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Abstract

In recent years, there has been a growing interest in modeling spatio-

temporal data generated from monitoring networks, satellite imaging

and climate models. Under Gaussianity, the covariance function is core

to spatio-temporal modeling, inference and prediction. In this article,

we review the various space-time covariance structures in which simpli-

fied assumptions, such as separability and full symmetry, are made to

facilitate computation, and associated tests intended to validate these

structures. We also review recent developments on constructing space-

time covariance models, which can be separable or non-separable, fully

symmetric or asymmetric, stationary or non-stationary, univariate or

multivariate, and in Euclidean spaces or on the sphere. We visualize

some of the structures and models with visuanimations. Finally, we

discuss inference for fitting space-time covariance models, and describe

a case study based on a new wind-speed dataset.
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1. INTRODUCTION

Spatio-temporal variability is central to statistical analyses for dynamic processes in envi-

ronmental science and geophysics. In geostatistics, the observations are typically modeled

by a Gaussian random process, and the space-time covariance function plays an important

role in describing dependence in the data and predicting realizations at unobserved sites

(also called kriging) or future time points. Much progress has been made since the reviews

of Kyriakidis & Journel (1999), Christakos (2000), Gneiting & Schlather (2002), Kolovos

et al. (2004) and Gneiting et al. (2007). In this work, we provide a comprehensive review

of recent advances in the literature on space-time covariance structures and models. A case

study for wind-speed data illustrates the process of assessing the underlying space-time

covariance structure, choosing appropriate models and performing inference.

Consider a space-time random process Z(s, t), where s ∈ Rd (d ≥ 1) denotes a spatial

location and t ∈ R denotes a time point. Henceforth, we assume that second moments of

Z(s, t) exist and are finite. Denote the N space-time coordinates as (s1, t1), . . . , (sN , tN ) ∈
Rd×R, and the covariance function of Z(s, t) by C(s1, t1, s2, t2) = cov{Z(s1, t1), Z(s2, t2)},
where (s1, t1) and (s2, t2) in Rd × R are space-time coordinates.

A necessary and sufficient condition for a function C to be a covariance is positive

definiteness (Yaglom 1987; De Iaco et al. 2011): C should satisfy
N∑

i,j=1

cicjC(si, ti, sj , tj) ≥ 0, 1.

for all finite N , all (s1, t1), . . . , (sN , tN ) ∈ Rd × R and all real c1, . . . , cN . This means that

the covariance matrix of the random vector {Z(s1, t1), . . . , Z(sN , tN )}>, denoted by Σ,

whose (i, j)th entry is σij = C(si, ti, sj , tj), is non-negative definite for all finite collections

of coordinates (s1, t1), . . . , (sN , tN ) ∈ Rd×R. The covariance function C is strictly positive

definite if the left-hand side of Equation 1 is positive for any choice of distinct coordinates

and any non-zero vector (c1, . . . , cN )>. Strict positive definiteness ensures the existence of

a unique solution of the kriging system for spatial or spatio-temporal prediction.

A main benefit of stationarity is the pooling of pairs of measurements separated by

the same space-time vector for use as a set of repetitions, which are never available in

practice, for statistical inference. Informally, stationarity means that certain statistical

properties do not change over space and/or time. In this paper, we discuss covariance,

or weak, stationarity for stochastic processes. Specifically, the covariance function C is

said to be spatially stationary if it depends on space only through the spatial lag, and

temporally stationary if it depends on time only through the temporal lag. It is said

to be stationary if it is both spatially and temporally stationary, where there exists a

permissible (in particular, positive definite) covariance function C defined on Rd × R such

that cov{Z(s1, t1), Z(s2, t2)} = C(h, u) for all (h, u) in Rd × R, where h = s1 − s2 and

u = t1 − t2. The restrictions C(·, 0) and C(0, ·) are purely spatial and purely temporal

covariance functions, respectively. A related notion is that of spatial isotropy, where C(h, u)

is restricted to be a function depending on the Euclidean norm of h only.

A useful characterization of stationary space-time covariance functions is the spectral

representation, using Bochner’s theorem (Bochner 1955).

Theorem (Bochner) Suppose that C is a continuous and symmetric function on

Rd × R. Then C is a covariance function if and only if it is of the form

C(h, u) =

∫ ∫
eι(h

>ω+uτ)dF (ω, τ), (h, u) ∈ Rd × R, 2.
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where ι =
√
−1, and F is a finite, non-negative and symmetric measure on Rd × R.

The function F in Equation 2 is called the spectral measure. If C is integrable, the

corresponding density with respect to the Lebesgue measure is

f(ω, τ) = (2π)−(d+1)

∫ ∫
e−ι(h

>ω+uτ)C(h, u)dhdu, (ω, τ) ∈ Rd × R,

and is called the spectral density. If f exists, then dF (ω, τ) = f(ω, τ)dωdτ in Equation 2.

In practice, a nugget effect (i.e., a discontinuity at the origin) is often included in

the fitted stationary space-time covariance functions. In the spatio-temporal context, the

nugget effect could be purely spatial, purely temporal or spatio-temporal, and takes the

general form

C(h, u) = δ1I{(h, u) = (0, 0)}+ δ2I{h = 0}+ δ3I{u = 0}, (h, u) ∈ Rd × R,

where δ1, δ2 and δ3 are non-negative constants, and I is an indicator function.

2. SPACE-TIME COVARIANCE STRUCTURES

2.1. Structures

The space-time covariance function C(s1, t1, s2, t2) generally depends on the space-time

coordinates (s1, t1) and (s2, t2). However, due to the large size of space-time data, it

is usually computationally expensive and sometimes infeasible to implement traditional

techniques, such as kriging, based on the general form of C. Simplifying structures are

often imposed on C, such as stationarity and spatial isotropy, as introduced in Section 1,

and full symmetry and separability, as introduced below. The relationships among several

space-time covariance structures were illustrated by Gneiting et al. (2007).

2.1.1. Separability. One of the key difficulties of constructing space-time covariance models

is that it is in general nontrivial to check whether a function is positive definite. One simple

solution is to rely on the separability assumption:

C(s1, t1, s2, t2) = CS(s1, s2) · CT(t1, t2), 3.

for all (s1, t1) and (s2, t2) in Rd×R, where CS and CT are purely spatial and purely temporal

covariance functions, respectively. The separability of C eases the computation, because the

space-time covariance matrix factorizes into the Kronecker product of purely spatial and

purely temporal covariance matrices. However, Equation 3 assumes no interaction between

space and time, which is often unrealistic for physical processes.

2.1.2. Stationarity and separability. A stationary space-time covariance function C is sep-

arable if C(h, u) = CS(h) · CT(u) for all (h, u) in Rd × R, where CS and CT are stationary

purely spatial and purely temporal covariance functions, respectively. Equivalently, the

covariance function C is separable if it can be factorized in terms of the joint process as

C(h, u) = C(h, 0) · C(0, u)/C(0, 0), 4.

for all (h, u) in Rd×R (Mitchell et al. 2005). In the spectral domain, a stationary covariance

function is separable if and only if the spectral measure factors as a product of measures

over the spatial and temporal domains. In particular, if the spectral density exists, it factors

as a product over the domains.
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2.1.3. Full symmetry. The space-time covariance function C is fully symmetric if

C(s1, t1, s2, t2) = C(s1, t2, s2, t1) for all (s1, t1) and (s2, t2) in Rd × R. Full symmetry con-

tains separability as a special case, so covariance structures that are not fully symmetric

are non-separable. There is often a lack of full symmetry for processes in geoscience, mete-

orology, hydrology and ecology due to transport effects such as prevailing air or water flows

and atmosphere circulation.

