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A B S T R A C T

Multi-label classification has been used to solve a wide range of problems where each example in the dataset
may be related either to one class (as in traditional classification problems) or to several class labels at the
same time. Many ensemble-based approaches have been proposed in the literature, aiming to improve the
performance of traditional multi-label classification algorithms. However, most of them do not consider the
data characteristics to build the ensemble, and those that consider them need to tune many parameters to
maximize their performance.

In this paper, we propose an Auto-adaptive algorithm based on Grammar-Guided Genetic Programming
to generate Ensembles of Multi-Label Classifiers based on projections of 𝑘 labels (AG3P-kEMLC). It creates a
tree-shaped ensemble, where each leaf is a multi-label classifier focused on a subset of 𝑘 labels. Unlike other
methods in the literature, our proposal can deal with different values of 𝑘 in the same ensemble, instead of
fixing one specific value. It also includes an auto-adaptive process to reduce the number of hyper-parameters
to tune, prevent overfitting and reduce the runtime required to execute it. Three versions of the algorithm are
proposed. The first, fixed, uses the same value of 𝑘 for all multi-label classifiers in the ensemble. The remaining
two deal with different 𝑘 values in the ensemble: uniform gives the same probability to choose each available
value of 𝑘, and gaussian favors the selection of smaller values of 𝑘.

The experimental study carried out considering twenty reference datasets and five evaluation metrics,
compared with eleven ensemble methods demonstrates that our proposal performs significantly better than
the state-of-the-art methods.
. Introduction

Classification is a machine learning task which aims to build a
odel able to predict one of the predefined categorical classes for a

iven input instance [1]. However, a wide range of real-world problems
o not fit the restrictions of traditional classification, where each
nstance is associated to only one class. Examples of such problems
re medical diagnosis (where each patient may have more than one
isease) [2,3], image annotation (an image could be labeled with more
han one item appearing in it) [4,5] and emotions detection (a person
ould be feeling more than one emotion at the same time) [6,7]. The
ulti-Label Classification (MLC) paradigm appeared to solve classifi-

ation problems where each instance may be associated to more than
ne class label simultaneously, and its attention has increased in the
ast decade [8,9].

Dealing with objects that may be labeled with more than one class
rovides the ability to solve a larger number of problems; however,

∗ Corresponding author at: Department of Computer Science and Numerical Analysis, University of Córdoba, Córdoba, 14071, Spain.
E-mail address: sventura@uco.es (S. Ventura).

some new challenges to be addressed show up. The output labels tend
to be correlated among themselves, some of them appearing more
frequently together than with others. For example, in image catego-
rization, the labels baby and toy would be highly related, while the
labels baby and crocodile would also be highly indirectly correlated.
On the other hand, the labels baby and sky may not present any
correlation, so they would not influence each other’s modeling. Besides,
labels do not appear with the same frequency in the dataset, so multi-
label datasets tend to have a very imbalanced output space. Finally,
the high dimensionality of the label space, where an output for all
labels should be given, would make the problem far more difficult
to handle. Several studies have demonstrated that by tackling these
problems or challenges, the performance of the multi-label methods is
improved [10–13].

The multi-label classification problem has been tackled from many
different perspectives in the literature [14], but methods that are
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based on ensembles (i.e., combination of several learners or classifiers)
tend to outperform simpler methods, demonstrating very good per-
formance [12,13,15,16]. Ensembles of Multi-Label Classifiers (EMLCs)
combine the predictions of several multi-label classifiers to give their
final prediction. Ensemble learners have been applied not only to clas-
sification but to a plethora of problems, and its application grows over
the years [17]. However, the selection of base members (i.e., internal
classifiers in the ensemble) is not trivial. Although formal dependency
of this proof does not exist, many studies have stated that ensem-
ble learners should include accurate and diverse members [18]. This
should improve the generalization ability of each of the base members
separately.

Despite the good performance of the EMLCs proposed in the lit-
erature, some of them do not consider the characteristics of the data
to build the ensemble, but just generate diversity in the ensemble by
following random procedures [10]. Two recent studies proposed to
build EMLCs by using Evolutionary Algorithms (EAs) while considering
the characteristics of the multi-labeled data, outperforming the rest of
the methods [10,11]. However, these EAs require the configuration of
a wide range of hyper-parameters that should be tuned to maximize
their performance. Besides, the structure of the ensemble is fixed,
being less capable to adapt each specific problem. Thus, the main aim
of this paper is to overcome the drawbacks of previous approaches
to build EMLCs. We present an algorithm for the optimization of a
novel ensemble structure, with a method that reduces the number of
hyper-parameters to tune.

In this paper, we propose a Grammar-Guided Genetic Program-
ming (G3P) method to generate EMLCs. In contrast to most ensemble
methods, where the final prediction is given by the majority voting of
all classifiers [10–13,16], this method builds a tree-shaped ensemble,
where each leaf is a multi-label classifier and each internal node is
a combiner of the predictions of children nodes. In this way, classi-
fiers that are deeper in the tree have a lower influence in the final
prediction than shallower classifiers. Thus, the algorithm is flexible
to adapt the structure of the tree to each specific problem, using
different number of classifiers and combining them in an structure that
maximizes its performance. This method also reduces the parameters
to be tuned to the minimum, including an auto-adaptive procedure to
modify the crossover and mutation probabilities during the execution,
as well as a stop criterion based on the number of generations without
improvement of the best individual.

The base members of our method are focused on predicting a subset
of 𝑘 labels, also known as 𝑘-labelset. Therefore, each member is able to
model the dependencies among labels with a low complexity. Unlike
other methods in the literature [10,11,13], it may include classifiers
using different value of 𝑘 in the ensemble, thus modeling dependencies
among subsets of labels of different size at the same time. Thus, the user
does not need to fix a value of 𝑘, which could not be optimal for the
problem at hand. The experimental study carried out over 20 datasets
and using 5 evaluation metrics demonstrates that our proposal obtains
significantly better performance than state-of-the-art EMLCs.

It is worth noting that a previous version of this method was
proposed in [19]. The main contributions of this paper in comparison
to the previous one are following described. In order to prevent from
overfitting, a stop criterion based on the non-improvement of the best
individual has been defined. It reduces the required runtime to execute
the algorithm, and removes the need to set a fixed value for the
maximum number of generations (see Section 3.1). We also present
two versions of the method with a variable value of 𝑘 (uniform and
aussian). The former gives the same probability to all sizes of 𝑘,

while the latter biases the search by smaller 𝑘-labelsets. The gaussian
mode looks for a better trade-off between simpler models, avoiding
including unnecessary noise between labels, and more complex models
that can model the relationships among a greater number of labels (see
Section 3.2). It is also noteworthy that the 𝑘-labelsets are not generated
2

randomly as in the conference paper; it considers the relationship f
among labels and their frequency in the initial pool. Thus, it favors the
selection of more related subsets of labels, but not setting aside those
labels that are independent or infrequent (see Section 3.2). Besides, it
ensures that all labels appear in the initial population (see Section 3.2).

An auto-adaptive process for the crossover and mutation opera-
tors is also defined. It allows the algorithm to automatically adapt
each specific problem by increasing/decreasing the probabilities of
crossover and mutation operators, thus adapting the exploration or
exploitation of the evolutionary algorithm. Besides, it reduces the
need to fix probabilities for these operators, which may differ greatly
among problems (see Section 3.6). We have carried out an exten-
sive study and analysis of the proposed methods to better understand
its operation and performance. It includes analyzing the initial pool
of classifiers, the convergence of the algorithms, the auto-adaptive
process, and the size of the final EMLCs. A comparative study in
terms of predictive performance and runtime has been also carried out
(see Section 5.1). Finally, the experimental study has been extended,
by including up to 20 multi-label datasets and comparing with 11
state-of-the-art EMLCs. An analysis of the runtime of the proposed
methods versus the state-of-the-art ensembles has been also included
(see Sections 4 and 5.2).

The rest of the paper is organized as follows: Section 2 includes
related work and background in multi-label classification and G3P;
Section 3 describes our auto-adaptive G3P method to build EMLCs;
Section 4 presents the experimental studies carried out and their config-
uration, where 11 state-of-the-art EMLCs, 20 datasets, and 5 evaluation
metrics are used; Section 5 analyzes the performance of our proposed
method and discusses the results compared with the state-of-the-art in
MLC; finally Section 6 ends with the conclusions attained from this
work.

2. Related work

In this section, we first give a formal definition of MLC and present
the state-of-the-art methods in MLC, and then we introduce the G3P
paradigm.

2.1. Multi-label classification

Let  = 𝑋1 ×⋯×𝑋𝑑 be a 𝑑-dimensional feature or input space, and
= {𝜆1, 𝜆2,… , 𝜆𝑞} the label or output space composed by 𝑞 > 1 labels.
multi-label dataset  is composed by a set of 𝑚 instances, and it is

efined as  = {(𝐱𝑖, 𝑌𝑖)|1 ≤ 𝑖 ≤ 𝑚}. Each instance of  is composed by
n input vector 𝐱 and a set of relevant labels associated with it 𝑌 ⊆  .
ote that each different 𝑌 is also called labelset [14]. The goal of MLC

s to build a predictive model ℎ ∶  → 2 to provide a bipartition
̂ =

(

𝑌 , 𝑍̂
)

of the output space for an unknown instance, distinguishing
etween relevant (𝑌 ) and irrelevant (𝑍̂) labels.

MLC methods are categorized into three main groups: problem
ransformation methods, algorithm adaptation methods, and EMLCs [8,
5,20]. Problem transformation methods transform the multi-labeled
ata into one or several multi-class problems, then using traditional
lassification methods. Algorithm adaptation methods adapt the classi-
ication algorithms to directly handle with the multi-label data without
he need of transforming it. Finally, EMLCs are defined as a set of

multi-label classifiers, either problem transformation or algorithm
daptation methods. Each of the classifiers provides predictions for
ll or part of the labels, and they are combined following any kind
f aggregation rule [21]. In the following paragraphs, state-of-the-art
MLCs are described in more detail, and compared to our proposed
nsemble schema. A wider description of problem transformation and
lgorithm adaptation methods can be found in [14].

Ensemble of Binary Relevance (EBR) [12] combines the predictions
f 𝑛 Binary Relevance (BR) models, each built over a random subset
f the instances. Each BR builds 𝑞 independent binary models, one

or each label. So, although being simple and highly parallelizable,
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it is not able to model the dependencies among labels, which would
harm its performance. Also, the fact of building a different model for
each label may entail a high complexity in cases with a high number
of labels. Similar to EBR, Ensemble of Classifier Chains (ECC) [12]
relies its performance on binary classifiers. In this case they form a
chain, so their input features are extended by including the predictions
of previous labels in the chain, being able to model some of the
dependencies among labels. In addition to using random subsets of
the data for each base classifier, members also use a random chain
ordering to increase diversity. Multi-Label Stacking (MLS) [22] was also
proposed to overcome BR’s drawbacks. It involves applying BR twice;
first a BR model is built, and then, a second BR is built but including
previous predictions of labels as extra input feature. Thus, it can model
the relationship among labels via its stacking procedure.

Dynamic selection and Circulating Combination-based Clustering
(D3C) [23] builds independent binary classifiers of different type for
each label, and then uses clustering and dynamic selection to select a
subset of accurate and diverse classifiers to combine their predictions.
In this way, D3C is able to automatically select the classifiers that
best fit to the problem in each case. Random Forest of Predictive
Clustering Trees (RF-PCT) [24] generates an ensemble of Predictive
Clustering Trees (PCTs). Each base classifier uses a random sample of
the instances, and at each node of the tree, the data is partitioned into
smaller clusters, dealing with small subsets of data at each node.

Ensemble of Pruned Sets (EPS) [16] combines the predictions of 𝑛
Pruned Sets (PS), each built using different subsets of the data. PS is
based on the Label Powerset (LP) approach, i.e., it transforms the multi-
label data into multi-class, where each different labelset is considered
as a different class [25]. Thus, it is able to deal with the relationship
among labels, but the number of possible classes grows exponentially
with the number of labels, which may generate extremely complex
and imbalanced problems. In order to reduce the imbalance of the
multi-class problem, PS substitutes the infrequent labelsets by subsets
of labels that are more frequent in the dataset.

RAndom 𝑘-labELset (RAkEL) [13] is also based on the LP approach,
but each of the base members is focused only on a small subset of 𝑘
labels, also known as 𝑘-labelset. In this way, RAkEL is able to model
the dependencies among groups of labels, but drastically reducing the
imbalance and complexity of the output space that LP generates. Our
proposal also uses subsets of 𝑘 labels to model the dependencies among
labels, but the selection of such 𝑘-labelsets is guided by the correlation
among labels, and not just randomly, as RAkEL does. Besides, unlike
RAkEL, ours can include classifiers using different values of 𝑘, modeling
subsets of labels of different sizes.

A tree-shaped ensemble, Hierarchy Of Multi-label classifiERs
(HOMER) is proposed in [26]. It transform the multi-label problem
into a hierarchy of simpler models. In nodes with more than one label,
similar labels are distributed together in sub-groups to improve the
performance of subsequent models. Although our proposal and HOMER
both use a tree structure, there are many structural differences among
them. HOMER uses all labels at the root node, and it splits the label
set into 𝑐 children nodes according to a clustering algorithm, being 𝑐
a predefined value. In our proposal, the number of children varies at
each node. In HOMER the split is done until each leaf contains only
one label, while in ours, leaves contain classifiers considering 𝑘 labels
each. In HOMER’s prediction phase, each node passes the instances up
to the children nodes, being the final output given by the leaves. In our
method, the instances are given to the leaf nodes and they are passed up
to the root node, which makes the final prediction. While in HOMER all
the nodes contain trained classifiers, in our method only leaves contain
classifiers, and internal nodes are just combiner nodes. We also propose
a genetic programming algorithm that optimizes the ensemble structure
for the problem at hand.

