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Abstract 

Smart meters have been widely deployed in power networks since the last decade. This trend has resulted in an 

enormous volume of data being collected from the electricity customers. To gain benefits for various stakeholders in 

power systems, proper data mining techniques, such as clustering, need to be employed to extract the underlying 

patterns from energy consumptions. In this paper, a comparative study of different techniques for load pattern 

clustering is carried out. Different parameters of the methods that affect the clustering results are evaluated and the 

clustering algorithms are compared for two data sets. In addition, the twotwo suitable and commonly used data size 

reduction techniques and feature definition/extraction methods for load pattern clustering are analyzed. 

FurthermoreFurthermore, the existing studies on clustering of electricity customers are reviewed and the main 

results are highlighted. Finally, the future trends and major applications of clustering consumption patterns are 

outlined to inform industry practitioners and academic researchers to optimize smart meter operational use and 

effectiveness. 

 

Highlights 

 The concepts and various methods of load data clustering are illustrated. 

 Theparameters of these clustering methods are discussed. 

 Using two data sets, the results of clustering algorithms are analyzed and compared.  

 A comprehensive literature review is provided. 

 Future trends and applications of load pattern clustering are highlighted. 
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AMI Advanced Metering Infrastructure 

BIC Bayesian Information Criterion  

CER Commission for Energy Regulation  

CVI Clustering Validity Index 

DBI Davies-Bouldin Indicator 

DBSCAN Density-Based Spatial Clustering of Applications with Noise 

DFT Discrete Fourier Transform 

DR Demand Response 

DMS Data Management System 

DTW Dynamic Time Warping 

DWT Discrete Wavelet Transform 

EM Expectation-Maximization 
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GMM Gaussian mixture model 

HMM Hidden Markov Model 

ISODATA Iterative self-organizing data analysis 

MIA Mean Index Adequacy 

MSE Mean Square Error 

PAA Piecewise Aggregate Approximation 

PG&E Pacific Gas and Energy Company 

PCA Principal Component Analysis 

SAX Symbolic Aggregate approXimation 

SIL Silhouette index 

SOM Self-Organizing Maps 

TOU Time of Use 

WCBCR The ratio of within-cluster sum of squares to between-cluster variation 

 

  

1. Introduction 
 

Enhancement of the power networks using advanced metering infrastructure (AMI), measuring equipment, and 

smart devices is expected to restructure the existing power grids into a cyber-physical system. Such a system is not 

only able to carry power flow but can also transmit data for advanced measurement and control applications. The 

backbone of this cyber-physical system are smart meters and other sensory devices. Smart meters are specified with 

the sophisticated measurement, control and communication capabilities that they possess. Compared to a conventional 

energy meter, a smart meter includes measurement and calculation hardware, software, and communication 

capabilities that measures the energy consumption of a consumer and provides added information to the utility 

company [1], [2]. In the future, smart meters will be in constant communication with distribution (data) management 

system (DMS) for providing online information and receiving commands as it is shown in Fig.  1 [3].  

It is projected that the total number of installed smart meters will reach 780 million in 2020 [4]. As some critical 

studies  pointed out [5], despite the ongoing rollouts, many utilities are still unclear about the optimal route to 

extracting value from these large investments. In North America, the main priorities are to use smart metering 

information as a means to support outage management and increase grid reliability. On the other hand, European 

utilities are more focused on consumer-related capabilities. From the analytics point of view, the smart metering data is 



 

 

 

still mostly an underutilized area of value for existing deployments. However, it is becoming recognized as a strategic 

next step for many utilities. As the deployment of smart meters is increasing, the main question is how to utilize such a 

wealth of hourly or half-hourly measured data to gain benefits for various stakeholders in power systems.  

 

 

Fig.  1. Architecture of an AMI and associated DMS 

 

The use of data mining techniques to analyse load data offers a variety of potentials within the power systems [6]. 

Clustering is a well-known unsupervised data mining technique for segmentation of a data set by assigning its objects 

to a set of clusters [7]. It has numerous applications in different fields such as market segmentation analysis, biology, 

and social network studies. In the power system domain, clustering techniques can be used to find similar patterns in 

electricity consumption behaviors of users. This will offer potential advantages for companies as it reveals 

characteristic customer load profiles within the heterogeneous population and enables utilities to gain better knowledge 

of customers’ electricity demand [8]. Furthermore, the results of customer segmentation can be used for numerous 

applications in power industry such as load forecasting, tariff design, and implementation of demand response (DR) 

programs.  

This paper tries to utilize a cross-disciplinary approach spanning engineering and data science to present a 

comparative study of different techniques for clustering of load patterns. In this respect, this paper is opportune, 

because, despite the considerable changes in the area, there is no comprehensive study on the application of clustering 

techniques for power systems.  

There are several features that distinguish the current work from the previous publications [2], [9], [10], mainly: 

 Five major clustering techniques are introduced and the effects of their different parameters for load pattern 

clustering are analysed. Besides the well-studied clustering methods such as K-means, fuzzy cc-means and 

hierarchical algorithms, clustering with the probabilistic and generative models and self-organizing maps 

(SOM) are also discussed.  

 These clustering techniques and their applications in customer segmentation are compared.  

 The use of data size reduction techniques and feature extraction/definition methods for load data are described 

and analyzed.  

 The future directions such as time series clustering and big data issues are illustrated and the possible 

applications of clustering in the power system domain are explained and categorized. 

