 1}l then computes the symmetric key k ← KDF2(ka). Let

data0 ← Sid,Alice, “MSG”, idx,Enck(m)

She then generates the ciphertext block cai for every i ∈ P \ {Alice} as detailed in

Section 5.2.5 with ka as the data to encrypt in the ciphertext block and data0 as the

associated data. Let

data1 ← data0, ca0, . . . , can−1

She then computes the OES authentication blocks as detailed in Section 5.2.6 with the

associated data as data1. Finally, she sends data1 and the authentication blocks to the

routing provider.

The routing service and OES providers handle the message in the same manner as

receipt messages, verifying the OES authentication blocks and index. After receiving

the message, each participant verifies the OES authentication blocks and index and

displays the message. If the message does not verify the session is terminated.

5.2.10 Participant Update Message

To change the set of participants in a conversation a member of the conversation can

send a participant update message. Who is allowed to send the messages as well as what

modifications they are allowed to make are out-of-scope of this work. However, partici-

pant modifications must be enforceable by the providers since they need to forward and

authenticate messages.

Participant update messages are similar to conversation messages except that the

conversation message ciphertext is replaced with a list of participants. Again let idx be

index of the next message in session Sid. When Alice wishes to change the participants

of a conversation to P ′ she creates a message:

data0 ← Sid,Alice, “UPDT”, idx, P ′

102

She then creates the ciphertext block cai for participant i ∈ (P ∪ P ′) \ {Alice} as

described in Section 5.2.5 where data0 is the associated data for the ciphertext blocks.

Let

data1 ← data0, ca0, . . . , can−1

Alice then creates the provider authentication block authaj for provider j ∈ S as detailed

in Section 5.2.6 with data1 as the associated data. She uploads data1 along with the

provider authentication blocks to the routing provider.

The routing services and OES providers handle the update message in the same way

as a setup message. Each provider checks that Alice is allowed to make the desired group

modification and verifies the index is correct. Each participant verifies the messages is

authentic from Alice and updates their participant list after they have received the

message from every provider. If the message does not verify the session is terminated.

This message authenticates the group change to all old and new participants which

leaks any new participants to participants that have been removed. To avoid this leakage

it is up to the implementation to send a separate group update message removing users

before sending a message adding the new users.

5.2.11 Two Party Channels

All communication between the clients, OES providers, and the routing service is per-

formed over a two-party channel that supplies all of the security properties discussed

in Section 5.1. The OES providers act as clients when communicating with the routing

provider. This is a synchronous channel that is setup by performing a NAXOS key

agreement to provide authentication to the channel. Then all messages are secured by

using a NAXOS key agreement with keys being ratcheted on every message to provide

forward and post-compromise secrecy.

Algorithm 9 details the algorithm for setting up the channel from the initiator. Line 2

generates the clients first ephemeral NAXOS keys. Lines 3 sends the clients identity and

NAXOS ephemeral public key to the provider. Line 4 receives the provider’s response

and line 5-9 compute the shared NAXOS key and decrypt the provider’s next ephemeral

public key and a challenge. Line 10 generates the clients next ephemeral keys. Finally,

Lines 11-16 ratchets the channel keys and sends the challenge back encrypted.

103

Algorithm 9 Client To Provider Channel Setup

1: function C2SChannelSetup(C, S, lpks, lskc)
2: eskc[0]←R Z

∗
p , epkc[0]← gH(eskc[0],lskc)

3: Send(S,C, epkc[0])
4: epks[0], c1 ← Recv(S)

5: km1 ← lpk
H(eskc[0],lskc)
s

6: km2 ← epks[0]lskc

7: km3 ← epks[0]H(eskc[0],lskc)

8: k1 ← KDF3(km1, km2, km3, S, C)
9: t, epks[1]← Deck1(c1)

10: eskc[1]←R Z
∗
p , epkc[1]← gH(eskc[1],lskc)

11: km4 ← epks[1]lskc

12: km5 ← lpk
H(eskc[0],lskc)
s

13: km6 ← epks[1]H(eskc[0],lskc)

14: k2 ← KDF3(km4, km5, km6, C, S)
15: c0 = Enck2(t, epkc[1])
16: Send(S, c0)
17: return eskc, epks

Algorithm 10 details setting up the channel from the provider. Lines 2 receives

the clients identity and NAXOS ephemeral public key. Line 3 looks up the long-term

public key of the client. Lines 4-5 compute the next two ephemeral NAXOS keys of the

provider. Line 6-8 compute the NAXOS shared key. Lines 9-12 encrypt the challenge

and the providers next ephemeral DH key and send it to the client. Lines 13-22 decrypt

the clients response and check that the client’s response matches the challenge, storing

the clients next ephemeral key.

Algorithm 11 details how a message is sent using the two-party channel. Lines 2-

3 find the id of the senders last sent ephemeral DH key and the receivers last seen

ephemeral public key. Line 4 computes the shared secret from the two keys and line 5

generates the senders next ephemeral DH keys. Line 6 encrypts the message and the

next ephemeral public key. Finally, line 7 sends the encrypted message along with the

id of the receivers public key used to encrypt it.

Algorithm 12 details receiving a message from the channel. Line 2 finds the id of

the sender’s last ephemeral public key. Line 3 reads the id of the receiver’s ephemeral

key used to encrypt the message and the ciphertext. Line 4 computes the shared key

104

Algorithm 10 Provider To Client Channel Setup

1: function S2CChannelSetup(S,C, lsks)
2: C, epkc[0]← Recv(C)
3: lpkc ←LookupUser(C)
4: esks[0]← 0, 1l, epks[0]← gH(esks[0],lsks)

5: esks[1]← Z∗p , epks[1]← gesks[1]

6: km1 ← epkc[0]lsks

7: km2 ← lpk
H(esks[0],lsks)
c

8: km3 ← epkc[0]H(esks[0],lsks)

9: k1 ← KDF3(km1, km2, km3, S, C)
10: ts ←R {0, 1}l
11: c1 ← Enck1(ts, epks[1])
12: Send(C, epks[0], c1)
13: c2 ← Recv(C)

14: km4 ← lpk
H(esks[1],lsks)
c

15: km5 ← epkc[0]lsks

16: km6 ← epkc[0]H(esks[1],lsks)

17: k3 ← KDF3(km4, km5, km6, C, S)
18: tc, epkc[1]← Deck2(c1)
19: if ts = tc then
20: return (C, esks, epkc)
21: else
22: return ⊥

and line 5 decrypts the message and the senders next ephemeral public key.

5.2.12 Long-term Key Verification

The ability for Alice to verify that Bob is actually Bob is a challenging problem in mes-

saging systems. This is enforced in Mobile CoWPI by verifying the real Bob knows the

private key associated with the long-term public key Alice retrieves from the providers.

Mobile CoWPI does not necessitate a specific mechanism for verifying these keys and

identities but some such mechanism is required to provide participant authentication. In

practice key fingerprints can be compared in person or with an interactive scheme such

as the Socialist Millionaire Protocol (SMP) as applied by Alexander and Goldberg [41].

105

Algorithm 11 Channel Send

1: function SecureSend(S,R,m, lsks, esks, lpkr, epkr)
2: ns ← |eskr|
3: nr ← |epkr|
4: km1 ← epkr[nr − 1]lsks

5: km2 ← lpkr[nr − 1]H(esks[ns−1],lsks)

6: km3 ← epkr[nr − 1]H(esks[ns−1],lsks)

7: k ← KDF3(km1, km2, km3, S,R)
8: esks[ns]← Z∗p , epks[ns]← gesks[ns]

9: c← Enck(m, epks[ns])
10: Send(R,nr − 1, c)
11: return (esks, epkr)

Algorithm 12 Channel Receive

1: function SecureRecv(R,S, eskr, epks)
2: ns ← |epks|
3: nr, c←Recv(C)

4: km1 ← lpk
H(eskr[nr−1],lskr)
s

5: km2 ← epks[ns − 1]lskr

6: km3 ← epks[ns − 1]H(eskr[nr−1],lskr)

7: k ← KDF3(km1, km2, km3, S,R)
8: m, epks[ns]← Deck(c)
9: return (eskr, epks)

5.3 Security

In this section we discuss the security provided by Mobile CoWPI. We argue that it

provides all of the desired security properties discussed in Section 5.1. We provide full

proofs in Appendix 5.6. We model our hash function (H) and key derivation func-

tions (KDF1,KDF2) as random oracles. We also assume the decisional Diffie-Hellman

problem is hard. We utilize the fact distinguishing between a random key and a key

generated with the NAXOS key agreement is hard if the adversary does not know the

long-term and ephemeral secret keys of one of the parties in the key agreement as shown

by the NAXOS authors. We assume our AEAD scheme provides IND$ − CPA and

INT − CTXT security. Finally, we assume all participants in a conversation have

verified their long-term keys either manually or with SMP.

106

5.3.1 Message Confidentiality

Message confidentiality is the property that only participants of a conversation can read

a message. We provide message confidentiality against a powerful adversary that may

corrupt any or all of the providers, may control any user that is not a participant in the

target conversation, and may reveal the long-term and ephemeral keys of any participant

on any non-target message.

To compromise the confidentiality of a message:

Sid, “MSG”, A, idx,EncKDF2(ka)(m), ca1, . . . , autha1, . . .

The adversary must be able to distinguish between EncKDF2(ka)(m) and a random

string. If an adversary can make this distinction they must be able to do one of the

following:

1. Compute a two-party NAXOS key without being one of the parties allowing them

to decrypt one of the ciphertext blocks c∗ and retrieve the key input ka, thus

decrypting the m.

2. Decrypt one of the c∗ ciphertext blocks without knowing the symmetric key and

learn ka, thus breaking the IND$− CPA security of the AEAD scheme.

3. Distinguish the ciphertext ENCKDF2(ka)(m) from random without knowing ka,

thus breaking the IND$− CPA security of the AEAD scheme.

5.3.2 Message Authentication and Integrity

Message authentication provides the property that when Bob receives a message from

Alice in session Sid, Alice must have sent that message. Mobile CoWPI provides

message authentication against a strong adversary that may control any or all of the

providers and any users in any session. As long as Alice and Bob have not had their

long-term keys and ephemeral keys of session Sid compromised, all messages received

by Bob from Alice are authentic.

For an adversary to forge a message from Alice to Bob the adversary must create a

message:

Sid, “MSG”, A, idx,EncKDF2(ka)(m), cab, . . . , autha1, . . .

107

If the adversary can forge the message they must be able to do one of the following:

1. Compute a two party NAXOS key without knowing Alice’s or Bob’s long-term

and ephemeral keys, allowing the adversary to create the ciphertext block cab.

2. Forge a valid ciphertext block cab from Alice to Bob without knowing the sym-

metric key, thus breaking the INT − CTXT security of the AEAD scheme.

5.3.3 Forward Secrecy

Forward secrecy is the property that past messages are confidential even if future key

material is revealed. Mobile CoWPI provides forward secrecy of a message m after every

user i ∈ P has processed the receipt of every user j ∈ P acknowledging m. Forward

secrecy assumes the same adversary as message confidentiality.

Let P be the set of participants in session Sid and let ma be the message:

Sid, “MSG”, A, idx,EncKDF2(ka)(m), ca1, . . . , autha1, . . .

be a message sent from user A ∈ P . The adversary cannot distinguish EncKDF2(ka)(m)

from random after every participant i ∈ P has processed a receipt from A, acknowledg-

ing ma, and A has processed a receipt form i acknowledging ma. First we show that

every ephemeral private key eskia used to compute ciphertext block cai will never be

used again and thus can be deleted. Then we show that without eskia the adversary

cannot distinguish EncKDF2(ka)(m) from random similar to message confidentiality.

The ciphertext block cai is computed using a’s ephemeral private key eskai and i’s

ephemeral public key epkia. In cai, a distributes a new ephemeral public key epk′ai and

can safely delete eskai, so all eskai have been deleted after sending ma.

Now we show eskia can be deleted after i has sent a receipt that acknowledges ma

and processed a receipt from a acknowledging ma. Let the receipt from i be:

ri ← Sid, “RCPT”, I, pidx, ci1, . . . , authi1, . . .

Ciphertext block cia is generated using ephemeral private key eskia and ephemeral

public key epk′ai. In cia, i distributes a new ephemeral public key epk′ia. Let ra be the

receipt from a acknowledging ma. The ephemeral private key eskia can be deleted after

i processes both ri and ra. Since receipts do not enforce an order, a may use eskia when

108

sending ra. After a sends ra she may only send a conversation message or group update

message, which acknowledges ri and thus uses epk′ia. This shows that eskai and eskia

can be deleted after a and i process the receipts ra and ri.

After keys have been ratcheted Mobile CoWPI provides the same message confiden-

tially property as discussed previously.

5.3.4 Post-Compromise Secrecy

Post-Compromise secrecy is the property that compromising prior long-term and ephemeral

key material does not break the confidentiality of future messages. If Alice’s long-term

or ephemeral state are revealed, all conversation messages following Alice’s next re-

ceipt provide post-compromise secrecy. Similar to forward secrecy we need to show

that Alice’s compromised ephemeral private keys are not used in the next conversation

message.

Let eskai be Alice’s compromised ephemeral key used for the two-party ciphertext

block with user i. We show that after Alice’s next receipt, the following conversation

message does not use eskai. Let Alice’s receipt be:

ra ← Sid, “RCPT”, Alice, pidx, ca1, . . . , autha1, . . .

Recall that the ciphertext block cai is encrypted with a key generated from eskai and

contains a new ephemeral key esk′ai. Let c′ai be the ciphertext block of the conversation

message. Since all messages must acknowledge all prior receipts, c′ia must use Alice’s

ephemeral key epk′ai from her receipt.

Similar to forward secrecy, after keys have been ratcheted Mobile CoWPI provides

message confidentiality as discussed previously.

5.3.5 Conversation Integrity

Conversation integrity is the property that all honest participant in a conversation

see the same conversation. That is all honest participants agree on the order of all

setup, conversation, and participant update messages. Conversation integrity considers

an adversary that controls the network, can compromise all but one OES provider,

and can compromise participants in the conversation. The adversary is not allowed to

109

compromise all the OES providers, otherwise breaking conversation integrity is trivial,

regardless of the protocol. If all of the providers are compromised the adversary can

simply partition the group.

Consider a conversation between Alice, Bob, and Charlie. After Alice sets up the

conversation the adversary can partition the conversation by never forwarding messages

from Charlie to Alice or Bob, and similarly never forwarding any messages, after the

setup message, from Alice or Bob to Charlie. Alice and Bob will believe Charlie has

never come online and continue the conversation, while Charlie will believe Alice and

Bob are always offline and continue the conversation alone. Thus, at least one provider

must be honest.