2.1.4. Stationarity and full symmetry. A stationary space-time covariance function C is

fully symmetric if

C(h, u) = C(h,−u) = C(−h, u) = C(−h,−u), 5.

for all (h, u) in Rd × R. In the purely spatial context, this property is also known as axial

symmetry (Scaccia & Martin 2005) or reflection symmetry (Lu & Zimmerman 2005b). A

stationary and fully symmetric space-time covariance function can also be characterized in

terms of the spectral measure or spectral density by Bochner’s theorem; see Theorem 4.3.2

and discussion in Gneiting et al. (2007).

2.1.5. Stationarity and Taylor’s hypothesis. A stationary space-time covariance function

C satisfies Taylor’s hypothesis (Taylor 1938) if there exists a velocity vector v ∈ Rd such

that C(0, u) = C(vu, 0), u ∈ R. Qualitatively, this implies that the process evolves slowly

in time relative to the advective time scale, and it is often referred to as the frozen field

hypothesis. As a specific asymmetric covariance structure, Taylor’s hypothesis has gained

wide interest in meteorology and hydrology, and has been found to be plausible for various

space-time covariance models (Gupta & Waymire 1987; Cox & Isham 1988). Examples of

covariance functions that admit Taylor’s hypothesis exactly can be found in Gneiting et al.

(2007).

2.2. Testing and Visualizing the Structure

The aforementioned various space-time covariance structures of stationarity, spatial

isotropy, separability, full symmetry and Taylor’s hypothesis are desirable from a com-

putational point of view. However, these assumptions are not always realistic; see, e.g.,

the graphical evidence in Cressie & Huang (1999), Gneiting et al. (2007) and Jun & Stein

(2007). Formal testing procedures have been developed to restrict the class of models one

needs to investigate when modeling space-time data.

2.2.1. Tests for stationarity. Tests for spatial stationarity have been proposed by Fuentes

(2005), who extended a test for stationarity for time series to spatial random fields, and

Bandyopadhyay & Rao (2017), who used a spectral method for testing stationarity for irreg-

ularly spaced spatial data, based on observing that the Fourier transform of a stochastic pro-

cess is nearly uncorrelated if the process is stationary but correlated if it is non-stationary.

Tests for spatio-temporal stationarity include those in Jun & Genton (2012), which are

based on the asymptotic normality of the proposed test statistics that are functions of esti-

mators of covariances at selected spatial and temporal lags under spatial stationarity, and

Bandyopadhyay et al. (2017), who extended the method in Bandyopadhyay & Rao (2017)

to space-time data over discrete time and irregular spatial locations. A review of tests for

spatial isotropy can be found in Weller & Hoeting (2016).
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2.2.2. Tests for separability. Early tests for separability of spatio-temporal processes were

based on parametric models (Guo & Billard 1998; Brown et al. 2001). Later researchers

have focused on likelihood ratio tests (Roy & Khattree 2003, 2005a,b; Roy & Leiva 2008; Lu

& Zimmerman 2005a; Mitchell et al. 2005, 2006; Simpson 2010), and tests based on prop-

erties of the spectral representation (Scaccia & Martin 2002, 2005; Fuentes 2006; Crujeiras

et al. 2010). Likelihood ratio tests were developed in the context of multivariate repeated

measures, and Mitchell et al. (2005) adapted the test of Mitchell et al. (2006) to the spatio-

temporal setting. Bevilacqua et al. (2010) presented parametric tests based on weighted

composite likelihood estimates in situations where classical methods such as a likelihood

ratio test may fail. Aston et al. (2017), Liu et al. (2017) and Constantinou et al. (2017)

constructed nonparametric tests for separability of space-time functional processes. Cap-

pello et al. (2018) proposed a method for testing positive and negative non-separabilities,

whose definitions are given in Section 3.1.3.

2.2.3. Tests for symmetry. For testing lack of symmetry for spatial processes, Scaccia &

Martin (2005) used spectral methods for assessing axial symmetry, and Lu & Zimmerman

(2005b) used two-dimensional spatial periodograms for assessing axial symmetry and com-

plete symmetry. For testing full symmetry in a spatio-temporal setting, the nonparametric

test of Park & Fuentes (2008) is based on the spectral representation of spatio-temporal

processes. Since full symmetry implies separability, covariance structures that are not fully

symmetric are non-separable, and hence tests for full symmetry can be used to reject sep-

arability. In terms of testing the Taylor’s hypothesis, Li et al. (2009) proposed a formal

statistical testing procedure based on the asymptotic joint normality of covariance estima-

tors derived by Li et al. (2008a).

2.2.4. Unified tests for separability and symmetry. Li et al. (2007) proposed a unified non-

parametric methodology for testing various assumptions (i.e., separability, full symmetry,

isotropy and Taylor’s hypothesis) based on the asymptotic joint normality of sample space-

time covariance estimators for a selected spatio-temporal lag set, and Li et al. (2008b)

extended the test to the multivariate space-time setting. Shao & Li (2009) modified the

tests in Li et al. (2007, 2008b) by employing an inconsistent estimator of the asymptotic

covariance matrix, with the advantage that the test is free of any tuning parameters.

Huang & Sun (2019) proposed test functions for separability and full symmetry,

fh(u) = C(h, u)/C(h, 0)− C(0, u)/C(0, 0), gh(u) = C(h, u)− C(h,−u), 6.

respectively, as functions of the temporal lag u for any spatial lag h. The function fh(u)

(gh(u)) is 0 for any u and h if C is separable (fully symmetric); otherwise, the test function

will move away from zero. They then used functional boxplots (Sun & Genton 2011) to

visualize the functional median and variability of the test functions. The degree of non-

separability or asymmetry is indicated by the extent of departure from zero at all temporal

lags in the functional boxplot. The authors also developed a rank-based nonparametric

testing procedure to assess the significance of the non-separability or asymmetry.

3. SPACE-TIME COVARIANCE MODELS

Owing to their computational convenience, separable space-time covariance functions have

been applied to multivariate repeated measures or doubly repeated measures (Chaganty
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& Naik 2002) and to spatio-temporal models (Huizenga et al. 2002; Mitchell & Gumpertz

2003). Although separability is valuable, it does not allow for space-time interaction in

the covariance. Stein (2005a) pointed out that separable models are not smoother away

from the origin than they are at the origin, leading to a kind of discontinuity in certain

correlations that one might wish to avoid in some circumstances. More detailed discussion

of the shortcomings of separable models can be found in Kyriakidis & Journel (1999) or

Cressie & Huang (1999).

Recent studies have focused on constructing non-separable models, which are often

physically more realistic. The associated computational burden can be reduced in some

settings by using the separable approximation of the non-separable space-time covariance

matrix proposed by Genton (2007). Other techniques that allow for fast inference on large

space-time data sets are discussed in Section 4.

Non-separable space-time covariance models can be constructed from Fourier transforms

of permissible spectral densities, mixtures of separable models, and partial differential equa-

tions representing physical laws. They can be fully symmetric or asymmetric, stationary

or non-stationary, univariate or multivariate, and in the Euclidean space or on the sphere.