 AAn extensive review of the current literature is provided. 

 

Section 2 provides a general overview of clustering concepts and load data clustering. The other sections are 

respectively dedicated to the clustering methods, discussions on the clustering parameters, case studies, data size 

reduction techniques, and applications and future trends. Finally, Section 8 concludes the paper.  

2. Background 

2.1. Clustering concepts 

Clustering is an unsupervised data mining technique that enables the determination of intrinsic patterns in data sets. 
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The main aim of clustering is to partition data instances (objects) of a data set into a number of groups (called clusters) 

which are as similar as possible. Objects belonging to a cluster are more similar to each other than to those in other 

clusters. Therefore, thegoal is to achieve high intra-cluster similarity and low inter-cluster similarity.  

Expressing mathematically, a data set 𝑆 which has n records (observations) can be partitioned into a set of 𝐾 clusters 

𝐶1, 𝐶2, … , 𝐶𝐾 that do not intersect (however, this assumption is sometimes violated when the soft clustering is applied) 

and the union of them is equal to the full data set as shown in (1): 

 

𝑆 = ⋃ 𝐶𝑖
𝐾
𝑖=1     and   𝐶𝑖 ⋂ 𝐶𝑗 = ∅  for  𝑖 ≠ 𝑗 (1) 

 

2.2. History of electricity customer clustering 

In the power system domain, utilities and system operators are interested to classify the electricity users into distinct 

groups as it offers advantages in decision making and control of power network. However, this trend was naturally 

limited in power system studies as the system operators and researchers did not have access to the fine grained 

consumptions of the customers. Before the widespread availability of AMI data, little information about each 

household’s consumption or energy use habits was available. The monthly usage of each household and some fixed 

information such as voltage level and nominal demand were the main sources of information for categorizing the 

households. On the other hand, utilities and researchers also conducted in-home surveys in order to evaluate the effect 

of various variables on consumption patterns. These variables could be categorized under one of these classes [11-13]: 

dwelling characteristics, demographics and socio-economic factors, habits of energy use such as consumption timing, 

attitudes toward energy use like level of concern toward energy conservation, knowledge about electricity 

consumption, and energy efficiency goals. Based on those available data, it was a common practice among distribution 

companies to define a set of classes and assign each customer to a specific class. For example, Pacific Gas and Energy 

Company (PG&E) segmented its residential customers into eleven clusters using a broad range of attitudinal and 

demographic variables [14]. In another attempt, 46 different customer class load profiles were defined by Finnish 

Electricity Association for categorizing customers in residential, agricultural, industrial, and services sectors [15], [16].    

Such approaches were inherently inaccurate as they did not have access to the real consumption data of customers.  

Installation of smart meters has fundamentally changed this situation. Nowadays, the fine-grained measurements are 

available in a large scale for tens of thousands to millions of users and moreover, they are accessible for successive 

years. As a result, the customer categorization can be achieved by implementing appropriate clustering techniques 

which are applied on the load data of the customers.  

 

2.3. Stages of load pattern clustering 

Stages of electricity customers’ clusteringare summarized and depicted in Fig.  2. These stages are as follows: 

 

 

 

 

 

 

 

 

 

 

 
Fig.  2. Stages of load pattern clustering 
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 Electricity consumption data gathering: The first step includes the collection of the consumption data of 

electricity customers. Like any other practical world data gathering, a pre-processing is needed to discover the 

missing (incomplete) or bad data in the data set. The missing data can be repaired at this stage by using different 

techniques like regression methods or can be handled by special ways as a part of clustering stage [7]. A 

customer’s data may also be corrupted by the noise or by the occurrence of uncommon situations like anomalous 

days or unexpected failures. Consequently, elimination or replacement of bad data is another essential pre-

processing step.  

 

 Data size reduction/feature definition/ feature extraction: In some cases, before the main clustering stage, the 

collected smart meter data are processed in some ways to reduce the scale of input data or to define more 

meaningful features for categorizing the customers.  This preliminary stage can be categorized by feature 

definition (expert knowledge-based feature extraction), feature extraction, and data size reduction techniques. 

These concepts are described in more detail in Section 6.  

 Clustering stage: Use of proper clustering techniques and accurate selection of parameters of clustering 

algorithms is vital in this stage; although, it depends on various factors such as the size of available data, the final 

goal of clustering, on-line or off-line clustering, the analytics and computational facilities, and user preferences. 

Sometimes more than one clustering method may be applied to the load patterns, and final results will later be 

compared to attain the best results. Furthermore, a combination of different clustering techniques is also possible 

to speed up the process or to obtain better outcomes [18].  

 

 Clustering performance assessment: Since the clustering of a data set is an unsupervised process, it is not very 

clear how to assess the quality of the resulted clusters in an objective way [7]. Intuitively, a good clustering 

method must ensure that each cluster is compact and different clusters are widely separated from each other [17]. 

To evaluate the clustering results, various clustering validity indexes (CVIs) are used. 

 

 Formation of customer classes: This stage represents the post-processing of the formed clusters, mostly based 

on the real-world scenarios. For example, the final number of clusters cannot be more than a certain number if 

the final goal of clustering is to define cluster-specific tariffs or to apply DR programs. So, the number of 

customer segments should be specified by the ultimate user like the retailer or DR aggregator. In this case, some 

clusters that have similar patterns may be consolidated [14].  