If at least one provider is honest, to break conversation integrity the adversary must

send a message:

Sid, “MSG”, A, idx,EncKDF2(ka)(m), c∗, . . . , auth∗, . . .

where two honest users (Alice and Bob), decrypt different key inputs values from their

respective ciphertext that both decrypt EncKDF2k∗(m) to different valid plaintext. Let

c, d be arbitrary strings; then the probability εint that Deck(c, d) 6=⊥ for a random key

k must be negligible, since an adversary can win the INT − CTXT game by simply

submitting c, d as a ciphertext query. This holds even when c = Enck′(m, d) for some

fixed k′. Thus if the adversary makes at most q queries to KDF2, the probability of

finding a k′ = KDF2(k) breaking conversation integrity in this way is at most qεint.

If the adversary cannot find a valid ciphertext under two random keys, to break

conversation integrity the adversary must convince two participants to accept different

messages as the ith message of conversation Sid. The honest participants only accept

a message after verifying all the OES authentication blocks bind the message to the

specific index. An honest OES provider will authenticate all messages in a consistent

order to all participants. The adversary must be able to forge an OES authentication

block for a message to an honest participant A as if it came from honest OES provider

S. If the adversary can forge such a message, it must be able to do one of the following:

1. Compute a two party NAXOS key without knowing A’s or S’s long-term and

ephemeral keys, allowing the adversary to create the authentication block authsa.

110

2. Forge a valid authentication block authsa from S to A without knowing the sym-

metric key, thus breaking the INT − CTXT security of the AEAD scheme.

5.3.6 Participant Consistency

Participant consistency is the property that all users agree on the set of participants in

a conversation. We provide participant consistency under a strong adversarial model.

The adversary controls the network and may compromise all but one OES provider and

any participants. The adversary wins if she can cause two honest users to have different

sets of users for session Sid after processing a setup or participant update message

and not terminating. Since setup and participant update messages in Mobile CoWPI

are part of the protocol transcript and Mobile CoWPI provides conversation integrity,

Mobile CoWPI also provides participant consistency.

5.3.7 Deniability

Recall deniability as discussed in Section 5.1. Deniability is provided if a single user

can run a simulator and produce a simulated transcript that is indistinguishable from a

transcript of a real protocol execution. The simulator must only take as input informa-

tion that is known to a single user. That is, only a single users view of the conversation,

which is simply a sequence of two-party messages. The distinguisher is given all of the

long-term secret information and any secret state information of the simulating user.

This requires the simulator to also output any state information of the user.

We now detail the simulator. Let Alice be the party running the simulator. She

acts as all parties in the conversation and behaves as normal expect when performing

NAXOS key agreements. The NAXOS key agreements are the only part of the Mobile

CoWPI protocol that Alice cannot perform honestly as she does not have the secret

key material of all participants. Their are two cases of the NAXOS key agreement she

needs to simulate:

1. When she is a participant of the NAXOS key agreement.

2. When she is not a participant of the NAXOS key agreement.

In the first case let Bob be the other participant. Alice may have a valid ephemeral

public key of the other participant if she is sending the SETUP message. Otherwise she

111

generates an ephemeral key epkb for the other participant as a random group element.

She then computes the NAXOS key as she normally would.

If she has a valid ephemeral key for Bob the NAXOS key agreement is a real key

agreement. If she generates a random key from Bob the distinguisher must distinguish

between the random key and a real NAXOS ephemeral key epkb ← gH({0,1}l,lskb). Since

H is modeled as a random oracle the distinguisher can only win if it queries the random

oracle on all 2l possible ephemeral secret keys with Bob’s long-term secret key. Thus

the adversary cannot tell epkb apart from a random group element with less than 2l

oracle queries.

In the second case let Bob and Charlie be the two participants. Alice will have a valid

ephemeral public key for one of them if they are sending a SETUP message. As before,

Alice will generate any ephemeral keys she does not have as random group elements and

then generates the NAXOS key as a random symmetric key; the distinguisher cannot

tell if the randomly generated ephemeral keys are real with less than 2l oracle queries.

Since the distinguisher does not know the ephemeral secret key of either party it cannot

distinguish between a random key and a real NAXOS key.

Using these NAXOS simulators, Alice can simulate all parties of a Mobile CoWPI

protocol session and produce a simulated transcript that is indistinguishable from a real

transcript. Thus, Mobile CoWPI provides message and participant deniability.

Message Unlinkability

Message unlinkability is the property that proving authorship of any one message does

not prove authorship of any additional message. This property has not been formally

defined previously. It was first discussed in relation to mpOTR [16], as mpOTR is

considered not to provide message unlinkability. This is due to mpOTR using the same

ephemeral signing key to sign every message. Thus, the distinguisher having knowledge

of the ephemeral verification key can verify every message sent by a user. Since Mobile

CoWPI does not use signatures and all authentication material is only used for a single

message Mobile CoWPI provides message unlinkability. In Appendix 5.6, we prove a

stronger version of message unlinkability that provides the distinguisher with a protocol

message from a real transcript but can still not distinguish the full transcript from a

simulated transcript.

112

0 10 20 30 40 50
Group Size

0

50

100

150

200

Ti
m

e
(m

s)

Wallclock
CpuTime

Send Protocol Message Time

(a) The wallclock (25th, 50th, and 90th per-
centile) and CPU time to send a protocol mes-
sage.

0 10 20 30 40 50
Group Size

1000

2000

3000

4000

5000

By
te

s

Send Protocol Message Sizes

(b) The message size in bytes to send a mes-
sage.

5.4 Evaluation

We implemented Mobile CoWPI as a Java server and client library. Since all protocol

messages can be processed without interaction between clients the overhead of Mobile

CoWPI is low. To measure the run time overhead we deployed Mobile CoWPI in an

inexpensive deployment with a routing service and one OES on an AWS [10] free tier

t2.micro EC2 instance in Ohio and a second OES hosted on a $5/month Linode [11]

virtual private server located in New Jersey. Since Mobile CoWPI uses an any trust

model two OES providers is sufficient. We ran all of the client measurements from a

personal desktop machine over a home internet connection. The client machine contains

an AMD FX 8300 CPU. The network round-trip-time between the client and the router

is ≈ 30ms and between the router and Linode OES is ≈ 20ms. The network round trip

of a message is from client to routing server to OES to routing server then back to the

client. This introduces an ≈ 50ms latency for messaging in our measurements.

We ran the measurements with 2 to 50 participants in a conversation and sent 100

messages for each size of conversation. These measurements show Mobile CoWPI is

practical for real world deployments.

Figure 5.1a shows the time in milliseconds that it takes for a user to send a protocol

message and receive a protocol message. This represents the time it takes to display the

message. Figure 5.1b shows the outgoing message size in bytes when sending a message.

113

0 10 20 30 40 50
Group Size

0

100

200

300

400

500

600

m
se

c/
m

sg

Android Message Creation Time

(a) Time to build a message on an Android
device.

2 10 20 30 40 50
Group Size

0

100

200

300

400

500

m
sg

/s
ec

Router-Client
Router-OES
OES

Provider Message Rate

(b) Rate at which the Router can process a
message from a client and OES and rate at
which an OES can process a message.

0 10 20 30 40 50
Group Size

2000

4000

6000

8000

10000

By
te

s/
Co

nv
er

sa
tio

n

Router
OES

Provider Storage Size

(c) Provider storage cost per conversation.

All outgoing messages are O(n + s) in size where n is the number of participants and

s is the number of OES providers. This is due to the authentication being pairwise

with all receivers. We discuss why this overhead is necessary in Section 5.5. Pairwise

ciphertext blocks does allow for very little overhead to receive a message. Conversation

and receipt messages are O(s) while setup and participant update message must be

O(n + s) in size to distribute the list of participants. The overhead of Mobile CoWPI

for incoming messages is less than 300 bytes.

114

5.4.1 Scalability

We evaluated the scalability of our deployment by measuring the message throughput

and storage costs of our AWS t2.micro routing server provider and OES provider along

with the performance of our Java implementation on a Motorola G3 [55] Android [52]

phone.

Figure 5.2a shows the time in milliseconds to create a protocol message on the

Android device. Figure 5.2b shows the maximum throughput of the router for processing

messages from a client and an OES for each group size. It also shows the maximum

throughput of an OES provider. Figure 5.2c shows the storage space required per

conversation of each size for both the router and OES. Our implementation uses a

PostgreSQL [56] database which causes the steps seen in Figure 5.2c.

Mobile CoWPI can easily scale horizontally by sharding across multiple servers by

the conversation SID. For example, for a router service provider to support process-

ing 1 Billion messages a day for groups of size 5 and (10). One t2.micro can support

≈ 289(165) messages per second, it would require 40(66) instances. The t2.micro in-

stances are priced at $0.0116/ per hour under burstable workloads and are charged an

addition $0.05 per hour under sustained high workloads. Thus the cost would range

from $11.14($18.38) to $59.14($97.58) per day.

5.5 Discussion

In this section we detail the limitations of Mobile CoWPI along with restrictions enforced

by the system model.

5.5.1 Limitations of Group Key Agreements

The MLS draft protocol scales to larger group sizes than Mobile CoWPI can support by

using a tree-based Group Key Agreement (GKA) scheme. GKAs provide a mechanism

for a group of users to compute a symmetric encryption key, which can then be used to

encrypt a message and authenticate that the message originated from a member of the

group. However, such a scheme by itself does not provide a mechanism to verify that a

message came from a specific member of the group.

115

To provide message sender authentication, another authentication mechanism must

be introduced and it must be deniable. Recently MLS has proposed to use a signature

scheme to provide sender authentication with a tree-based GKA scheme. However, by

its nature a signature on a message is unforgeable and thus not deniable. Another

possible approach would be to use a multi-designated verifier signature scheme [57],

which provides source hiding signatures that can be validated by anyone and can be

generated either by the author or by the full group of receivers. This would provide a

weaker form of deniability than Mobile CoWPI provides, since simulation requires the

cooperation of all users.

The key challenge is to provide message authenticators that can be simulated by

any subset of the group, but cannot be forged by any subset of the group. Mobile

CoWPI achieves this by using deniable pairwise ciphertext blocks to authenticate every

message. While this limits the size of groups that can be supported, in practice this

has not been problematic for existing end-to-end encryption schemes; for example, both

Signal and Snapchat’s end-to-end encryption [53] are linear in the number of receivers

and have been deployed to support billions of messages per day.

5.5.2 Multiple Providers

Requiring multiple providers for conversation integrity adds difficulty to deploying Mo-

bile CoWPI. However, if this requirement cannot be met the conversation integrity

property could be modified to include a time aspect. Most users are expected to only

be offline for short periods of time, for example less than one week. It is also the case

that after Alice receives a receipt from Bob, she can be confident that Bob’s transcript

provides conversation integrity with her transcript. Thus, if every user sends a receipt

after every message, we can add a time constraint to the conversational integrity prop-

erty and warn users after a time limit (e.g. one week) of not having seen a receipt from

every other participant. We chose to require multiple providers for Mobile CoWPI as

it provides much stronger conversation integrity for every message.

116

5.5.3 Denial of Service

Mobile CoWPI does not protect against denial of service attacks from compromised

servers: a server can simply not forward conversation messages to a participant. Since

the participant must receive the message from every server, the participant will simply

keep waiting and not make progress. A potential solution to this problem would be to

have multiple servers perform a byzantine agreement on the messages of a conversation

and then participants could process a message after receiving it from a majority of

servers. This changes the trust model from a single honest server to a majority of

honest servers and it is not straight forward how this modification would affect the

deniability properties of the conversation.

Mobile CoWPI also does not offer denial of service protection against a compromised

participant. A compromised participant can send an invalid ciphertext block c∗ to a

victim. The victim will terminate the session and all non-victims will not know of

the attack. The implementation should warn the user of the attack allowing them to

notify the other participants out-of-band. It may be possible to mitigate this issue by

modifying the ciphertext blocks to provide zero knowledge proofs of correctness that

the servers can verify. However, we do not know of an efficient mechanism that would

allow for this and also preserve message deniability and unlinkability.

These denial of service limitations are not unique to Mobile CoWPI. All existing

protocols in the literature and in wide deployment are also vulnerable to denial of

service by both the server and individual participants.

5.6 Formal definitions and proofs

We define all of our security conditions in terms of a game in which a challenger runs a

procedure Initialize to set up an initial state, before running an adversary that may

access several oracles that can access and modify the game state; the game concludes

when the adversary calls the Finalize oracle, which determines if the adversary has

won the game. For each game, the complete experiment is defined by the initialization

procedure, the set of oracles defined for the game, and the finalization function. For all

experiments that involve running Mobile CoWPI, we assume that each client c maintains

a list Mc of the tuples of the form (sid, s, i, pm) indicating that c accepted pm 6=⊥ as

117

Figure 5.3: IND$-CPA Game

function Initialize(l)
k ←R {0, 1}l
b←R {0, 1}

function Test(m, data)
c0 ← Enck(m, data)
c1 ←R {0, 1}|c0|
return cb

function Finalize(d)
return (d = b)

the i-th protocol message in session sid, with sender s.

5.6.1 Security Assumptions

We assume our symmetric AEAD scheme ciphertexts are indistinguishable from random

bit strings (IND$-CPA) as defined by the game in Figure 5.3 and provides integrity of

ciphertexts as defined in Figure 5.4. The advantage of an adversary M winning each

of the games is defined as AdvIND−CPA(M) = Pr[M wins]− 1
2 , AdvINT−CTXT (M) =

Pr[Mwins] respectively.

We assume the NAXOS protocol is a secure authenticated key agreement protocol.

Figure 5.5 describes the game used by the original authors [40], modified to include an

additional bit string ({0, 1}l) into the Ephemeral Key Reveal and Test queries that

is included in the input of KDF2 of NAXOS. This modification is to allow the Mobile

CoWPI session id Sid to be incorporated into the KDF and does not affect the security

of NAXOS. The NAXOS session id is

sid = (role, ID, ID∗, comm1, . . . , commn)

where ID is the identify of the executing party and ID∗ is the identities of the other

party, role ∈ {I,R} is the role of initiator or responder, and commi is the ith commu-

nication sent by the parities. This preserves the session matching of NAXOS.