We discuss these models in detail below.

3.1. Stationary and Fully Symmetric Covariance Models (SSCMs)

3.1.1. SSCMs based on spectral methods. SSCMs can be constructed through Fourier

transforms of permissible spectral densities, based on the spectral representation, Equa-

tion 2, of covariance functions. A class of SSCMs has been characterized by Cressie &

Huang (1999) through a closed-form Fourier inversion in Rd,

C(h, u) =

∫
eιh

>ωρ(ω, u)dω, (h, u) ∈ Rd × R,

where ρ(ω, u), u ∈ R, is a continuous positive-definite function for all ω ∈ Rd. This approach

is restricted to a small class of functions for which a closed-form solution to a d-variate

Fourier integral is known.

Gneiting (2002) proposed a more general class of SSCMs using the approach of Cressie

& Huang (1999) but without the Fourier integral limitation,

C(h, u) =
σ2

ψ(u2)d/2
ϕ

{
‖h‖2

ψ(u2)

}
, (h, u) ∈ Rd × R, 7.

where σ2 = C(0, 0), ϕ(r) ≥ 0, r ≥ 0, is a completely monotone function (i.e., it possesses

derivatives of all orders with alternating signs), and ψ(r) > 0, r ≥ 0, has a completely

monotone derivative (i.e., ψ is a Bernstein function).

Porcu et al. (2006) generalized the Gneiting (2002) class of covariance models to Rd1 ×
Rd2 ×Rd3 ×Rd4 , where di ∈ N, i = 1, 2, 3, 4, and built spatially component-wise anisotropic

and temporally symmetric SSCMs defined on R3 × R,

C(h1, h2, h3, u) =
σ2

ψ1(|h1|2)1/2ψ2(|u|2)1/2
× L

{
|h2|2

ψ1(|h1|2)
,
|h3|2

ψ2(|u|2)

}
, h1, h2, h3, u ∈ R,

8.

where σ2 = C(0, 0, 0, 0), ψ1 and ψ2 are either Bernstein functions, variograms or increasing

and concave functions on [0,+∞), and L is defined as before. A similar construction was
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proposed by Porcu et al. (2007): C(h, u) = L
{∑d

i=1 ψi(|hi|), ψt(|u|)
}
, (h, u) ∈ Rd × R,

where h = (h1, . . . , hd)
>, and L and ψ are defined as above.

Stein (2005a) showed that similar to separable models, the SSCMs proposed by Cressie

& Huang (1999), Gneiting (2002) and De Iaco et al. (2001, 2002) (to be discussed in Sec-

tion 3.1.2) are not differentiable at the origin or along certain axes, which leads to discon-

tinuities of the autocorrelation function away from the origin. He proposed a parametric

class of spectral densities of the form

f(ω, τ) = {P1(‖ω‖2) + P2(|τ |2)}−ν , (ω, τ) ∈ Rd × R,

where ν > 0, f is bounded, P1 and P2 are non-negative polynomials on [0,+∞) of positive

degrees α1 and α2, respectively, and d/(α1ν) + 1/(α2ν) < 2. The corresponding space-time

covariance function C can achieve any degree of differentiability in space and in time away

from the origin. Stein (2005a) also described a general approach to constructing space-time

covariance functions that are spatially isotropic but asymmetric from symmetric models by

taking derivatives.

Porcu et al. (2008) built spectral densities whose Fourier pair is infinitely differentiable

away from the origin. The new spectral density is a product of two spectral densities, f1
and f2, under the condition of integrability,

f(ω, τ) = f1(a1|τ |α + b1‖ω‖β)f2(a2|τ |α + b2‖ω‖β), (ω, τ) ∈ Rd × R,

where a1, a2, b1, b2 are positive constants, and α, β ∈ N are even numbers. This general

class includes both the separable and non-separable cases in the spectral domain.

The Matérn class (Matérn 1986) is an important family of covariance functions in spatial

statistics. Its spectral density is f(ω) = γ(α2 + ‖ω‖2)−ν−d/2,ω ∈ Rd, where γ > 0, α > 0

and ν > (d + 1)/2 are the scale, spatial range and smoothness parameters, respectively.

Fuentes et al. (2008) extended the Matérn class to the spatio-temporal setting, where the

spectral density has the form

f(ω, τ) = γ(α2β2 + β2‖ω‖2 + α2τ2 + ε‖ω‖2τ2)−ν , (ω, τ) ∈ Rd × R, 9.

where β is the temporal range parameter, and ε ∈ [0, 1] is the non-separability parameter.

If ε = 1, the corresponding covariance is separable, and both the spatial and temporal

components are Matérn-type covariances. If ε 6= 1 and ν <∞, the corresponding covariance

is non-separable. Ip & Li (2017b) provided closed forms of the covariance functions for ε = 1

and ε = 0; the closed form does not exist in general when ε ∈ (0, 1), in which case one must

rely on a numerical Fourier transformation.

Horrell & Stein (2017) defined a half-spectral representation either in space if only the

integration over ω is performed in Equation 2, or in time if only the integration over τ is

performed. The models in Cressie & Huang (1999) and Gneiting (2002) are half-spectral

in space, and that in Stein (2005b) is half-spectral in time. Horrell & Stein (2017) also

developed a class of SSCMs that is half-spectral in time.

3.1.2. SSCMs based on mixtures. SSCMs can also be constructed as mixtures of separable

covariances. As a result, the mixture models are fully symmetric.

De Iaco et al. (2001) proposed a simple product-sum SSCM,

C(h, u) = a0CS0(h)CT0(u) + a1CS1(h) + a2CT2(u), (h, u) ∈ Rd × R, 10.

www.annualreviews.org • Space-Time Covariances 7



where a0, a1 and a2 are non-negative constants, and CS0,CS1 and CT0,CT2 are stationary,

purely spatial and purely temporal covariance functions, respectively. De Iaco et al. (2002)

extended Equation 10 as

C(h, u) =

∫
{a0CS(h; θ)CT(u; θ) + a1CS(h; θ) + a2CT(u; θ)}dµ(θ), (h, u) ∈ Rd × R,

under integrability conditions, where µ is a finite, non-negative measure on a non-empty

set Θ, CS(·; θ) and CT(·; θ) are stationary, purely spatial and purely temporal covariance

functions, respectively, for each θ ∈ Θ, and a0, a1 and a2 are non-negative constants. When

a1 = a2 = 0, this corresponds to an extension of the Cressie & Huang (1999) model.

Ma (2002) constructed SSCMs by introducing a non-negative bivariate discrete random

vector (U, V )>, conditional on which the underlying space-time random process Z possesses

a separable covariance structure. Then the (unconditional) correlation function of Z, defined

as ρ(h, u) = C(h, u)/C(0, 0), has the form

ρ(h, u) =

∞∑
i=1

∞∑
j=1

ρS(h; i)ρT(u; j)pij , (h, u) ∈ Rd × R, 11.

where {pij , (i, j) ∈ Z2
+} is the probability mass function of (U, V )>, and conditional on

(U, V ) = (i, j) ∈ Z2
+, ρS(·; i) and ρT(·; j) are stationary, purely spatial and purely temporal

correlation functions, respectively. A similar conditional method was used in Ma (2003a,b).