Most of the previously described ensemble methods construct the
3

EMLCs by building base members separately and then joining all of
them using a combination schema without considering their joint per-
formance. D3C considers the performance of base members by dynam-
ically selecting a subset of the classifiers for the ensemble; however,
it focuses on building binary classifiers, thus not being able to learn
from the dependencies among labels. So, contrary to most state-of-
the-art methods, our proposal finds a promising ensemble structure by
evaluating the performance of the whole ensemble, which is created
by selecting a subset of previously built base classifiers. Besides, unlike
D3C, our proposal benefits from learning the dependencies among
groups of labels.

Recently, some evolutionary approaches have been proposed to se-
lect the ensemble structure in MLC. Evolutionary Multi-label Ensemble
(EME) [10] proposes an evolutionary algorithm where each individual
encodes an entire ensemble. Although the resulting ensemble is similar
to the one of RAkEL, EME considers the characteristics of the data
to guide the building process. Evolutionary AlGorithm for multi-Label
Ensemble opTimization (EAGLET) [11], on the other hand, encodes
base members of the ensemble in separate individuals, then combining
accurate and diverse individuals from the population into the ensemble.
Both EME and EAGLET are designed to use a fixed value of 𝑘 for all
classifiers, and they also need to tune a wide range of parameters to
optimize their performance.

As EME and EAGLET, our proposal is based on learning base models
over subsets of 𝑘 labels. However, they use a fixed value of 𝑘 for the
entire ensemble, while our proposal may include base members with
different values of 𝑘. EME and EAGLET fix an ensemble schema at the
beginning of the execution, i.e., they use base members with 𝑘 = 3
labels, 2𝑞 (EME) or 3.33𝑞 (EAGLET) classifiers in the ensemble, and a
simple voting schema for prediction. In contrast, our proposal can deal
with variable values of 𝑘 in the ensemble, and the structure is adap-
tively selected during the evolution. Instead of choosing a fixed number
of classifiers before executing, the algorithm chooses the structure and
size of the tree-shaped ensembles to maximize its performance in each
case. Besides, instead of giving the same weight in the final prediction
to all members, the importance of each classifier in the final prediction
depends on their depth in the tree as well as on the number of children
of each combiner node.

Our proposal, AG3P-kEMLC, includes mechanisms to auto-adapt
some of the hyper-parameters of the evolutionary process (such as the
number of generations and probabilities for crossover and mutation
operators). It not only reduces the number of parameters that the
user needs to set, but also makes it easier to automatically adapt to
each specific problem. In EME and EAGLET, these parameters, which
completely bias the final performance of the method, need to be set
before the execution. Thus, the auto-adaptive process of our proposal
provides it with greater generalization ability across a wide range of
problems. Regarding the evaluation process, EME needs to build the
whole ensemble to be able to give a prediction for the evaluation
data set and thus calculate the corresponding fitness function. EAGLET
reduces the complexity of EME since it needs to build a single classifier
to evaluate each individual. Although both of them include mechanisms
to avoid building the same classifier twice, the high amount of different
classifiers during the evolution make them computationally complex.
On the other hand, our proposal creates a pool of classifiers at the
beginning, and they do not change during the evolution. Thereby, it
does not need to re-build them to evaluate the individuals, but only to
combine previously obtained predictions from classifiers in the pool,
making the process much less complex. A summary of this comparison
is presented in Table 1.

2.2. Grammar-Guided Genetic Programming

Genetic Programming (GP) [27] is a technique based on EAs, being
the representation of individuals their main characteristic and differ-
ence compared to other evolutionary techniques [28,29]. In GP, indi-

viduals are encoded as variable-length hierarchical structures, where
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Table 1
Comparison between AG3P-kEMLC, and state-of-the-art evolutionary methods to build EMLCs.

EME [10] EAGLET [11] AG3P-kEMLC

Size of the subsets of labels Fixed Fixed Fixed or variable
Ensemble structure Simple voting Simple voting Tree-shaped with voting on each

internal node
Ensemble size Fixed Fixed Adaptive
Weight of classifiers in final
prediction

Same for all classifiers Same for all classifiers Depends on the structure

Selection of hyper-parameters Needs previous optimization Needs previous optimization Adaptive during execution
Cost of evaluation Needs to build and evaluate whole

ensemble (high complexity)
Needs to build and evaluate a
single classifier (medium
complexity)

Only combines predictions, classifiers
are not re-built (low complexity)
the shape or size of the trees may not be constrained a priori, but they
evolve towards optimal structures that best fit the problem. As other
EAs, individuals in the population are proposed to be recombined and
mutated in each generation, and the population for the next generation
is chosen taking into account both the parent and children individuals,
considering the fitness of individuals to guide the evolution; this pro-
cess is performed until a stop criterion is fulfilled, e.g., a maximum
number of generations.

Grammar-Guided Genetic Programming (G3P) is an extension of GP,
which enables the use of a grammar to constraint the GP process [30,
31]. A context-free grammar [32] is a 4-tuple (𝑉 , 𝑇 , 𝑅, 𝑆), where:

• 𝑉 is a finite set of variables,
• 𝑇 is a finite set of terminals, disjoint from 𝑉 ,
• 𝑅 is a finite set of rules, each comprising a variable in the

antecedent, and a consequent that may be composed of variables
and terminals,

• 𝑆 ∈ 𝑉 is the start variable.

Context-free grammars are generally used to create strings following
derivations. Given a start variable, the derivation begins by looking for
a rule with the start variable in the antecedent (usually, the first rule).
Then, for each variable in the consequent, it finds a rule that starts
with this variable, and replaces it with the consequent of the rule. This
step is repeated until all variables are replaced, so the final string only
contains terminal symbols.

In G3P, each individual represents a solution that is derived from
the grammar by applying productions up to leaf nodes. This grammar
enables the GP process to ensure certain constraints at each node, such
as the type or number of children nodes, also ensuring that generated
individuals are feasible, i.e., represent a valid solution. The internal
nodes of the tree are called non-terminal nodes and they correspond to
functions taking children as arguments, while the leaves are terminal
nodes, corresponding to variables of the problem or constant values.

G3P has been successfully applied to classification problems [33];
however, the related work of both GP and G3P in MLC is scarce. A G3P
algorithm is proposed in [34] to build a rule-based multi-label classifier
from scratch. Recently, some works in Automated Machine Learning
(AutoML) have been proposed for multi-label classification problems,
where a G3P-based procedure is used to choose the most suitable multi-
label classification algorithm [35,36]. The AutoML approach and our
proposal have similarities: both use a G3P algorithm as an optimization
process, looking for an individual which maximizes a fitness function
based on a combination of multi-label evaluation measures. However,
while the AutoML approach is centered on looking for the best method
from a pre-defined set of classifiers, ours looks for a novel ensemble
structure that could not be obtained from the AutoML approach. Be-
sides, both AutoML and our approach can co-exist without a problem,
and AutoML methods could incorporate our proposal as an option of
4

multi-label classifier in the future.
Fig. 1. Main flow of AG3P-kEMLC.

3. AG3P-kEMLC

In this section, we present our proposed Auto-adaptive algorithm
based on Grammar-Guided Genetic Programming to generate Ensem-
bles of Multi-Label Classifiers based on projections of 𝑘 labels (AG3P-
kEMLC). First, we present the algorithmic strategy. Then, it is presented
how the initial pool of classifiers is created, as well as the encoding
of individuals. Later, the fitness function and evaluation process is
described. Finally, the genetic operators are presented, as well as the
auto-adaptability procedures for the hyper-parameters.

3.1. Algorithmic strategy

The main flow of the AG3P-kEMLC algorithm is presented in Fig. 1.
First, a pool of classifiers, each of them focused on 𝑘 ∈

[

𝑘𝑚𝑖𝑛, 𝑘𝑚𝑎𝑥
]

labels is created. Let 𝑣 be the average number of votes per label
expected in the pool, phiMat the matrix with coefficients 𝜙 measuring
the relationship among labels, mode the way in which the value of 𝑘 is
selected for each classifier, and trainData the training dataset used to
build and evaluate the models (see Section 3.2).

Then, the initial population of popSize individuals, each of them
representing an EMLC, is created by following the grammar, being 𝑚𝐶
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the maximum number of children at each node, and 𝑚𝐷 the maximum
depth of the tree (see Section 3.3). The population is evaluated (see
Section 3.4), and until the stop criteria are met, individuals are selected,
the crossover and mutation operators are applied with probabilities
𝑝𝑐 and 𝑝𝑚 respectively (see Section 3.5), and the new individuals are
evaluated. Individuals are replaced maintaining elitism, i.e., the best
parent is maintained if it is better than all new individuals, and the
probabilities of applying crossover and mutation operators are updated
in the auto-adaptive process (see Section 3.6).

Once any of the stop criteria is met, the best individual, i.e., the best
EMLC, is returned, being the one tested with test data. The algorithm
receives as stop criterion a maximum number of generations; however,
it also has a stopping criterion based on the improvement of the best
individual. Given that previous similar approaches needed between 50
and 100 generations in total [11] we considered that 10 is a sufficient
number of generations to consider that the evolution is stuck. If the
best individual did not improve in some generations, the evolutionary
process finishes and the best ensemble is returned and tested later.
This not only reduces the need of tuning the maximum number of
generations for each specific case, but also avoids overfitting and
reduces the required runtime.

Unlike other evolutionary approaches to build EMLCs (i.e., EME and
EAGLET), the base classifiers are built at the beginning and remain
unchanged during the evolution. Since the classifiers do not need to
be re-built for the evaluation process, the complexity of the method
is drastically reduced. The ensemble schema is not a simple and fixed
voting process, but an adaptive tree-structure is created. The structure
depends on each scenario and the algorithm select the one that achieves
the best performance. In addition, AG3P-kEMLC gets rid of the need to
select many of the hyper-parameters, such as the number of classifiers
in the ensemble, a predefined number of generations, and the probabili-
ties of crossover and mutation operators. It enhances end-user usability
and adaptability to each problem.

3.2. Pool of classifiers

Each classifier in the pool is focused on modeling a different 𝑘-
labelset, then using LP to build the model, and not restricting 𝑘 to
be a fixed value for all of them. LP has been successfully used in
the literature previously [11,13,16], since it is able to model the
compound dependencies among groups of labels. Although any multi-
label classifier might be used, using others such as Classifier Chains
(CC) would introduce extra complexity in the search process. Since its
chain order should be also considered in the individual codification,
it would become more difficult to find an optimal solution. Anyway,
note that CC may be used with the current implementation, but with
a random order. On the other hand, using different values of 𝑘 makes
he ensemble consider groups of different size, avoiding the need to fix
specific value for each case.

For the selection of 𝑘 we propose three different modes or versions.
irst, we propose the fixed mode, which as other state-of-the-art meth-
ds uses a fixed value of 𝑘, usually being 𝑘 = 3 [10,11,13]. In this
ay, small subsets of labels are considered, so it avoids highly complex
nd imbalanced LP models. However, in some cases it would not be
nough to model the dependencies among just three labels at a time,
ncouraging to select subsets of different size.

Second, we propose the uniform mode, which selects 𝑘 in the range
[

𝑘𝑚𝑖𝑛, 𝑘𝑚𝑎𝑥
]

, where all values of 𝑘 have the same probability to be
selected. We propose to use 𝑘𝑚𝑖𝑛 = 3 and 𝑘𝑚𝑎𝑥 = 𝑞∕2. Thus, the
ensemble would include classifiers modeling different subsets of labels,
including smaller subsets that will generate simpler LP methods, and
bigger subsets which would lead to more complex base models but
being able to model the relationship between a higher number of labels.

The third approach, known as gaussian mode, considers variable
values of 𝑘 as previous approach, but in this case smaller 𝑘 values have
5

higher probability to be selected than bigger ones. In some cases, the
labels are not so dependent among themselves as to create such big
𝑘-labelsets. Therefore, with this approach we aim to have a better trade-
off between simpler LP models and more complex ones, favoring the
selection of smaller 𝑘-labelsets while still giving chance to create bigger
ones. The probability to select the size of the 𝑘-labelsets is modeled
as the right part of a gaussian function, with values 𝜇 = 𝑘𝑚𝑖𝑛 and
𝜎 =

(

𝑘𝑚𝑎𝑥 − 𝑘𝑚𝑖𝑛
)

∕2.5, so the 98.8% of labelsets are in the selected
range. To select each 𝑘, a random value is generated following this
distribution and rounded; if the selected 𝑘 was lower than 𝑘𝑚𝑖𝑛 or higher
than 𝑘𝑚𝑎𝑥, it is set to one of these extremes.

Once the value of 𝑘 is selected, the 𝑘-labelset is created considering
both the relationship among the labels and the number of times that
each label appears in the pool so far. In this way, we aim to model
together labels that are more related among themselves as well as not
disregard any of the labels in the dataset. For building each 𝑘-labelset,
first one label is randomly selected. Then, until 𝑘 labels are selected,
the vector of weights 𝒘 for each non-selected label 𝜆𝑙 is calculated as
in Eq. (1). Then, a label is selected randomly considering 𝒘, where
labels with higher weights have more chance to be selected next.