 

In the next sections, 5 clustering methods and 2 indirect clustering algorithms for electricity customer 

segmentation are evaluated using proper CVIs. Furthermore, the applications of clustering for power systems are 

discussed. 

 

3. Clustering algorithms 

 
Many clustering algorithms are proposed in the data mining community, and for each method, different 

variations are developed. In the power system literature, some of these techniques have been applied to load patterns 

of customers (Table 1).  

In the following, the major clustering techniques studied in this paper are briefly illustrated and a review of the 

most important works from the literature is presented.  

 

 

 

 



 

 

 

Table 1 Clustering methods 

Method References 

K-means [19] [14] [10] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31]  

FCM [19] [33] [10] [20] [22] [23] [24] [28] [34] [35] 
Hierarchical [38] [10] [22] [18] [23] [39] [24] [28]  

SOM [19] [8] [40] [21] [23] [24]  [25] [41]  [42] [43] [44] 

Model-based approaches [11] [38] [45] [46] 

 

Other methods 

K-medoids 
Adaptive K-means 

K-Shapes 

Follow the leader 
DBSCAN 

ISODATA 

Optimum-path forest 
Fuzzy Gustafson-Kessel 

 

 

[32]  [21] 
[36] [37] [18] 

[30] 

[10] [47] [20] 
[51] [52] 

[48] 

[53] 
[54] 

 

3.1. Distance-based methods 

Distance-based methods are the most popular clustering algorithms since they are generally fast and easy to 

implement. These algorithms use similarity (or dissimilarity) measures to construct the clusters. As the main 

purpose of clustering is to group similar instances, defining proper measures that can numerically express the degree 

to which two objects are similar to or dissimilar from each other is required. The main types of similarity measures 

used in the literature can be categorized as [7], [55]: 1) difference (distance)-based measures such as Minkowski 

distance (𝐿𝑃-norm distance), Canberra distance, and Gower’s coefficient, and 2) Correlation-based measures 

(similarity functions) such as cosine measure and Pearson’s correlation measure.  

Here, we confine the discussion to Minkowski measures as they are the most common measure used in the 

power system literature. These similarity measures try to calculate a distance value based on the differences 

between the features (attributes) of the two compared objects. If two load curves 𝑥𝑖 and 𝑥𝑗 are represented by ℎ 

recordings, the Minkowski distance of order 𝑝 between them can be calculated as follows: 

 

𝑑𝑀𝑖𝑛𝑘,𝑝 = (|𝑥𝑖,1 − 𝑥𝑗,1|
𝑝

+ |𝑥𝑖,2 − 𝑥𝑗,2|
𝑝

+ ⋯ + |𝑥𝑖,ℎ − 𝑥𝑗,ℎ|
𝑝

)
1/𝑝

 (2) 

 

For 𝑝 = 1 and 𝑝 = 2 the LP-norm distance is usually called the Manhattan distance (or city block distance) and 

Euclidean distance, respectively. Euclidean distance is by far the most widely used dissimilarity measure.  

Two well-known and frequently used distance-based clustering algorithms are partitioning methods and 

hierarchical clustering methods which are well presented in the data mining literature.  

3.1.1. K-center family 

K-centers family including K-means, K-medians, and K-medoids are the most widely used partitioning clustering 

techniques. They do not create a tree structure to describe the groupings of data, but rather create a single level of 

clusters. They share the same basic operation principle which is outlined in Algorithm 1 [56], [57].  

Algorithm 1. K-centers clustering 

Require: Number of clusters and cluster centers as follows: 

 The number of clusters is predetermined (k clusters). 

 k points are selected as the initial cluster centers. 

Repeat: 

1- Assign each instance to the closest center until k clusters are 

formed. 

2- Recompute the center of each cluster based on all instances 

that belong to it. 
Until: The convergence criterion is met. 

K-means is a commonly used algorithm, which minimizes the square-error function, defined as: 

 



 

 

 

𝐸 = ∑ ∑ ‖𝑥 − 𝑐𝑘‖2

𝑥∈𝐶𝑘

𝐾

𝑘=1

 (3) 

 

where K is the number of clusters and 𝑐𝑘 is the center of kth cluster denoted by 𝐶𝑘.  

Fuzzy c-means (FCM) is another popular method of K-centercenter family. It is similar to K-means clustering, 

but each instance has a grade of membership to each cluster [23]. FCM minimizes the following objective function: 

 

𝐽𝑚 = ∑ ∑ 𝜇𝑙𝑘
𝑚‖𝑥𝑙 − 𝑐𝑘‖2

𝐾

𝑘=1

𝑁

𝑙=1

 (4) 

 

where N is the number of load curves (observations), 𝜇𝑙𝑘 is the degree of membership of lth load curve in kth cluster, 

and m is the parameter that controls the amount of fuzziness.  

In fuzzy clustering, each load curve does not belong to only one cluster. Instead, the degree of membership 

determines the amount of membership of each load curve to each cluster, where: 

∑ 𝜇𝑙𝑘

𝐾

𝑘=1

= 1 (5) 

An observation is assigned to the cluster to which it has the maximum value of membership degree [35]. The 

membership degrees are updated in each step as: 

  

𝜇𝑙𝑘 = [∑ [
‖𝑥𝑙 − 𝑐𝑘‖

‖𝑥𝑙 − 𝑐𝑗‖ 
]

2
𝑚−1

𝐾

𝑗=1

]

−1

 (6) 

 

Fuzzy overlap refers to how fuzzy the boundaries between clusters are and can take a value above 1. The higher 

values of this parameter will result in fuzzier clusters.  

