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Waypoints Updating based on Adam and ILC for
Path Learning in Physical Human-Robot Interaction

Jingkang Xia, Chenjian Song, Deqing Huang, Xueyan Xing, Lei Ma, Yanan Li

Abstract—This paper presents a novel method for learning and
tracking of the desired path of the human partner in physical
human-robot interaction. Combining the Adam optimization
algorithm with iteration learning control (ILC), a path learning
method is designed to generate and update reference waypoints
according to the human partner’s desired path. This method
firstly uses the Adam optimization algorithm to update the
robot’s reference waypoints in an online manner. Then, an
ILC is developed to further modify the waypoints and reduce
the difference between the robot’s actual path and the human
partner’s desired path in an iterative manner. Simulations and
experiments on a 7-DOF Sawyer robot are carried out to show
the effectiveness of our proposed method.

Index Terms—Physical human-robot interaction; Iterative
learning control; Waypoints optimization.

I. INTRODUCTION

HUman-robot interaction (HRI) combines human flexibil-
ity with the repeatability and high precision of robots,

thereby effectively reducing human workload and improving
work efficiency [1], [2]. It can be used in a variety of
application domains such as collaborative assembly, heavy
load transport and robot-assisted rehabilitation. A typical HRC
scenario is shown in Fig.1, where a robotic arm needs to
move along the path from P0 to PN , guided by a human hand
through physical interaction. As the human partner’s desired
path is unknown to the robot and is subject to uncertainties,
how to design the robot controller to make it efficiently follow
the human partner is still an open problem.

In early works of physical human-robot interaction (pHRI),
an impedance controller is designed to make the robot pas-
sively follow the human partner, and then the recorded move-
ment is played back, which is known as programming by
demonstration (PbD) [3]–[5]. In [4], a method for human
users to teach the robotic arm a movement path based on
the interaction force is proposed, which can effectively ensure
the safety of human users during the teaching and playback
process. [5] proposes a method based on teaching force
shaping to solve the problem of insufficient accuracy when the
contact force is small in the teaching process. PbD effectively
simplifies the operation of robotic arms and promotes their use
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Fig. 1: A typical human-robot interaction (HRI) scenario,
where a human hand guides the endpoint of a robotic manip-
ulator to follow the contour of a workpiece. This contour is
unknown to the robotic manipulator, represented by a number
of waypoints from P0 to PN . Fh is the interaction force
between the human partner’s hand and the robotic manipulator.

in applications typical in small and medium-sized enterprises.
However, the traditional PbD method requires multiple demon-
strations to find a suitable task path for the robot. Moreover,
the nature of offline demonstrations limits the generalizability
of the PbD method, which is crucial when the robot operates
in an uncertain environment.

Considering the repetitiveness of many HRI applications,
iterative learning control (ILC) can be used in PbD tasks,
which was initially developed for motion control of systems
performing repetitive operations such as in [6]–[10]. The idea
of the ILC method is to improve a system’s performance by
learning its periodic characteristics (see [11] for a review).
However, due to various uncertainties, the assumption of peri-
odicity required by ILC may be invalid, so there are research
works dealing with varying periods. In [12], an ILC scheme
with an iteration-average operator is proposed for discrete-time
linear systems. It is further developed in [13] for nonlinear
dynamic systems with random changes in the iteration period.
In our previous work [14], we propose a method based on
spatial iterative learning to learn the desired path of the robot’s
human partner, which is assumed to be periodic in space
instead of in time. In [15], we develop a period-varying ILC
scheme for HRI where the human movement is assumed to
be periodic but with uncertain time durations. Despite these
research efforts, the existing ILC schemes are based on a
strong assumption of either a spatial or temporal period, which
may be violated due to highly uncertain human movements.
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Based on the Adam optimization method in [16], a waypoint
update algorithm is developed in [17] to improve the physical
interaction between a robot and a human user during the
process of robot-assisted dressing. An interesting point of the
algorithm in [17] is that the Adam optimization method gen-
erates and updates the robot’s reference waypoints instead of
a predefined trajectory or a path. Following this idea, we will
develop a novel ILC to update the robot’s reference waypoints
according to the interaction force during the movement in
the previous iteration, so as to realize the learning of the
human’s desired path. This ILC will be combined with the
Adam method, which will be implemented in each individual
iteration, leading to two-level path learning: one is iterative
and the other is continuous in time. The proposed algorithm
will be compared with the existing ILC method and the Adam
method, showing its advantages in terms of faster learning and
reduced human effort.