Ma (2005) derived SSCMs via linear combinations of space-time covariance functions, which

are formulated by using the cosine transform method in Ma (2003b).

Porcu et al. (2008) joined several approaches from De Iaco et al. (2001), Gneiting (2002)

and Stein (2005a) to construct SSCMs while removing some undesirable features of the

previously proposed models. However, the level of differentiability in their model cannot be

determined analytically. This drawback is covered by their second proposal based on the

spectral method, which was discussed in Section 3.1.1.

3.1.3. Measures of non-separability. Recent work on constructing valid SSCMs has focused

on different types and degrees of non-separability that characterize the extent of space-time

interaction, or the dependence between spatial and temporal components of the process.

Based on the characterization of separability in Equation 4, Rodrigues & Diggle (2010)

proposed simple definitions for positive and negative non-separability of space-time covari-

ance functions, corresponding to the ratio

C(h, u)× C(0, 0)

C(h, 0)× C(0, u)

being larger or smaller than 1, respectively, for all (h, u) in Rd × R. They showed that the

SSCMs in Gneiting (2002) cannot accommodate negative non-separability, those in De Iaco

et al. (2001) cannot accommodate positive non-separability, and those in Ma (2003a) accom-

modate non-separability but under the restriction that the temporal correlation structure

decays exponentially. They then proposed SSCMs using a discretized convolution-based

model with a non-separable kernel function, within which negative, zero or positive non-

separability can be achieved by changing the value of a single parameter. The convolution-

based model is shown to achieve substantial computational gains over the use of a Gaussian

process with directly specified covariance structure when the process being modeled is spa-

tially smooth, that is, when the correlation decays slowly with increasing spatial separation.
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De Iaco & Posa (2013) pointed out that the definitions in Rodrigues & Diggle (2010)

did not account for the fact that a covariance function usually depends on a vector of

parameters θ ∈ Θ, and proposed a definition of uniformly positive and negative non-

separability, corresponding to the same relationships as in Rodrigues & Diggle (2010) but

for all (h, u) ∈ Rd × R and all θ ∈ Θ. Thus, uniformly positive (negative) non-separability

implies point-wise positive (negative) non-separability, but the converse is false. They

showed that the covariance models in Gneiting (2002) and Ma (2002) are uniformly positive

non-separable, and the model in De Iaco et al. (2001) is uniformly negative non-separable.

They also proposed wide classes of SSCMs based on extensions of De Iaco et al. (2001), Ma

(2002) and De Iaco et al. (2002), with changing non-separability indexes.

Fonseca & Steel (2011a) suggested a measure of non-separability for their specific pro-

posed SSCM, formed by setting U = X0 + X1 and V = X0 + X2 in Ma (2002), where

X0, X1 and X2 are independent non-negative random variables with finite moment gener-

ating functions M0,M1 and M2, respectively. Then the new SSCM is given by

C(h, u) = σ2M0{−γ1(h)− γ2(u)}M1{−γ1(h)}M2{−γ2(u)}, (h, u) ∈ Rd × R,

where γ1 and γ2 are purely spatial and purely temporal variograms, respectively. This new

SSCM allows for different degrees of smoothness across space and time and for long-range

dependence in time. The measure of non-separability is the correlation between U and V as

an indication of space-time interaction, which is always between 0 and 1, with 0 indicating

separability and 1 meaning high dependence between space and time. However, this model

excludes negative non-separability in the sense of Rodrigues & Diggle (2010).

Fonseca & Steel (2017) proposed a general measure of non-separability that can be

applied to any class of non-separable covariance functions. Since negative non-separability

is uncommon in practice, they only considered positively non-separable functions. They

showed that some of the models proposed in the literature, such as those in Cressie &

Huang (1999), Gneiting (2002) and Rodrigues & Diggle (2010), do not achieve strong non-

separability and that the parameters do not always have clear interpretations. They also

illustrated how their proposal can be applied to non-stationary processes.

3.2. Stationary and Asymmetric Covariance Models (SACMs)

3.2.1. Lagrangian reference frame. Atmospheric and geophysical processes are often asym-

metric due to transport effects, such as prevailing air and water flows. To model such

processes, we can use the Lagrangian reference frame (May & Julien 1998) to achieve asym-

metry. Specifically, consider a spatial random field on Rd with a stationary covariance

function CS, and suppose that the entire field moves time-forward with a random velocity

vector V ∈ Rd. The resulting spatio-temporal random process has the covariance

C(h, u) = E{CS(h−Vu)}, (h, u) ∈ Rd × R. 12.

Covariances of this form are generally asymmetric and satisfy Taylor’s hypothesis. Ma

(2003a), among others, proposed similar constructions, and established a theorem that

formalizes the validity of turning a purely spatial covariance function into a space-time

covariance function.

Various options can be physically justified for choosing the random velocity vector V.

For instance, in the context of atmospheric transport effects driven by prevailing winds,

the simplest case occurs when V = v is constant, which represents the mean wind vector
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as determined from synoptic or local wind patterns. Gupta & Waymire (1987) referred

to this as the frozen field model. The non-frozen field model, proposed by Cox & Isham

(1988), offers more flexibility by treating V as random. Finally, the distribution of V could

be updated dynamically according to the current state of the atmosphere, which yields

non-stationary, flow-dependent covariance structures.

The stationary frozen field model has been used to model winds (Gneiting et al. 2007;

Ezzat et al. 2018), waves (Ailliot et al. 2011), solar irradiance (Inoue et al. 2012; Lonij et al.

2013; Shinozaki et al. 2016), and disease (Christakos 2017). However, it is isotropic for any

u 6= 0. Stationary non-frozen field models, where the velocity vector is not constant, can

introduce anisotropy. Porcu et al. (2006) proposed an anisotropic version of the model by

partitioning h and V into smaller components,

C(h, u) = EV1EV2 [L{γ1(h1 −V1u), γ2(h2 −V2u)}], (h, u) ∈ Rd × R,

where γ1, γ2 are purely spatial variograms, and L is the bivariate Laplace transform of a

non-negative random vector. Schlather (2010) derived the explicit form of the non-frozen

field model for specific choices of CS and the distribution of V.

3.2.2. Other physics-based SACMs. There is often a need for the covariance function to in-

corporate physical features of environmental variables. Covariance models that satisfy Tay-

lor’s hypothesis are also physically realistic, and the Lagrangian reference frame discussed

above has its roots in physics. Many stationary and asymmetric space-time covariance

functions can be derived as solutions of diffusion equations or stochastic partial differential

equations. Related approaches have been discussed by Heine (1955), Jones & Zhang (1997),

Christakos & Hristopulos (1998), Christakos (2000), Brown et al. (2000), Ma (2003a), and

Kolovos et al. (2004).

3.3. Non-stationary Covariance Models (NSCMs)

There is an extensive literature on non-stationary spatial covariance models (e.g., Sampson

& Guttorp 1992; Higdon et al. 1999; Fuentes & Smith 2001; Fuentes 2002; Nychka et al.

2002; Pintore & Holmes 2007). In this section, we focus on non-stationary space-time

covariance models, which can be non-stationary in space and stationary in time, stationary

in space and non-stationary in time, or non-stationary in both space and time.