𝑤𝑙 =

(

𝜀 +
∑

𝑎 ∈ 𝑘𝐿

|

|

𝜙𝑙,𝑎
|

|

)

⋅
(

exp
(

1
1 + 𝑓𝑙

))

(1)

The first term of the equation considers the relationship among
labels to calculate the weight for label 𝜆𝑙. The 𝜙 coefficient measures
the relationship among pairs of labels in the range [−1, 1], being −1
total indirect correlation, 1 total direct correlation, and 0 absence of
correlation [37]. As we aim to consider the correlation among labels,
regardless of whether it is positive or negative, the absolute value of 𝜙
is used. The 𝜙 value between 𝜆𝑙 and the rest of currently active labels
in the 𝑘-labelset 𝑘𝐿 is added, as well as a small 𝜖 = 1E − 3 value to
avoid probabilities of 0.

The second term of the Eq. (1) considers the number of times that
the label 𝜆𝑙 appears in the current pool (𝑓𝑙) to calculate its probability
of being selected. Therefore, those labels that have been rarely selected
for a 𝑘-labelset get their probability increased.

Algorithm 1 presents the pseudo-code of the process to generate the
pool of classifiers. Until the expected number of average votes per label
in the pool (𝑣) is not reached, different 𝑘-labelsets are created following
a specific mode (lines 1–9). The generation of each 𝑘-labelset (line 6)
is guided by the formula in Eq. (1). If any label 𝜆 was not selected
by the previous process for any of the 𝑘-labelsets, the ensembles will
not be able to predict it; thus, a random label in a random 𝑘-labelset is
removed, and 𝜆 is added, so all labels are ensured to appear in the pool
(lines 10–15). Then, a multi-label classifier (in this case, a LP model)
is built for each of the 𝑘-labelsets over a random subset of the training
instances (lines 16–19). Since classifiers in the pool are independent
from each other, they are built in parallel. Finally, the pool of classifiers
is returned (line 20).

With this process, we ensure that all 𝑘-labelsets are different, and
that all labels are present in the pool. Besides, the fact of using random
subsets of the instances to build the base classifiers increases the
diversity of the ensemble, which is also enhanced by selecting different
𝑘-labelsets.

3.3. Individuals

Each individual of the population encodes an EMLC in a tree shape,
as the example in Fig. 2. It consists of combiner nodes (non-terminal)
and base multi-label classifiers from the pool (terminal). Each classifier
gives predictions for the labels in its 𝑘-labelset, and the internal nodes
combine these predictions by majority voting for each label in any of
the children nodes. Note that a given classifier may appear more than
once in the tree (as MLC1 in the example).

In Fig. 3 an example of a small tree giving prediction for an instance
is presented. Note that in the example all classifiers have 𝑘 = 3.
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Algorithm 1 Creation of the pool of classifiers.
Input

𝑘𝑚𝑖𝑛: Minimum size for the 𝑘-labelsets.
𝑘𝑚𝑎𝑥: Maximum size for the 𝑘-labelsets.
𝑚𝑜𝑑𝑒: Approach to select the 𝑘-labelsets.
𝑞: Number of labels in the dataset.
𝑣: Average number of votes per label in the pool.
: Multi-label dataset.
𝝓(): Matrix of phi correlations among labels.
𝑟: Ratio of training instances to use in each classifier.

utput
pool: Pool of multi-label classifiers.

1: kLs ← ∅
2: 𝑣𝑇 𝑜𝑡𝑎𝑙 ← 0
3: while (𝑣𝑇 𝑜𝑡𝑎𝑙∕𝑞) < 𝑣 do
4: 𝑘 ← selectK(𝑘𝑚𝑖𝑛, 𝑘𝑚𝑎𝑥, 𝑚𝑜𝑑𝑒)
5: repeat
6: 𝑘𝐿 ← generateKLabelset(𝑘, 𝝓())
7: until 𝑘𝐿 ∉ kLs
8: kLs ← kLs ∪{𝑘𝐿}
9: end while
0: for each label 𝜆 in  do
1: if 𝜆 ∉ kLs then
2: 𝑘𝐿 ← selectRandomKLabelset(kLs)

13: replace(𝑘𝐿, randomLabel(𝑘𝐿), 𝜆)
14: end if
15: end for
16: pool ← ∅
17: for 𝑘𝐿 in kLs do
18: pool ← pool ∪ buildMLC(, 𝑘𝐿, 𝑟)
19: end for
20: return pool

Fig. 2. Example of individual.

First, classifiers in the leaves give their own prediction for the labels
in their 𝑘-labelset. In the figure, predictions are in the form 𝝀𝒍 : 𝑦̂𝑙.

hen, combiner nodes collect the predictions for each label among their
hildren nodes, and create their own prediction by majority voting.
et us consider the combiner node in the left; the classifiers MLC1

and MLC4 consider that label 𝜆2 is relevant (𝜆2 ∶ 1), while MLC2
onsiders that it is irrelevant (𝜆2 ∶ 0). Thus, as 2 out of 3 votes consider
hat the label 𝜆2 is relevant, the prediction of the combiner is that
t is relevant (𝜆2 ∶ 2

3 → 1). On the other hand, as 𝜆7 has only one
ote in the children nodes and it is irrelevant, for the combiner node
his label is irrelevant. These predictions are combined in subsequent
ombiner nodes until the root node is reached, where the final ensemble
rediction is created as majority voting of its children nodes (in the
xample, the final prediction is created by combining the predictions
f MLC7 and the two other combiner nodes). The bipartition for this
iven instance would be 𝑏̂𝑖 =

(

𝑌𝑖 ∶ {𝜆1, 𝜆2, 𝜆4, 𝜆6}, 𝑍̂𝑖 ∶ {𝜆3, 𝜆5, 𝜆7}
)

Individuals are created by following the grammar in Fig. 4. The
6

oot node is always a combiner node (Comb), followed by the symbol
Fig. 3. Example of combination of predictions in an individual. Each MLC gives
prediction for its 𝑘-labelset and internal nodes combine predictions of children nodes.
Each node shows its predictions in the form 𝝀𝒍 : 𝑦̂𝑙 .

Fig. 4. Grammar for creating individuals.

of end of individual ‘‘;’’. Each Comb node is substituted by a number
of children nodes (randomly selected between 2 and 𝑚𝐶), each of
them being either another combiner node or a classifier from the
pool (𝑀𝐿𝐶 𝑖). These children are between parenthesis to indicate the
hierarchy of nodes in the string genotype. For ease of representation,
MLCs are represented just by their index. Note that in the event that
the maximum allowed depth for the tree is going to be reached (i.e., if
the combiner node is in depth 𝑚𝐷−1), only MLC nodes can be selected
as children of a combiner node, in order not to violate this restriction.
The example individual in Fig. 2 would be coded with the following
genotype: ‘‘((1 2 4) 7 (1 8));’’.

3.4. Evaluation

The evaluation of individuals is carried out by evaluating their
predictions, which are obtained by combining the predictions of leaves
up to the root node. Although each base classifier is built using a
sampled set of the training instances, the evaluation of individuals is
made using the whole training set; thus, each classifier gives prediction
to a percentage of unseen instances, also providing an estimation of
how well they would perform on test set.

For the fitness function, we differentiate between two types of
individuals: incomplete and complete trees. Even though all labels are
ensured to appear in the pool of classifiers, individuals that are not
able to give prediction for all labels in the dataset could be created.
Regarding the example in Fig. 3, consider that an individual including
only MLC1, MLC2, and MLC4 is created, not being able to predict labels
𝜆5 and 𝜆6. These trees are called incomplete trees, while complete trees
are those that can give prediction for all labels in the dataset.

Being 𝐿𝑡 the set of labels that appear in the tree at least once, we
propose the fitness function in Eq. (2), where incomplete trees (|

|

𝐿𝑡
|

|

< 𝑞)
have negative fitness and complete trees (|𝐿 | = 𝑞) have positive value.
| 𝑡|
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In this way, we aim to get rid of incomplete trees. As the fitness for
incomplete trees is closer to zero as the number of labels that do not
appear in the ensemble is lower, in case that several incomplete trees
appear in the population, those that are closer to be complete are
maintained.

↑ 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 =
{

−
(

𝑞 − |𝐿𝑡|
)

∕𝑞 if |𝐿𝑡| < 𝑞
(ExF + MaF) ∕2 if |𝐿𝑡| = 𝑞

(2)

↑ ExF = 1
𝑚

𝑚
∑

𝑖=1

2|𝑌𝑖 ∩ 𝑌𝑖|

|𝑌𝑖| ∪ |𝑌𝑖|
(3)

↑ MaF = 1
𝑞

𝑞
∑

𝑙=1

2 ⋅ 𝑡𝑝𝑙
2 ⋅ 𝑡𝑝𝑙 + 𝑓𝑝𝑙 + 𝑓𝑛𝑙

(4)

On the other hand, for complete trees, a combination of two eval-
ation metrics is computed: Example-based FMeasure (ExF) [38] and
acro-averaged FMeasure (MaF) [39]. FMeasure is a robust and widely

sed evaluation metric in classification, even more in imbalanced
cenarios [40]. In MLC there exist several approaches to calculate this
etric [41]. The ExF (Eq. (3)) computes the metric for each instance,

onsidering the multi-label prediction as a whole, thus being able to
apture the relationship among labels in its calculation. On the other
and, MaF (Eq. (4)) computes the metric using the confusion matrix
f each label independently, then averaging the value. Therefore, MaF
ives the same importance to all labels in its calculation, regardless of
heir frequency. Note that 𝑡𝑝𝑙, 𝑓𝑝𝑙, and 𝑓𝑛𝑙 stand for the number of true
ositives, false positives, and false negatives of 𝜆𝑙, respectively.

Although ExF and MaF are partly correlated [42], they treat the de-
endencies and importance of labels in different ways, which plays an
mportant role on the algorithm. ExF is able to detect the dependencies
mong labels in its calculation, and it does not care about the imbalance
f labels. MaF does not consider the dependency among labels, but
ives the same importance to all labels, not neglecting minority labels
n the calculation. Therefore, this combination provides AG3P-kEMLC
ith the ability to evolve the ensemble structure while considering both

he correlation among labels and their imbalance.

.5. Genetic operators

The genetic operators comprise a crossover operator aiming to com-
ine useful genetic material between two individuals, trying to exploit
he current population, and a mutation operator, which aims to include
ew genetic material in the population to better explore the search
pace. Following operators are based on previously proposed ones,
hich have been widely used in the literature [30,31]. Each individual

s applied the crossover or mutation operator with probabilities 𝑝𝑐 and
𝑚 respectively.

Algorithm 2 presents the steps followed by the crossover operator.
irst, a random subtree 𝑠𝑡1, not considering the whole tree, is selected
rom the first parent (line 1). Then, a random subtree 𝑠𝑡2, including
he possibility of selecting the whole tree, is selected from the second
arent (line 2). If the replacement of 𝑠𝑡2 in 𝑠𝑡1 would produce a

violation of the maximum depth of the tree, a subtree is recursively
selected from 𝑠𝑡2 (lines 3–5). Finally, 𝑠𝑡2 replaces 𝑠𝑡1 in the first parent
and it is returned (line 6).

Since the crossover operator must fit some restrictions, such the
maximum depth of the trees, it would be more difficult and restrictive
to find a recombination point that produces two feasible trees. Thus,
the crossover operator is defined to generate one individual given the
two parents. Then, this operation is repeated but swapping the role of
the original parents, in order to obtain two offspring individuals. The
offspring contain genetic material from both parents, as well as they
are always feasible, since the maximum depth restriction is fulfilled.

In Fig. 5, an example of application of the crossover operator is
presented, where shaded nodes are proposed to be recombined. Note
that in the example, in the second parent, first the node with the dotted
7

line was selected; however, given that the maximum depth restriction
Algorithm 2 Crossover operator.
Input

ind1: First parent.
ind2: Second parent.
𝑚𝐷: Maximum depth of trees.

Output
child: Crossed individual.

1: 𝑠𝑡1 ← subtree(ind1, selectRoot=False)
2: 𝑠𝑡2 ← subtree(ind2, selectRoot=True)
3: while depth(𝑠𝑡2) > (𝑚𝐷 − depth(𝑠𝑡1)) do
4: 𝑠𝑡2 ← subtree(𝑠𝑡2, selectRoot=False)
5: end while
6: return replace(ind1, 𝑠𝑡1, 𝑠𝑡2)

would be violated if it was replaced (considering 𝑚𝐷 = 3), a random
subtree below it was selected, finally obtaining a feasible individual
fulfilling the restrictions.

On the other hand, the operation of the mutation operator is pre-
sented in Algorithm 3. First, a random subtree 𝑠𝑡 is selected from
the original individual (line 1). With a probability of 0.5, a random
terminal (i.e., a classifier from the pool) is selected to replace 𝑠𝑡, and
the mutated individual is returned (lines 2–3). If the depth of the root
node of st in the original individual is 𝑚𝐷, in order to not violate the
maximum depth restriction, a random terminal is directly selected too.
Otherwise, a subtree 𝑠𝑡2 is created by following the grammar, where
the maximum allowed depth for the subtree is 𝑚𝐷 minus the depth of
st. Then, 𝑠𝑡2 replaces 𝑠𝑡 in the individual, which is returned (lines 4–7).