Based on the above discussions, we highlight the following
contributions of this paper:
1) A path optimization and learning algorithm is developed

for updating the robot’s waypoints based on the interaction
force, enabling the robot to adapt to different human
movements during HRI.

2) The proposed method does not require the assumption of
repetitive task with a certain period, and addresses the
limitation of the ILC method in [14].

3) By combining the improved Adam path optimization algo-
rithm with ILC, our method achieves faster learning and
reduced human effort, compared to the algorithm in [17].

The rest of this paper is organized in the following order.
Problem formulation is given in Section II. The details of the
proposed method and analysis of the system performance are
explained in Section III. Simulation and experimental results
are presented in Sections IV and V, respectively. Finally,
conclusions are drawn and possible future works are suggested
in Section VI.

II. PROBLEM FORMULATION

In this paper, we consider a typical human-robot interaction
scenario that is composed of a robotic manipulator and a
human arm. The human arm guides the robotic manipulator to
complete a path following task, e.g. following the human part-
ner’s desired path as shown in Fig. 1. The path is determined
by the contour or surface of the workpiece and unknown to the
robotic manipulator. The interaction force between the human
hand and the robotic manipulator is measured by a force sensor
at the end-effector of the robotic manipulator.

A. System’s dynamic model

It is often desirable to describe the robot’s dynamics in
the Cartesian space for the convenience of analysis, when the
interaction takes place at the end-effector. The robot dynamics
in the Cartesian space are given by

HxẌ + CxẊ +Gx = J−Tu+ Fh (1)

where X, Ẋ, Ẍ ∈ Rn represent the robot’s position, veloc-
ity and acceleration vectors of the end-effector, respectively;

Hx ∈ Rn×n is the symmetric positive definite mass matrix;
CxẊ ∈ Rn, Gx ∈ Rn denote the centrifugal force and gravity,
respectively; u ∈ Rn is the joint torque applied by the robot’s
actuators; J ∈ Rn×n is the Jacobian matrix that relates the
joint velocity to the linear and angular velocities of the end-
effector and Fh ∈ Rn is the interaction force that can be
measured by a force/torque sensor.

Let e = X−Xr, where Xr is the reference trajectory and e
is the tracking error vector. Thus, X = Xr + e, Ẋ = Ẋr + ė,
Ẍ = Ẍr + ë. Combining these equations with Eq. (1), the
tracking error dynamics can be described as

Heë+ Ceė+Ge = F + Fh (2)

where He = Hx, Ce = Cx, Ge = HxẌr + CxẊr + Gx and
F = J−Tu. By designing robot controller as F = −Kv ė −
Kpe+ Ceė+Ge − Fh, we obtain

Heë+Kv ė+Kpe = 0 (3)

where Kv , Kp are two positive definite matrices. Eq. (3)
indicates tracking of the reference trajectory, i.e. e = 0 and
X = Xr.

B. Path description
As discussed above, this paper studies a path following task

in the robot’s operational space, where the human partner’s
desired path is determined by the workpiece’s contour but
unknown to the robot. Therefore, the robot’s control objective
is different from the traditional trajectory tracking control
where the reference trajectory is given. To formulate the
problem under study, we introduce the following analysis.

According to human motor control [18], [19], the interaction
force can be expanded as

Fh = Kh(Xh −X) (4)

where Kh is the equivalent stiffness of the human arm and
Xh forms the desired path of the human. It is noted that the
human model (4) is used for analysis purpose only. In practice,
the interaction force Fh is applied by the human user to the
robot and measured by a force sensor but not generated by
this model. Since the interaction force Fh can be measured,
it can be used to estimate Xh which is unknown to the robot.
In an ideal case, if we can achieve Fh = 0, it indicates that
the robot’s actual position X = Xh.