Ma (2002) proposed non-separable NSCMs by scale mixtures in a similar way to the

positive power mixtures model in Equation 11. Kolovos et al. (2004) obtained non-separable

NSCMs from the generalized random field theory (Christakos 1991, 2004). Porcu et al.

(2007) generalized the Gneiting (2002) class to spatial non-stationarity using non-stationary

kernels. Fuentes et al. (2008) constructed non-separable NSCMs based on a mixture of local

stationary spectral densities of the spatio-temporal Matérn-type as shown in Equation 9.

More sophisticated NSCMs have appeared recently. Ip & Li (2015) proposed covariance

models that allow the model parameters to vary over time. Shand & Li (2017) formulated

a spatio-temporal dimension expansion approach based on the work of Bornn et al. (2012).

Xu & Gardoni (2018) constructed NSCMs based on the improved latent space approach.

3.4. Covariance Models on the Sphere (CMSPs)

Climate model outputs and remotely sensed networks have provided environmental, geo-

physical, and atmospheric sciences with many datasets that are inherently global and tem-
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porally evolving. Thus, related applications have increasingly focused on modeling processes

evolving temporally over a sphere, using, for example, global data covering a large portion

of the Earth. In principle, all the aforementioned methods in the large literature on covari-

ance models for flat surfaces using the Euclidean distance can produce valid CMSPs using

the chordal distance, since the chordal distance in Sd−1
r , a sphere in Rd with radius r, is

equivalent to the Euclidean distance in Rd (Jun & Stein 2007). The chordal distance, dCH,

is the length of the shortest straight line between two locations on the sphere.

However, the chordal distance is not a valid metric for the description of spatial de-

pendence, since it does not respect the curvature of the sphere, and thus may result in

physically unrealistic distortions (Gneiting 2013). In addition, it underestimates the true

distance between the points on the sphere, which has a non-negligible impact on the esti-

mation of the spatial scale (Porcu et al. 2016). Instead, the great circle (geodesic) distance,

dGC, defined as the shortest distance between any two points on a sphere measured along

a path on its surface, is the physically most natural metric for processes on the surface of

a sphere. Nevertheless, space-time covariances in Euclidean spaces are generally not valid

on the sphere if coupled with the geodesic distance (Berg & Porcu 2017). For example,

the Matérn model with the geodesic distance is valid on the sphere only under a severe

restriction on the smoothing parameter (not smoother than the exponential covariance).

This limitation is inherited for space-time processes, and it has motivated researchers to

either use the chordal distance (North et al. 2011; Jeong & Jun 2015; Guinness & Fuentes

2016), or build new CMSPs, which might not be valid for the Euclidean distance, based

on positive definite functions using the geodesic distance (Porcu et al. 2016; Berg & Porcu

2017; Alegŕıa et al. 2019).

More sophisticated non-stationary spatial or spatio-temporal CMSPs have been pro-

posed by Jun & Stein (2007, 2008), Hitczenko & Stein (2012) and Alegŕıa & Porcu (2017),

among others. Gneiting (2013) and Jeong et al. (2017) provided reviews on CMSPs in a

spatial context. A thorough review on CMSPs on the sphere in R3 representing our planet

has been given in Porcu et al. (2018), and Salvaña & Genton (2020) also included a review

on spatial and spatio-temporal CMSPs.

3.5. Multivariate Cross-Covariance Models (MCCMs)

It is now common to monitor several geo-referenced variables evolving in time. Hence,

it is important to specify an MCCM able to capture both the spatio-temporal and the

cross-variable dependencies.

Consider a p-variate spatio-temporal random process Z(s, t) = {Z1(s, t), . . . , Zp(s, t)}>,

(s, t) ∈ Rd × R. The corresponding matrix-valued cross-covariance function at two spatio-

temporal coordinates, (s1, t1), (s2, t2) ∈ Rd×R, is C(s1, t1, s2, t2) = {Cij(s1, t1, s2, t2)}pi,j=1,

where Cij(s1, t1, s2, t2) = cov{Zi(s1, t1), Zj(s2, t2)}, i, j = 1, . . . , p. The cross-covariance

matrix Σ ∈ RNp×Np of the random vector {Z(s1, t1)>, . . . ,Z(sN , tN )>}> ∈ RNp, with

N ×N block elements of p × p matrices C(sk, tk, sl, tl), k, l = 1, . . . , N , should satisfy the

condition of non-negative definiteness, i.e., a>Σa ≥ 0 for any integer N , any finite set of

coordinates (s1, t1), . . . , (sN , tN ), and any vector a ∈ RNp.
The notions of stationarity and isotropy are defined in essentially the same way as in the

univariate case. Arguably, the easiest way to build stationary MCCMs is again to rely on the

assumption of (space-time) separability, where each Cij(h, u) can be written as a product of

a purely spatial cross-covariance Cij(h) and purely temporal univariate covariance CT(u),
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(h, u) ∈ Rd × R, and this implies full symmetry, which occurs when each Cij satisfies

Equation 5. Alegŕıa et al. (2019) defined the notion of space-time p-separability and two

related structures, and other notions of separability have been discussed by Apanasovich &

Genton (2010) based on latent dimensions, and by De Iaco et al. (2019) based on the linear

model of coregionalization (LMC). Again, separability assumptions can be useful for both

modeling and estimation purposes since they alleviate the computational burdens, but are

generally unrealistic. The literature has thus focused on developing non-separable models.

In the purely spatial context, Genton & Kleiber (2015) provided a review on MCCMs,

including models built from univariate models based on LMC, convolution methods and

latent dimensions, and the multivariate Matérn model (Gneiting et al. 2010). These models

can be further adapted to the space-time context. For example, Bourotte et al. (2016)

and Ip & Li (2016, 2017a) provided several adaptations of the multivariate purely spatial

Matérn model to space-time, and Alegŕıa et al. (2019) extended the modified Gneiting class

introduced by Porcu et al. (2016) to the multivariate case, and also constructed an additional

Gneiting type cross-covariance by adapting the latent dimension approach (Apanasovich &

Genton 2010) to the spherical context. Several studies discussed in previous sections, for

example, Rodrigues & Diggle (2010), Ip & Li (2015) and Porcu et al. (2016), also tackled

the multivariate case. A more thorough review of MCCMs can be found in Salvaña &

Genton (2020), who proposed a class of non-stationary Lagrangian MCCMs too. Spatio-

temporal covariance models have also been discussed in Cressie & Wikle (2011), Montero

et al. (2015), Christakos (2017) and Wikle et al. (2019).

3.6. Illustrations

In this section, we illustrate various space-time covariance structures and realizations

through visuanimations (Genton et al. 2015). To illustrate non-separability, we choose the

stationary and fully symmetric convolution-based covariance model proposed by Rodrigues

& Diggle (2010), where negative, zero and positive non-separability can be achieved by vary-

ing a single parameter. Specifically, suppose the covariance function of a spatio-temporal

process Z is given by

C(h, u) =

∫
Rd

∫
R
k(ω − h, τ − u)k(h, u)dωdτ, (h, u) ∈ Rd × R, 13.

where k is a square-integrable kernel function. Rodrigues & Diggle (2010) suggested using

k(h, u) = ρ(u)exp{−ρ(u)β(‖h‖/a)2}, (h, u) ∈ Rd × R, 14.

where ρ(u) = exp(−|u|/b) is an exponential temporal correlation function with b > 0 as

the temporal range parameter, a > 0 is the spatial range parameter, and β < 2 is the non-

separability parameter. When β = 0, Equation 13 reduces to the separable case. Positive

and negative values of β correspond to positive and negative non-separability, respectively,

whose definitions are given in Section 3.1.3. The general form of the covariance function

corresponding to the kernel k in Equation 14 is

CRD(‖h‖, u) ∝
∫

ρ(t− u)ρ(t)

ρ(t− u)β + ρ(t)β
exp

{
− ρ(t− u)βρ(t)β

ρ(t− u)β + ρ(t)β

(
‖h‖
a

)2
}

dt, (h, u) ∈ Rd×R.