An adversary wins if it queries Test on a clean session and guess the correctly in

Finalize. Let sid be the NAXOS session between parties A and B. Let sid∗ be the

118

Figure 5.4: INT-CTXT Game

function Initialize(l)
k ←R {0, 1}l
S ← {}

function Enc(m, d)
c← Enck(m, d)
S ← S ∪ {c}
return c

function VF(c)
m← Deck(c, d)
if m 6= ⊥ and c /∈ S then

win← true
return (m 6= ⊥)

function Finalize(d)
return win

matching session of sid executed by B, sid∗ may not exist. A session is not clean if any

of the following hold:

• A or B is an adversary-controlled party

• Reveal is queried on sid or sid∗

• sid∗ exists and both the long-term and ephemeral key of A or B are revealed

• sid∗ does not exist and the long-term key of B was reveled or both the long-term

and ephemeral key of A was revealed

An adversaryM ’s advantage at winning the NAXOS game is defined asAdvNAXOS(M) =

Pr[M wins]− 1
2 .

5.6.2 Message Confidentiality

Message Confidentiality is the property that only conversation participants can read

a message. The adversary we consider controls the network and is allowed to register

malicious users and reveal the long-term keys and ephemeral keys of users. When

discussing message confidentiality we consider the confidentiality of individual (target)

119

Figure 5.5: NAXOS Game

function Initialize(U)
Initialize PKI for all users in U .

function Send(A,B, comm)
Send comm to A on behalf of B
This query allows A to start a NAXOS AKE with B.
return A’s communication to B

function Long-Term Key Reveal(A)
return Long-term private key of A

function Ephemeral Key Reveal(sid)
return Returns the ephemeral private key of a possibly incomplete session sid.

function Reveal(sid, Sid)
return Session key of completed NAXOS session sid with Mobile CoWPI session

id Sid

function Test(sid, Sid)
b←R {0, 1}
if b = 0 then

C ←Reveal(sid, Sid)
else

C ←R {0, 1}l

return C

function Finalize(d)
return (d = b)

120

Figure 5.6: Message Confidentiality Game G0

function Initialize(U)
b←R {0, 1}
Initialize PKI for all users in and servers U .

function Send(R,S,m)
Send m to R from S where R and S may be participants or servers.
return Network output of R after processing m

function SetupGroup(Sid, P, U)
Setup session Sid, as participant P for users U .
return Network output of P

function SendGroupMessage(Sid, P,m)
Send message m from P to group Sid.
return Network output of P .

function UpdateParticpants(Sid, P, U)
Send participant update message as P for participants U in session Sid.
return Network output of P .

function RevealEphemeralKeys(Sid,A,B)
return The ephemeral secret keys of A that A uses for communication with B

in session Sid. A or B may be users or servers. If A or B is a server, Sid is ignored.

function RevealLongTermKeys(T)
return The Long-term keys of T where T may be a server or participant.

function Test(Sid, P,m)
if b = 0 then

P sends protocol broadcast message of m in session Sid
else

P send a random bit string in Sid

return P ’s network traffic to send the message

function Finalize(d)
return (d = b)

121

messages in a session. The adversary is only limited to avoid trivially breaking message

confidentially. Message confidentiality is captured by the game in Figure 5.6.

First the adversary Initializes with a set of honest user identities. The challenger

sets up the public key infrastructure (PKI) and generates long-term keys for the honest

users. The adversary is allowed to register additional users and long-term keys with the

PKI. Send is called by the adversary to send network messages from entity S to entity

R. The adversary is also allowed to instruct users to Setup, SendGroupMessage, and

UpdateParticipants, to setup a session, send group messages, and update the set of

participants in a session. Additionally, the adversary is allowed to reveal the long-term

and ephemeral secret keys of any participant or server with RevealLongTermKeys

and RevealEphemalKeys. The adversary may issue a single Test query where the

challenger flips a coin and sends either the encrypted message or a random ciphertext.

Finally, the adversary calls Finalizes providing its guess of the bit. The adversary

wins if it guesses correctly.

To prevent the adversary from trivially wining it is not allowed to:

• Control a participant in the target session at the time of the target message.

• Call RevealLongTermKeys and RevealEphemeralKeys of the sender P

and a receiving participant R 6= P in session Sid. This does allow the adversary

to compromise the long-term and ephemeral keys between receivers.

The advantage of adversary M is defined as Advconf (M) = Pr[Mwins]− 1
2 .

Mobile CoWPI provides message confidentiality if all hash and key derivation func-

tions are modeled as random oracles.

For any message confidentiality adversary M that runs in time at most t and creates

sessions with at most w users. We show that there exists a NAXOS adversary M0, an

IND$-CPA adversary M1, and an IND$-CPA adversary M3 such that

Advconf (M) ≤w − 1 ·AdvNAXOS(M0)

+w − 1 ·AdvIND−CPA(M1)

+AdvIND−CPA(M3)

Where M1, M0, and M3 run in time O(t).

122

Proof. We prove Mobile CoWPI provides message confidentiality in a sequence of games:

G0 The challenger behaves correctly.

G1.i The challenger replaces the NAXOS key exchange in the ciphertext block between

the sender and the ith receiver of the test message.

G2.i The challenger replaces the first ciphertext block between the sender and the ith

receiver of the test message with a random bit string.

G3 The challenger replaces the ciphertext block of the test message with a random

bit string.

The first games show the adversary can not learn the NAXOS keys of the ciphertext

block of the test message, the second games show the adversary can not learn the

key used to encrypt the test message, and the final game shows the adversary cannot

distinguish the test message from random. Thus the protocol transcript is effectively

random.

Let G1.0 = G0. We now construct a challenger M0 that given a distinguisher D0

that can distinguish between playing G1.i and G1.i+ 1 with probability S0, M0 can win

the NAXOS game.

The challenger M0 plays G1.i in the following way:

• During Initialize the challenger initializes a NAXOS game and setups the PKI

for U .

• When RevealLongtermKeys(T) is called, M0 returns Long-term Key Re-

veal(T) of the NAXOS game.

• The challenger plays the NAXOS game replacing all NAXOS keys as detailed next.

• When RevealEphemeralKeys(Sid,A,B) is called, M0 returns Ephemeral

Key Reveal((A,B, epkab) of the NAXOS game for the most recent NAXOS

session between A and B in Sid.

• When D0 finalizes the game and guesses G1.i, M0 finalizes the NAXOS game and

0. If D0 guesses G1.i+ 1, M0 guesses 1.

123

We now describe how M0 computes the NAXOS key of the ciphertext block between

the sender and the receiver.Let A be the sender of the block andB the receiver. Compute

the key as follows:

1. epkab ← Send(A,B)

2. epkba ← Send(A,B, epkab), epkba may be a pre-key of B.

3. When computing a NAXOS key of a ciphertext block not part of the test message,

kab ← Reveal(A,B, epkab, epkba) is used as the key.

4. When computing the NAXOS key of the ith ciphertext block of the test message,

kab ← Test(A,B, epkab, epkba) and is used by A to encrypted the ciphertext block

and B to decrypt it.

M0 wins the NAXOS game if D0 guesses correctly. Thus the advantage of M0 is

AdvNAXOS(M0) = S0. The advantage of distinguishing between G1.0 and G1.w − 1 is

at most AdvNAXOS(M0) · w − 1.

Let G2.0 = G1.w − 1. We now construct a challenger M1 that given a distinguisher

D1 that can distinguish between playing G2.i and G2.i+ 1 with probability S1, M1 can

win the IND$-CPA game.

The challenger M1 plays G2.i in the following way:

• During Initialize the challenger initializes an IND$-CPA game.

• The challenger replaces the ciphertext block of the test message between the sender

and the ith receiver with an IND$-CPA Test query detailed next.

• When D1 finalizes the game and guesses G2.i, M1 finalizes the IND$-CPA game

and 0. If D1 guesses G2.i+ 1, M1 guesses 1.

We now detail how the challenger M1 generates the ciphertext block between the

sender and the ith participant. Let A be the sender of the block and B the receiver.

Let m be the plaintext to be encrypted by the block, d the associated data, and idba

the id of B’s ephemeral public key used to compute the key. The blocks is generated as

follows:

1. cab ← idba, Test(m, d).

124

2. When B receives cab, it uses m and d as the plaintext and associated data respec-

tively.

M1 wins the IND$-CPA game if D1 guesses correctly. Thus the advantage of M1 is

AdvIND$−CPA(M1) = S1. The advantage of distinguishing between G2.0 and G2.w− 1

is at most AdvIND$−CPA(M1) · w − 1.

We now construct a challenger M2 that given a distinguisher D2 that can distinguish

between playing G2.w−1 and G3 with probability S2, M2 can win the IND$-CPA game.

The challenger M2 plays G3 in the following way:

• During Initialize the challenger initializes an IND$-CPA game.

• The challenger replaces the ciphertext of the test broadcast message an IND$-CPA

Test query detailed next.

• When D2 finalizes the game and guesses G2.w, M2 finalizes the IND$-CPA game

and 0. If D2 guesses G3, M2 guesses 1.

M3 constructs the protocol message as follows:

1. c← Test(m, ·).

2. The protocol message is thus Sid, “MSG”, P, c, cp∗, . . . , authp∗,

3. When the participants receive the sent protocol message with c they use m as the

plaintext.

M2 wins the IND$-CPA game if D2 guesses correctly. Thus the advantage of M2

is AdvIND$−CPA(M2) = S2. We have now shown that the protocol output is indistin-

guishable from random.

5.6.3 Message Integrity and Authentication

Message authentication and integrity is the property that receivers can verify the author

of a messages and are confident that the messages has not been modified in transit.

Message authentication implies message integrity. Mobile CoWPI provides message

authentication under an adversary that may compromise the servers or participants as

well as control the network. Message authentication is provided as long as the adversary

125

Figure 5.7: Message Authentication Game

function Initialize(U,C)
Initialize PKI for all users in and servers U .
Initialize Out[P]← {} for P ∈ U

function Send(R,S,m)
Send m to R from S where R and S may be participants or servers.
return Network output of R after processing m

function SetupGroup(Sid, P, U)
Setup session Sid as participant P for users U .
return Network output of P

function SendGroupMessage(Sid, P,m)
Send message m from P to group Sid.
Record the broadcast protocol message pm output of P as Out[P] ← Out[P] ∪

{pm}.
return Network output of P .

function UpdateParticpants(Sid, P, U)
Send participant update message as P for participants U in session Sid.
return Network output of P .

function RevealEphemeralKeys(Sid,A,B)
return The ephemeral secret keys of A that A uses for communication with B

in session Sid. A or B may be users or servers. If A or B is a server, Sid is ignored.

function RevealLongTermKeys(T)
return The Long-term keys of T where T may be a server or participant.

function Finalize
return True iff there exist clients R,P , session id Sid, index i and protocol

message pm such that (Sid, P, i, pm) ∈MR, pm 6∈ Out[P], and R and P are clean.

126

cannot trivially break the authentication. That is the adversary is not allowed to control

the sender or have revealed the long-term and ephemeral keys for the target message.

Figure 5.7 captures the message authentication and integrity property in a game

similar to message confidentiality. The adversary first Initializes the PKI and can

register adversary controlled users and long-term keys. The adversary controls the net-

work and uses the Send function to send messages between users and servers. The

adversary may also instruct honest users to SetupGroup, SendGroupMessage, and

UpdateParticipants as with message confidentiality. The adversary is allowed to Re-

vealLongTermKeys and RevealEphemeralKeys of users. Finally, the adversary

Finalizes the game and wins if a participant R accepted protocol broadcast message

pm from P in session Sid where the P did not send c and R and P have not had their

long-term and ephemeral keys of ciphertext block of pm revealed.

That is R must have received a message:

Sid, “MSG”, P, c, cPR

Where cPR is the ciphertext block used to authenticate pm with AEAD from P .

To avoid trivially winning the game the adversary is not allowed to:

• Control the sender of the winning protocol message.

• Issue RevealLongTermKeys and RevealEphemeralKeys of the sender or

receiver of the winning protocol message.

The advantage of an adversary M is defined as Advauth(M) = Pr[Mwins].

Mobile CoWPI provides message authentication and integrity if all hash and key

derivation functions are modeled as random oracles.

For any message authentication adversary M that runs in time at most t, w is the

maximum number of participants in a session, q is the maximum number of messages

received in a session, y is the maximum number of sessions. We show that there exists

a NAXOS adversary M0 and an INT-CTXT adversary M1 such that

Advauth(M) ≤ 1

(w − 1)qy
·AdvNAXOS(M0)

+AdvINT−CTXT (M1) ·
1

(w − 1)qy

Where M0 and M1 run in time O(t).

127

Proof. We prove Mobile CoWPI provides message authentication in a sequence of games:

G0 The challenger behaves correctly.

G1 The challenger replaces the NAXOS key exchange used to decrypt a random ci-

phertext block between the sender and a random receiver of a random forged

message with a random key.

G2 The challenger replaces the ciphertext block of a forged message between the

sender and a random receiver with an instance of the INT-CTXT game.

Game G1 shows the adversary can not learn the NAXOS keys between users and is used

as a transition to a game that M1 can play.

We construct a challenger M0 that given a distinguisher D0 that can distinguish

between playing G0 and G1 with probability S0, M0 can win the NAXOS game.

The challenger M0 deviates from G0 in the following way:

• During Initialize the challenger initializes a NAXOS game and setups the PKI

for U .

• When RevealLongtermKeys(T) is called, M0 returns Long-term Key Re-

veal(T) of the NAXOS game.

• The challenger plays the NAXOS game replacing all NAXOS keys as detailed next.

• When RevealEphemeralKeys(Sid,A,B) is called, M0 returns Ephemeral

Key Reveal((A,B, epkab) of the NAXOS game for the most recent NAXOS

session between A and B in Sid.

• When D0 finalizes the game and guesses G0, M0 finalizes the NAXOS game and

0. If D0 guesses G1, M0 guesses 1.

We now describe how M0 computes the NAXOS key of the ciphertext block between

the sender and the receiver.Let A be the sender of the block andB the receiver. Compute

the key as follows:

1. epkab ← Send(A,B)

2. epkba ← Send(A,B, epkab), epkba may be a pre-key of B.

128

3. When computing a NAXOS key of a ciphertext block not part of the test message,

kab ← Reveal(A,B, epkab, epkba) is used as the key.

4. When computing the NAXOS key of the ciphertext block of the of a received

protocol message that was not sent, kab ← Test(A,B, epkab, epkba) and is used

by B to decrypt the ciphertext block.

M0 wins the NAXOS game if it guesses the correct forged message, correct receiver,

and D0 guesses correctly. Thus the advantage of M0 is AdvNAXOS(M0) = S0. The

advantage of distinguishing between G1 and G1 is at most AdvNAXOS(M0) · 1
(w−1)qy .

We now construct a challenger M1 that given a an adversary M that can win the

authentication game S1, M1 can win the INT-CTXT game.

The challenger M1 behaves as follows:

• During Initialize the challenger initializes an INT-CTXT game.

• The challenger guesses a random sent message in a random session and guesses

a random receiver of the message. Then challenger replaces the instance of the

ciphertext block with a query to Enc(m, d) of INT-CTXT game.