Different from the previous work [14], we will not update
the robot’s reference trajectory in the time domain but will
introduce a waypoints updating method to generate the robot’s
reference path. As shown in Fig. 2, the reference path of the
robot’s end-effector in the t-th iteration is defined by a set of
waypoints

Wt =
{
P(1,t), · · · , P(i,t), · · · , P(N,t)

}
(5)

where P(i,t) is one of the waypoints in the t-th iteration and
P(i,t) = [xi, yi, zi]t, N is the number of the waypoints in the
t-th iteration. The desired path of the human partner is defined
by Wtar and P(i,tar) is one of the desired waypoints in Wtar.
The objective of the proposed method is to reduce the error
between P(i,tar) and P(i,t), and make Wt close to Wtar. In the
following section, we will introduce the proposed waypoints
updating method in details.
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Fig. 2: Wt is a set of waypoints that defines the robot’s
reference path in the t-th iteration, where P(i,t) is one of
the waypoints, pn is a path point and Fhn is the detected
interaction force at this point. When ‖ Fhn ‖> fτ where
fτ is a waypoints updating threshold, a new waypoint P ∗ is
obtained and F ∗hn

is set as Fhn
.

III. WAYPOINTS UPDATE

This section dedicates to designing the waypoints updating
scheme that includes the Adam optimization and the ILC. As
is shown in Fig. 3, the whole control framework consists of
three units: robot control, Adam optimization and ILC update.
While robot control has been briefly introduced in the previous
section, we will present the details of the Adam optimization
and ILC update methods in the following two subsections,
respectively.

A. Adam optimization

In order to plan the robot’s motion to follow the move-
ment of the human partner during the interaction, the Adam
optimization algorithm in [17] is used to update the robot’s
reference waypoints in real time according to the interaction
force between human and robot.

As introduced above, Wt is a set of reference waypoints
in the t-th iteration. For any adjacent waypoints P(i,t) and
P(i+1,t), we set them as the start point Pstart and end point
Pend, respectively. The motion planning for Pstart and Pend is
executed using the path planning library (of the Sawyer robot
in this paper) such that the path points pn, n ∈ N+ between
Pstart and Pend are obtained. The interaction force Fhn at
each path point is measured by the force sensor, as is shown
in Fig. 2.

If ‖ Fhn
‖> fτ where fτ is a waypoints updating threshold,

a new waypoint P ∗ is added to the existing set of waypoints
(how to compute P ∗ will be introduced later). Then we set
pn and P ∗ as the new Pstart and Pend, and execute the
path planning to obtain new path points between them. The
interaction force is measured continuously with the new path,
until |

−−−→
pnP

∗| ≤ R, i.e. the distance from pn to P ∗ is less than
R which is set to be small. At last, we set the final P ∗ as
P ∗(i+1,t) and let the robot move to the next waypoint P(i+2,t).

In the following, we explain how to compute the new
waypoint P ∗. For this purpose, a force function in the t-th
iteration is designed as

εt+ =

{
‖ F ∗hn

‖, ‖ Fhn
‖≥ fτ

0, ‖ Fhn
‖< fτ

(6)

As the objective is to make the interaction force Fh = 0,
the idea of the Adam optimization is to make εt = 0 in the
t-th iteration. According to the biased moment estimate of
the Adam optimization method, the biased first and second
moment estimates of Fh are defined as

mt = β1mt−1 + (1− β1)EFh (7)
vt = β2vt−1 + (1− β2)EF 2

h (8)

where β1 ∈ [0 0.9] and β2 ∈ [0.99 0.999] are hyper-
parameters which control the exponential decay rates of the
moment estimates and E is the unit matrix. β1 and β2 are
set with a low value when reliable new data is available;
otherwise, they are set with a high value (more detailed
analysis can be found in [16]). Since mt and vt are initialized
to zero matrix, the moment estimates will be biased towards
zero, especially during the first few iterations. Therefore, here
we take the same strategy as in the Adam optimization method
to use the bias-corrected estimates m̂t and v̂t, which are given
below

m̂t =
mt

1− βt1
(9)

v̂t =
vt

1− βt2
(10)

By defining the updated waypoint P ∗ = [P ∗x , P
∗
y , P

∗
z ] that

represents how the robot locally adjusts its position based on
the force information and referring to the Adam optimization
algorithm [17], we can set the x−component P ∗x as below

P ∗x = Pendx +
αm̂tx√
v̂tx + ε

(11)

where α > 0 is the updating rate and ε > 0 is a denominator
correction term to avoid denominator being too close to 0. P ∗y
and P ∗z can be obtained in a similar way as computing P ∗x .