15.
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In the visuanimation, we choose values for the non-separability parameter, β ∈
{−1, 0, 1}, representing negative, zero and positive non-separability, respectively. In addi-

tion, we choose values for the spatial and temporal range parameters a and b corresponding

to weak, medium and strong spatial and temporal dependences, measured by the respective

effective ranges. The effective range is defined as the distance beyond which the correlation

between observations is less than or equal to 0.05 (Irvine et al. 2007). In this section, we sim-

ulate at 15×15 locations in a unit square [0, 1]2 in space and 10 points in a unit interval [0, 1]

in time, and select levels of the spatial effective range as a∗ ∈ {0.3, 0.7, 1.2}, and the tempo-

ral effective range as b∗ ∈ {0.3, 0.6, 0.9}. Fixing β ∈ {−1, 0, 1}, the corresponding values for

a and b are computed by solving ρRD(0, b∗; a, b, β) = 0.05 and ρRD(a∗, 0; a, b, β) = 0.05, re-

spectively, where ρRD(‖h‖, u; a, b, β) = CRD(‖h‖, u)/CRD(0, 0) is the space-time correlation

function, ρRD(0, u; a, b, β) and ρRD(‖h‖, 0; a, b, β) are the purely temporal and purely spatial

correlation functions, respectively. The complicated integral in Equation 15 is evaluated

numerically.

(a) β = 1

a*

b*

0.3 0.7 1.2

0.
3

0.
6

0.
9

●

(b) ρ(h, u)

h

u

 0.05 

 0.1 

 0.2 

 0.3 

 0.4  0
.5

  0.7 

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

(c) fh(u)

u

f h

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 (d) t=5

s1

s 2

−0.5 0.0 0.5 1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 (e) t=6

s1

s 2

−0.5 0.0 0.5 1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 (f) t=7

s1

s 2

−0.5 0.0 0.5 1.0

Figure 1

Illustration of the positive (β > 0) non-separability correlation structure. For each combination of
parameters shown in panel (a), the contour plot of the correlation function is shown in (b), the

functional boxplot of the true separability test functions (see Equation 6) is shown in (c), where
each curve is associated with a specific pair of spatial locations, the central black curve represents

the median, the magenta area is the 50% central region, and the band bounded by the outer
curves is the maximum non-outlying envelope, and (d)-(f) show spatial maps at three consecutive

time points from realizations of a spatio-temporal Gaussian process with zero mean, unit variance
and the corresponding correlation function.

We display the visuanimations in Movie 1 in the supplementary materials, and here we

only show one case in Figure 1 for illustration. For each combination of parameters shown

in panel (a), the contour plot of the correlation function is shown in (b), the functional

boxplot of the true separability test functions (see Equation 6) defined by Huang & Sun
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(2019) is shown in (c), where the degree of non-separability is indicated by the extent of

departure from zero at all temporal lags, and (d)-(f) show spatial maps at three consecutive

time points from realizations of a spatio-temporal Gaussian process with zero mean, unit

variance and the corresponding correlation function. Movie 1 shows that the contour plots

for all parameter combinations are symmetric, and the spatial correlation decays quickly if

the effective range a∗ is small, and decays slowly if a∗ is big. When β = 0, the separability

test functions are identically zero, and when β 6= 0, the test functions deviate from zero, or

specifically, they are all negative when β = −1 and all positive when β = 1. The realizations

show features that reflect the underlying correlation structures. When β = 0, i.e., in the

separable case, the maps at the three consecutive time points do not interact, although in

a few cases some spatial patterns are retained as time evolves, due to the strong temporal

dependence. When β 6= 0, space-time interactions exist, i.e., the maps largely share spatial

patterns at the three consecutive times, especially when the spatial or temporal dependence

is strong.

In order to illustrate the fully symmetric and asymmetric covariance structures, we use

a construction similar to that in Gneiting et al. (2007). Specifically, the correlation model

is a linear combination of ρRD used above, and a Lagrangian correlation function ρLGR,

ρ(h, u) = (1− λ)ρRD(‖h‖, u) + λρLGR(h, u), 16.

where λ ∈ [0, 1] is the asymmetry parameter, with λ = 0 indicating full symmetry, and

ρLGR(h, u) =

(
1− 1

2‖v‖‖h− vu‖
)3/2

+

, 17.

where p+ = max(p, 0), h = (h1, h2)>, and v = (v1, v2)> is the vector of constant velocities

at the two directions h1 and h2, respectively. The Lagrangian correlation function ρLGR is

valid since in Equation 12, we set V = v as a constant vector, and use the Askey function

(Askey 1973), CS(h) = (1− ‖h‖/b)ν+, b > 0, which is positive definite on R2 if ν > 3/2

(Zastavnyi & Trigub 2002); also, we set b = 2‖v‖ > 0.

For visuanimation, we fix the non-separability parameter β = 1, and choose different

values for the asymmetry parameter, λ ∈ {0, 0.05, 0.1}. When λ = 0, the covariance function

reduces to the fully symmetric case, and it is isotropic, i.e., it depends on the spatial

and temporal lags only through their distances. When λ 6= 0, the covariance function

is anisotropic, so we cannot deduce the parameter settings that correspond to specific

configurations of effective ranges, as in the first illustration. However, since here λ is small,

the spatial and temporal dependences are affected by the Lagrangian part only slightly.

Hence, for λ = 0.05 or λ = 0.1, we use the same parameter settings that are derived from

the case where λ = 0. We use the same configuration for simulation as above, and assume

v1 = v2 = 1, i.e., the random field travels in the direction of 45◦. The visuanimations can

be found in Movie 2 in the supplementary materials, and only one case is shown here in

Figure 2 for illustration. Since the correlation function relies on the temporal lag u and

both components, h1 and h2, of the spatial lag h, we fix h2 = 0, and draw the contours

for different values of u and h1. We see that when λ = 0, the contour plots in (b) are

symmetric, and the full symmetry test functions in (c) are identically zero; when λ > 0,

the contour plots are asymmetric, and the test functions deviate from zero, with the extent

of asymmetry and departure from zero getting larger as λ increases. In addition, when

λ = 0, the maps are the same as those in the case of β = 1 in Movie 1, since we use the
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Figure 2

Illustration of the asymmetric (0 < λ < 1) correlation structure. For each combination of
parameters shown in panel (a), the contour plot of the correlation function, with h2 fixed at zero,

is shown in (b), the functional boxplot of the full symmetry test functions (see Equation 6) is

shown in (c), and (d)-(f) show spatial maps at three consecutive time points from realizations of a
spatio-temporal Gaussian process with zero mean, unit variance and the corresponding correlation

function.

same covariance model and the same seed in simulating the Gaussian random field. When

λ > 0, a transport effect is present in the direction of 45◦, and becomes more obvious as λ

increases.