3.1.2. Hierarchical Clustering 

Hierarchical clustering is a more flexible and deterministic algorithm than K-centers method. The hierarchical 

algorithm produces a tree or dendrogram by either agglomerative (bottom-up) or divisive (top-down) methods. In 

the agglomerative method, initially each instance is classified as a cluster and then clusters are merged iteratively to 

build a bottom-up hierarchy of the clusters until a single root cluster is reached. The divisive approach, on the other 

hand, starts with a single root cluster and splits it into subclusters continuously, generating a top-down hierarchy of 

clusters. Fig. 3 displays the hierarchical tree or dendrogram of an agglomerative clustering method. This formed 

hierarchy can be cut at any given level which allows obtaining the corresponding clusters. This is the main 

advantage of hierarchical algorithms that makes them considerably different from partitioning methods which 

require the number of clusters before starting the algorithm. Also, hierarchical clustering has fewer assumptions 

about the distribution of data. However, it should be noted that hierarchical clustering is generally more 

computationally expensive than K-means (time complexity of 𝑂(𝑛3) when 𝑛 is the number of observations 

compared to the linear complexity of K-means).  

 



 

 

 

 

Fig. 3. Dendrogram of hierarchical clustering method 

 

3.2. Self-Organizing Map  

SOM is an unsupervised artificial neural network that projects the original input space to a reduced output space 

[23]. . It produces a graphical representation of the data which allows an easy evaluation of the results and grouping 

them into clusters by visual inspection [24] [58]. The SOM consists of a grid containing 𝑊1 × 𝑊2 map units (neurons). 

The original h-dimensional data vector is transformed to a (typically) bi-dimensional space where similar observations 

in the input space are mapped into nearby units. Each unit i is represented by a prototype vector 𝑤𝑖 =

[𝑤𝑖1 , 𝑤𝑖2, … , 𝑤𝑖ℎ], which has the same dimension of input vectors (h). The number of units can vary from a few dozen 

up to several thousand [58].  Each unit is connected to adjacent units by a neighbourhood relation, which determines 

the topology or structure of the map.  

The SOM is trained iteratively. In each training step, a sample vector x from the data set is picked out randomly. 

The distance of this vector and all prototype vectors are calculated and the unit whose prototype vector is closest to x is 

selected as the best-matching unit (BMU) or winning unit: 

 

‖𝑥 − 𝑤𝑏‖ = min
𝑖

‖𝑥 − 𝑤𝑖‖ (7) 

 

The learning algorithm updates the weight of the winning unit and also the weights of its adjacent units. The 

prototype vector of unit i is updated using the following equation: 

 

𝑤𝑖(𝑡 + 1) = 𝑤𝑖(𝑡) + 𝛼(𝑡)ℎ𝑏𝑖(𝑡)[𝑥(𝑡) − 𝑤𝑖(𝑡)] (8) 

 

where 𝑡 represents time, 𝛼(𝑡) is the learning rate or adaptation coefficient at time 𝑡, and ℎ𝑏𝑖(𝑡)is the neighborhood 

kernel (neighborhood symmetrical function) around the winner unit 𝑏. Theunits that are topologically close to the 

winningunit 𝑏 are activated using ℎ𝑏𝑖(𝑡):  

 

ℎ𝑏𝑖(𝑡) = exp (−
‖𝑟𝑏 − 𝑟𝑖‖2

2𝜎𝑡
2(𝑡)

) (9) 

 

3.3. where 𝑟𝑖  represents the coordinates of unit 𝑖 in the SOM grid and 𝜎(𝑡) is the 
neighborhood radius function. Both 𝛼(𝑡) and 𝜎(𝑡) decrease monotonically 
with time. Therefore, the neighborhood size of each unit reduces in each 
training step and, finally, it ends with a single unit. Probabilistic and generative 

models 

In the model-based clustering, it is assumed that instances arise from a distribution that is a mixture of several 



 

 

 

components. The problem is to estimate the parameters of each component and identify which component produced 

each observation [56]. This process leads to the clustering of the data. In practice, the attention is mostly paid to 

parametric mixture models, where all the components are from the same family of distributions.  Gaussian (normal) 

distributions are by far the most commonly used representation in the model-based clustering. In this case, the mixture 

model is the Gaussian mixture model (GMM), where components are Gaussian distributions with different means and 

variances.  

The mathematical formulations of GMM are illustrated in the following [59], [60], [61]. 

Let 𝐗 = {𝐱1, 𝐱2, … , 𝐱n} be a set of n observations. The variable 𝐱i is assumed to be distributed according to a 

mixture of K components. The probability density function (or mixture distribution) of 𝐱i can be written as: 

𝑝(𝐱i|𝜽) = ∑ 𝛼𝑚

𝐾

𝑚=1

𝑝(𝐱i|𝜽𝒎) (10) 

Where 𝛼1, … , 𝛼𝐾 are the mixing probabilities and each 𝜃𝑚 is the set of parameters which define the mth 

component. 𝜽 = {𝜽𝟏, … , 𝜽𝑲, 𝛼1, … , 𝛼𝐾} is the complete set of parameters.  The 𝛼𝑚 must satisfy  

𝛼𝑚  ≥ 0,   𝑚 = 1, … , 𝐾, 𝑎𝑛𝑑     ∑ 𝛼𝑚 = 1

𝐾

𝑚=1

 (11) 