B. ILC update

In this subsection, the path point W ∗t generated by using the
Adam optimization is further updated through the ILC method.
As the repetitiveness of the human movement is not guaranteed
in different iterations, we develop a novel ILC algorithm based
on spatial waypoints.

From the human motor control model in Eq. (4), it can
be found that the interaction force can be used to represent
the position difference between the actual path point of the
robot and the desired path point of the human partner. At
the end of each iteration, we can obtain a set of waypoints
W ∗t =

{
P(1,t), · · · , P ∗(i,t), P

∗
(i+1,t), P

∗
(i+2,t), · · · , P(N,t)

}
us-

ing the Adam optimization during the interaction and the
interaction force corresponding to all waypoints, i.e. Fht

={
Fh1 , · · · , F ∗hi

, F ∗hi+1
, F ∗hi+2

, · · · , FhN

}
. The idea of the pro-

posed ILC algorithm is to update each waypoint such that the
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Fig. 3: The proposed control framework, including three units of robot control, Adam optimization and ILC update. The
“storage” block is used to store the information e.g., waypoints and interaction force. The interaction force model is only for
analysis purpose but not used to generate the interaction force. In practice, the interaction force is applied by the human user
and measured by a force/torque sensor.

robot’s actual path point gets close to the human partner’s
desired one. This is equivalent to making Fh = 0, so the ILC
updating law is designed as

W ∗t+1 = W ∗t + λFht (12)

where λ > 0 is the learning rate. Then we set the robot’s
reference waypoints for the next iteration as Wt+1 = W ∗t+1

and use
{
P(1,t+1), · · · , P(i,t+1), · · · , P(N,t+1)

}
to represent

Wt+1.
In the following, we briefly analyze the convergence of the

above ILC updating law. From Eq. (4), it can be obtained that

Fht
= Kh(Wtar −W ∗t ) (13)

where Wtar represents the waypoint on the human partner’s
desired path. Combining Eqs. (12) and (13), we have

W ∗t+1 −Wtar = W ∗t −Wtar + λKh(Wtar −W ∗t ) (14)

By defining E∗t = W ∗t −Wtar, Eq. (14) can be rewritten as

E∗t+1 = E∗t − λKhE
∗
t (15)

To prove the convergence of the updating law, we define a
Lyapunov function candidate as below:

V(E∗
t )

= E∗Tt PE∗t (16)

where P is a positive definite real symmetric matrix. The
difference of the Lyapunov function candidate between two
successive iterations is

∆VE∗
t

= VE∗
t+1
− VE∗

t

= (E∗t − K̂hE
∗
t )TP(E∗t − K̂hE

∗
t )− E∗Tt PE∗t

= E∗Tt PE∗t − K̂hE
∗T
t PE∗t − E∗Tt PK̂hE

∗
t

−K̂hE
∗T
t PK̂hE

∗
t − E∗Tt PE∗t

= K̂(K̂h − 2)E∗Tt PE∗t (17)

where K̂h = λKh. Since λ can be set as small enough such
that 0 < K̂h < 2, it yields ∆VE∗

t
≤ 0. Moreover, ∆VE∗

t
= 0

only when E∗t = 0, otherwise ∆VE∗
t
< 0 indicating that VE∗

t

monotonically decreases. Therefore, we can conclude that

• lim
t→∞

E∗t = 0 which indicates that lim
t→∞

W ∗t = Wtar,
hence the robot’s updated waypoints using the ILC al-
gorithm can track the waypoints on the human partner’s
desired path.

• when lim
t→∞

W ∗t = Wtar, Fht = 0, which indicates
that the robot’s waypoints will not be updated and the
convergence is achieved.

The details of the Adam optimization and the ILC updating
algorithm are summarized in Algorithm 1.