Algorithm 3 Mutation operator.
Input

ind: Original individual.
𝑚𝐷: Maximum depth of trees.
grammar : Grammar to build the trees.

Output
child: Mutated individual.

1: 𝑠𝑡 ← subtree(ind, selectRoot=False)
2: if depth(𝑠𝑡, ind) == 𝑚𝐷 or random(0, 1) < 0.5 then
3: return replace(ind, 𝑠𝑡, randomTerminal())
4: else
5: 𝑠𝑡2 ← createSubtree(grammar, 𝑚𝐷 - depth(𝑠𝑡))
6: return replace(ind, 𝑠𝑡, 𝑠𝑡2)
7: end if

An example of the mutation operator is shown in Fig. 6, where the
shaded node is the chosen as mutation point. The resulting individual
is always feasible, because the restrictions are always considered in the
process. Unlike in crossover, the mutation operator allows to introduce
new genetic material that was not previously present in the population,
increasing the diversity in the population and making it able to better
explore the search space.

3.6. Auto-adaptability

One of the main drawbacks of the EAs is the wide range of hyper-
parameters that need to be tuned to maximize their performance,
such as the number of individuals, maximum number of generations,
or probabilities of crossover and mutation. AG3P-kEMLC is able to
reduce the need of tuning some of these parameters by including an
auto-adaptive procedure for crossover and mutation probabilities [43,
44].

The probabilities of crossover and mutation are related in such a
way that 𝑝𝑐 = 1−𝑝𝑚, and both are 0.5 at the beginning of the evolution.
When each generation is completed, the average fitness of the current
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population is compared to the best average fitness of a population
so far. If the current population is better on average than the best
one, the crossover probability is increased in 0.02, and the mutation
probability is therefore decreased, since depth search or exploitation is
preferred. On the other hand, if the average population do not improve
the best so far, the crossover probability is decreased in 0.02 and the
mutation increased. It favors the inclusion of new genetic material in
the population for a better diversity and exploration of the search space.
The idea behind this auto-adaptive process is that, when the population
does not improve, i.e., the population is stuck in a local optimum,
the mutation operator may create individuals that explore new areas
in the search space, increasing the exploration [43,44]. In the case
when the population is improving in average, the exploitation of these
solutions is encouraged with the aim to reach their optimum. With this
process, where exploitation and exploration are favored depending on
the scenario, we obtain a trade-off, which is necessary to reach good
solutions.

Besides, a stop criterion based on the improvement of the best
individual of the population is defined. If the best individual does not
improve in some generations, the algorithm could be stalled, or it may
have already found an optimal. Therefore, in order to avoid possible
overfitting and to reduce the required runtime, the algorithm is stopped
after some generations without improvement of the best individual,
avoiding the need for setting the maximum number of generations.

3.7. Time complexity

For defining the time complexity of AG3P-kEMLC, we divide the
algorithm in two independent processes: the creation of the initial pool,
and the G3P evolution.

In the creation of the initial pool, the time complexity will be given
by the complexity of the classifier used. We use C4.5 decision tree
as single-label classifier, which complexity is 

(

𝑚 × 𝑑2
)

, 𝑚 being the
umber of training instances and 𝑑 the number of input attributes [45].
n the worst case, 𝑞⋅𝑣

𝑘𝑚𝑖𝑛
classifiers are created in the initial pool; how-

ver, in practice when 𝑘𝑚𝑎𝑥 > 𝑘𝑚𝑖𝑛 much less classifiers are needed.
Besides, this process may be performed in parallel, since classifiers are
independent from each other. Thus, the time complexity of the first part
of the algorithm in the worst case would be 

(

𝑚 × 𝑑2 × 𝑞⋅𝑣
𝑘𝑚𝑖𝑛

)

.
On the other hand, the most complex part of EAs is usually the

evaluation of individuals. To evaluate an individual in AG3P-kEMLC,
the predictions of base classifiers for all the training instances are
8

combined in the tree, resulting in a complexity of  (𝑚). As the number
f total evaluations is given by the population size (popSize) and the
umber of generations (G), the complexity of the evolution process is
(𝑚 × 𝑝𝑜𝑝𝑆𝑖𝑧𝑒 × 𝐺).

. Experimental studies

In this section the different experiments and studies carried out in
his work are presented. First, the multi-label datasets and evaluation
etrics used in the experiments are described, and then, the settings of

he different experiments as well as the methods and their parameters
re presented.

.1. Datasets

A set of 20 multi-label datasets obtained from the KDIS research
roup repository1 have been selected. In Table 2 the main charac-
eristics of the datasets are presented, including number of instances
𝑑), number of input features (𝑚), number of labels (𝑞), cardinality,
.e., the average number of labels associated with each instance (Card),
verage imbalance ratio per label (avgIR), and ratio of dependent labels
airs (rDep). The characterization of datasets has been performed using
LDA tool [46].

These datasets cover a wide range of characteristics, not only re-
arding the number of labels, which range from 6 to 174, but also
onsidering the imbalance (ranging from near to 1, i.e., low imbalance
f labels, to almost 300, meaning that on average, the most frequent
abel appears up to 300 times more than the rest of labels) and
elationship among labels (ranging from near to 0 in Stackex coffee
eaning almost no dependency of labels, to almost 1 in Emotions).
herefore, as our proposal considers the imbalance, relationship, and
ize of the output space to build the ensemble, this set is considered as
iverse and consistent enough to carry out the experiments.

.2. Evaluation metrics

We use five evaluation metrics to assess the performance of methods
n the experiments. Given that in MLC the predictions may be not only

1 https://www.uco.es/kdis/mllresources.

https://www.uco.es/kdis/mllresources
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Table 2
Datasets and their characteristics, including number of instances (𝑚), number of attributes (𝑑), number of labels
(𝑞), cardinality (card), average imbalance ratio (avgIR), and ratio of dependent label pairs (rDep). The datasets are
ordered by the number of labels.
Dataset 𝑚 𝑑 𝑞 card avgIR rDep

Emotions 593 72 6 1.868 1.478 0.933
Reuters1000 294 1000 6 1.126 1.789 0.667
Guardian1000 302 1000 6 1.126 1.773 0.667
Bbc1000 352 1000 6 1.125 1.718 0.733
3s-inter3000 169 3000 6 1.142 1.766 0.400
Gnegative 1392 1717 8 1.046 18.448 0.536
Plant 978 440 12 1.079 6.690 0.318
Water-quality 1060 16 14 5.073 1.767 0.473
Yeast 2417 103 14 4.237 7.197 0.670
Human 3106 440 14 1.185 15.289 0.418
Birds 645 260 19 1.014 5.407 0.123
tmc2007–500 2860 500 22 2.230 17.225 0.364
Ohsumed 1393 1002 23 1.682 8.738 0.103
Yahoo arts 1497 500 26 1.671 25.486 0.138
Genbase 662 1186 27 1.252 37.315 0.157
Medical 978 1449 45 1.245 89.501 0.039
NusWide 2696 128 81 1.895 77.443 0.089
Mediamill 2195 120 101 4.430 294.599 0.116
Stackex coffee 225 1763 123 1.987 27.241 0.017
CAL500 502 68 174 26.044 20.578 0.192
totally correct or incorrect, but partially correct, specific evaluation
metrics must be used.

Hamming loss has been a widely-used metric in MLC. However, in
cases with a large number of labels but low cardinality, it tends to be 0
in all cases. Therefore, the Adjusted Hamming loss (AHL) was proposed
in [47], and it is defined in Eq. (5). Hereafter, it is indicated with ↓ if
the metric is minimized and with ↑ if it is maximized. AHL computes
the ratio of misclassified labels divided by the number of positive labels
in both the true and predicted sets, averaging it by the total number of
instances. Note that 𝛥 is the symmetric difference between two binary
sets.

↓ AHL = 1
𝑚

𝑚
∑

𝑖=1

|𝑌𝑖𝛥𝑌𝑖|

|𝑌𝑖 ∪ 𝑌𝑖|
(5)

Subset accuracy (SA) [48] is a strict metric which measures the
ratio of instances whose prediction exactly matches the ground truth,
including both relevant and irrelevant labels. It is defined in Eq. (6),
[[𝜋]] returning 1 if predicate 𝜋 is true, and 0 otherwise.

↑ SA = 1
𝑚

𝑚
∑

𝑖=1
[[𝑌𝑖 = 𝑌𝑖]] (6)

The FMeasure is a metric that combines both precision (ratio of true
relevant labels among those predicted as relevant) and recall (ratio of
relevant labels correctly predicted as relevant), and it has been widely
used in classification, especially in imbalanced problems. In multi-label
scenarios, there are several ways to calculate the FMeasure, such as
example-based FMeasure (ExF, Eq. (3)) [38], micro-averaged FMeasure
(MiF, Eq. (7)), and macro-averaged FMeasure (MaF, Eq. (4)) [39].
ExF computes the metric for each instance separately, so it is able
to capture the relationship among labels in its calculation. Both MiF
and MaF calculate the metric based on the confusion matrix. MiF first
joins all confusion matrices and then computes the metric, giving more
importance in the calculation to more frequent labels. MaF computes
the metric for each label independently and then averages the values, so
all labels have the same importance in the calculation, and infrequent
labels are not neglected.

↑ MiF =
∑𝑞

𝑙=1 2 ⋅ 𝑡𝑝𝑙
∑𝑞

𝑙=1 2 ⋅ 𝑡𝑝𝑙 +
∑𝑞

𝑙=1 𝑓𝑝𝑙 +
∑𝑞

𝑙=1 𝑓𝑛𝑙
(7)

.3. Experimental settings

AG3P-kEMLC has been built using the JCLEC [49], Mulan [50], and
eka [51] libraries, and the code is publicly available in a GitHub
9

Table 3
Average size of the 𝑘-labelsets in the pool.

AG3P-k3 AG3P-ku AG3P-kg

Emotions 3.00 3.75 3.49
Birds 3.00 5.93 4.44
Medical 3.00 12.91 8.55

repository.2 The first purpose of the experimental study is to analyze
and carefully study the performance of AG3P-kEMLC. It comprises the
analysis of the pool of classifiers, the convergence of the algorithm,
the auto-adaptive genetic operators, the structure of the EMLCs, and
the algorithm runtime. Then, an experimental comparison between
the different versions of AG3P-kEMLC is proposed to verify if any of
them performs significantly better than the rest. Finally, some exper-
imental studies involving other EMLCs in the literature are carried
out, to determine if the proposed method outperforms state-of-the-art
methods.

For the experiments, we use three different versions of AG3P-
kEMLC: with a fixed 𝑘 = 3 value for all labels (hereafter named
as AG3P-k3), with a variable value of 𝑘 following the uniform mode
(hereafter named as AG3P-ku), and with a variable value of 𝑘 following
the gaussian mode (hereafter named as AG3P-kg). In all cases, AG3P-
kEMLC is executed using 𝑣 = 20, so there are enough votes per label
in the initial pool; that does not mean that the final ensemble has this
number of votes per label, since the evolutionary process selects those
classifiers that best fit in the tree. The number of individuals is fixed
to 50, while the maximum number of children at each node is set to
𝑚𝐶 = 7, the maximum depth of the tree to 𝑚𝐷 = 3, and each classifier in
the pool is built using a random sample of 75% of the instances. Given
preliminary results, we fixed the stopping criterion to 10 generations
without improvement of the best individual.

Note that in cases where fixed 𝑘 = 3 is used, in bigger datasets the
size of the tree would not be enough to include all classifiers in the
pool if needed. For example, if 𝑞 = 50, there would be (20 ∗ 50)∕3 ≈ 333
classifiers in the pool, while the tree allows up to 73 = 343 leaves in the
most complex tree. Therefore, when fixed 𝑘 = 3 mode is being used and
𝑞 > 50, the maximum depth is set to 𝑚𝐷 = 4 to allow bigger trees. On
the other hand, in cases with a low number of labels, such as for 𝑞 = 6,
all versions are supposed to use only 𝑘 = 3 (since those using variable

2 https://github.com/kdis-lab/G3P-kEMLC.

https://github.com/kdis-lab/G3P-kEMLC
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𝑘 use up to 𝑞∕2). Given the reduced number of different 𝑘-labelsets, in
these cases when using fixed 𝑘, only 𝑣 = 10 is used; while when using
variable 𝑘, 𝑣 = 20 is still used but a maximum size 𝑘 = 5 is allowed to
nclude variety in the size of the 𝑘-labelsets.

All the methods use C4.5 decision tree [52] as single-label clas-
sifier (except RF-PCT, which uses PCTs), given its generalized use
in EMLCs [12,13,53]. The rest of the EMLCs are executed with the
parameters proposed by their authors. Unless other specified, they
include 𝑛 = 10 classifiers. EBR and ECC use sample with replacement
of the original dataset for each classifier. HOMER generates 𝑐 = 3
clusters at each node and uses the balanced k-means clustering method.
EPS prunes the instances with labelsets appearing less than 3 times,
and reintroduces them using the top two best ranked subsets.3 RAkEL
includes 𝑛 = 2𝑞 classifiers and uses 𝑘 = 3 for all base members. EME has
been executed with 50 individuals, the number of generations varies
from 110 to 300 generations depending on the dimensionality of the
dataset, the probability of crossover was set to 0.9 (𝑞 ≤ 8) and 0.8
(𝑞 > 8), while the probability of mutation was set to 0.2. The EMLC
of EME contains 𝑛 = 2𝑛 members and fixed 𝑘 = 3 Finally, EAGLET
is executed with up to 50 generations, the EMLC contains 𝑛 = 3.33𝑞
members with 𝑘 = 3, and the size of the population is equal to 2𝑛. In
EAGLET, the probability of crossover is set to 0.7 and probability of
mutation to 0.2 (𝑞 ≤ 30) and 0.1 (𝑞 > 30).