In the Gaussian mixture model, each component is specified by the parameters of a multivariate Gaussian 

distribution: 

 

𝑝(𝐱i|𝜽) = 𝑝(𝐱i|𝛼, 𝜇, Σ) = ∑ 𝛼𝑚

𝐾

𝑚=1

𝒩(𝐱i|𝜇𝑚, Σ𝑚)  (12) 

where, 

 

𝒩(𝐱i|𝜇𝑚, 𝛴𝑚) =  
exp {−

1
2

(𝐱𝐢 − 𝜇𝑚)𝑇𝛴𝑚
−1(𝒙𝒊 − 𝜇𝑚)}

(2𝜋)
𝑑
2  |𝛴𝑚|

1
2

  (13) 

 

For a D-dimensional vector x, μ  and Σ are the D-dimensional mean vector and the D × D covariance matrix 

respectively. In the case of a single variable x, equation 3.10 reduced tois :  

𝒩(𝐱i|𝜇𝑚, 𝜎𝑚
2 ) =  

exp {−
1

2𝜎𝑚
2 (𝐱𝐢 − 𝜇𝑚)2}

(2𝜋𝜎𝑚
2 )

1
2 

  (14) 

where, μ and 𝜎2 are the mean and variance respectively.  

Usually, Expectation-Maximization (EM) algorithm is utilized for parameters estimation of the model.  Bayesian 

information criterion (BIC) and Akaike’s information criterion (AIC) are the main criteria for choosing  the best 

number of components (clusters) [45].  

3.4. LiteratureLiterature review 

K-center family methods are by far the most common approaches used in the literature. Ref. [29] utilizes the 

electricity consumption usage of 103 residential dwellings with the time resolution of  1 minute. The data are firstly 

averaged over each hour to build up the hourly load profiles and a representative load profile is created for every 

home for each season of the year. K-means is applied to partition the dwellings into two clusters for each season. A 

similar procedure is followed in [26], where the data of just working days are used. An improved FCM is used in 

[33] to cluster the electricity consumption data of one month of 938 households in China. FCM is also applied along 

with the K-means and hierarchical algorithms to the consumption data of a group of South Korean high voltage 

customers [22].  



 

 

 

Ref. [54] uses a fuzzy Gustafson-Kessel clustering for identification of non-technical losses. This clustering method 

can be seen as an extension of regular FCM in which Euclidean distance is replaced by a dissimilarity measure that 

results in hyperellipsodidal clusters. This method can provide greater flexibility for the shape of clusters.  

Clustering of a set of LV substations in the United Kingdom is performed in [39] using a hierarchical 

algorithm. 15 different loading conditions are considered by dividing the year into 5 seasons and 3 types of days.  

Clustering with SOM has been done in several studies. In [8] an SOM-based clustering of Finnish electricity 

consumers is presented. The aim is to introduce a visual data mining driven application to exemplify the potentials of 

real-time business intelligence for electricity companies. In [42], besides the annual electricity usage, various physical 

characteristics and property features are used for the clustering. On the other hand, an SOM-based methodology used 

in [41] to segregate customers based on three different sets of indices: information on the clients’ climate areas, 

quantitative information extracted from daily load patterns, and quantitative and qualitative information obtained from 

questionnaires.  

GMM models are recently used in some studies to cluster electricity customers. Labeeuw et al. [11] analyse the 

electricity demand of 58 households. They favour a GMM approach to K-means, FCM and hierarchical algorithms 

because of the smoothing effect of GMM and the need for data upsclaing. Moreover, GMM is used for segregating 

3600 residential customers [45] and its performance is compared with K-means [46] and hierarchical and K-means 

methods [38]. A few other algorithms such as adaptive K-means [36] [37] [18], follow the leader [10] [47], k-shapes 

[30], and density-based spatial clustering of applications with noise (DBSCAN) [51] [52] have been also used in the 

literature for clustering of load data.  

K-means method needs to determine the number of clusters before running the algorithm. Instead of trying out 

several candidate values for K, an adaptive K-means algorithm can be utilized to determine the final number of 

clusters during the cluster formation process [62]. This algorithm starts with an initial best guess 𝑘 = 𝑘0, but permits 

changing it on the go whenever it appears too large or too small for a given dataset [7]. Kwac et al. [18] proposed a 

clustering methodology which combines adaptive K-means and hierarchical clustering. Firstly, adaptive K-means is 

applied to segregate customers to a large number of clusters. In the next stage, a hierarchical clustering merges those 

clusters that are highly correlated. 

Fahiman et al. [30] compare the performance of K-means with a newly introduced clustering method called K-

shapes algorithm to cluster several thousands of dwellings. K-shapes considers the shape of time series during 

clustering rather than treating the observations as independent attributes. It consists of three main components [63]: 1) 

a shape-based distance measure which is based on a cross-correlation measure, 2) time series shape extraction which 

defines a centroid based on an optimization problem, 3) shape-based time series clustering which clusters time series 

data based on the last two steps. The authors claim that K-shapes significantly outperforms the K-means with respect 

to clustering accuracy.   

DBSCAN technique clusters those observations which are closely packed together and specifies the data points in 

low-density regions as outliers. It is employed in [51] for clustering customers’ load patterns and designing customized 

tariffs for each household based on its dominant load pattern. Ref. [52] uses an adaptive DBSCAN to find a typical 

consumption pattern in each season for each individual customer. K-means is then applied to group these typical load 

curves into several clusters. 