IV. SIMULATION

In this section, simulation results are presented to demon-
strate the advantages of the proposed waypoints updating
method by comparing with the existing ones: Adam opti-
mization in [17] and ILC in [14]. The aforementioned HRI
scenario is considered, where a human user guides a robotic
manipulator to complete a path following task. The human
user’s desired path is unknown to the robot and needs to be
estimated by using the information of interaction force. The
control objective is to make the robot’s actual path follow the
human user’s desired one.

Considering the waypoints updating method proposed in
the paper, enough waypoints are selected to represent the
human’s desired path. For the motion planning between two
waypoints, we set a constant speed. The specific parameters
in the simulation are given in Table I, and the number of
the waypoints N is set to 31, the learning rate λ in the ILC
updating law and the stiffness parameter Kh are set to satisfy
the convergence of the proposed ILC. The other parameters
are selected to be the same as the ones given in [16].

The human user’s desired path is set as a sinusoidal
path, in which the initial waypoint P0 and the last way-
point PN are set as (−0.7, 0.44, 0)m and (−0.1, 0.44, 0)m,
respectively. The corresponding waypoints are designed as
Wtar = {−0.7+0.2i, 0.2sin( 10

3 π(−0.3+0.2i))+0.44, 0}m
where i = 0, 1, 2, 3 · · · and i ∈ [0, 30].

A. Convergence speed
Fig. 4(a) and Fig. 4(b) show the path updating in seven

iterations by the Adam optimization method [17] and spatial
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Fig. 4: Sinusoidal path following by the proposed method and two existing methods: (a) Adam path optimization algorithm;
(b) ILC updating method; (c) Proposed method.

1 2 3 4 5 6 7
Iteration-number (t)

(a)

0

20

40

60

80

100
Adam
ILC
Proposed

-0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1
Position-x (m)

(b)

-6
-5
-4
-3
-2
-1
0
1
2
3
4
5
6

Fn
 (N

)

Adam
ILC
Proposed

Fig. 5: (a) The force function εt of the three methods varies with the number of iterations. (b) The interaction force of the
three methods in the third iteration.

ILC method [14], respectively. It is found that the Adam
optimization method needs five iterations and the spatial
ILC method needs seven iterations for following the desired
path. Compared with these two methods, the proposed one
only needs three iterations to achieve similar path following
performance. These results clearly show that the proposed
method achieves faster learning.

B. Force function and interaction force

In order to compare the aforementioned three methods from
the perspective of human effort reduction, the force function
values defined in Eq. (6) under three methods are shown in
Fig. 5(a). Since the number of waypoints N is fixed and
the path points are evenly distributed along the X axis, the
force function εt can effectively reflect the effort made by the
human user during the interaction. It can be found that the
proposed method needs only three iterations to reduce the εt
close to zero. In comparison, the other two methods need more
iterations so the interaction requires the human user to make
more effort.

Fig. 5(b) shows the interaction forces under three methods
in the third iteration. In an ideal case, the interaction force
reduced to zero means that the human partner does not need to

guide the robot and correct the actual path, as the robot learns
the desired path of the human user. In the third iteration, the
interaction force under the proposed method reduces to less to
1N while larger forces are found under the other two methods.

The method proposed in this paper combines the advantage
of the Adam algorithm in [17] for real-time path optimization
and the advantage of the ILC algorithm to improve the learning
performance iteratively [14]. The above simulation results
verify the superiority of the proposed method in terms of faster
learning and reduced human effort, by comparing with the
Adam algorithm and spatial ILC method.

V. EXPERIMENT

In this section, the validity of the proposed method is
further verified by experiments on a robotic platform Sawyer,
which has been developed by Rethink Robotics [20]. The
experimental scenario is shown in Fig. 6, where the Sawyer
robot is guided by a human hand along a given path on a
whiteboard (see the attached video). The interaction force
between the human hand and the robot is measured by the
force/torque sensor Robotiq FT300 at the end-effector of the
robot, and the communication interface in the robot operating
system (ROS) is used to collect the interaction force data. The
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Algorithm 1: Adam+ILC algorithm for updating way-
points

Input: Initial waypoints W0;
Output: Updated waypoints Wt+1;