• When the challenger receives an unsent protocol message in the chosen session

from the chosen sender, it submits the ciphertext block between the sender and

chosen recipient to VF of the INT-CTXT game.

M1 wins the INT-CTXT game if it guesses session, protocol message, and receiver of

a forged message correctly andM wins. Thus the advantage ofM1 isAdvINT−CTXT (M1) =

S1 · 1
(w−1)qy .

5.6.4 Conversation Integrity

Conversation integrity is the property that all users see all messages in the same or-

der. Since participant update messages are treated the same as conversation messages,

participant consistency is implied. The adversary is allowed to compromise all but one

of the OES providers and any of the participants. Conversation integrity is provided

between honest participants.

129

Figure 5.8: Conversation Integrity Game G0

function Initialize(U)
Initialize infrastructure and PKI for all users and servers in U .

function Send(R,S,m)
Send m to R from S where R and S may be participants or servers.
return Network output of R after processing m

function SetupGroup(Sid, P, U)
Setup session as participant P for users U .
return Network output of P

function SendGroupMessage(Sid, P,m)
Send message m from P to group Sid.
return Network output of P .

function UpdateParticpants(Sid, P, U)
Send participant update message as P for participants U in session Sid.
return Network output of P .

function RevealEphemeralKeys(Sid,A,B)
return The ephemeral secret keys of A that A uses for communication with B

in session Sid. A or B may be users or servers. If A or B is a server, Sid is ignored.

function RevealLongTermKeys(T)
return The Long-term keys of T where T may be a server or participant.

function Finalize()
return True iff there exist honest users A,B, session Sid, and index i such that

(Sid, sa, i, pma) ∈MA, (Sid, sb, i, pmb) ∈MB, and pma 6= pmb.

130

Figure 5.8 details the conversation integrity game. First the adversary Initializes

the PKI and registers corrupt users and providers. The adversary may then issue com-

mands instructing participants and providers to execute protocol operations the same

way as the previous two games. Finally, the adversary wins the game if he convinces

two participants A and B of session Sid to accept different messages as the ith message.

To avoid trivially winning the game the adversary is not allowed to:

• Issue RevealLongTermKeys and RevealEphemeralKeys of all the OES

providers and one of A or B.

The advantage an adversaryM has at winning the game is defined asAdvINT−CONV (M) =

Pr[M wins].

Recall from Section 5.3 the probability of an adversary finding a protocol ciphertext

that successfully decrypts under two separate keys is at most qεint. If an adversary

cannot constructs such a message they must be able to forge a message from an honest

server to an honest participant indicating that an out-of-order protocol message should

be processed.

Mobile CoWPI provides conversation integrity if all hash and key derivation func-

tions are modeled as random oracles.

For any conversation integrity adversary M that runs in time at most t, performs

at most q KDF2 oracle queries and sends at most y messages between honest OES

providers and honest participants. We show that there exists a NAXOS adversary M0

and an INT-CTXT adversary M1 such that

AdvINT−CONV (M) ≤1

y
·AdvNAXOS(M0)

+AdvINT−CTXT (M1) ·
1

y

+qεint

Where M0 and M1 run in time O(t).

Proof. We prove Mobile CoWPI provides conversation integrity in a sequence of games:

G0 The challenger behaves correctly.

131

G1 The challenger replaces the NAXOS key exchange used to create a random OES

authentication block between an honest server and participant with a random key.

Games G1 show the adversary can not learn the NAXOS keys used in the OES authen-

tication block and is used as a transition to a game that M1 can play. If if M can win

the conversation integrity game, then M1 can win the INT-CTXT game.

We construct a challenger M0 that given a distinguisher D0 that can distinguish

between playing G0 and G1 with probability S0, M0 can win the NAXOS game.

The challenger M0 deviates from G0 in the following way:

• During Initialize the challenger initializes a NAXOS game and sets up the PKI

for U .

• When RevealLongtermKeys(T) is called, M0 returns Long-term Key Re-

veal(T) of the NAXOS game.

• The challenger plays the NAXOS game replacing all NAXOS keys as detailed next.

• When RevealEphemeralKeys(Sid,A,B) is called, M0 returns Ephemeral

Key Reveal((A,B, epkab) of the NAXOS game for the most recent NAXOS

session between A and B in Sid.

• When D0 finalizes the game and guesses G0, M0 finalizes the NAXOS game and

0. If D0 guesses G1, M0 guesses 1.

We now describe how M0 computes the NAXOS key in the OES authentication block

honest servers and participants. Let A be the participant and B the server. Compute

the key as follows:

1. epkab ← Send(A,B)

2. Send epkab to B.

3. Upon B receiving epkab, epkba ← Send(A,B, epkab), epkba.

4. When computing a NAXOS key of a OES authentication block not part of the

test message,

kab ← Reveal(A,B, epkab, epkba)

is used as the key.

132

5. When computing the NAXOS key of the OES authentication block of the of a

received protocol message that was not sent, kab ← Test(A,B, epkab, epkba) and

is used by B to decrypt the OES authentication block.

M0 wins the NAXOS game if it guesses the OES authentication block correctly and

D0 guesses correctly. Thus the advantage of M0 is AdvNAXOS(M0) = S0 · 1y .

We now construct a challenger M1 that given an adversary M that can win the

conversation integrity game with probability S1, M1 can win the INT-CTXT game.

The challenger M1 behaves as follows:

• During Initialize the challenger initializes an INT-CTXT game.

• The challenger replaces a random OES authentication block between an honest

OES provider and participant with an INT-CTXT game detailed next.

We now detail how the challenger M1 generates the random OES authentication

block between an honest OES provider and participant. Let A be the sender of the

message and B the receiver. Let m be the plaintext to be encrypted by the block, d

the associated data, and idba the id of B’s last received ephemeral public key used to

compute the key. The blocks is generated as follows:

1. cab ← idba, Enc(m, d).

2. When B receives the next authentication block auth′ab 6= authab, the challenger

submits auth′ab to VF of the INT-CTXT game.

M1 wins the INT-CTXT game if it guesses the OES authentication block correctly

and M wins the game. Thus the advantage of M1 is AdvINT−CTXT (M1) = S1 · 1y .

5.6.5 Deniability

We capture the deniability property with the general-purpose game detailed in Fig-

ure 5.9. The distinguisher Initializes the game with a plaintext transcript τ . Then

the challenger executes Mobile CoWPI on τ producing a real protocol transcript T0

and three outputs inputd, inputs, output0. The challenger then runs a simulator with

inputs τ and inputs producing a forged protocol transcript T1 and state output1. The

133

Figure 5.9: Deniability Game G0

function Initialize(τ ,S)
Initialize an PKI and executes the protocol on plaintext transcript τ producing

protocol transcript T0, and state information output0.
Run the protocol simulator S with input τ and inputs to produce protocol

transcript T1 and state information output1
Flip a coin b←R {0, 1}
return (Tb, outputb, inputd)

function Finalize(d)
return (d == b).

challenger returns a random transcript Tb, output outputb, and inputd to the distin-

guisher. The distinguisher wins the game if it guesses b correctly. The advantage of the

distinguisher M is defined as AdvDENY−∗(M) = Pr[M wins]− 1
2 . The DENY-* game

depends on how inputd, inputs, and output∗ are defined.

When proving message deniability and participant deniability it is sufficient to define

the inputs and output as follows:

inputd = {(lsk0, epk0) . . . , (lskn, epkn)}

inputs = {(lpk0, epk0), . . . , (lpkn, epkn)}, (lska, eska)

outputb = {eska0, eskaw}

where n is the number of participants, a is the user running the simulator, and w is the

number of ciphertext blocks where a is a participant. In this case the distinguished is

provided with long-term secret keys and single use public pre-keys of all users in the

transcript. The simulator is only given the public values and the secret values of a single

user and must output all of a’ ephemeral secret keys.

Mobile CoWPI provides message and participant deniability if all hash and key

derivation functions are modeled as random oracles.

For any participant deniability adversary M that runs in time at most t, performs

at most q H oracle queries and supplies a transcript that produces at most y ciphertext

blocks between participants that are not the simulating participant. We show that there

134

exists a NAXOS adversary M0 such that

AdvDENY−PART (M) ≤y ·AdvNAXOS(M0)

(5.1)

Where M0 runs in time O(t) and q < 2l.

Proof. Recall the Mobile CoWPI simulator discussed in Section 5.3. We prove the

simulated transcript is indistinguishable from the real transcript in a sequence of games.

In each game we replace an additional NAXOS key agreement, between two parties that

are not the simulating party, from the real transcript with a random NAXOS key. In

the final game the real transcript is generated in the same way as the simulated one.

Below is the sequence of games:

G0 The challenger behaves correctly.

G1.i The challenger replaces the NAXOS key exchange used to encrypt the ith cipher-

text block between two user that are not the simulating user.

GameG1.i shows the adversary cannot distinguish between a simulated and real NAXOS

key agreement and is used as a transition to a game that M1 can play. If M can win

the participant deniability game, then M1 can win the NAXOS game.

Let G1.0 = G0, we construct a challenger M0 that given a distinguisher D0 that can

distinguish between playing G1.i and G1.i with probability S0, M0 can win the NAXOS

game.

The challenger M0 deviates from G1.i− 1 in the following way:

• During Initialize the challenger initializes a NAXOS game and sets up the PKI

for U and issues RevealLontermKeys for all U .

• The challenger replaces the first i− 1 NAXOS keys between non-simulating par-

ticipants with random keys.

• The challenger plays the NAXOS game replacing the ith NAXOS key between

non-simulating participants with a NAXOS Test query detailed next.

• When D0 finalizes the game and guesses G1.i− 1, M0 finalizes the NAXOS game

and 0. If D0 guesses G1.i, M0 guesses 1.

135

We now describe how M0 computes the ith NAXOS key. Let B and C be the

participants. Compute the key as follows:

1. epkbc ← Send(B,C)

2. Send epkbc to C.

3. Upon C receiving epkbc, epkcb ← Send(C,C, epkbc), epkcb.

4. When computing a NAXOS key of all ciphertext blocks after the ith kbc ←
Reveal(B,C, epkbc, epkcb) is used as the key.

5. When computing the NAXOS key of the ith ciphertext block , kbc ←Test(B,C, epkbc, epkcb).

M0 wins the NAXOS game if D0 guesses correctly. Thus the advantage of M0

is AdvNAXOS(M0) = S0. There are y ciphertexts blocks the between non-simulating

participants.

5.6.6 Message Unlinkability

We now detail message unlinkability provided by Mobile CoWPI. Compared to partici-

pant deniability we consider a stronger definition where the distinguisher is given a real

protocol message and the ephemeral public keys of the sender for the message. The

simulator is given the ephemeral secret key used to encrypt the message.

inputd =lsks, (lsk0, epk1) . . . , (lskn, epkn), epksi, i, pmi

inputs =lpks, (lpk0, epk1) . . . , (lpkn, epkn),

lska, eskai, epksi, i, pmi

outputb = {eska0, eskaw}

Where epkn is the ephemeral secret key of receiver n shared with the sender, esksi is

the ephemeral secret key of the sender shared with the simulating party for the ith

message, eskai is the secret key of the simulation party for the ith message, and i is the

index of the protocol message pmi in the transcript. The simulator must output all of

a’s ephemeral keys.

This definition provides the distinguisher with knowledge of a non-deniable proto-

col message. The goals is to simulate a transcript that contains pmi and is identically

136

distributed to the real. The message unlinkability simulator behaves as a participant

repudiation simulator discussed earlier. When the simulation party sends its’ last cipher-

text block prior to pmi the simulator uses epkai ← gH(eskai,lska) as the next ephemeral

public to the sender. Similarly, when the sender of pmi sends it last ciphertext block to

the simulating party it uses epksi as it next ephemeral public key. The simulator then

sends pmi as the ith message in the transcript. The simulator then continues to behave

the same as the participant deniability simulator from earlier. The simulated transcript

is identically distributed to the real transcript and contains the undeniable message pmi

in position i. The proof is identical to the proof of participant deniability.

Chapter 6

Private Presence

137

138

While secure messaging hides the content of the conversation from the provider by

using strong cryptographic techniques, but the metadata of the conversation is still

known to the service provider. A critical part of secure messaging is presence, i.e.,

knowing when a friend is online. Although secure messaging providers do not have

access to the plaintext conversation, they still have access to the set of friends of every

user. This means that these services know the social graph of their users as well as the

presence status of every user at any given time. To have a truly private communication

platform, the metadata of the communication must also be protected.

An existing solution to this problem is DP5—the Daghstul Privacy Preserving Pres-

ence Protocol P—proposed by Borisov, Danezis, and Goldberg [12]. DP5 is the first

private presence protocol to leak no information about the social graph to third parties

and limit the information retained by the service itself. DP5 allows its users to see

the online status of their friends in a completely private manner. It utilizes Private

Information Retrieval (PIR) [58] for querying the service for a given user’s buddy’s

presence.

The major weakness of DP5 is its lack of scalability for a large number of users.

The presence database of DP5 grows much more rapidly than the number of users of

the service. This results in a very expensive service for even a small number of users. To

overcome this bottleneck, we propose MP3—the Minnesota Private Presence Protocol.

MP3 maintains the same security goals as DP5. This is elaborated in Section 6.1.3

and Section 6.2.7. Compared to DP5, MP3 makes an assumption that revoking and

unrevoking friends is uncommon and thus we are able to significantly reduce the size of

the presence database by using a dynamic broadcast encryption scheme [13]. As a result,

MP3 is significantly cheaper to run for even a relatively modest user base. Additionally,

these savings increase as the number of users increase. The key contribution of this

chapter lies in significantly reducing the size of the presence database compared to

DP5; this allows cheaper registration and lookup queries in the context of the bandwidth

required. The client-facing latency of MP3 is also an order of magnitude less than that

of DP5 due to the smaller presence database.

This chapter is organized as follows. Section 6.1 describes the background, goals, and

related work pertaining to the MP3 protocol. Section 6.2 presents a detailed description

of the MP3 protocol. Section 6.3 analyzes the performance of MP3 and compares it to

139

that of DP5.

6.1 Goals

The primary functionality of a private presence protocol is to allow for the registration

of one’s online presence and to allow for the query of the presence status of one’s buddies

in a completely private manner.