For all the experiments, the datasets are partitioned following a
random 5-fold cross-validation procedure, and the algorithms are ex-
ecuted using 10 different seeds for random numbers, so the results are
averaged among 50 executions. The evaluation metrics are reported
over the test set in each case. For comparing the performance of
the state-of-the-art methods, Skillings-Mack’s [54] and Holm’s [55]
statistical tests are performed, using Skillings Mack R package [56] and
the KEEL software tool [57].

5. Results and discussion

In this section, we present and discuss the results obtained in the
experiments. First, the performance of AG3P-kEMLC is analyzed, and
then, it is compared with the state-of-the-art EMLCs. Further results
are provided in the supplementary material in the KDIS Research
Group webpage.4 It includes results using different aggregation criteria,
different single-label base classifiers, comparison versus standard non-
ensemble multi-label classifiers, and more examples of single runs of
different variants of AG3P-kEMLC.

5.1. Analysis of AG3P-kEMLC

For the analysis of the performance of the different AG3P-kEMLC
versions, we select 3 datasets of different size and characteristics.
Emotions, Birds, and Medical, with 6, 19, and 45 labels respectively
are selected for being analyzed in detail. These datasets also have in-
crementally more imbalanced output space and decreasing dependency
among labels. Therefore, we cover a wide range of characteristics to
show the behavior of the proposed algorithm in different scenarios.
The results on these three datasets are presented just for understanding
purposes, but they do not bias the performance of the algorithm at all,
since they are not used for selecting any of the hyper-parameters.

Unless otherwise indicated, the results presented in this section are
averaged among the 50 executions of each method over each dataset.
For length restrictions, in some of the experiments, the results of single
executions for only one of the variants are presented. However, the
results for all variants are included in the supplementary material.

3 CAL500 dataset has as many different labelsets as instances, so it was
xecuted without pruning the infrequent labelsets.

4 https://www.uco.es/kdis/AG3P-kEMLC/.
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Table 4
Average number of classifiers in the pool.

AG3P-k3 AG3P-ku AG3P-kg

Emotions 20.0 32.1 34.7
Birds 127.0 65.0 85.2
Medical 300.0 69.5 104.5

Table 5
Average number of generations that AG3P-kEMLC needs to
converge.

AG3P-k3 AG3P-ku AG3P-kg

Emotions 50 51 51
Birds 62 54 57
Medical 81 57 61

First the size of the 𝑘-labelsets and number of appearances of each
label in the pool of classifiers are analyzed. Then, the convergence
of the algorithm is studied, including the convergence of the best
individual, the variation in the probabilities of the genetic operators,
and the size of the final ensembles. Finally, the runtime of each of
the versions is analyzed and their predictive performance is compared
using statistical tests.

5.1.1. Pool of classifiers
We have proposed different versions of AG3P-kEMLC: using fixed

𝑘 = 3 value (AG3P-k3), and using variable 𝑘 in the members either with
same probabilities for all available 𝑘 values (AG3P-ku) or giving more
probability to smaller 𝑘-labelsets (AG3P-kg). In this section, we analyze
the initial pool of classifiers, according to the size of the 𝑘-labelsets and
the number of classifiers in the pool.

For the analysis of the size of the 𝑘-labelsets of the classifiers in
the pool, only AG3P-ku and AG3P-kg are analyzed; for AG3P-k3 this
analysis does not make sense since all labelsets have the same size.
Fig. 7 compares the ratio of 𝑘-labelsets of each size in the initial pool
for the three datasets. As observed, it follows the distribution described
in Section 3.2, in AG3P-kg more 𝑘-labelsets of smaller size are included,
while in AG3P-ku, the number of 𝑘-labelsets of each size is similar. Note
that for AG3P-ku in Emotions, the distribution of 𝑘-labelsets is not so
uniform with a low number of 𝑘-labelsets of size 𝑘 = 5, since there is
only 6 different possible combinations of subsets of 5 labels (Emotions
has 6 labels in total).

Besides, Table 3 shows the average value of 𝑘 among all classifiers
in the pool. As expected, the classifiers in AG3P-ku are able to model,
on average, the relationships among bigger subsets of labels than AG3P-
kg, since the latter favors the selection of smaller 𝑘-labelsets. Thus,
while AG3P-ku would be able to better exploit the relationships among
labels, AG3P-kg would increase the diversity by having a wider range
of classifiers in the pool to combine in the ensemble.

In Table 4, the average number of classifiers in the pool for each
dataset and method are shown. It can be observed as the higher ratio
of smaller 𝑘-labelsets, the higher the number of classifiers in the pool
to obtain an average 𝑣 = 20 (except AG3P-k3 in Emotions, which is
executed with 𝑣 = 10). This will also influence in the efficiency of
the methods, since the lower the number of classifiers to build in the
initial pool, the lower should be the runtime required to execute the
algorithm.

Fig. 8 shows the number of appearances or votes of each label in
the initial pool. The number of votes per label in both versions is very
similar, since they only differ in the size of the 𝑘-labelsets but not in the
way the labels in each 𝑘-labelsets are selected. Not all labels appear in
the classifiers in the pool the same number of times, but they are biased
by their average phi coefficient with the rest of labels, which is also
plotted in the figure. The higher the relationship of a label with the rest,
the higher the probability to appear in the 𝑘-labelsets (see Section 3.2).

Besides, it makes more sense that a label which is almost independent

https://www.uco.es/kdis/AG3P-kEMLC/


Information Fusion 78 (2022) 1–19J.M. Moyano and S. Ventura

o
c
o

5

t
(
i
o
a
e
a
e
i

F
t
g
o

Fig. 7. Ratio of 𝑘-labelsets of each size in the initial pool in AG3P-ku and AG3P-kg.
Fig. 8. Number of average votes per label in the pool.
Fig. 9. Convergence of AG3P-kEMLC, including a single execution of AG3P-ku (top) and average of executions for all versions (bottom).
f the rest (has low average phi value) appears in a lower number of
lassifiers, since it would be similarly modeled independent of the rest
f labels that appear in the same 𝑘-labelset.

.1.2. Convergence of best individual
For studying the convergence of AG3P-kEMLC, first the evolution of

he best individual fitness for a given execution in AG3P-ku is shown
so the auto-stop condition given the non-improvement of the best
ndividual is seen in a specific execution). Then, the value of fitness
f the best individual in each generation is also presented averaged
mong all executions for the three versions of AG3P-kEMLC. As not all
xecutions need the same number of generations, the figures include
s much generations as the execution that needed most; for those
xecutions that stopped earlier, the fitness value in the last generation
s used up to the end to calculate the average of each generation.

Fig. 9 shows the convergence of AG3P-kEMLC in the three datasets.
irst, it can be observed (top of the figure) how the algorithm au-
omatically stops when the best individual does not improve in ten
enerations, allowing to reduce the runtime and avoiding overfitting
11

f the final model.
On the other hand, the fitness of the best individual in each genera-
tion averaged among all executions is presented in the bottom subplots.
In general, AG3P-k3 is the one obtaining the worst results according
to the fitness of the best individual reached (note that these results are
obtained only using the training set), while AG3P-kg and AG3P-ku tend
to obtain better results. Also, AG3P-k3 is the one which needs more
generations to converge. This is to be expected, since the lower the size
of the 𝑘-labelsets, the more the number of classifiers in the pool, and
therefore, it is more complex to combine them in an ensemble because
of the increased search space. Note that it does not apply to the case of
Emotions because AG3P-k3 was executed with 𝑣 = 10 instead of 𝑣 = 20,
so the search space is much smaller. Besides, in Medical we can observe
that AG3P-k3 obtains very bad fitness values in early generations on
average, given the great amount of incomplete trees in first generations;
this also affects the need of a higher number of generations to converge.

Although these figures show the fitness values up to the execution
that needed more generations, in Table 5 the average number of
generations to converge is shown, to have a better picture of how
many generations it needs to obtain the best solution. It supports our
hypothesis that the lower the size of the 𝑘-labelsets, the higher the
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Table 6
Average number of leaf nodes in the best tree obtained by AG3P-kEMLC.
In parenthesis, the percentage of leaf nodes used out of the total leaf
nodes in the largest possible tree.

AG3P-k3 AG3P-ku AG3P-kg

Emotions 72.26 (21.1%) 77.50 (22.6%) 72.84 (21.2%)
Birds 61.68 (18.0%) 61.56 (17.9%) 63.38 (18.5%)
Medical 72.56 (21.2%) 51.82 (15.1%) 51.88 (15.1%)

number of generations to converge. It can be observed also when com-
paring AG3P-ku and AG3P-kg; since AG3P-kg allows a higher number
of smaller 𝑘-labelsets, it tends to need slightly more generations to
converge.

5.1.3. Genetic operators
One of the main advantages of AG3P-kEMLC is the ability to auto-

adapt some of its hyper-parameters during the execution, both reducing
the number of parameters that the user has to set and also being
able to adapt to each specific problem. In Fig. 10 the values of the
crossover and mutation probabilities are plotted along the generations
for the three datasets in AG3P-kg. These figures show the values of
𝑝𝑐 and 𝑝𝑚 averaged among all executions, similar to previous section.
It can be observed that in general, in early generations the crossover
probability increases, meaning that the current population is improving
each generation, and therefore the exploitation of current solutions is
preferred. Then, as generations pass, the population does not improve
(on average), so the probability to apply the mutation operator is
increased, even surpassing the probability of applying the crossover
operator. Although there exists a point when the population does not
improve on average (so the mutation probability increases), it still
allows the algorithm to not to converge prematurely and to obtain
better solutions by widely exploring the search space, which is proven
by the fact that a large number of generations passes between the
moment in which the probability of mutation starts to increase and the
moment when the algorithm auto-stops given the non-improvement of
the best.

We can observe as the fact of adapting to each specific dataset is
beneficial, since they all do not behave equally as seen in Fig. 10.
However, the variation in these probabilities is still quite dependent
on each specific run, even on the same dataset. Fig. 11, presents the
evolution of the probabilities over three different single executions on
Birds dataset. The tendency is similar in all cases, but here we could
observe that: (1) the change in the probabilities in each execution is
not as smoothly as seen in the average plot, but the probabilities for
each operator increase and decrease all over the generations, as the
average population improves or not the best one; (2) the point in which
the probability of mutation is higher than the crossover one is different
in each case; and (3) in some cases, as in the right subplot, there is a
large number of generations in which the mutation operator has the
higher probability and it still is improving the performance of the best
12

individual. m
Fig. 11. Probabilities of crossover and mutation operators in different executions of
AG3P-kg in Birds dataset.

5.1.4. Size of the final EMLC
In this section, we analyze the size of the final EMLCs. We study the

number of leaf nodes in the best tree, as well as the number of different
votes for each label in the ensemble, i.e., the number of times that each
label appears in the classifiers used in the best tree.

In Table 6, the average number of leaf nodes in the best tree of
each execution are reported for the three variants. Considering that
for these cases the trees may include up to 73 = 343 leaf nodes, the
percentage of leaves out of the maximum possible is also reported.
It can be noted that, in average, the best tree has 19% of possible
leaf nodes, meaning a size much lower than the maximum allowed.
In this way, we demonstrate that: (1) the maximum size of the trees
defined in the experiments seems appropriate, since it does not reach
the maximum size by far; and (2) bigger trees do not necessarily mean
greater performance of the ensemble.

On the other hand. Fig. 12 presents the number of votes for each
label in the final ensemble, as well as the average number of votes
per label. In Emotions, all labels appear a similar number of times in
the final ensemble, but in Birds and even more in Medical each label
appears in a different number of classifiers; but all labels are ensured
to appear, being able to give prediction for all labels.

However, the imbalance in the number of appearances of each
label in the ensemble is not just random, but is slightly biased by the
frequency of labels, as compared with Fig. 13, where the frequency of
labels in the data is presented. Since infrequent labels appear in a lower
number of instances, it is usually easier to learn them than those labels
that appear in a higher number of instances; more frequent labels would
also have more complex correlations with other labels, so the algorithm
tends to include more classifiers comprising the more frequent labels.
Therefore, it is not strange that in Medical the number of votes among
labels is more imbalanced, given the imbalance of its output space, with
an 𝑎𝑣𝑔𝐼𝑅 = 89.501, while for Birds is of 5.407, meaning a much less
mbalanced label space.

It can be also noted the adaptability of our proposal to each spe-
ific problem; while most state-of-the-art methods fix the number of
lassifiers in the ensemble, our method is able to automatically adapt
he number of classifiers to each case. For Emotions, over 18 different
otes per label are used on average. On the other hand, AG3P-k3 builds
uch simpler ensembles for Medical, with just over 4 votes per label
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Table 7
Results obtained by the three versions of AG3P-kEMLC for five evaluation metrics and runtime. Best results in each dataset and metric are marked in bold.