1 Initialisation parameters: mt, vt, β1, β2, λ, t = 0, N ,
R, tmax is the maximum number of iterations.

2 while t < tmax ∪ εt > 0 do
3 t+ = 1
4 εt = 0
5 for i ∈ [1, N) do
6 Updatewaypoints(Pi, Pi+1,mt−1, vt−1, t,Wt, εt)
7 mt ← average of all mt

8 vt ← average of all vt
9 end

10 Wt+1 = W ∗t + λFht

11 end
12

13 Function
14 Updatewaypoints(Pstart, Pend,mt−1, vt−1, t,Wt, εt)
15 Generate path points pn from Pstart to Pend using
16 (Sawyer’s) motion planning library.
17 for each path point pn do
18 if ‖ Fhn ‖> fτ then
19 mt = β1mt−1 + (1− β1)EFh
20 vt = β2vt−1 + (1− β2)EF 2

h

21 m̂t = mt

1−βt
1

22 v̂t = vt
1−βt

2

23 P ∗ = [Pendx +
α·m̂tx√
v̂tx+ε

, Pendy +

α·m̂ty√
v̂ty+ε

, Pendz +
α·m̂tz√
v̂tz+ε

]

24 εt+ = F ∗hn

25 if |
−−−→
pnP

∗| > R then
26 Updatewaypoints(pn, P

∗,mt−1, vt−1, t,
27 Wt, εt)
28 else
29 Pend = P ∗

30 end
31 end
32 end
33 end

TABLE I: Parameters Setting

β1 β2 ε α λ Kh R fτ

0.9 0.999 10−8 0.01 0.015 10N/m 0.002m 1N

waypoints are updated based on the interaction force and the
position information, and then they are sent to the Sawyer
robot for execution.

As is shown in Fig. 6, the movement of the end-effector is
constrained in the XOY plane. The desired path is defined
as yd = (0.18sin xd

0.28π + 0.5)m,xd ∈ [0, 0.56], which is
unknown to the robot, so the initial waypoint P0 is set to
(0, 0.5, 0)m, and the last waypoint PN is set to (0.56, 0.5, 0)m
in the coordinate frame of the Sawyer. The number of
the waypoints N is set to 41, and the initial waypoints

Fig. 6: Experimental scenario: the Sawyer robot is guided by
a human hand along a given path on a whiteboard.

W0 = {(0, 0.5, 0), (0.014, 0.5, 0), · · · , (0.56, 0.5, 0)}m are
uniformly distributed on the path from the start point P0 to
the end point PN . The threshold fτ is set to 2N . The learning
rate α of Adam is set to 0.015 and the learning rate λ of ILC
is set to 0.005. The other parameters are the same as set in
the simulations, given in Table I.

A. Path following

Fig. 7(a) shows the actual path of the robotic arm’s end-
effector under the proposed method in the experiment. Each
reference path in each iteration is composed of the updated
waypoints and the linear point-to-point motion planning strat-
egy of the Sawyer robot is adopted. Within an iteration, all
the waypoints are updated online according to the Adam
optimisation. At the end of each iteration, all the waypoints
are further updated according to the ILC method and they
are used to form the reference path of the robot in the next
iteration. Through the observation of Fig. 7(a), we can find that
the actual path gradually gets close to the desired path and it
converges after 3 iterations. Correspondingly, the interaction
force is significantly reduced as the iteration number increases
and converges to a range of values close to zero, as illustrated
in Fig. 8(a). As the actual path of the robot approximately
coincides with the desired path, the human user only needs to
apply a small force to correct the actual path when it deviates
from the desired one, so human load is significantly reduced.
When there is no interaction force applied, the robotic arm
actively moves along the desired path, indicating transfer of
the task knowledge from the human user to the robot.

To illustrate the advantages of the proposed method, the
same task is carried out by using Sawyer’s impedance control
and setting its Z-axis stiffness with a maximum value and
X and Y axes as 0. As shown in Fig. 7(b), the human user
can move the end-effector to follow the desired path, but
it is difficult to ensure accurate following, especially at the
large-curvature areas on the path. This corresponds to large
interaction forces as shown in Fig. 8(b). In particular, the
interaction force does not decrease with the iteration number
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Fig. 7: (a) The actual path under the proposed method. (b) The actual path under impedance control.
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Fig. 8: (a) The interaction force under the proposed method.
(b) The interaction force under impedance control.

without the learning capability, and it is significantly larger
than that under the proposed method, indicating requirement
of larger human effort.