4. FITTING SPACE-TIME COVARIANCE MODELS

The estimation of covariance functions is important for applications of space-time random

processes, such as space-time prediction, or kriging. Covariance functions can be estimated

non-parametrically without assuming any covariance model. For example, a stationary

covariance function can be estimated empirically by

Ĉ(h, u) =

∑
s,s+h∈D

T−u∑
i=1

{
Z(s, i)− 1

T−u

T−u∑
j=1

Z(s, j)
}{

Z(s + h, i+ u)− 1
T−u

T−u∑
j=1

Z(s + h, j + u)
}

N(h)(T − u)
,

18.

for u = 0, . . . , T − 1, where T is the number of time points, N(h) is the number of pairs

of locations with spatial lag h, and D is the spatial domain of the observations. More

often, one selects from various parametric classes of covariance models and estimates the

parameters therein by fitting the models to the data. This allows one to learn the properties

of the covariance in the data, such as separability, full symmetry, and the rates of decay of

spatial and temporal correlations, from the estimated parameters. Furthermore, stochastic
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weather generators (SWG, Wilks & Wilby 1999) based on fast statistical simulations with

the estimated parameters can be used to reproduce the process, and spatio-temporal kriging

can be performed to predict the process in space and time.

After choosing a model, the parameters can be estimated by using an ordinary, weighted

or generalized least-squares approach based on empirical and fitted variograms. Under

the typical Gaussian assumptions, the maximum likelihood (ML) approach is statistically

most efficient for estimation. Suppose we have a vector of space-time observations Z =

{Z(s1, t1), . . . , Z(sN , tN )}> with the mean removed so that we focus on the estimation of

the covariance. Assume that Z ∼ NN (0,Σ(θ)), where θ is the vector of parameters in the

covariance model, and Σ(θ)ij = cov{Z(si, ti), Z(sj , tj)}, i, j = 1, . . . , N . The log-likelihood

function is given by

l(θ) ∝ −ln[det{Σ(θ)}]− Z>Σ(θ)−1Z. 19.

The ML estimator is then obtained by maximizing l(θ). However, exact ML estimation is

computationally infeasible for large datasets, since it requires the evaluation of the deter-

minant and inverse of an N ×N matrix, which has a computational complexity of O(N3).

This scalability issue has also been recognized in spatial statistics. To speed up the com-

putation, one estimation technique is based on computationally tractable approximations

of the covariance matrix. There are three common strategies in spatial statistics: low rank,

sparse and spectral approximations. The low rank method approximates Σ with a matrix of

smaller rank, m, reducing the computational complexity to O(nm2), where n is the number

of spatial locations. Basis function representations are often used for this purpose; see, e.g.,

Cressie & Johannesson (2008) and Katzfuss (2017). The sparse method introduces sparsity

in the full covariance matrix through a compactly supported covariance representation, i.e.,

the covariance shrinks to zero whenever the spatial and/or temporal distances are suffi-

ciently large. The covariance tapering method (Kaufman et al. 2008), for instance, belongs

to this category. The Gaussian Markov random field approximation (Rue & Tjelmeland

2002), on the other hand, introduces sparsity in the inverse of the covariance matrix (also

called the precision matrix). When the observations are located on a regular lattice, the

spectral representation of the Gaussian process allows one to develop spectral constructions

of the full covariance matrix. For example, Samo & Roberts (2015) proposed generalized

spectral kernels that can approximate any bounded kernel with arbitrary precision.

Another strategy is to use a simplified version of the full likelihood, such as composite

likelihood (CL) (Lindsay 1988); see Varin et al. (2011) for an overview. The CL is a product

of a collection of component likelihoods. If {A1, . . . ,AK} is a set of marginal or conditional

events with associated likelihoods Lk(θ) ∝ f(z ∈ Ak; θ), then a CL is the weighted product:

LC(θ) =
∏K
k=1 Lk(θ)ωk , where ωk’s are non-negative weights to be chosen. In particular ap-

plications, unequal weights can be chosen to improve the efficiency. Because each individual

component is a conditional or marginal density, the estimating equation obtained from the

derivative of the CL is unbiased. However, because the components are multiplied, whether

or not they are independent, the inference function has the properties of a likelihood from

a misspecified model.

It is expected that the methods discussed above can be extended to the spatio-temporal

case. However, additional challenges arise when analyzing spatio-temporal data, due to the

high dimensionality with the addition of time, and the distinct, yet intricately involved,

nature of space and time. To simplify the analysis, some authors either separately model

the spatial and temporal dependences (Sahu et al. 2007), or apply a separable space-time

covariance function (Genton 2007). However, these approaches ignore the crucial effect of
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space-time interaction. Paciorek et al. (2009) attempted to capture the space-time interac-

tion of PM10- and PM2.5-particles by using monthly varying spatial surfaces, but assumed

independence across spatial residual surfaces at each time point, which limited their ability

to quantify the space-time interaction. Bai et al. (2012) developed an efficient CL approach

for the joint analysis of spatio-temporal processes. They first constructed three sets of es-

timating functions from spatial, temporal and spatio-temporal cross-pairs, which result in

over-identified estimating functions, and then formed a joint inference function in a spirit

that is similar to the generalized method of moments (Hansen 1982). Bevilacqua et al.

(2012) proposed two estimation methods using the CL approach. The first relies on the

maximization of a weighted version of the CL function with cutoff weights based on the

distance in space and in time. The second is based on the solution of a weighted CL equa-

tion, where the weights are obtained by minimizing an upper bound for the asymptotic

variance of the estimator. Porcu et al. (2020) proposed spatio-temporal covariance mod-

els with dynamical compact support, meaning that the compact supports depend on the

spatial and temporal lags. Their model brings sparsity in the covariance matrix, and the

sparsity changes at each iteration of the maximization algorithm in the Gaussian likelihood

computation.

Recently, software called ExaGeoStat (Abdulah et al. 2018) has been developed for

Gaussian spatial processes. It allows for exact ML estimation with dense full covariance

matrices, using high performance computations that employ the most advanced parallel

architectures, combined with cutting edge dense linear algebra libraries. ExaGeoStat was

also fine-tuned to work on the tile low-rank representation of the dense full covariance

matrix. Development of ExaGeoStat for spatio-temporal settings, however, is ongoing.

The recent trend of using hierarchical models could also ease the computational burden,

but in a completely different way; see Cressie & Wikle (2011) for more details. When there is

strong evidence showing non-Gaussianity or non-stationarity, one can refer to the methods

in, e.g., de Luna & Genton (2005), Wikle & Royle (2005) and Fonseca & Steel (2011b).

5. SPACE-TIME DATA ANALYSIS

In this section, we analyze the space-time covariance structure of a wind dataset, which was

produced by Yip (2018), using the Weather Research and Forecasting (WRF) model. The

original data consist of hourly wind speeds at a fine spatial resolution of approximately 5 km

× 5 km covering the Arabian Peninsula, over the period 2009–2014. We select a subregion

in the new mega-city, NEOM, of Saudi Arabia (NEOM Project 2017), bounded approx-

imately by longitudes 35.49–35.67◦E and latitudes 28.23–28.41◦N. The NEOM project,

initiated from the Saudi Vision 2030 (Alturki & Alsheikh 2016), envisages a very large, self-

sustainable city with a substantial reliance on wind energy. For the time domain, we analyze

the hourly winds in the week of August 20 to 26, 2014, characterized by one of the strongest

wind regimes of the year (Chen et al. 2018). The final spatio-temporal dataset we consider

consists of wind speeds at n = 5 × 5 = 25 gridded spatial locations and T = 24 × 7 = 168

time points, yielding a total of nT = 4200 data points.