Biclustering techniques are used in [64] to analyse the building consumption data. The biclustering allows 

simultaneous clustering of both the observations (buildings) and features (days).  The proposed method obtains 

subgroups of buildings that exhibit a similar consumption pattern during a specific time period. 

Furthermore, Markov model is used in [37] to capture the dynamics of the load data and transfer the large data set of 

load curves to some state transition matrices which are used for clustering. Ref. [65] suggests that when weather 

effects are accounted for, household consumption is solely based on the occupancy. Here, occupancy refers to socio-

demographic factors and the lifestyle. A hidden Markov model (HMM) framework is utilized to infer the occupancy 

states from consumption data. Spectral clustering is used to segment the collection of HMMs. 

 

 



 

 

 

4. Discussion on the algorithms 
 

Each of the presented methods for the clustering has its advantages and disadvantages. In addition, different 

considerations need to be taken into account before applying the clustering algorithms. In this section the affecting 

parameters of each of the clustering methods are discussed.  

4.1. K-center family 

For K-centers methods various parameters including the number of clusters, initial centres, and the dissimilarity 

measure must be initially determined. Each of these parameters can affect the final outcomes of the clustering. Initial 

ccancenters can be selected by a random fashion among the instances of the data set [23]. The random selection of 

cluster centers may affect the final cluster formations. CVI measures can be used to find the best choice for multiple 

runs of the clustering algorithm with different random initial centers [7]. In addition, numerous initialization methods 

areare also proposed for the selection of the centers. Ref. [66] provides a thorough study of various initialization 

methods and compares their performance for real and synthetic datasets. Table 2 compares the main characteristics of 

the three main K-centers methods. 

 

Table 2 Characteristics of main methods of K-centers family  

Method Calculation of ccenter  Best dissimilarity 

measure 

DisadvantagesDisadvantages Advantages  

K-means CenterCenter is calculated as the 

mean of members of the cluster 

Euclidean Not applicable to discrete attributes; 

Handling the data containing outliers; 
Handling asymmetrically distributed 

data. 

Cluster centers might not be similar to 

any instance. 

 

Easy to implement and 

efficient.  

K-
medians 

CenterCenter is selected as the median 
of members of the cluster 

Manhattan More costly to calculate; 
Cluster centers might not be similar to 

any instance. 

More robust to asymmetric 
distributions and outliers; 

Not skewed so much by 

extremely large or small 
values. 

 

K-
medoids  

Center is the cluster member thatis the 
least dissimilar to other cluster 

members, on the average  

Different 
measures can be 

used 

More expensive computationally than K-
means and K-medians.  

Robust with respect to 
noise and outliers; 

Guarantees convergence. 

 

 

For FCMFCM, the degree of fuzzy overlap needs to be decided. The selection of parameter m has been the subject 

of many studies in the data science literature [67] [68] [69]. These studies follow different approaches for the selection 

of optimal m and suggest different values and ranges for that. For example, [69] and [70] propose the selection of m 

from the range of [1.5, 4] and [1.5, 2.5] respectively. The most frequently used and accepted value in various 

applications is m=2 [70] [71] which is also the suggested value in MATLAB software. In this paper, the value of m is 

selected based on the results of CVIs.  FCMFCM computation time is longer compared to k-means since the degrees 

of membership need to be updated at each step. 

4.2. Hierarchical 

In almost all the studies in the power system domain, the agglomerative approach is used as the preferred 

hierarchical method. For agglomerative methods, the formation of clusters is based on the similarity measures. Firstly, 

using a distance criterion, a similarity matrix D is built in which 𝑑𝑖𝑗 ∈ 𝐷 shows the distance between the observation i 

and the observation j. InIn the next step, based on this similarity matrix, instances are grouped into clusters using a 

linkage criterion. The linkage is an evaluation function which indicates the best candidates for merging. Therefore, at 

each level the closest sets of clusters are merged until the final cluster (which contains all the observations) is obtained.  

Some of the most important linkage criteria and their features are reported in Table 3 [7], [56], [61], [72]. In single 

linkage, the similarity of two clusters is determined based on the similarity between their most similar members. On 



 

 

 

the other hand, in complete linkage the similarity of two clusters is measured as the similarity of their most dissimilar 

members. Average linkage method (sometimes called UPGMA which stands for “unweighted pair group method using 

arithmetic averages”) diminishes the problems associated with single and complete linkage methods by considering the 

similarity between all pairs of instances present in both of the clusters. So, the average dissimilarity between instances 

from two clusters serves as the dissimilarity between the clusters.  Another method called centroid linkage clustering 

computes the dissimilarity between the center for cluster i and the center for cluster j. In addition, linkages can be 

defined based on a specific quality criterion or objective function. The most famous one among these linkage methods 

is Ward criterion withwith the objective to minimizethe total sum of squared dissimilarities between cluster members 

and cluster centers for all the clusters. In other words, for every two clusters 𝐶𝑖 and 𝐶𝑗, Wards’ criterion measures the 

increase in the value of sum of squared errors for the clustering obtained by merging them into 𝐶𝑖 ∪  𝐶𝑗.  

Likewise the dissimilarity measure, the choice of linkage can also have a significant impact on the final clustering 

outcomes. 