B. Robustness against human’s movement uncertainty

Due to the human’s movement uncertainty, the interaction
period of each iteration is different as shown in Table II and
Fig. 8(a). During the first iteration, the human user plays a
leader role and applies relatively larger forces throughout the
entire interaction process. Therefore, the optimization is trig-
gered to add new waypoints based on the Adam optimisation
algorithm. With the more intermediate waypoints updated, the
second iteration takes a longer time period. As the interaction
force is significantly reduced from the second iteration, the
optimization is less triggered so the time period of each
iteration converges to a range of similar values. However, as
the movement of the robot is affected by the human’s applied
force, there is still a small variation in the iteration period.
Despite the uncertainty, the path learning method based on
waypoints proposed in this paper can effectively update the

TABLE II: Iteration Periods (s)

T1 T2 T3 T4 T5

32.49 52.85 56.77 56.04 53.34

path to reduce the interaction force, showing its robustness.
This is a favorable property that traditional ILC does not
have, which has a strong assumption of task repetitiveness
with either a temporal or a spatial period, thus not suitable for
HRI.

In order to verify the robustness of the proposed method
against uncertainties due to different human users, three male
human subjects aged 21-26 are recruited in the pilot experi-
ments. They have prior knowledge about robotics but do not
know the proposed method in this paper. They are instructed
to hold the robot’s end-effector and move the robot along the
given path, at a speed they feel comfortable with. Each human
subject performs 5 iterations in one task and repeat this task
for 5 times.

The average path error, the maximum interaction force, and
the force function value during each iteration of the learning
process are shown in Fig. 9. The average path errors of the
three users shown in Fig. 9(a) can all be kept within 0.015m
after 3 iterations. When the error between the actual path of
the end-effector and the desired path of the human user is
too small to be identified by the human user, there is no
need to apply a force to correct the path of the robot arm
so the interaction force Fh will converge to a value near
0 (a small non-zero value due to the measurement noise of
the force sensor), as shown in Fig. 9(b). Correspondingly,
Fig. 9(c) shows the force function εt converging to 0 after
several iterations. Despite small differences between results
of different human subjects, coherent performance of the
proposed method is achieved.

VI. CONCLUSIONS

In this paper, a method for learning of the desired path
of the human partner is proposed for human-robot interaction
(HRI). This method combines the advantages of the Adam
optimization algorithm and the iterative learning control (ILC).
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From the results of the simulations, it can be confirmed that
the proposed method can effectively learn the human partner’s
desired path that is unknown to the robot. Compared with
the existing methods, the proposed one increases the learning
speed while reducing the human effort. Through further com-
parative experiments, the feasibility of the proposed method
and its robustness against human uncertainties are verified.

This paper considers a general scenario of HRI, and the
proposed approach needs to be customized when it is applied
to a specific application. For example, when it is used in load
transportation, problems such as the relative motion between
the robot and the load, manipulation of a long object requiring
the human user and the robot to hold its two sides need to be
addressed. When applying the proposed method to a 3D case,
the coupling between different directions may have a more
significant effect compared to a 2D case, e.g. small tracking
errors in three directions may lead to a large error. Moreover,
the proposed method mainly deals with the interaction between
the human and the robot, but does not consider the interaction
between the robot and the environment where force control
needs to be considered. Also, the selection of the robot’s start
and end positions on its reference path is not studied in this
paper. All these limitations and/or problems need to be further
investigated.

Finally, relevant to the proposed method is the machine
learning method extensively studied for trajectory learning in
HRI. Actually, it is possible to combine machine learning
methods and ours, e.g. using machine learning methods to
learn an initial trajectory and our method to modify it online;
or using machine learning methods for high-level decision
making and our method for low-level motion planning and
control.This is another interesting topic worth exploring in
future works.
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Fig. 9: (a) Average path error, (b) maximum interaction force and (c) force function value of each iteration for different users.