6.1.1 DP5 Overview

Since our design shares many characteristics with DP5, we give a brief overview of the

protocol here. DP5 uses Private Information Retrieval (PIR), in which a database is

distributed to several servers so that a user can query the servers to retrieve a specific

record without revealing which record they retrieve. Given this functionality, a “trivial”

private presence protocol would have each user A with nA friends encrypt nA presence

records recording their status (and possibly other information, such as a contact ad-

dress), with a shared key for each friend, and periodically upload this information to a

presence database. When A’s friend B wants to check on A’s status, they would query

the current database (using PIR) for the presence records encrypted under the symmet-

ric key A shares with B. To hide information about the social graph, each user would

need to pad the number of presence records uploaded per period to some maximum

value denoted by Nfmax. This protocol results in a nearly quadratic-size database in the

number of users. Moreover, the server-side computational costs of PIR scale linearly in

the size of the database (and the bandwidth costs also increase, though sub-linearly).

To combat this inefficiency, DP5 splits the presence service into two asymmetric

services. The primary, short-term, service is used to register and query presence of

users with the precision of short windows (on the order of minutes). The secondary

service is the long-term service, which is used to provide metadata for querying during

the short-term. The long-term service also provides friend registration and revocation

with the precision of long windows (on the order of days). As in the “trivial” protocol,

it is assumed that users share a unique secret with each of their friends. Additionally,

in order to not leak information about how many friends a given user has, DP5 defines

a limit of Nfmax as the maximum number of friends a user may have.

140

In each period of the long-term service, a user (let’s say Alice) of DP5 will upload her

presence to the registration mechanism of DP5. This is referred to as Alice’s long-term

presence record. This record is actually several records, one for each of Alice’s friends,

padded with random records upto Nfmax. If, Nfmax is on the order of the number of

users of the service, then the long-term presence database scales quadratically with the

number of users, which in turn increases the amount of bandwidth and CPU this service

requires. These long-term records contain information used by her friends to identify

her during the short-term period. Then, during the short-term period, Alice uploads

a single record to the short-term presence database in each short-term period she is

online. Additionally, a single record containing a signature is uploaded to an auditable

signature database during every short-term period. Thus, the short-term service, which

is queried more often, grows only linearly with the number of online users.

To improve the DP5 protocol, we address the issue of scaling in the long-term service

of DP5 by reducing the number of records Alice uploads in each long-term period to

only a relatively constant number of records, yielding performance closer to that of the

short-term service. We leave the short-term service of DP5 unchanged as it is already

quite cheap.

6.1.2 Threat Model

We make standard assumptions about the users and adversaries of MP3. They are real

world adversaries with common capabilities.

• We assume that honest users’ end systems are secure and not compromised. We

also assume that honest servers can maintain secrecy and integrity. Our design

maintains forward security and does not require servers to store any long-term

secrets.

• We allow the adversary to be an observer or a dishonest user of the system, and

we assume they have not made any recent breakthrough in computational crypto-

graphic assumptions, and assume that they cannot distinguish between different

ciphertexts. More detailed assumptions are described in the protocol description

in Section 6.2.

141

• Our security properties are under the covert model, i.e., adversaries will not act

dishonestly if it would cause them to be detected and identified.

• Our protocol maintains availability against malicious parties.

6.1.3 Security Goals

Here, we describe the goals required for a private presence service.

Privacy of presence and auxiliary data. The presence status of a user and their

auxiliary data should be available to only that user’s explicit friends.

Integrity of authentication and auxiliary data. The friends of Alice should

not accept the presence and auxiliary data unless it was submitted by Alice.

Unlinkability of sessions. It should be infeasible for a user to be linked between

multiple uses of the service. The infrastructure and non-friend users should not be able

to link the presence of another between epochs.

Privacy of the social graph. No information about the social graph of a user

should be revealed to any other party of the service. More specifically, friends should not

learn about other friends and the infrastructure should not learn any new information

about a user.

Forward/Backward secrecy of the infrastructure. Any compromised keys

stored in the infrastructure servers should not reveal past or future information that is

secured with previous or future keys.

Auditability. All operations performed by the infrastructure should be auditable.

A user should detect when their friend registration or presence registration has not been

performed honestly by the service provider.

Support for anonymous channels. The protocol should not require any identi-

fying information for operation. The use of an anonymous channel should only enhance

the privacy of the system and the service will not compromise the anonymity of the

user.

Indistinguishability of revocation, suspension, and offline status. A user

is revoked if they are no longer able to query the presence status of the buddy that

revoked them. A suspension is a temporary revocation, i.e., for some period of time,

a user cannot query the presence status of the buddy that suspended them. This

142

means a suspended buddy can be “unrevoked.” Revocations and suspensions should

not be distinguishable from being offline. For example, if Bob’s buddy Alice appeared

to be offline, Bob would not know if he was revoked or suspended, or if Alice was

genuinely offline. MP3 provides plausibly deniable revocation and suspension of buddies.

Plausibly deniable revocation means the transcript does not prove a user has been

revoked. However, If a user does not see their friend come online for an extended period

of time they may begin to assume they have been revoked. This is discussed in further

detail in Section 6.2.7.

6.1.4 Related Work

DP5 seems to have been the first and only previous work to address social graph pri-

vacy in the context of presence services. Similar, but different, related work include

Dissent [59] and Riposte [60] which offer anonymous micro-blogging services; these sys-

tems are similar to private presence in that posting a micro-blog implies the author

was online. Dissent is based on a DC-net with a client-server architecture. Clients in

Dissent must form a group to post anonymous messages for each other using distrusted

servers. Dissent provides anonymity within a static group. Riposte utilizes a novel

private database writing mechanism based on techniques of PIR. Both of these systems

have high latency when dealing with large anonymity sets and are not concerned with

social graph privacy.

Two other similar and relevant anonymous messaging/microblogging systems that

build on PIR techniques include Riffle [61] and Pung [62]. These systems allow for a

user to send a message to their friends without revealing the social graph of the users.

These message could be used to indicate presence. However, these two systems assume

every user uploads a message during every epoch. This implies that all users must be

present at all times which is unrealistic and negates the need for a private presence

protocol.

143

6.2 The MP3 Protocol

6.2.1 Overview

In this section, we provide an overview of MP3. MP3 is composed of two databases, a

long-term database and a short-term database. The short-term database contains the

presence status and information of a user. A new short-term database is generated on

the order of minutes (5 minutes), we refer to these as short-term epochs. The long-term

database contains information for a user to identify their friends short-term database

entries. A new long-term database is generated less frequently (once every 24 hours),

these are referred to as long-term epochs. When Bob wants to check if his friend Alice

is online, he first queries the long-term database and retrieves Alice’s entry. Then he

computes her short-term identifier and queries the short-term database for her presence.

Each long-term database entry of a user contains information for looking up the next

long-term database entry of that user. For this reason, MP3 keeps the most recent

long-term databases corresponding to 30 days.

The database entries are simple (key, value) pairs where the key is a unique iden-

tifier for a user in that specific epoch. These databases are queried using hash-based

PIR protocol of retrieving (key, value) pairs. Since these database a queried with PIR

the infrastructure does not learn any information about a user’s queries. In our im-

plementation users upload their database entries to a single registration server and use

a distributed PIR protocol with Nlookup servers for database queries. When querying

the long-term database the users must query all long-term databases to avoid revealing

which database contained the entry they needed.

The short-term database contains a single entry (presence message) per online user.

For Alice (a) we denote presence message as ma(j) during short-term epoch tj . This

presence message may contain information such as how to contact a or a public key. If

ma(j) is not present in during tj , Alice is assumed to not be online.

MP3 uses a Dynamic Broadcast Encryption (DBE) [13] scheme for long-term database

entries. DBE allows Alice to create a single constant-sized ciphertext that can be de-

crypted by all of her friends. Before participating in MP3, Alice generates a single DBE

encryption key (mk) and a decryption key (dkai) for each friend (i). During long-term

epoch Tj Alice creates a DBE ciphertext with her short-term identity information for

144

all short-term epoch that occur during Tj .

The dynamic part of DBE allows Alice to revoke a decryption keys so the revoked

keys can not decrypt future ciphertexts. We utilize this to allow Alice to revoke up to

Nrev friends in each long-term epoch. To provide plausible deniability of revocation,

Alice distributes new decryption keys to the revoked friends. If Alice wants to truly

revoke the friend she gives them a new decryption key generated randomly. If they

are revoked for deniability reasons she gives them a new correctly generated decryption

key. For the rest of this chaper DBE.Revoke is used to refer to DBE revocations and

MP3.Revoke is used to refer to Alice actually revoking a friend.

Alice may wish to unrevoke a friend she previously MP3.Revoked. MP3 allows

here to unrevoke Nunrev friends per long-term epoch. Alice does this by creating a long-

term database entry for the MP3.Revoked user that DBE.Revokes their random

decryption key. she gave to them when they were MP3.Revoked. This means each

long-term database for Alice consists of Nunrev + 1 entries, each of Nrev size. One entry

to distribute short-term lookup information to her friends and possibly revoke Nrev

friends. And Nunrev entries that allow her to unrevoke friends.

Finally, to prevent forged records, we employ two signature schemes, one for long-

term presence records and another for short-term presence records. Thus, all of Alice’s

friends can be confident that the record they received from MP3’s lookup mechanism can

only belong to Alice. During long-term epochs, we use a digital signature, specifically

using the Elliptic Curve Digital Signature Algorithm (ECDSA) [63]. During short-term

epochs, the Boneh-Lynn-Shacham (BLS) [64] signature scheme is used. Moreover, an

auditable signature database is employed during each short-term epoch.

6.2.2 Cryptographic Primitives

It is assumed that everyone participating in MP3 shares a set of known cryptographic

primitives. Let G1 and G2 be two cyclic groups of prime order p and let GT be a cyclic

group also of prime order p. Denote Zp as the ring of integers modulo p and denote Z×p as

the set of units in Zp, also denote g ← G as randomly selecting an element g from a set

G. An efficiently computable asymmetric pairing defined by the map e : G1×G2 → GT

145

is known so that for generators g1 ∈ G1, g2 ∈ G2 and for all u, v ∈ Zp

e(gu1 , g
v
2) = e(g1, g2)

uv

The computational Diffie-Hellman problem and the computational co-Diffie-Hellman

problem are assumed hard for G1 and G2. It is also assumed that our pairing is non-

degenerate and that we have a type 3 pairing, i.e., the isomorphisms G1
∼−→ G2 and

G2
∼−→ G1 are not efficiently computable [65].

MP3 utilizes the following:

• PRFK , a keyed pseudorandom function that maps a short-term epoch timestamp

to keys for AEAD described below.

• H1, an efficiently computable hash function that maps the concatenation of the

byte representations of long-term epoch timestamps and elements of GT to ele-

ments of Z×p .

• H2, an efficiently computable hash function that maps long-term public key to

shared identifiers.

• H3, an efficiently computable hash function that maps elements of GT to elements

of Z×p .

• H4, an efficiently computable hash function that maps elements of G1 to keys in

the pseudorandom function above.

• H5, an efficiently computable hash function that maps short-term epoch times-

tamps to elements of G2.

• H6, an efficiently computable hash function that maps elements of GT to shared

identifiers.

• AEADIV
K (m), an authenticated encryption function where m is the message, K is

the key, and IV is the initialization vector.

146

6.2.3 Dynamic Broadcast Encryption

In our construction of MP3, long-term epochs share many characteristics with a broad-

cast encryption scheme. In the context of MP3’s long-term epoch, we use a dynamic

broadcast encryption scheme with constant-size ciphertexts and decryption keys.

The definition of a Dynamic Broadcast Encryption (DBE) [13] is slightly different

from a conventional broadcast encryption scheme in that it involves two authoritative

parties: a group-manager and a broadcaster. The job of the group manager is to grant

new users access to the group. The job of the broadcaster is to encrypt and trans-

port messages to this group of users. When a message is encrypted, some members of

this group can be revoked temporarily (suspended) or permanently (revoked) from de-

crypting the broadcasted message. Formally, a DBE scheme with revocation is a tuple

of probabilistic algorithms (Setup, Join, Encrypt, Decrypt, Revoke, Update).

These algorithms rely on an asymmetric pairing as described in Section 6.2.2.

Our design relies on the DBE scheme proposed by Delerablée et al. [13]. In our use

case, every user is both a group-manager and a broadcaster. We introduce two additional

operations (ShiftMK, ShiftDK) to support MP3’s plausibly deniable revocation and

suspension. Our modifications are detailed in Appendix 6.4. We provide the relevant

components of DBE as it pertains to MP3 below:

• DBE.Setup() - generates a manager key as the tuple mk := (G,H, γ), where

G← G1 and H ← G2 are randomly selected generators and γ ← Z×p .

• DBE.Join(mk = (G,H, γ)) - allows a user to friend someone by sharing a de-

cryption key derived from their manager key as the tuple dk := (x,A,B), where

x ← Z×p is fresh, A := G
x

γ+x , B := H
1

γ+x . If x and γ happen to be inverses,

resample x. In our construction of MP3, we add an additional component to

the decryption key, κ, a shared random symmetric key for AEAD that is per-

sistent even when (x,A,B) is reassigned. Thus, the decryption key derived is

dk := (x,A,B, κ).

• DBE.Encrypt(mk = (G,H, γ)) - generates a shared secret K := e(G,H)w and

two ciphertexts: C1 := Gwγ and C2 := Hw, where w ← Z×p .

• DBE.Decrypt(dk = (x,A,B, κ), C1, C2) - takes as input a decryption key and

147

the ciphertexts and computes the shared secret K = e(C1, B) · e(A,C2). No-

tice that this is the same shared secret computed by the broadcast manager in

DBE.Encrypt.

• DBE.Revoke(mk = (G,H, γ), xr, Br) - revokes the user with decryption key that

contains xr and Br from the group of the user with manager key mk by updating

H := H
1

γ+xr = Br. The user then advertises xr and Br to all their buddies.

• DBE.Update(dk = (x,A,B, κ), xr, Br) - every non-revoked user with decryption

key dk = (x,A,B, κ) must update their decryption key via B :=
(
Br
B

) 1
x−xr to

revoke the user who owns xr and Br. Note that the revoked buddy will not

be able to update their B value due to not being able to compute 1
xr−xr . It is

important to notice that this revocation is explicit to the revoked buddy, but in

our construction of MP3 we add some auxiliary functionality in the long-term

epoch to make revocations plausibly deniable as described in Section 6.2.7.

• DBE.ShiftMK(mk = (G,H, γ), λ) - updates G := Gλ and H := Hλ.

• DBE.ShiftDK(dk = (x,A,B, κ), λ) - updates A := Aλ and B := Bλ.

6.2.4 Setup

Initialization.

To participate in MP3, Alice generates a manager key

mka := DBE.Setup()

She also generates a set of private-public base key pairs

(Ya,init, Pa,init) and (za,init, qa,init)

where Ya,init is a randomly generated private key and Pa,init = gYa,init is an elliptic curve

point, and za,init is a random private key randomly selected from Z×p and qa,init = g
za,init
1

is an element of G1, g1 ∈ G1.