 

Table 3 Linkage criteria for hierarchical clustering 

𝑪𝒊: 𝑖th cluster; 𝑐𝑖: center of cluster 𝑪𝒊; 𝑛𝑖: number of data points belonging to cluster i; 𝑑(𝑥, 𝑦) = distance between the objects 𝑥 and 𝑦 

Linkage criterion Description Features 

Single 
min
𝑥∈𝑪𝒊
𝑦∈𝑪𝒋

𝑑(𝑥, 𝑦) 

Neglects the overall cluster structure 

Sensitive to noise and outliers 
Capable of clustering non-elliptical shaped groups of data points 

Not affected by the monotone transformations (like the logarithmic transformation) of the 

original data 

Complete 
max
𝑥∈𝑪𝒊
𝑦∈𝑪𝒋

𝑑(𝑥, 𝑦) Obtains more compact shaped clusters 

Sensitive to outliers 

Average 

1

𝑛𝑖 . 𝑛𝑗

∑ 𝑑(𝑥, 𝑦)
𝑥∈𝑪𝒊
𝑦∈𝑪𝒋

 A compromise between single and complete linkages 

Computationally expensive, especially for large datasets 
Noise resistant 

Centroid 𝑑(𝑐𝑖 , 𝑐𝑗) 
Does not have monotonic property i.e. a merged cluster might become closer to other clusters 

than its descendants which is usually undesirable. 

Ward √
𝑛𝑖 . 𝑛𝑗

𝑛𝑖+𝑛𝑗

𝑑(𝑐𝑖 , 𝑐𝑗) 
Not directly based on similarities between data points of the two clusters, instead works based on 
an objective function  

 

 

4.3. SOM 

The parameters of neural network such as the learning rate and the radius of the neighbourhood might slightly affect 

the partitioning of the data set by SOM. In addition, the SOM results depend on the population of neurons as well as 

the topology or structure of the map. For 𝑁 data points, the number of neurons is recommended to be between 5 × √𝑁 

to 20 × √𝑁 [24]. In addition, different topologies can be selected for the neural lattice. Traditionally, hexagonal or 

rectangular arrangements of neurons are chosen, in them internal neurons are bounded by six and four adjacent 

neurons respectively.  

A visual inspection of the generated SOM map can give an initial idea of the number of clusters. This is particularly 

performed usingthe unified distance matrix (called U-matrix) that shows the distances between prototype vectors of 

adjacent units and can visualize the cluster structure of the SOM. However, this process does not guarantee the best 

results.  Sometimes a two-level approach is used in which the prototypes are formed using the SOM and then, a 

clustering algorithm is applied on the prototypes to obtain the final clusters [25] [56]. This is especially beneficial 

when the data set contains a large number of data points.  

4.4. GMM 

GMM is able to model both continuous and categorical data which is an advantage of this method over many 

clustering techniques such as K-means  [45]. Interested readers are referred to [73] for technical explanations and 



 

 

 

examples of applying mixture models on mixed continuous and categorical variables. GMM requires the number of 

clusters to be specified before fitting the model. In addition, for applying GMM, the parameters of covariance matrix 

of each component need to be specified. The structure of the covariance defines the shape of a confidence ellipsoid 

over a cluster. The detailed technical discussion of the various covariance structures is beyond the scope of this paper. 

Interested readers are referred to [74] and [75] for practical implementations in Matlab and R programs, respectively. 

In this paper, different configurations of covariance matrices are examined and their effects on clustering results are 

studied.  Firstly, two different structures for covariance matrixes, which specify the cases with correlated and 

uncorrelated predictors, are considered. The former and latter cases are identified as full and diagonal respectively. 

Secondly, the effects of shared or unshared covariance matrixes among all components are investigated.  Each 

combination of these parameters defines the orientation and shape of ellipsoids. Since the appropriate covariance 

structure and number of components (clusters) are not known, the information criteria like AIC or BIC are used to 

compare different models. Lower values of AIC and BIC indicates better models with the most suitable parameters or 

the best number of components. 

Furthermore, EM algorithm that fits the GMM is sensitive to initial conditions and might converge to a local 

optimum. To ensure global convergence is achieved, the algorithm can be run repeatedly with different initial 

conditions [45]. The initial component parameters can be decided in various ways, for example, in a random fashion or 

by applying a k-means clustering to choose a number of observations [76].  

 

5. Application of clustering algorithms to the load curves of customers 
 

In this section, the impacts of discussed parameters of presented algorithms on clustering of daily loads curves of 

electricity customers are discussed. The data is part of the smart metering trial carried out by Commission for Energy 

Regulation (CER) in Ireland [77]. In this project, the consumption of each customer was recorded every half-hour.  

A pre-processing of data including the correction for daylight saving time changes in spring and autumn and 

exclusion of some special holidays is initially performed. In the following, most of the case studies are carried out for 

clustering of 356 daily load curves of one residential customer (sections 5.2 to 5.6). In addition, to investigate the 

clustering of a large number of users, clustering techniques are also applied on a data set comprising more than 4000 

customers (section 5.7). Since the aim is to cluster the daily load curves based on their shapes, each daily load curve is 

normalized based on the maximum consumption of that day. Without normalization of daily curves, the resulted 

clusters will only reflect load magnitudes. The majority of clustering studies mostly focus on the shape of load curves. 