↓ AHL ↑ SA ↑ ExF

AG3P-k3 AG3P-ku AG3P-kg AG3P-k3 AG3P-ku AG3P-kg AG3P-k3 AG3P-ku AG3P-kg

Emotions 0.469 0.449 0.450 0.264 0.285 0.282 0.619 0.638 0.637
Reuters1000 0.835 0.824 0.828 0.116 0.129 0.130 0.183 0.193 0.187
Guardian1000 0.843 0.828 0.837 0.105 0.129 0.116 0.176 0.188 0.179
Bbc1000 0.808 0.802 0.790 0.130 0.148 0.157 0.215 0.216 0.228
3s-inter3000 0.898 0.922 0.926 0.054 0.049 0.047 0.119 0.088 0.083
Gnegative 0.409 0.415 0.415 0.531 0.536 0.528 0.611 0.602 0.604
Plant 0.805 0.826 0.809 0.148 0.145 0.151 0.212 0.184 0.205
Water-quality 0.573 0.574 0.572 0.012 0.013 0.013 0.571 0.570 0.571
Yeast 0.497 0.488 0.493 0.124 0.141 0.129 0.619 0.625 0.622
Human 0.726 0.742 0.730 0.185 0.186 0.186 0.306 0.284 0.299
Birds 0.419 0.393 0.413 0.474 0.502 0.481 0.620 0.644 0.627
tmc2007–500 0.474 0.451 0.459 0.217 0.241 0.233 0.628 0.650 0.643
Ohsumed 0.672 0.626 0.631 0.137 0.177 0.170 0.400 0.446 0.442
Yahoo arts 0.918 0.803 0.814 0.056 0.122 0.113 0.093 0.229 0.218
Genbase 0.014 0.014 0.015 0.971 0.972 0.969 0.990 0.990 0.989
Medical 0.230 0.224 0.223 0.650 0.671 0.665 0.810 0.811 0.815
NusWide 0.781 0.757 0.751 0.121 0.163 0.163 0.262 0.276 0.284
Mediamill 0.604 0.577 0.576 0.044 0.063 0.061 0.523 0.548 0.550
Stackex coffee 0.784 0.860 0.842 0.076 0.046 0.058 0.275 0.177 0.199
CAL500 0.750 0.736 0.725 0.000 0.000 0.000 0.395 0.411 0.425

Avg ranking 2.38 1.80 1.83 2.60 1.48 1.93 2.35 1.83 1.83

↑ MiF ↑ MaF ↓ Runtime (s)

AG3P-k3 AG3P-ku AG3P-kg AG3P-k3 AG3P-ku AG3P-kg AG3P-k3 AG3P-ku AG3P-kg

Emotions 0.657 0.674 0.674 0.644 0.660 0.663 4.01E+00 5.01E+00 5.07E+00
Reuters1000 0.229 0.245 0.239 0.196 0.211 0.209 4.88E+00 6.87E+00 6.82E+00
Guardian1000 0.231 0.246 0.236 0.193 0.199 0.190 4.93E+00 6.85E+00 7.17E+00
Bbc1000 0.273 0.280 0.290 0.236 0.239 0.254 5.37E+00 7.73E+00 8.01E+00
3s-inter3000 0.157 0.122 0.112 0.132 0.095 0.084 5.47E+00 7.29E+00 7.51E+00
Gnegative 0.648 0.645 0.645 0.431 0.409 0.423 3.49E+01 3.51E+01 3.42E+01
Plant 0.268 0.243 0.260 0.153 0.132 0.144 4.53E+01 4.48E+01 4.57E+01
Water-quality 0.599 0.597 0.600 0.556 0.549 0.555 1.14E+01 9.44E+00 1.02E+01
Yeast 0.637 0.643 0.640 0.435 0.431 0.436 3.34E+01 3.21E+01 3.28E+01
Human 0.358 0.344 0.354 0.163 0.148 0.159 2.07E+02 1.84E+02 2.14E+02
Birds 0.452 0.479 0.461 0.321 0.330 0.336 1.41E+01 1.21E+01 1.31E+01
tmc2007–500 0.639 0.657 0.651 0.504 0.507 0.511 2.08E+02 1.03E+02 1.36E+02
Ohsumed 0.453 0.491 0.490 0.288 0.349 0.348 2.43E+02 2.27E+02 2.57E+02
Yahoo arts 0.122 0.220 0.216 0.128 0.147 0.148 7.49E+01 7.99E+01 8.48E+01
Genbase 0.988 0.988 0.987 0.931 0.927 0.929 1.46E+01 7.95E+00 9.51E+00
Medical 0.815 0.811 0.814 0.632 0.630 0.636 5.17E+01 3.20E+01 3.88E+01
NusWide 0.272 0.258 0.268 0.147 0.139 0.146 2.94E+02 5.18E+02 4.93E+02
Mediamill 0.536 0.561 0.562 0.289 0.294 0.300 2.74E+02 5.12E+02 4.95E+02
Stackex coffee 0.314 0.223 0.243 0.627 0.604 0.604 6.81E+01 2.96E+01 3.23E+01
CAL500 0.397 0.414 0.429 0.181 0.173 0.177 1.28E+02 1.08E+02 1.14E+02

Avg ranking 2.18 1.93 1.90 1.95 2.33 1.73 2.33 1.47 2.20
Fig. 12. Number of votes for each label in the final EMLC obtained by the different versions of AG3P-kEMLC.
13
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Fig. 13. Frequency of labels.
Table 8
Results of the Skillings-Mack’s test comparing the
state-of-the-art methods. Significant differences at 95%
are marked in bold.

Skillings-Mack’s
statistic

𝑝-value

AHL 82.953 1.13E−12
SA 74.601 4.37E−11
ExF 85.973 2.96E−13
MiF 87.058 1.83E−13
MaF 75.287 3.24E−11

on average. The creation of simpler trees would mean not only that
the complexity of the EMLC would be lower in testing, but also that
it would be prevented from overfitting the training data. In general,
AG3P-kEMLC needs only between 4 and 10 votes for the ensemble in
Medical, and between 7 and 13 for Birds; therefore, the best ensemble
does not use all classifiers in the pool (since the pool contains enough
classifiers to have 20 votes per label on average), selecting those that
perform better together.

5.1.5. Runtime analysis
In this section we analyze and compare the runtime of the three

versions of AG3P-kEMLC. In Fig. 14 the runtime (in seconds) of each
version is presented for the three datasets. The results are presented as
boxplots. The conclusions attained from these plots are similar to the
ones obtained in the study of the convergence. AG3P-k3 usually needs
more generations to converge than the rest of versions, leading to a
greater required runtime.

However, although the number of generations affects the required
runtime, the number (and complexity) of the classifiers in the pool also
determines the runtime of AG3P-kEMLC, since the building phase of
these classifiers is a time-consuming process. In this way, AG3P-k3 is
also the version that more classifiers has in the pool, spending more
time than the rest in this phase, leading to be the most complex version
(remember that in Emotions, AG3P-k3 is executed with 𝑣 = 10 and not
0). On the other hand, AG3P-ku allows a greater number of classifiers
ith a higher 𝑘 value, so less classifiers need to be built to obtain 20
otes on average in the initial pool. This, together with the fact that it
s also the one that needs a lower number of generations to converge,
akes it to be the fastest version.

.1.6. Experimental comparison
To finish with the study of the different proposed versions of AG3P-

EMLC, in this section an experimental comparison of the three meth-
ds is carried out. For that, all 20 datasets and 5 evaluation metrics are
onsidered, and statistical tests are then performed to analyze whether
ny of the versions performs significantly better than the rest.

Table 7 presents the results of the three proposed versions for all
etrics, and the average ranking of the methods is also included for

ach metric. In general, AG3P-ku is the one that obtains the best results
n most cases in almost all metrics, except in MaF. AG3P-kg, although
ot being the best in as many cases as AG3P-ku, has a great consistency;
or example, in MiF AG3P-kg is the best in 5 datasets, while AG3P-ku in
, but the average ranking of AG3P-kg is the best. As for the runtime,
14
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AG3P-ku is the fastest in most methods, even more considering that in
the first five datasets AG3P-k3 was executed using less classifiers in the
pool than in the rest of cases, which biases its runtime in these cases.

In order to determine if there exist significant differences in perfor-
mance among the different versions, the Skillings-Mack’s test has been
performed over the five evaluation metrics. It determines that there
exist differences in the performance for SA (with 𝑝-value 1.64E−03), so
the Holm’s post-hoc test has been also carried out for this metric. The
Holm’s test determines that the performance of AG3P-ku is significantly
better than AG3P-k3 with 𝑝-value 7.49E−04, while the 𝑝-value for
AG3P-kg is 1.55E−01, so its performance is no significantly different
to AG3P-ku. These results demonstrate that by using a variable value
of 𝑘, allowing to model bigger subsets of labels, the performance is
improved rather than just using fixed 𝑘 = 3. Therefore, for further
comparisons AG3P-k3 is not used, since it has been demonstrated that
its performance is significantly worse than the rest of versions in at
least one metric.

5.2. Comparison vs state-of-the-art

In this section, the performance of AG3P-ku and AG3P-kg is com-
pared with other state-of-the-art EMLCs, in order to determine whether
the method proposed in this paper outperforms other methods for MLC.
Tables A.1, A.2, A.3, A.4 and A.5 present the results of all methods
over all datasets and metrics, also including the average ranking for
each method. Table A.6 also provides the required runtime of each
of the methods. In all tables, methods that were not able to finish
their execution due to memory overhead5 are marked as DNF, and best
results for each dataset are marked in bold.

The best results for each dataset are very spread for all metrics.
AG3P-ku is the best in between one and six cases in each metric,
while AG3P-kg is the best in between 4 and 6 cases in each metric.
However, although not being the best methods in more datasets, their
consistency in overall for all cases is widely demonstrated: AG3P-ku has
the best average ranking in three metrics (and second in the rest) and
AG3P-kg is the best in two metrics (and second in two more). Other
EMLCs also demonstrate a good performance in some cases, but they
perform much worse in the rest, leading to a poor consistency and a
worse performance on average. For example, EMLS obtains competitive
results in ExF and MaF, but in SA it is the worst method; RF-PCT obtains
the best results in several datasets in almost all metrics, however, its
average ranking is one of the worst always due to its weak performance
in many other datasets; and ECC obtains good average ranking values
in general, however, these values are usually far from the best, and in
MaF it demonstrates much worse performance being the 8th method
on average.

In order to determine if there exist significant differences among
the methods, the Skillings-Mack’s test is performed, and the results
are presented in Table 8. The Skillings-Mack’s test determined that in
all metrics, there exist significant differences in the performance of
the methods; then, the Holm’s post-hoc test is also performed for all

5 The experiments were performed on a machine with Intel Xeon E5645
rocessor (6 × 2.40 GHz) and 24.GB RAM.
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Fig. 14. Comparison of runtime of AG3P-kEMLC.
Fig. 15. Boxplots including the runtime in seconds of the EMLCs for all datasets (Y-axis is in logarithmic scale). The ‘‘×’’ symbol indicate the mean value.
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etrics. The method with best average ranking in each metric is used
s control algorithm, and the adjusted 𝑝-values are reported in Table 9.

Both AG3P-ku and AG3P-kg demonstrate to perform significantly
etter than state-of-the-art algorithms. It is noteworthy that for AHL,
xF, and MiF they perform significantly better than all the rest of
ethods, and for no metric any of them perform significantly worse

han the control algorithm. Besides, as also introduced in Section 5.1.6
oth versions of AG3P-kEMLC perform statistically the same in all
ases.

.3. Discussion

AG3P-kEMLC has demonstrated to have a good predictive perfor-
ance, in any of the three versions that have been proposed. We

bserved that AG3P-k3, which uses a fixed 𝑘 = 3 value for all classifiers
s other state-of-the-art EMLCs, has the worst average ranking in 4
ut of 5 metrics. Besides, in only one metric it performs significantly
orse than the best version. Although it still has a great performance

obtains the best results in many cases), it is demonstrated that the
act of using 𝑘-labelsets of variable size in the ensemble improves the
redictive performance. AG3P-k3 is also the most complex version,
ince it needs to build a higher number of classifiers in the pool and
lso needs more generations to converge, while AG3P-ku, which builds
he lower number of classifiers in the pool is the fastest one.

Compared with state-of-the-art EMLCs, AG3P-ku and AG3P-kg ob-
ain extremely good results. In almost all evaluation metrics, they are
he two best methods (except AG3P-kg which is the 5th in SA), demon-
trating their consistency independently of the evaluation metric. Then,
n 3 of the metrics, both versions perform significantly better than
ll the rest of methods, being the only methods that do not perform
ignificantly worse than any of the methods in any case.

According to the runtime, although not being the fastest methods,
hey obtain competitive results too, as observed in Fig. 15. AG3P-ku
nd AG3P-kg are the 5th and 6th methods (out of 13) according to the
untime in overall, being very similar to most state-of-the-art methods.
t is noteworthy the drastic reduction in runtime compared to other EAs
o build ensembles, such as EME and EAGLET. For a deeper analysis,
15

he percentage of time that AG3P-ku and AG3P-kg reduce compared
able 9
djusted 𝑝-values of Holm’s post-hoc test comparing the state-of-the-art methods. The
ontrol algorithm in each case is indicated with "-". Significant differences with the
ontrol algorithm at 95% are marked in bold.