148

Adding buddies

For every friend f of Alice, she derives a decryption key

dkaf := DBE.Join(mka)

and shares it along with her public base keys out-of-band. Assuming that the current

long-term epoch is Tj , Alice also shares her most recent shared secrets K, from En-

crypt, and R, her most recently generated random bit-string R, i.e., Alice shares1

(dkaf , Pa,init, qa,init,K,R) with friend f out-of-band.

6.2.5 Long-term Epoch

Registration.

To register for epoch Tj , Alice must register during epoch Tj−1. To begin, Alice com-

putes a new long-term private-public key pair for Tj

hj := H1(Tj ‖Kj′ ⊕Rj′), Ya(j) := Ya,init · hj , Pa(j) := P
hj
a,init

as well as a new short-term private-public key pair for all short-term epochs during Tj

za(j) := za,init · hj , qa(j) := q
hj
a,init

where Kj′ is Alice’s shared secret from calling DBE.Encrypt in epoch Tj′ and Rj′ is

a random bit-string generated in epoch Tj′ . Note that we use j′ here since users need

not register during all long-term epochs as described in Section 6.2.1; thus, Tj′ was the

most recent long-term epoch in which Alice registered. The ⊕ between Kj′ and Rj′

implicitly converts Kj′ to a bit-string of some length and the length of Rj′ is defined to

be that length.

During a long-term registration, Alice has the opportunity to revoke or suspend,

or unrevoke a certain number of her buddies. Denote the number of buddies she can

revoke or suspend at each long-term epoch as Nrev and the number of buddies she can

unrevoke at each long-term epoch as Nunrev.

1 If this is the very first epoch, Alice must generate an initial K := Kinit and R := Rinit to share with
her buddies to bootstrap the protocol.

149

Every long-term epoch registration, Alice will upload 1 +Nunrev records to the long-

term presence database. A single record is for all her buddies she wishes to continue

being buddies with or that she wishes to revoke or suspend. The remaining Nunrev

records are for buddies she had previously suspended and wishes to “re-friend.” Alice

constructs the single record according to Algorithm 13 and she constructs the other

Nunrev records according to Algorithm 14.

All long-term records are of the form

(a)︷︸︸︷
P ‖x1 ‖B1 ‖ · · · ‖ xNrev ‖BNrev︸ ︷︷ ︸

(b)

‖
(c)︷ ︸︸ ︷

E1 ‖ · · · ‖ ENrev ‖C1 ‖ C2︸ ︷︷ ︸
(d)

‖
(e)︷︸︸︷
R ‖ S︸︷︷︸

(f)

where (a) is a long-term identifier, (b) contains the x and B values of all buddies to

revoke or suspend, (c) contains new encrypted decryption keys for all buddies revoked

in (b), (d) contains the ciphertext components from DBE, (e) is a random bit string,

and (f) is the signature for the record that can be verified with (a). Further details

of how (b) and (c) are used to allow plausibly deniable revocation and suspension are

described in Section 6.2.7.

Upon receiving a record of the form

P ‖ x1 ‖B1 ‖ · · · ‖ xNrev ‖BNrev ‖ E1 ‖ · · · ‖ ENrev ‖ C1 ‖ C2 ‖R ‖ S

from Alice, the registration server verifies the signature S with P . If the signature is

valid, it computes IDa(j) := H2(P) and stores the 〈key, value〉 pair

〈IDa(j), x1 ‖B1 ‖ · · · ‖ xNrev ‖BNrev ‖ E1 ‖ · · · ‖ ENrev ‖ C1 ‖ C2 ‖R ‖ S〉

Otherwise, if the signature is invalid, nothing is stored.

Lookup

To look up Alice’s presence for epoch Tj , Bob first requests the metadata associated

with the databases from each lookup server. Since all lookup servers have the same

database, the metadata should be the same, but in the event that some of the servers

are dishonest, he takes the majority of the received metadata. The metadata contains

information about the number of buckets and size of the buckets. He then computes

150

Algorithm 13 Alice computing her long-term presence record

Input:
mka = (Ga, Ha, γa), Alice’s manager key
(Ya(j), Pa(j)), Alice’s private-public key pair for Tj
R, the set of buddies’ decryption keys to MP3.Revoke or suspend
B, the set of buddies’ decryption keys to continue being buddies
Output: Long-term presence record

1: function
2: (C1, C2,K) := DBE.Encrypt(mka)
3: Generate and store a random bit-string Rj
4: λ := H3(K)
5: DBE.ShiftMK(mka, λ)
6: Store Kj := Kλ

7: record := Pa(j)
8: n := Nrev − |R|
9: Bpadded := pad B with random decryption keys upto Nfmax

10: F := n decryption keys chosen uniformly from Bpadded
11: for each (x,A,B, κ) ∈ R ∪ F do
12: DBE.gevoke(mka, x,B)
13: record := record ‖ x ‖B
14: for each (x,A,B, κ) ∈ R do
15: x′ ← Z×p , A′ ← G1, B

′ ← G2 . Here, x′ is fresh

16: . Store the following in case we want to unrevoke this buddy
17: Store ((x′, A′, B′, κ), C1, C2, Rj) in a global set U
18: E := AEADj

κ(x′ ‖A′ ‖B′)
19: record := record ‖ E
20: for each (x,A,B, κ) ∈ F do
21: . generate new and valid x, A, and B
22: (x′, A′, B′,) := Join(mka)
23: E := AEADj

κ(x′ ‖A′ ‖B′)
24: record := record ‖ E
25: Shuffle the concatenated encrypted triples x ‖A ‖B in record
26: record := record ‖ C1 ‖ C2 ‖Rj
27: S := ECDSA-SignYa(j)(record)
28: record := record ‖ S
29: return record

Pa(j) := P
H1(Tj‖Kj′⊕Rj′)
a,init using Kj′ and Rj′ he queried from the most recent long-

term epoch in which Alice registered, and subsequently computes IDa(j) = H2(Pa(j)).

Finally, he builds a PIR request using the metadata for IDa(j) to retrieve a record of

151

Algorithm 14 Alice computing Nunrev presence records to unrevoke buddies

Input:
U , the global set of buddies to unrevoke
Tj , the current long-term epoch
mka, Alice’s manager key
(Ya,init, Pa,init), Alice’s initial long-term epoch base keys
Kj stored from Algorithm 13
Rj stored from Algorithm 13
Output: list of Nunrev long-term presence records

1: function
2: ret := new list
3: for each ((x,A,B, κ), C1, C2, Rrevoked) ∈ U to unrevoke do
4: Remove ((x,A,B, κ), C1, C2, Rrevoked) from U
5: Krevoked := DBE.Decrypt((x,A,B, κ), C1, C2)
6: Yrevoked := Ya,init ·H1(Tj ‖Krevoked ⊕Rrevoked)

7: Prevoked := P
H1(Tj‖Krevoked⊕Rrevoked)
a,init

8: Runrevoked := Kj ⊕Rj ⊕Krevoked

9: record := Prevoked

10: . We concatenate enough bytes so the record is the same length as that of Algorithm 13.

We also make sure the byte encodings are of the correct type.

11: record := record ‖ 〈Nunrev − 1 encrypted random triples x← Z×p ‖A← G1 ‖B ← G2〉
12: . generate a fresh decryption key for the unrevoked buddy
13: (x′, A′, B′,) := Join(mka)
14: record := record ‖AEADj

κ(x′ ‖A′ ‖B′)
15: Shuffle the record as in Algorithm 13 line 25
16: record := record ‖ C1 ‖ C2 ‖Runrevoked

17: Sunrevoked := ECDSA-SignYrevoked(record)
18: record := record ‖ Sunrevoked
19: store record in ret
20: if number of buddies unrevoked < Nunrev then
21: . these records must be of the correct encoding
22: store random records in ret so that its length is Nunrev

23: return ret

the form

x1 ‖B1 ‖ · · · ‖ xNrev ‖BNrev ‖ E1 ‖ · · · ‖ ENrev ‖ C1 ‖ C2 ‖R ‖ S

Bob then processes this long-term record according to Algorithm 15 and stores the

returned K and R values for computing Alice’s long- and short-term identifiers in the

152

Algorithm 15 Bob processing the long-term record of Alice

Input:
Pa(j), Alice’s long-term key for Tj
x1 ‖B1 ‖ · · · ‖ xNrev ‖BNrev ‖ E1 ‖ · · · ‖ ENrev ‖ C1 ‖ C2 ‖R ‖ S, long-term record
Output: K and R for the next long-term epoch

1: function
2: . Only process the record if the signature is valid, otherwise the lookup server was malicious

3: if S is valid signature for the record with Pa(j) then
4: plausiblyRevoked := false
5: for i = 1 to Nrev do
6: if xab 6= xi then
7: DBE.Update(dkab, xi, Bi)
8: else
9: plausiblyRevoked := true

10: if plausiblyRevoked then
11: for i := 1 to Nrev do
12: Try to decrypt Ei with κab
13: if successfully decrypted Ei then
14: (x′, A′, B′) := Ei decrypted with κab
15: xab := x′, Aab := A′, Bab := B′

16: . Note that we updated dkab in line 15

17: K := DBE.Decrypt(dkab, C1, C2)
18: return K, R
19: else
20: K := DBE.Decrypt(dkab, C1, C2)
21: λ := H3(K)
22: DBE.ShiftDK(dkab, λ)
23: K := Kλ

24: return K, R

next long-term epochs.

6.2.6 Short-term Epoch

Registration.

To register for epoch ti, Alice must register during ti−1. Assume that epoch ti is during

epoch Tj . Recall that Alice computed the private-public key pair (za(j), qa(j)) during

the long-term registration for Tj . To begin, Alice encrypts her presence message, ma(i)

153

as follows:

ka(i) := PRFH4(qa(j))(ti) ca(i) := AEADi
ka(i)

(ma(i))

She then computes the unforgeable signature:

sa(i) := H5(ti)
za(j)

Alice then uploads ca(i) ‖ sa(i) to the short-term registration server.

Upon receiving Alice’s record, the short-term registration server will compute ida(i) =

H6(e(g1, sa(i))), and store 〈ida(i), ca(i)〉. Additionally, 〈ida(i), sa(i)〉 is stored in a short-

term signature database to audit.

Lookup

To lookup Alice’s presence for epoch ti, Bob requests the metadata associated with

the short-term databases in the same manner as in the long-term epoch. To begin,

he first computes qa(j) := q
H1(Tj‖Kj′⊕Rj′)
a,init using Kj′ and Rj′ he queried from the

most recent long-term epoch in which Alice registered. Then he computes ida(i) :=

H6(e(qa(j), H5(ti)) which is equivalent to the registration server’s computation ofH6(e(g1, sa(i)))

by the properties of pairings. He then builds a PIR request for ida(i) to retrieve ca(i).

Bob can be certain that ca(i) is from Alice due to the unforgeable signature sa(i) by

auditing the signature database.

Bob can then compute ka(i) := PRFH4(qa(j))(ti) and decrypts ca(i) retrieving ma(i).

The decryption being successful implies that Alice is online during epoch ti. As in the

long-term epoch, in order to not leak information of how many buddies Bob has, he

must pad his lookup to Nfmax ids.

6.2.7 Details

Unrevokoe and Unsuspend

For simplicity in this section we assume Nrev = 1. The long-term presence record of

Alice that MP3.Revokes Bob takes the form

P ‖ xab ‖Bab ‖ Eab ‖ C1 ‖ C2 ‖R ‖ S

154

That is xab and Bab are Bob’s x and B values and Eab contains a triple of random

(x,A,B). encrypted with κab, i.e., x, A, and B were not generated from Alice’s manager

key. This means that for future epochs, Bob cannot compute the proper K (Algorithm

15 line 17), and thus can no longer query for Alice. Alice can unrevoke Bob by computing

the incorrect K that he computes from when he was revoked (Algorithm 14 line 5)

and use this to upload a record that Bob can query for. This record will allow Bob to

compute the correct K and R values for Alice for future epochs, as well as providing Bob

with fresh x, A, and B values that are generated from Alice’s manager key (Algorithm

14 line 14). This is possible by storing the correct K value within the R value in

this “unrevoking” record (Algorithm 14 line 8). This allows Bob to compute the proper

identifier for Alice in the next long-term epoch. Thus, Bob can continue to query Alice’s

presence as before.

Alice’s friends must process all of her long-term database entries so they must query

all long-term databases. To allow users to be offline for extended periods of time MP3

stores the previous 30 days worth of long-term databases. If a user does not come online

for more than 30 days they must share new keys with all of their friends. Revocations

in the database entries are plausible deniable but a user may be able to notice if a friend

does not come online anymore indicating they may have been revoked. This problem is

inherent to presence systems.

Plausible Deniability of Revocation and Suspension

For MP3.Revoke to be deniable a revoked user must not be able to determine they

have been revoked. MP3 implements this by DBE.Revoking users that have not been

MP3.Revoked and issue these users new DBE decryption keys. Where as friends

which are MP3.Revoked are issued a new random decryption key. For a friend to

determine if they have been MP3.Revoked they must be able to distinguish between

valid and random decryption keys. We introduce DBE.ShiftMK and DBE.ShiftDK

to make the decryption keys indistinguishable. Section 6.4 details a distinguisher if

DBE.ShitfMK and DBE.ShiftDK are not used.

More formally, If a friend can distinguish a transcript where they have been MP3.Revoked

from a transcript where they have been DBE.Revoked but not MP3.Revoked they

can be used as a Decisional Diffie-Hellman (DDH) distinguisher. That is, given (g, gx, gy, gz)

155

determine if gxy = gz. We assume all hash functions are modeled as random oracles.

We now quickly sketch the proof. If given a decryption key (x,A,B) and ciphertext

(C1 = Gw0γ , C2 = Hw0) and ciphertext C ′1 = Gw1γλ, H =w1λ) where w0, γ, w1, and λ

are random, and given (x′, A′, B′), determine if (x′, A′, B′) are valid decryption keys or

random. Given a DDH challenger we can construct the above problem. Since w0, γ, w1,

and λ are random and the group is of prime order we define λ = y and let C1 = g, C2 =

gx, C ′1 = gy, and C ′2 = gz. If a friend can distinguish if they have been MP3.Revoked

they can win the DDH game.

Complexity Comparisons

During each long-term epoch in DP5, N ·Nfmax records are stored, where each record is a

constant size. Thus, the registration bandwidth is Θ(N ·Nfmax). During each long-term

epoch in MP3, N ·(Nunrev+1) records are stored, where each record’s length scales with

Nrev. Thus, the registration bandwidth complexity is Θ(N ·Nunrev ·Nrev). In reality,

Nunrev and Nrev will be relatively constant2 compared to N . This implies that (as

functions of N and Nfmax) the registration bandwidth complexities for DP5 and MP3

are Θ(N ·Nfmax) and Θ(N), respectively.