Following common practice in the literature (e.g., Gneiting et al. 2007), we apply the

square root transform to the wind speeds. This stabilizes the variance over both space

and time, and makes the marginal distributions approximately normal. We then fit a

time series model for each location, and remove the location-specific trend and season-

ality. The residuals, also called velocity measures, at the 25 locations are denoted by
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Figure 3

Functional boxplots for (a) the separability and (b) the full symmetry test functions defined in

Equation 6 for the velocity measures and the p-values of the rank-based tests.

Z = (Z11, Z21, . . . , Zn1, Z12, . . . , Zn2, . . . , Z1T , . . . , ZnT )>.

Next, we fit a spatio-temporal Gaussian process with zero mean and a space-time co-

variance function to the velocity measures Z. Prior to choosing a covariance model, we

use the testing procedure developed in Huang & Sun (2019) to assess the separability and

full symmetry properties of the covariance function for Z, calculated by Equation 18. Fig-

ure 3 shows the functional boxplots for the two test functions, which clearly deviate from

zero at all temporal lags, indicating non-separability and asymmetry. The significance of

non-separability and asymmetry can be assessed using the rank-based tests, which yield

p-values of 0.003 and 0.025, respectively, based on 1000 bootstrap replicates. These imply

that the assumptions of separability and full symmetry are violated.

Therefore, we use a stationary but not necessarily fully symmetric covariance model

similar to that used in Gneiting et al. (2007). The correlation model is a linear combination

of the Gneiting (2002) model and the frozen Lagrangian model in Equation 17,

ρ(h, u) =
1− λ

a|u|2ν + 1
exp

{
− b‖h‖

(a|u|2ν + 1)β/2

}
+ λ

(
1− ‖h− vu‖

2‖v‖

)3/2

+

, (h, u) ∈ Rd × R,

20.

where λ ∈ [0, 1] is the asymmetry parameter, a > 0 and b > 0 are temporal and spatial

range parameters, respectively, ν > 0 is the smoothness parameter, β ∈ [0, 1] is the non-

separability parameter, and v is the constant velocity vector. We also consider a joint

spatio-temporal nugget effect, δ, and a sill parameter σ2, so the full parametric covariance

model is

C∗(h, u) = σ2ρ(h, u) + δI{(h, u) = (0, 0)}, (h, u) ∈ Rd × R, 21.

where I is the indicator function, and ρ is given by Equation 20.

Under Gaussianity, we use the ML method to estimate the parameters. Since the

likelihood surface would be multimodal if we jointly estimate all the parameters, we fix

the asymmetry parameter at four levels, λ ∈ {0, 0.05, 0.1, 0.15}. Covariance tapering is

exploited to reduce the computational burden, with the empirical spatial and temporal

effective ranges used to determine the range of the compact support for the taper functions.

Since the empirical spatial correlations exceed 0.2 for all pairs of locations, we do not use a
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Table 1 ML estimates for the covariance parameters in a symmetric model (λ = 0)

and three asymmetric models (λ = 0.05, 0.1, 0.15). The standard errors based on the

Hessian matrix for the best fitting case are shown in brackets below the estimates.

β̂ â b̂ ν̂ v̂1 v̂2 σ̂2 δ̂ AIC

λ = 0 0.12 3.20 2.92 30.61 - - 0.14 0.08 −5, 322

λ = 0.05 0.20 0.85 0.97 22.91 15.02 −224.19 0.17 0.07 −9, 451

λ = 0.10 0.14 0.69 1.80 34.07 21.07 −293.26 0.09 0.03 −12, 587

(0.01) (0.04) (0.34) (8.27) (3.04) (25.30) (0.01) (0.002)

λ = 0.15 0.18 0.85 1.72 27.48 17.88 −315.17 0.09 0.05 −11, 758

spatial taper. The empirical temporal correlation reduces to 0.05 when the temporal lag is 15

hours, so we use a temporal taper, CT, that belongs to the Wendland class (Wendland 1995)

of compactly supported covariance functions, i.e., CT(u) = (1− |u|/θT)4+(1 + 4|u|/θT), u ∈
R, where θT = 15 hours. Then the tapered covariance matrix is obtained as C(h, u) =

C∗(h, u)CT(u), (h, u) ∈ Rd ×R, where C∗ is given by Equation 21. The marginal temporal

correlations are zero whenever the temporal lag is greater than θT = 15 hours. This results

in a proportion of 83.5% zero values in the associated covariance matrix. Gaussian likelihood

optimization is then performed exploiting algorithms for sparse matrices as implemented in

the package spam (Furrer & Sain 2010) in R (R Core Team 2020). The estimated parameters

are shown in Table 1. Based on the Akaike information criterion (AIC), the asymmetric

model with λ = 0.1 gives the best fit. In addition, comparing â and b̂ in the symmetric

and asymmetric models, we see that the estimated spatial and temporal dependences are

stronger in the asymmetric model.

We have chosen covariance tapering for illustration purposes. Other approximation

methods are available for the likelihood computation. We did not perform prediction for

this application due to its complexity and the limited length of this paper. R packages

such as gstat (Pebesma 2004), spacetime (Pebesma 2012) and CompRandFld (Padoan &

Bevilacqua 2015) can be used for inference and prediction, but only a limited number of

classical covariance models, either separable or non-separable, have been implemented, and

none of them includes asymmetric models.

SUMMARY POINTS

1. The positive definiteness condition for a function to be a covariance makes it non-

trivial to construct covariance models, especially in the space-time setting.

2. Simplified structures, including stationarity, isotropy, separability, full symmetry

and Taylor’s hypothesis, can be imposed on the space-time covariance for the pur-

poses of construction and computational efficiency.

3. Formal testing procedures can be used to validate these assumptions.

4. Separability does not allow for space-time interaction in the covariance, so there is

a major demand for non-separable models, which can be constructed from Fourier

transform of permissible spectral densities, mixtures of separable models, and par-

tial differential equations representing physical laws.

5. The Lagrangian reference frame is useful for constructing asymmetric space-time

covariance models.
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6. Geodesic distance is the physically most natural metric for processes on spheres.

The extension of covariance models using geodesic distance to spatio-temporal,

multivariate, non-stationary, or non-Gaussian cases is not well understood.

7. The scalability issue can be addressed by approximating the covariance matrix using

low rank, sparse and spectral techniques, or by using composite likelihood methods.

FUTURE ISSUES

1. Developing flexible space-time covariance models for multivariate, non-stationary,

non-Gaussian, and spherical processes based on the geodesic distance.

2. Proposing tractable measures of non-separability and covariance models that can

achieve weak to strong degrees of non-separability.

3. Developing easy-to-use software for inference from large spatio-temporal datasets

with implementations of various covariance models, including non-separable, asym-

metric, non-stationary and multivariate models, as well as on the sphere.

4. Proposing more efficient strategies and algorithms for fast inference and predictions

with space-time covariance models for large datasets.
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