AHL SA ExF MiF MaF

AG3P-ku – – 9.35E−01 – 6.01E−01
AG3P-kg 9.35E−01 1.76E 00 – 9.68E−01 –
EME 5.30E−05 9.42E−02 8.90E−05 2.26E−04 9.42E−02
EAGLET 2.81E−02 1.76E 00 1.02E−02 1.35E−02 2.36E−01
RAkEL 3.48E−03 9.42E−02 4.99E−03 6.17E−03 5.21E−01
ECC 2.97E−02 1.76E 00 9.12E−03 1.35E−02 4.82E−03
EBR 1.40E−05 3.14E−02 3.00E−06 2.00E−06 1.53E−04
EPS 1.45E−04 1.76E 00 6.00E−06 1.00E−06 1.00E−05
HOMER 6.70E−05 6.93E−04 1.10E−04 6.10E−05 9.42E−02
MLS 6.00E−06 1.44E−03 6.00E−06 1.70E−05 6.18E−02
RF-PCT 0.00E 00 5.89E−04 0.00E 00 0.00E 00 0.00E 00
D3C 5.00E−06 1.63E−02 2.00E−06 3.30E−05 2.94E−03
EMLS 1.45E−04 1.00E−06 1.63E−03 3.46E−04 6.01E−01

with other EAs is computed. Both versions of AG3P-kEMLC reduce the
91% of required runtime of EME, and over 47% the runtime required
by EAGLET, on average. EAGLET is faster than AG3P-kEMLC in those
datasets with only 6 labels; but in 13 out of 20 datasets, AG3P-kEMLC
reduces more than 75% the runtime of EAGLET.

Therefore, our proposal not only obtains a very consistent predictive
performance, being significantly better than the rest of state-of-the-art
EMLCs, but also comprises a competitive solution in terms of complex-
ity, considerably reducing the complexity of other similar approaches
based on EAs.

6. Conclusions

In this paper, an auto-adaptive grammar-guided genetic program-
ming method to build ensembles of multi-label classifiers has been
proposed, called AG3P-kEMLC. Each of the multi-label classifiers that
form the ensemble is focused on a subset of 𝑘 labels. Unlike other
EMLCs in the literature, it is able to include classifiers using different
value of 𝑘. The ensemble is built in a tree-shape structure, where the

leaves are the multi-label classifiers, and the internal nodes combine
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Table A.1
Results of AG3P-kEMLC and state-of-the-art EMLCs for ↓AHL. Best results in each dataset are marked in bold. DNF values indicate that the method did not finish its execution.

AG3P-ku AG3P-kg EME EAGLET RAkEL ECC EBR EPS HOMER MLS RF-PCT D3C EMLS

Emotions 0.449 0.450 0.504 0.463 0.492 0.454 0.490 0.471 0.544 0.560 0.433 0.440 0.482
Reuters1000 0.824 0.828 0.867 0.851 0.837 0.913 0.950 0.863 0.870 0.843 0.999 0.963 0.837
Guardian1000 0.828 0.837 0.884 0.883 0.867 0.917 0.953 0.844 0.852 0.877 0.999 0.970 0.834
Bbc1000 0.802 0.790 0.845 0.831 0.827 0.898 0.933 0.828 0.820 0.859 0.999 0.946 0.808
3s-inter3000 0.922 0.926 0.929 0.932 0.924 0.929 0.965 0.945 0.880 0.859 1.000 0.994 0.867
Gnegative 0.415 0.415 0.482 0.446 0.459 0.427 0.479 0.472 0.508 0.516 0.566 0.394 0.448
Plant 0.826 0.809 0.867 0.871 0.844 0.852 0.903 0.901 0.845 0.821 0.983 0.838 0.770
Water-quality 0.574 0.572 0.612 0.593 0.599 0.585 0.605 0.798 0.607 0.652 0.556 0.576 0.589
Yeast 0.488 0.493 0.516 0.500 0.517 0.491 0.514 0.504 0.566 0.600 0.481 0.501 0.534
Human 0.742 0.730 0.796 0.800 0.768 0.786 0.833 0.828 0.807 0.784 0.934 0.827 0.739
Birds 0.393 0.413 0.421 0.410 0.423 0.401 0.412 0.419 0.451 0.424 0.442 0.540 0.441
tmc2007–500 0.451 0.459 0.591 0.491 0.512 0.482 0.484 0.504 0.531 0.541 0.559 0.497 0.507
Ohsumed 0.626 0.631 0.701 0.695 0.694 0.709 0.710 0.718 0.757 0.727 0.947 0.821 0.837
Yahoo arts 0.803 0.814 0.954 0.939 0.965 0.825 0.971 0.812 0.811 0.981 1.000 0.958 0.936
Genbase 0.014 0.015 0.019 0.012 0.019 0.017 0.018 0.036 0.018 0.019 1.000 0.037 0.710
Medical 0.224 0.223 0.254 0.246 0.260 0.242 0.262 0.255 0.261 0.263 0.964 0.477 0.922
NusWide 0.757 0.751 0.755 0.753 0.769 0.748 0.748 0.756 0.824 0.816 0.763 0.901 0.980
Mediamill 0.577 0.576 0.598 0.598 0.605 0.580 0.582 0.605 0.648 0.656 0.579 0.752 0.939
Stackex coffee 0.860 0.842 DNF 0.797 0.814 0.916 0.907 0.913 DNF 0.853 1.000 0.816 0.988
CAL500 0.736 0.725 DNF 0.774 0.767 0.762 0.781 DNF 0.761 0.779 DNF 0.818 0.831

Avg ranking 2.58 2.68 8.13 5.78 6.68 5.58 8.50 7.78 8.03 8.73 10.00 8.80 7.78
Table A.2
Results of AG3P-kEMLC and state-of-the-art EMLCs for ↑SA. Best results in each dataset are marked in bold. DNF values indicate that the method did not finish its execution.

AG3P-ku AG3P-kg EME EAGLET RAkEL ECC EBR EPS HOMER MLS RF-PCT D3C EMLS

Emotions 0.285 0.282 0.248 0.290 0.250 0.297 0.274 0.292 0.182 0.186 0.337 0.315 0.195
Reuters1000 0.129 0.130 0.111 0.123 0.129 0.064 0.040 0.115 0.078 0.112 0.001 0.031 0.068
Guardian1000 0.129 0.116 0.086 0.083 0.092 0.063 0.037 0.130 0.069 0.076 0.001 0.023 0.075
Bbc1000 0.148 0.157 0.120 0.145 0.134 0.086 0.057 0.142 0.102 0.088 0.001 0.043 0.086
3s-inter3000 0.049 0.047 0.040 0.041 0.037 0.050 0.025 0.044 0.042 0.077 0.000 0.006 0.041
Gnegative 0.536 0.528 0.487 0.523 0.493 0.548 0.497 0.513 0.421 0.397 0.426 0.530 0.386
Plant 0.145 0.151 0.113 0.113 0.127 0.140 0.089 0.095 0.094 0.109 0.017 0.118 0.073
Water-quality 0.013 0.013 0.014 0.016 0.013 0.017 0.016 0.015 0.004 0.008 0.020 0.022 0.015
Yeast 0.141 0.129 0.137 0.151 0.112 0.171 0.131 0.168 0.076 0.051 0.181 0.146 0.077
Human 0.186 0.186 0.159 0.163 0.167 0.174 0.141 0.140 0.105 0.122 0.060 0.102 0.076
Birds 0.502 0.481 0.496 0.500 0.490 0.522 0.516 0.515 0.457 0.491 0.505 0.327 0.435
tmc2007–500 0.241 0.233 0.230 0.233 0.212 0.240 0.229 0.240 0.167 0.186 0.164 0.251 0.194
Ohsumed 0.177 0.170 0.165 0.175 0.164 0.158 0.157 0.182 0.095 0.132 0.036 0.116 0.001
Yahoo arts 0.122 0.113 0.037 0.053 0.029 0.145 0.023 0.153 0.135 0.015 0.000 0.035 0.000
Genbase 0.972 0.969 0.966 0.976 0.965 0.968 0.967 0.937 0.970 0.967 0.000 0.926 0.000
Medical 0.671 0.665 0.649 0.658 0.641 0.671 0.650 0.674 0.654 0.637 0.022 0.222 0.000
NusWide 0.163 0.163 0.184 0.188 0.165 0.213 0.211 0.210 0.109 0.108 0.222 0.028 0.000
Mediamill 0.063 0.061 0.064 0.065 0.054 0.078 0.067 0.079 0.025 0.031 0.072 0.223 0.000
Stackex coffee 0.046 0.058 DNF 0.085 0.088 0.030 0.032 0.014 DNF 0.058 0.000 0.022 0.000
CAL500 0.000 0.000 DNF 0.000 0.000 0.000 0.000 DNF 0.000 0.000 DNF 0.000 0.000

Avg ranking 4.15 5.10 7.13 4.85 7.13 4.43 7.65 4.75 9.05 8.80 9.13 7.95 10.90
Table A.3
Results of AG3P-kEMLC and state-of-the-art EMLCs for ↑ExF. Best results in each dataset are marked in bold. DNF values indicate that the method did not finish its execution.

AG3P-ku AG3P-kg EME EAGLET RAkEL ECC EBR EPS HOMER MLS RF-PCT D3C EMLS

Emotions 0.638 0.637 0.577 0.618 0.593 0.627 0.587 0.608 0.548 0.529 0.643 0.639 0.621
Reuters1000 0.193 0.187 0.141 0.159 0.175 0.094 0.054 0.145 0.153 0.173 0.001 0.040 0.200
Guardian1000 0.188 0.179 0.126 0.129 0.147 0.090 0.051 0.164 0.178 0.141 0.001 0.032 0.202
Bbc1000 0.216 0.228 0.167 0.178 0.186 0.107 0.071 0.182 0.209 0.161 0.001 0.057 0.234
3s-inter3000 0.088 0.083 0.082 0.077 0.090 0.079 0.038 0.059 0.149 0.167 0.000 0.006 0.171
Gnegative 0.602 0.604 0.529 0.565 0.558 0.581 0.530 0.533 0.518 0.515 0.437 0.633 0.615
Plant 0.184 0.205 0.140 0.134 0.166 0.150 0.100 0.100 0.179 0.205 0.017 0.178 0.298
Water-quality 0.570 0.571 0.528 0.549 0.544 0.556 0.534 0.298 0.538 0.489 0.586 0.562 0.551
Yeast 0.625 0.622 0.593 0.609 0.599 0.616 0.597 0.602 0.552 0.526 0.625 0.609 0.594
Human 0.284 0.299 0.220 0.213 0.254 0.228 0.176 0.182 0.227 0.251 0.069 0.202 0.338
Birds 0.644 0.627 0.610 0.622 0.609 0.626 0.615 0.607 0.585 0.607 0.578 0.516 0.606
tmc2007–500 0.650 0.643 0.591 0.602 0.582 0.610 0.611 0.583 0.574 0.554 0.536 0.590 0.595
Ohsumed 0.446 0.442 0.349 0.354 0.359 0.339 0.339 0.319 0.303 0.325 0.059 0.202 0.251
Yahoo arts 0.229 0.218 0.049 0.065 0.038 0.188 0.031 0.203 0.210 0.021 0.000 0.046 0.115
Genbase 0.990 0.989 0.985 0.991 0.985 0.988 0.986 0.972 0.986 0.985 0.000 0.974 0.433
Medical 0.811 0.815 0.778 0.785 0.773 0.787 0.768 0.769 0.768 0.770 0.041 0.640 0.141
NusWide 0.276 0.284 0.272 0.273 0.260 0.268 0.270 0.259 0.208 0.219 0.245 0.137 0.037
Mediamill 0.548 0.550 0.521 0.522 0.516 0.538 0.540 0.509 0.478 0.466 0.542 0.259 0.113
Stackex coffee 0.177 0.199 DNF 0.260 0.226 0.105 0.117 0.116 DNF 0.181 0.000 0.259 0.023
CAL500 0.411 0.425 DNF 0.363 0.372 0.377 0.352 DNF 0.380 0.356 DNF 0.302 0.286

Avg ranking 2.58 2.48 7.85 5.93 6.45 6.13 8.75 8.55 7.75 8.60 10.18 8.88 6.90
16
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Table A.4
Results of AG3P-kEMLC and state-of-the-art EMLCs for ↑MiF. Best results in each dataset are marked in bold. DNF values indicate that the method did not finish its execution.