With the PIR protocol used in both DP5 and MP3, the bandwidth cost per query

of a single record scales with the square root of the size of the database3 . Also,

recall that each user must query for Nfmax buddies to not reveal any information about

their number of buddies. This implies that the bandwidth complexities for an entire

long-term epoch (assuming all users query) for DP5 and MP3 are Θ
(
N3/2 ·N3/2

fmax

)
and

Θ
(
N3/2 ·N1/2

rev ·N1/2
unrev ·Nfmax

)
, respectively. Using the same approximations for Nunrev

and Nrev as above, this results in lookup bandwidth complexities of Θ
(
N3/2 ·N3/2

fmax

)
for DP5 and Θ

(
N3/2 ·Nfmax

)
for MP3. Similar arguments can be made for the shared

short-term epoch of DP5 and MP3 and are summarized in Table 6.1.

2 Arguments for why this is a valid assumption are discussed in Section 6.5.
3 As in the PIR protocol in DP5, we constructed r = d

√
ns e buckets and we can upper bound the

size of each bucket by
(
n
r

+
√

n
r

)
· s ≈

√
ns+

4
√
ns3 (here, s is the size of each record in bytes); since a

query results in an entire bucket, this scales with the square root of the size of the database.

156

0 200000 400000 600000 800000 1000000
N

0

20

40

60

80

100

D
B

S
iz

e
(G

B
)

DP5 (long-term)

MP3 (long-term)

short-term

(a) Nfmax = 1000, Nrev =
Nunrev = 5

0 200 400 600 800 1000
Nfmax

0

20

40

60

80

100

D
B

S
iz

e
(G

B
)

DP5 (long-term)

MP3 (long-term)

short-term

(b) N = 1000000, Nrev =
Nunrev = 5

0 20 40 60
Nrev

0

25

50

75

100

125

150

D
B

S
iz

e
(G

B
)

DP5 (long-term)

MP3 (long-term)

short-term

(c) N = 1000000,
Nfmax = 1000, Nunrev = 5

Figure 6.1: Presence database sizes

0 200000 400000 600000 800000 1000000
N

0

50

100

150

200

250

300

B
an

dw
id

th
(T

B
)

DP5 (long-term)

MP3 (long-term)

short-term

(a) Nfmax = 1000, Nrev =
Nunrev = 5

0 200 400 600 800 1000
Nfmax

0

50

100

150

200

250

300

B
an

dw
id

th
(T

B
)

DP5 (long-term)

MP3 (long-term)

short-term

(b) N = 1000000, Nrev =
Nunrev = 5

0 5 10 15 20 25
Nrev

0

50

100

150

200

250

300

B
an

dw
id

th
(T

B
)

DP5 (long-term)

MP3 (long-term)

short-term

(c) N = 1000000,
Nfmax = 1000, Nunrev = 5

Figure 6.2: Lookup server bandwidth

157

6.3 Experimental Results

Implementation

Our MP3 library is implemented in 350 lines of C and 4000 lines of C++. The core

cryptography relies on OpenSSL for AES, SHA-256, and elliptic curve arithmetic and

signatures; RELIC [66] for pairing-friendly curves; and Percy++ [67] for PIR. The

groups G1, G2, and GT are defined by the Optimal Ate pairing over a 256-bit Barreto-

Naehrig curve. We use a 224-bit Elliptic Curve, specifically secp224r1, for ECDSA,

though the choice was arbitrary. AEAD is implemented using AES in Galois/Counter

Mode (GCM). The PRFs and hash functions are implemented using SHA-256.

Evaluation

To evaluate the performance of MP3 vs. DP5, we simulated both protocols in a “worst-

case” scenario with the number of users ranging from 1000 to 1000000 clients. To

simulate the worst-case scenario, we had all clients perform registration and lookup for

all epochs. All simulations were run on a machine with dual Intel Xeon E5-2630 v3 CPUs

and 256GB of RAM. Nlookup was held fixed at 3 for all setups and both protocols. The

equivalent of 1 year of execution were simulated in all setups. For both MP3 and DP5,

the most expensive components are the lookup servers from both CPU and bandwidth

perspectives.

Figure 6.1 compares the size of the presence databases for the long-term epoch of

MP3 and DP5 as well as the shared short-term epoch. If we fix Nrev and Nunrev to small

constants compared to N , it’s obvious that the size of the long-term database of MP3

is significantly less than that of DP5. A smaller database implies cheaper lookup costs

in the context of both bandwidth and CPU. Additionally, we can raise Nrev quite a bit

and still maintain a smaller long-term database than that of DP5. It’s also important

to see how cheap the short-term database is relative to the long-term databases. Also

note that the presence database sizes are proportional to the registration bandwidth.

0.00 0.25 0.50 0.75 1.00
Latency (s)

0.0

0.2

0.4

0.6

0.8

1.0

Q
ua

nt
ile

DP5 (long-term)

MP3 (long-term)

short-term

Figure 6.3: Client-facing

lookup latency excluding RTT.

N = 100000, Nfmax = 1000,

Nrev = Nunrev = 5

Figure 6.3 compares the client-facing latency of the

long-term epochs of MP3 and DP5 as well as the shared

short-term epoch, for N = 100000 users. The latency of

MP3’s long-term epoch is smaller than that of DP5 due to

158

the inherently smaller database. The short-term epoch’s

latency is even less as the short-term databases are even

smaller.

Figure 6.2 compares the bandwidth of a single long-term

lookup server for the long-term epoch of MP3 and DP5

as well as the shared short-term epoch. The same pattern

occurs that we saw in Figure 6.1 - for relatively constant Nrev and Nunrev, the bandwidth

required is significantly less for MP3 than for DP5 and the bandwidth requirements of

the short-term epoch are negligible compared to that of the long-term epochs.

6.4 Modifications to Dynamic Broadcast Encryption

Recall the operations of DBE from Section 6.2.3. Our modifications to DBE [13] only

add the DBE.ShiftMK and DBE.ShiftDK operations. These operations are re-

quired for plausibly deniable revocations and suspensions. Recall that in a long-term

database record for Alice in which Bob is actually revoked, Bob’s old decryption key

(dkab) is revoked and he is issued a new, but invalid, decryption key (dk′ab). With-

out DBE.ShiftMK and DBE.ShiftDK, Bob could use dk′ab to invert the Update

operation and detect whether he was revoked or not.

The inverse update function is:

• DBE.Update−1(dk′ = (x′, A′, B′, κ′), xr, Br) - takes as input a decryption key

and a revocation values and computes a new decryption key dk := (x′, A′, B, κ′)

where B := Br
B′(x′−xr)

that can decrypt ciphertexts created before the revocation.

Assuming DBE.ShiftMK and DBE.ShiftDK are not in place, a revoked user Bob

can use DBE.Update−1 to detect that he has been revoked by Alice. Given two long-

term presence records of Alice, where the former has not revoked Bob and the latter

has revoked Bob, Bob can apply the Update−1 function to his new decryption key and

compute a decryption key for the former presence record.

Let Bob’s decryption keys for the former presence record be dkab and let Bob’s de-

cryption key for the latter presence record (after calling Update−1) be dk′ab. Also

let C1, C2 be the ciphertext components from the former presence record. To de-

tect if he has been revoked, all he must do is check if DBE.Decrypt(dkab, C1, C2) 6=

159

DBE.Decrypt(dk′ab, C1, C2). If the statement is true, then Bob has been revoked by

Alice.

By introducing DBE.ShiftMK and DBE.ShiftDK we create a one-way opera-

tion to the revocation process of MP3; thus Bob cannot invert the DBE.ShiftMK

and DEB.ShiftDK functions without the knowledge of the plaintext of (C1, C2) and

therefore cannot detect whether or not he was revoked.

6.5 Availability Against Malicious Parties

Some conventional approaches to ensure availability against malicious parties cannot

be applied directly to privacy-preserving protocols, as they can leak information. This

causes several challenges: keeping the databases small, ensuring the registration server

stores all uploaded presence records, ensuring the lookup servers store all presence

records and do not modify them.

A malicious client could upload many presence records during a given epoch, caus-

ing a denial of service (DoS) for all other clients. If a malicious client were using an

anonymous channel, authentication would compromise the anonymity of that client,

defeating the purpose of MP3. To eliminate this, k-times anonymous authentication

schemes have been proposed [68, 69]. In these schemes, users are guaranteed anonymity

up to k times; that is, if a user authenticates k+ 1 times, the identity of the user can be

computed. Such private rate-limiting schemes can be used to limit the number of times

a client registers during a given epoch without losing anonymity.

In the case that the registration server is dishonest and drops records, a user could

“friend themself” to ensure that their presence records are being stored, by looking

themself up during every epoch. Note that all presence records are indistinguishable,

so the registration server can not target specific records for dropping.

Lastly, in the case that the lookup servers are dishonest and modify the database,

Devet et al. propose a robust PIR scheme [70] that allows detection of malicious servers.

This detection requires at least t + 2 honest servers, where t is the number of servers

needed to collude to be able to determine the data in a query. This robust PIR scheme

is implemented in MP3.

160

Discussion of Scalability and Cost Improvements

A primary bottleneck in DP5 is its lack of scaling with large number of users, specifically

for long-term epochs. MP3 solves just that. The complexity for bandwidth usage of all

operations are summarized in Table 6.1.

Table 6.1: Bandwidth complexities comparing MP3 and DP5 as a function of N , Nfmax,
Nrev, and Nunrev.

Client Server
registration lookup registration lookup

long-term
DP5 Θ(Nfmax) Θ

(
N1/2 ·N3/2

fmax

)
Θ(N ·Nfmax) Θ

(
N3/2 ·N3/2

fmax

)
MP3 Θ(Nrev ·Nunrev) Θ

(
N1/2 ·N1/2

rev ·N1/2
unrev ·Nfmax

)
Θ(N ·Nrev ·Nunrev) Θ

(
N3/2 ·N1/2

rev ·N1/2
unrev ·Nfmax

)
short-term

DP5
Θ(1) Θ

(
N1/2 ·Nfmax

)
Θ(N) Θ

(
N3/2 ·Nfmax

)
MP3

The bulk of the cost in running a service such as MP3 or DP5 comes from the

bandwidth usage of the given protocol. Nrev and Nunrev are always less than or equal to

Nfmax by definition. In reality, with a 24-hour long-term epoch, setting Nrev and Nunrev

to a small constant is very reasonable4 ; therefore, MP3 is significantly cheaper during

long-term epochs, and thus overcomes the scalability bottleneck of DP5.

In Figure 6.2a, with N = 1000000 users, Nfmax = 1000, Nrev = Nunrev = 5, we can

see that MP3 uses about half the bandwidth of that of DP5 and it’s evident that the

savings grow as the number of users increases.

4 Social networks such as Twitter disallow bulk unfollowing [71], making our argument about setting
Nrev and Nunrev to a small/constant value even stronger.

Chapter 7

Future Work and Final Remarks

161

162

In this dissertation I detailed strong security properties that are necessary for private

group conversation protocols and applications. I detailed how these properties apply in

two real-world networking models. I examined the most popular secure communication

protocol (Signal) and demonstrated how it does not provide the not only these stronger

privacy properties but even does not provide confidentiality for all messages.

Given both networking models of online instant messaging and mobile message; I

provide two private group messaging protocols that provably provide the necessary se-

curity properties. I implement these protocols and show their performance is practical

under real-world networking conditions. Finally, I detail an improved private presence

protocol to complement the messaging protocols that reduces the message size to loga-

rithmic via Dynamic Broadcast Encryption(̃DBE).

This is an open research area and future directions for this work include:

Manually proving the security properties of protocols is a painstakingly tedious

process that leads to hard to read and reason about proofs. This dissertation is

the first for formally examine many of the security properties of private messaging

protocols. One future direction would explore how automated provers and proof

assistants can increase the confidence and improve the writing and verification of

these properties.

The two proposed secure communication protocols only support text messages.

However, many popular messaging applications have extensive features to sup-

port other interactions, for example sending images, reactions, or external hyper

links. As shown in the analysis of Signal, these features have bespoke consequences

on the privacy of the conversation and cannot be implemented without due anal-

ysis. Another direction for future research would explore the privacy implications

of these auxiliary features, the consequence they have on the privacy of the con-

versation, and how to provide these features without sacrificing the strong privacy

guarantees.

This dissertation has focused on private communication between a group of partic-

ipants that can mutually authenticate one another. However, many conversations

happen between people that do not for a clique. It is worth exploring what pri-

vacy means for these types of communication and how it may be guaranteed with

163

provable protocols. Consider a forum or industry IRC channel. The number of

participants may be low but they may not be able to mutually authenticate. Can

a referral mechanism be introduced to Mobile CoWPI? Would Mobile CoWPI still

provide participant consistency? Also consider, How can private communication

be provided for mailing lists? Can we achieve deniable message authentication in

a broadcast channel?

References

[1] Nicholas Weaver. A close look at the NSA’s most powerful internet attack tool.

http://www.wired.com/2014/03/quantum/. Accessed: 19 May 2017.

[2] Apple, 2017.

[3] Nadim Kobeissi, 2017.

[4] Andreas Straub. Omemo encryption.

[5] Open Whisper Systems. Open Whisper Systems. https://whispersystems.org/.

[6] WhatsApp, 2017.

[7] Moxie Marlinspike. Facebook messenger deploys signal protocol for end to end

encryption, 2016.

[8] Moxie Marlinspike. Open whisper systems partners with google on end-to-end

encryption for allo, 2016.

[9] Moxie Marlinspike. Signal and GIPHY, jan 2016.

[10] Inc. Amazon Web Services. Amazon web service (aws) - cloud compute services,

2019.

[11] linode. linode. https://linode.com/.

[12] Nikita Borisov, George Danezis, and Ian Goldberg. DP5: A private presence ser-

vice. Proceedings on Privacy Enhancing Technologies, 2015(2):4–24, 2015.

164

http://www.wired.com/2014/03/quantum/
https://whispersystems.org/
https://linode.com/

165

[13] Cécile Delerablée, Pascal Paillier, and David Pointcheval. Fully collusion secure

dynamic broadcast encryption with constant-size ciphertexts or decryption keys.

pages 39–59, 2007.

[14] Nik Unger, Sergej Dechand, Joseph Bonneau, Sascha Fahl, Henning Perl, Ian Gold-

berg, and Matthew Smith. Sok: Secure messaging. In Security and Privacy (SP),

2015 IEEE Symposium on, pages 232–249. IEEE, 2015.

[15] Nikita Borisov, Ian Goldberg, and Eric Brewer. Off-the-record communication, or,

why not to use pgp. In Proceedings of the 2004 ACM workshop on Privacy in the

electronic society, pages 77–84. ACM, 2004.