AG3P-ku AG3P-kg EME EAGLET RAkEL ECC EBR EPS HOMER MLS RF-PCT D3C EMLS

Emotions 0.674 0.674 0.630 0.665 0.637 0.671 0.649 0.654 0.600 0.582 0.694 0.693 0.652
Reuters1000 0.245 0.239 0.186 0.209 0.220 0.139 0.087 0.189 0.186 0.216 0.002 0.069 0.244
Guardian1000 0.246 0.236 0.185 0.192 0.205 0.135 0.085 0.213 0.230 0.194 0.003 0.059 0.242
Bbc1000 0.280 0.290 0.230 0.239 0.248 0.154 0.114 0.238 0.250 0.211 0.001 0.101 0.276
3s-inter3000 0.122 0.112 0.115 0.107 0.125 0.120 0.062 0.082 0.194 0.196 0.000 0.010 0.204
Gnegative 0.645 0.645 0.604 0.638 0.613 0.646 0.625 0.612 0.556 0.556 0.577 0.662 0.589
Plant 0.243 0.260 0.200 0.196 0.224 0.210 0.159 0.153 0.227 0.245 0.031 0.245 0.304
Water-quality 0.597 0.600 0.558 0.578 0.573 0.585 0.565 0.300 0.569 0.516 0.614 0.594 0.583
Yeast 0.643 0.640 0.622 0.636 0.622 0.640 0.625 0.629 0.575 0.549 0.651 0.635 0.606
Human 0.344 0.354 0.291 0.286 0.314 0.298 0.250 0.255 0.277 0.298 0.112 0.260 0.347
Birds 0.479 0.461 0.416 0.439 0.423 0.437 0.414 0.379 0.390 0.422 0.334 0.431 0.471
tmc2007–500 0.657 0.651 0.614 0.624 0.606 0.632 0.632 0.606 0.586 0.581 0.560 0.617 0.606
Ohsumed 0.491 0.490 0.418 0.424 0.427 0.413 0.412 0.372 0.345 0.389 0.083 0.264 0.276
Yahoo arts 0.220 0.216 0.063 0.082 0.051 0.180 0.044 0.197 0.200 0.029 0.000 0.059 0.118
Genbase 0.988 0.987 0.986 0.990 0.985 0.987 0.986 0.956 0.985 0.986 0.000 0.970 0.450
Medical 0.811 0.814 0.809 0.807 0.804 0.809 0.801 0.771 0.791 0.802 0.077 0.615 0.145
NusWide 0.258 0.268 0.216 0.208 0.213 0.156 0.159 0.136 0.183 0.204 0.068 0.168 0.040
Mediamill 0.561 0.562 0.536 0.538 0.532 0.552 0.555 0.519 0.492 0.484 0.552 0.105 0.117
Stackex coffee 0.223 0.243 DNF 0.303 0.267 0.146 0.159 0.138 DNF 0.235 0.000 0.291 0.023
CAL500 0.414 0.429 DNF 0.365 0.375 0.379 0.354 DNF 0.383 0.360 DNF 0.304 0.289

Avg ranking 2.50 2.55 7.58 5.85 6.40 6.00 8.88 9.00 7.95 8.38 10.33 8.18 7.40
Table A.5
Results of AG3P-kEMLC and state-of-the-art EMLCs for ↑MaF. Best results in each dataset are marked in bold. DNF values indicate that the method did not finish its execution.

AG3P-ku AG3P-kg EME EAGLET RAkEL ECC EBR EPS HOMER MLS RF-PCT D3C EMLS

Emotions 0.660 0.663 0.616 0.651 0.625 0.623 0.631 0.637 0.592 0.577 0.664 0.668 0.648
Reuters1000 0.211 0.209 0.157 0.169 0.178 0.093 0.058 0.139 0.153 0.164 0.001 0.052 0.215
Guardian1000 0.199 0.190 0.163 0.167 0.177 0.090 0.056 0.160 0.219 0.147 0.002 0.056 0.212
Bbc1000 0.239 0.254 0.211 0.210 0.219 0.108 0.082 0.199 0.233 0.174 0.001 0.089 0.244
3s-inter3000 0.095 0.084 0.085 0.076 0.104 0.087 0.044 0.061 0.160 0.159 0.000 0.007 0.160
Gnegative 0.409 0.423 0.396 0.425 0.408 0.381 0.346 0.343 0.366 0.333 0.233 0.472 0.382
Plant 0.132 0.144 0.106 0.107 0.121 0.092 0.076 0.069 0.139 0.157 0.010 0.206 0.208
Water-quality 0.549 0.555 0.502 0.521 0.522 0.528 0.503 0.171 0.524 0.469 0.536 0.532 0.549
Yeast 0.431 0.436 0.393 0.408 0.409 0.403 0.381 0.377 0.394 0.391 0.370 0.438 0.462
Human 0.148 0.159 0.124 0.124 0.136 0.113 0.094 0.087 0.139 0.155 0.025 0.193 0.197
Birds 0.330 0.336 0.270 0.290 0.284 0.268 0.250 0.228 0.289 0.305 0.203 0.376 0.367
tmc2007–500 0.507 0.511 0.463 0.461 0.463 0.476 0.479 0.343 0.442 0.445 0.152 0.358 0.505
Ohsumed 0.349 0.348 0.253 0.255 0.261 0.228 0.228 0.222 0.220 0.238 0.035 0.128 0.306
Yahoo arts 0.147 0.148 0.115 0.120 0.113 0.125 0.109 0.138 0.132 0.106 0.092 0.110 0.132
Genbase 0.927 0.929 0.930 0.933 0.926 0.925 0.922 0.762 0.915 0.930 0.215 0.911 0.839
Medical 0.630 0.636 0.644 0.631 0.639 0.637 0.636 0.603 0.604 0.640 0.322 0.504 0.430
NusWide 0.139 0.146 0.156 0.145 0.152 0.141 0.142 0.137 0.125 0.153 0.136 0.082 0.064
Mediamill 0.294 0.300 0.308 0.307 0.311 0.301 0.310 0.277 0.344 0.304 0.284 0.140 0.172
Stackex coffee 0.604 0.604 DNF 0.633 0.631 0.618 0.619 0.607 DNF 0.628 0.597 0.576 0.158
CAL500 0.173 0.177 DNF 0.148 0.163 0.139 0.137 DNF 0.185 0.158 DNF 0.145 0.203

Avg ranking 4.55 3.70 6.68 6.03 5.38 7.93 9.03 9.75 6.65 6.70 11.30 8.13 4.98
Table A.6
Runtime of AG3P-kEMLC and state-of-the-art EMLCs. Best results in each dataset are marked in bold. DNF values indicate that the method did not finish its execution.

AG3P-ku AG3P-kg EME EAGLET RAkEL ECC EBR EPS HOMER MLS RF-PCT D3C EMLS

Emotions 5.01E+0 5.07E+0 1.24E+1 1.56E+0 8.44E−1 1.79E+0 1.88E+0 6.10E−1 8.63E−1 2.81E+0 4.86E+0 5.00E+1 6.20E+0
Reuters1000 6.87E+0 6.82E+0 5.09E+1 4.28E+0 6.11E+0 6.94E+0 7.03E+0 4.72E+0 1.96E+0 1.11E+1 2.75E+0 7.93E+1 2.14E+1
Guardian1000 6.85E+0 7.17E+0 5.37E+1 4.33E+0 6.14E+0 7.35E+0 7.53E+0 4.98E+0 2.03E+0 1.16E+1 2.78E+0 8.31E+1 2.24E+1
Bbc1000 7.73E+0 8.01E+0 5.96E+1 5.30E+0 8.41E+0 9.48E+0 1.03E+1 6.78E+0 2.26E+0 1.60E+1 3.06E+0 9.71E+1 2.99E+1
3s-inter3000 7.29E+0 7.51E+0 1.04E+2 6.28E+0 7.21E+0 8.82E+0 8.60E+0 4.00E+0 2.24E+0 1.24E+1 3.02E+0 9.53E+1 3.05E+1
Gnegative 3.51E+1 3.42E+1 5.83E+2 3.72E+1 3.63E+1 8.23E+1 8.13E+1 2.22E+1 8.72E+0 9.22E+1 1.02E+1 4.52E+2 1.87E+2
Plant 4.48E+1 4.57E+1 1.44E+3 2.01E+2 5.50E+1 9.81E+1 1.12E+2 2.71E+1 1.09E+1 1.19E+2 1.05E+1 3.32E+2 1.61E+2
Water-quality 9.44E+0 1.02E+1 3.90E+1 1.02E+1 1.14E+0 2.96E+0 2.83E+0 9.17E−1 9.88E−1 3.16E+0 1.09E+1 1.23E+2 5.94E+0
Yeast 3.21E+1 3.28E+1 4.15E+2 1.49E+2 2.43E+1 3.76E+1 5.60E+1 1.21E+1 4.81E+0 4.83E+1 4.43E+1 5.24E+2 1.19E+2
Human 1.84E+2 2.14E+2 5.55E+3 1.42E+3 2.39E+2 6.39E+2 5.93E+2 8.35E+1 4.37E+1 5.72E+2 3.83E+1 1.91E+3 9.82E+2
Birds 1.21E+1 1.31E+1 2.13E+2 7.10E+1 8.57E+0 1.03E+1 8.94E+0 1.23E+0 1.51E+0 1.12E+1 9.64E+0 8.66E+1 2.67E+1
tmc2007–500 1.03E+2 1.36E+2 6.05E+3 3.95E+3 6.79E+2 2.02E+3 1.92E+3 4.57E+1 1.78E+2 2.10E+3 1.15E+1 3.38E+3 1.61E+3
Ohsumed 2.27E+2 2.57E+2 6.16E+3 3.98E+3 5.21E+2 8.19E+2 7.28E+2 2.25E+2 5.16E+1 8.47E+2 1.13E+1 4.05E+3 6.03E+2
Yahoo arts 7.99E+1 8.48E+1 2.42E+3 8.67E+2 9.72E+1 2.47E+2 2.23E+2 7.37E+1 1.01E+1 2.47E+2 6.36E+0 4.19E+3 1.56E+2
Genbase 7.95E+0 9.51E+0 1.30E+3 8.30E+1 2.28E+0 3.58E+0 4.04E+0 6.67E−1 1.44E+0 5.32E+0 2.63E+0 1.91E+2 4.82E+1
Medical 3.20E+1 3.88E+1 8.12E+3 5.68E+2 5.21E+1 9.66E+1 7.91E+1 1.08E+1 1.45E+1 1.04E+2 5.15E+0 3.41E+2 2.06E+2
NusWide 5.18E+2 4.93E+2 1.06E+4 1.79E+3 6.16E+1 3.82E+2 1.55E+2 1.78E+1 6.81E+0 1.87E+2 2.19E+2 5.81E+2 2.98E+2
Mediamill 5.12E+2 4.95E+2 1.16E+4 1.51E+3 5.88E+1 2.38E+2 1.41E+2 2.12E+1 8.11E+0 1.87E+2 1.92E+2 2.03E+3 1.04E+2
Stackex coffee 2.96E+1 3.23E+1 DNF 1.65E+3 2.13E+1 3.31E+1 3.04E+1 5.02E−1 DNF 4.44E+1 5.21E+0 4.79E+2 9.15E+1
CAL500 1.08E+2 1.14E+2 DNF 5.49E+3 1.81E+1 5.35E+1 3.32E+1 DNF 4.32E+0 4.48E+1 DNF 6.97E+2 5.62E+1

Avg ranking 6.00 6.70 12.58 8.90 4.45 7.40 6.80 2.85 2.33 8.15 3.90 11.95 9.00
17
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the prediction of children nodes, thus avoiding the typical ensemble
structure in MLC where all members have the same weight in the final
prediction.

The auto-adaptive process embedded in AG3P-kEMLC avoids one of
the main drawbacks of EAs, i.e., the need to tune a plethora of hyper-
parameters to enhance the performance of the method. In this way,
AG3P-kEMLC automatically adapts the crossover and mutation proba-
bilities depending on whether the population improves on average or
not, thus favoring the exploitation of current individuals (increasing
the crossover probability) or the exploration of the search space (in-
creasing the mutation probability). Furthermore, a stop criterion based
on the non-improvement of the best individual is also set, reducing the
required runtime and avoiding overfitting.

Three versions of AG3P-kEMLC have been proposed. AG3P-k3 uses
a fixed value of 𝑘 = 3 in all base classifiers, as other methods in the
iterature. On the other hand, AG3P-ku and AG3P-kg allow both the
se of 𝑘-labelsets of different size, in the range 𝑘 ∈ [3, 𝑞∕2]; while
he former gives the same probability to each value of 𝑘, the latter
ives higher probability to include smaller 𝑘-labelsets in the initial
ool. The experimental results demonstrate that AG3P-k3 is the most
omplex version, due to the high number of classifiers that it has to
uilt in the pool, also obtaining the worst results according to the
redictive performance. On the other hand, AG3P-ku and AG3P-kg have
emonstrated to perform significantly better than the state-of-the-art
MLCs. The fact of using an ensemble shape that is able to adapt to each
pecific problem (both in size and in the weight given to each classifier)
s well as the auto-adaptive process, lead AG3P-kEMLC to obtain a
ery good predictive performance and consistency, achieving very good
esults on average for all evaluation metrics and datasets. Besides, its
omplexity is similar to other state-of-the-art EMLCs, much reducing
he required runtime of other similar approaches to build EMLCs based
n evolutionary algorithms.

Since the proposed method has achieved good and promising re-
ults, we still intend to look for ways to enhance its performance
n the future. One of the lines of future work would be not only to
se a heuristic to create the initial pool (as the modes that AG3P-
u and AG3P-kg use to select the 𝑘-labelsets based on the correlation
mong labels), but to evolve the initial pool towards accurate and
iverse classifiers that would then be combined in the ensemble. Other
ggregation approaches to combine the predictions in non-leaf nodes,
ike the combination of confidences instead of bipartitions, should be
urther studied. Other approach that might be studied in order to
mprove the auto-adaptability process would be looking at the fitness of
he best individuals (i.e., check whether good genes are maintained in
he population) instead of the average fitness of the whole population.
inally, the use of techniques to prevent the algorithm from being stuck
n local optima, such as population restarts, might be analyzed.
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ppendix. Tables with results

This appendix includes the detailed results of the proposed AG3P-
EMLC method and the rest of state-of-the-art EMLCs. Tables A.1, A.2,
.3, A.4, A.5 and A.6 include the results for AHL, SA, ExF, MiF, MaF,
nd runtime, respectively.
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