[16] Ian Goldberg, Berkant Ustaoğlu, Matthew D Van Gundy, and Hao Chen. Multi-

party off-the-record messaging. In Proceedings of the 16th ACM conference on

Computer and communications security, pages 358–368. ACM, 2009.

[17] Hong Liu, Eugene Y Vasserman, and Nicholas Hopper. Improved group off-the-

record messaging. In Proceedings of the 12th ACM workshop on Workshop on

privacy in the electronic society, pages 249–254. ACM, 2013.

[18] Tilman Frosch, Christian Mainka, Christoph Bader, Florian Bergsma, Jörg

Schwenk, and Thorsten Holz. How secure is textsecure? In Security and Privacy

(EuroS&P), 2016 IEEE European Symposium on, pages 457–472. IEEE, 2016.

[19] Katriel Cohn-Gordon, Cas Cremers, Benjamin Dowling, Luke Garratt, and Douglas

Stebila. A formal security analysis of the signal messaging protocol. In Security and

Privacy (EuroS&P), 2017 IEEE European Symposium on, pages 451–466. IEEE,

2017.

[20] Nadim Kobeissi, Karthikeyan Bhargavan, and Bruno Blanchet. Automated verifi-

cation for secure messaging protocols and their implementations: A symbolic and

computational approach. In IEEE European Symposium on Security and Privacy

(EuroS&P), 2017.

[21] Michael Schliep, Ian Kariniemi, and Nicholas Hopper. Is bob sending mixed signals?

In Proceedings of the 2017 on Workshop on Privacy in the Electronic Society, pages

31–40. ACM, 2017.

166

[22] Paul Rösler, Christian Mainka, and Jörg Schwenk. More is less: On the end-to-end

security of group chats in signal, whatsapp, and threema. 2018.

[23] Moxie Marlinspike and Trevor Perrin. The x3dh key agreement protocol, 2016.

[24] eQualit.ie. (n+1)sec protocol specification - draft. https://equalit.ie/introdu

cing-n1sec-a-protocol-for-distributed-multiparty-chat-encryption/.

[25] Michel Abdalla, Céline Chevalier, Mark Manulis, and David Pointcheval. Flexible

group key exchange with on-demand computation of subgroup keys. Africacrypt,

10:351–368, 2010.

[26] Katriel Cohn-Gordon, Cas Cremers, Luke Garratt, Jon Millican, and Kevin Milner.

On ends-to-ends encryption: Asynchronous group messaging with strong security

guarantees. In Proceedings of the 2018 ACM SIGSAC Conference on Computer

and Communications Security, pages 1802–1819. ACM, 2018.

[27] Emad Omara, Benjamin Beurdouche, Eric Rescorla, Srinivas Inguva, Albert Kwon,

and Alan Duric. The Messaging Layer Security (MLS) Architecture. Internet-Draft

draft-ietf-mls-architecture-02, Internet Engineering Task Force, March 2019. Work

in Progress.

[28] Richard Barnes, Jon Millican, Emad Omara, Katriel Cohn-Gordon, and Raphael

Robert. The Messaging Layer Security (MLS) Protocol. Internet-Draft draft-ietf-

mls-protocol-06, Internet Engineering Task Force, May 2019. Work in Progress.

[29] Dominic Rushe. Lavabit founder refused FBI order to hand over email encryption

keys. The Guardian, October 2013.

[30] Moxie Marlinspike and Trevor Perrin. The double ratchet algorithm, 2016.

[31] Katriel Cohn-Gordon, Cas Cremers, Benjamin Dowling, Luke Garratt, and Douglas

Stebila. A formal security analysis of the signal messaging protocol. In Security and

Privacy (EuroS&P), 2017 IEEE European Symposium on, pages 451–466. IEEE,

2017.

[32] Trevor Perrin. [messaging] how secure is textsecure?, Nov 2014.

https://equalit.ie/introducing-n1sec-a-protocol-for-distributed-multiparty-chat-encryption/
https://equalit.ie/introducing-n1sec-a-protocol-for-distributed-multiparty-chat-encryption/

167

[33] Nadim Kobeissi, Karthikeyan Bhargavan, and Bruno Blanchet. Automated verifi-

cation for secure messaging protocols and their implementations: A symbolic and

computational approach. In IEEE European Symposium on Security and Privacy

(EuroS&P), 2017.

[34] Paul Rösler, Christian Mainka, and Jörg Schwenk. More is less: How group chats

weaken the security of instant messengers signal, whatsapp, and threema. 2017.

[35] David Cole. We kill people based on metadata, 2014.

[36] David Fifield, Chang Lan, Rod Hynes, Percy Wegmann, and Vern Paxson.

Blocking-resistant communication through domain fronting. Proceedings on Pri-

vacy Enhancing Technologies, 2015(2):46–64, 2015.

[37] Liang Wang, Kevin P Dyer, Aditya Akella, Thomas Ristenpart, and Thomas

Shrimpton. Seeing through network-protocol obfuscation. In Proceedings of the

22nd ACM SIGSAC Conference on Computer and Communications Security, pages

57–69. ACM, 2015.

[38] Mike Burmester and Yvo Desmedt. A secure and efficient conference key distribu-

tion system. In Advances in cryptology EUROCRYPT’94, pages 275–286. Springer,

1994.

[39] Mihir Bellare and Chanathip Namprempre. Authenticated encryption: Relations

among notions and analysis of the generic composition paradigm. J. Cryptol.,

21(4):469–491, September 2008.

[40] Brian LaMacchia, Kristin Lauter, and Anton Mityagin. Stronger security of au-

thenticated key exchange. In Provable Security, pages 1–16. Springer, 2007.

[41] Chris Alexander and Ian Goldberg. Improved user authentication in off-the-record

messaging. In Proceedings of the 2007 ACM workshop on Privacy in electronic

society, pages 41–47. ACM, 2007.

[42] Mario Di Raimondo, Rosario Gennaro, and Hugo Krawczyk. Deniable authentica-

tion and key exchange. In Proceedings of the 13th ACM conference on Computer

and communications security, pages 400–409. ACM, 2006.

168

[43] Johan Ugander, Brian Karrer, Lars Backstrom, and Cameron Marlow. The

anatomy of the facebook social graph. arXiv preprint arXiv:1111.4503, 2011.

[44] OpenStack IRC meetings. http://eavesdrop.openstack.org/.

[45] twitter. twitter. https://twitter.com/.

[46] reddit. reddit. https://reddit.com/.

[47] Facebook. Facebook. https://facebook.com/.

[48] Ran Canetti and Hugo Krawczyk. Analysis of key-exchange protocols and their

use for building secure channels. In Proceedings of the International Conference on

the Theory and Application of Cryptographic Techniques: Advances in Cryptology,

EUROCRYPT ’01, pages 453–474, London, UK, UK, 2001. Springer-Verlag.

[49] Cathleen Wharton, John Rieman, Clayton Lewis, and Peter Polson. The cognitive

walkthrough method: A practitioner’s guide. In Jakob Nielsen and Robert L. Mack,

editors, Usability Inspection Methods, pages 105–140. John Wiley & Sons, Inc., New

York, NY, USA, 1994.

[50] Alma Whitten and J Doug Tygar. Why johnny can’t encrypt: A usability evalua-

tion of pgp 5.0. In Usenix Security, volume 1999, 1999.

[51] Sumeet Gujrati and Eugene Y Vasserman. The usability of truecrypt, or how i

learned to stop whining and fix an interface. In Proceedings of the third ACM

conference on Data and application security and privacy, pages 83–94. ACM, 2013.

[52] Android — the world’s most populare mobile platform.

[53] Subhash Sankuratripati, Moti Yung, Anirudh Grag, and Wentao Huang. Catch me

if you can: An account based end-to-end encryption for 1/1 snaps. In Real World

Crypto Symposium. IACR, 2019.

[54] Phillip Rogaway. Nonce-based symmetric encryption. In International Workshop

on Fast Software Encryption, pages 348–358. Springer, 2004.

[55] Motorola Mobility LLC. Moto g3 - motorola, 2019.

http://eavesdrop.openstack.org/
https://twitter.com/
https://reddit.com/
https://facebook.com/

169

[56] The PostgreSQL Global Development Group. Postgresql: The world’s most ad-

vanced open source database, 2019.

[57] Fabien Laguillaumie and Damien Vergnaud. Multi-designated verifiers signatures.

In International Conference on Information and Communications Security, pages

495–507. Springer, 2004.

[58] B Chor, O Goldreich, E Kushilevitz, and M Sudan. Private information retrieval.

In IEEE Symposium on Foundations of Computer Science, 1995.

[59] David Isaac Wolinsky, Henry Corrigan-Gibbs, Bryan Ford, and Aaron Johnson. Dis-

sent in numbers: Making strong anonymity scale. In Presented as part of the 10th

USENIX Symposium on Operating Systems Design and Implementation (OSDI 12),

pages 179–182, 2012.

[60] Henry Corrigan-Gibbs, Dan Boneh, and David Mazières. Riposte: An anonymous

messaging system handling millions of users. In 2015 IEEE Symposium on Security

and Privacy, pages 321–338. IEEE, 2015.

[61] Albert Kwon, David Lazar, Srinivas Devadas, and Bryan Ford. Riffle. Proceedings

on Privacy Enhancing Technologies, 2016(2):115–134, 2016.

[62] Sebastian Angel and Srinath TV Setty. Unobservable communication over fully

untrusted infrastructure. In OSDI, pages 551–569, 2016.

[63] ANSI ANSI. X9. 62-1998: Public key cryptography for the financial services in-

dustry: The elliptic curve digital signature algorithm (ecdsa). American National

Standards Institute (ANSI), Washington, DC, 1998.

[64] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the weil pair-

ing. In International Conference on the Theory and Application of Cryptology and

Information Security, pages 514–532. Springer, 2001.

[65] Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures. In Annual

International Cryptology Conference, pages 41–55. Springer, 2004.

[66] D. F. Aranha and C. P. L. Gouvêa. RELIC is an Efficient LIbrary for Cryptography.

https://github.com/relic-toolkit/relic.

https://github.com/relic-toolkit/relic

170

[67] Ian Goldberg, Casey Devet, Wouter Lueks, Ann Yang, Paul Hendry, and Ryan

Henry. Percy++ project on sourceforge. http://percy.sourceforge.net, 2014.

[68] Joseph K Liu, Victor K Wei, and Duncan S Wong. Linkable spontaneous anony-

mous group signature for ad hoc groups. In Australasian Conference on Information

Security and Privacy, pages 325–335. Springer, 2004.

[69] Patrick P Tsang, Man Ho Au, Apu Kapadia, and Sean W Smith. Blacklistable

anonymous credentials: blocking misbehaving users without TTPs. In Proceedings

of the 14th ACM conference on Computer and communications security, pages 72–

81. ACM, 2007.

[70] Casey Devet, Ian Goldberg, and Nadia Heninger. Optimally robust private infor-

mation retrieval. In Presented as part of the 21st USENIX Security Symposium

(USENIX Security 12), pages 269–283, 2012.

[71] Suspension - what’s the daily/hourly unfollow limit for each user? what is the

aggressive behaviour? https://twittercommunity.com/t/suspension-whats-t

he-daily-hourly-unfollow-limit-for-each-user-what-is-the-aggressiv

e-behaviour/13971.

http://percy.sourceforge.net
https://twittercommunity.com/t/suspension-whats-the-daily-hourly-unfollow-limit-for-each-user-what-is-the-aggressive-behaviour/13971
https://twittercommunity.com/t/suspension-whats-the-daily-hourly-unfollow-limit-for-each-user-what-is-the-aggressive-behaviour/13971
https://twittercommunity.com/t/suspension-whats-the-daily-hourly-unfollow-limit-for-each-user-what-is-the-aggressive-behaviour/13971

	Acknowledgements
	Dedication
	Abstract
	List of Tables
	List of Figures
	Introduction
	Thesis Statement
	Outline

	Background
	Networking Models
	Threat Model
	Security Properties
	Related Work

	Signal Messaging Protocol
	Signal Design
	Prior Security Analysis
	Threat Model
	Secure Conversation Properties

	Protocol Usage Attacks
	Confidentiality
	Speaker Consistency Attacks

	Group Conversation Attacks
	Mitigations

	Traffic Analysis
	Censorship Circumvention
	Conversation Metadata

	Synchronous Secure Communication
	Private Group Instant Messaging
	Goals
	Prior Secure Messaging Protocols
	System Model
	Threat Model

	Design
	Strawman Design
	Primitives
	Overview
	SYM-GOTR Protocol
	User Authentication

	Security
	Confidentiality
	Message Integrity and Authentication
	Participant Consistency
	Forward and Backward Secrecy
	Participant Repudiation
	Message Repudiation
	Message Unlinkability
	Global Transcript
	GOTR Improvements

	Performance Evaluation
	Setup
	Broadcast
	CPU Usage
	Complexity
	Practical Example

	Discussion
	Usability
	Key Verification

	Proofs of Security
	Assumptions
	Model
	Confidentiality
	Integrity and Authentication
	Participant Consistency
	Perfect Forward Secrecy
	Backward Secrecy

	Usability
	Secure Group Setup
	Receiving Messages

	Mobile Communication With Privacy and Integrity
	Mobile Secure Messaging
	Mobile Messaging Model
	Multi-providers for conversation integrity
	Service Availability
	Threat Model
	Security Properties

	Design
	Overview
	Message Order
	Primitives
	Registration
	Two Party Ciphertext Blocks
	OES Authentication Block
	Setup Message
	Receipt Message
	Conversation Message
	Participant Update Message
	Two Party Channels
	Long-term Key Verification

	Security
	Message Confidentiality
	Message Authentication and Integrity
	Forward Secrecy
	Post-Compromise Secrecy
	Conversation Integrity
	Participant Consistency
	Deniability

	Evaluation
	Scalability

	Discussion
	Limitations of Group Key Agreements
	Multiple Providers
	Denial of Service

	Formal definitions and proofs
	Security Assumptions
	Message Confidentiality
	Message Integrity and Authentication
	Conversation Integrity
	Deniability
	Message Unlinkability

	Private Presence
	Goals
	DP5 Overview
	Threat Model
	Security Goals
	Related Work

	The MP3 Protocol
	Overview
	Cryptographic Primitives
	Dynamic Broadcast Encryption
	Setup
	Long-term Epoch
	Short-term Epoch
	Details

	Experimental Results
	Modifications to Dynamic Broadcast Encryption
	Availability Against Malicious Parties

	Future Work and Final Remarks
	References