The effect of customers’ consumption values can be examined with other methods. For instance, [18] clusters the 

customers based on their load shapes. It also fits a mixture of log normal distributions to the daily consumption values 

of customers and based on that, divides them into heavy, moderate and light energy users. Some studies use the expert 

knowledge-based feature extraction to account for the consumption values. For example, in [45], the relative average 

power in each time period of the day over the entire year is calculated. In the next step, customers are clustered based 

on these new features. R software which is a well-known data analysis tool and Matlab packages are used for the 

analyses and simulations. Firstly, the effect of different parameters of each algorithm is investigated and then, the 

performances of clustering methods are compared.  

 

5.1. Cluster validity indexes 

As explained in the preceding sections, parameters of each clustering method and initial conditions affect the final 

results and hence, clustering outcomes should be evaluated considering a range of parameters and conditions. CVIs 

can be used to study various aspects of clustering results and to compare the methods. In the electricity customer 

categorization, the CVIs may be used for different purposes, mainly:  

 

 To determine the suitable number of customer clusters [15], [25] 

 To compare the performance of different clustering techniques [10], [20], [78] 



 

 

 

 To investigate the effect of method parameters on clustering results [49], [79] 

 To evaluate the performance of clustering when some attributes (features) are added or removed [47], [80] 

 

In this paper, the comparison of parameters and methods are conducted based on 6 different CVIs: mean square 

error (MSE), Silhouette index (SIL), Davies-Bouldin indicator (DBI), mean index adequacy (MIA), the ratio of within-

cluster sum of squares to between-cluster variation (WCBCR), and Dunn index. The definitions of these CVIs are 

given in Table 4. The rule in this table refers to the interpretation of the CVIs for choosing among the results. For 

example, the minimum value of DBI indicates the best result. Besides these CVIs, AIC is utilized for evaluating the 

results of GMM method. 

 

Table 4  List of CVIs 

N: Number of observations (load curves); K: number of clusters; 𝑐𝑖: center of cluster 𝑖; 𝑑(𝑥, 𝑦) = distance between the objects 𝑥 and 𝑦; 

𝑛𝑖: number of data points belonging to cluster i 

Cluster validity index Descriptions Rule 

 𝑀𝑆𝐸 =
1

𝑁
(∑ ∑ 𝑑2

𝑥𝑖∈𝐶𝑘

𝐾
𝑘=1 (𝑥𝑖 , 𝑐𝑘))  min 

 𝑆𝐼𝐿 =
1

𝐾
∑ 𝓈𝑖

𝐾
𝑖=1  , where,  

 𝓈𝑖 =
1

𝑛𝑖

∑ 𝑠(𝑗)

𝑥𝑗∈𝐶𝑖

 

𝑠(𝑖) =
ℬ(𝑖)−𝒜(𝑖)

max (ℬ(𝑖),𝒜(𝑖))
 , where, 

 

𝒜(𝑖) = within − cluster mean distance =
1

𝑛𝑘−1
∑ 𝑑(𝑥𝑖 , 𝑥𝑗) 𝑗∈𝐶𝑘

𝑗≠𝑖

 , 

ℬ(𝑖) = the smallest of mean distances to other clusters = min
𝑘′≠𝑘

(
1

𝑛𝑘′
∑ 𝑑(𝑥𝑖 , 𝑥𝑗))

𝑗∈𝐶𝑘′

 

max 

𝐷𝐵𝐼 =
1

𝐾
∑ 𝑚𝑎𝑥𝑗≠𝑖

𝐾

𝑖=1
 

{

[
1
𝑛𝑖

∑ 𝑑(𝑥, 𝑐𝑖) +
1
𝑛𝑗

∑ 𝑑(𝑥, 𝑐𝑗)𝑥∈𝐶𝑗𝑥∈𝐶𝑖
]

𝑑(𝑐𝑖 , 𝑐𝑗)
} 

 min 

𝑀𝐼𝐴 = √
1

𝐾
∑ 𝑑𝐶𝑘

2
𝐾

𝑘=1
 

𝑑𝐶𝑘
=the distance between cluster center 𝑐𝑖 and the member of the cluster i= 

√
1

𝑛𝑘

∑ 𝑑2(𝑥𝑖 , 𝑐𝑘)
𝑥𝑖∈𝐶𝑘

 

  

min 

𝑊𝐶𝐵𝐶𝑅 =
∑ ∑ 𝑑2(𝑥𝑖 , 𝑐𝑘)𝑥𝑖∈𝐶𝑘

𝐾
𝑘=1

∑ 𝑑2(𝑐𝑖, 𝑐𝑘)𝐾
1≤𝑖<𝑘

 
 min 

𝐷𝑢𝑛𝑛 =
𝑚𝑖𝑛
𝑖≠𝑗

𝑑𝑖𝑗

𝑚𝑎𝑥
𝑖

𝐷𝑖

 
𝑑𝑖𝑗 : the distance between the closest instances of two clusters (separation) 

𝐷𝑖: the largest distance between two instances that belong to the cluster i (diameter) 

max 

 

5.2. Fuzzy cc-means 

For FCMFCM the main parameter is the fuzziness degree, characterised by parameter m in Eq. 4. Fig.  4 shows the 

effect of this parameter on clustering results where the number of clusters is fixed at 10. The value of m is changed 

from 1.05 to 4 at the steps of 0.05. Since the initial centers are selected randomly, the clustering results slightly change 

in each execution of the method. Thus, for each value of fuzziness degree, the clustering is carried out ten different 

times and the outcomes are averaged for each CVI. As this figure shows, thethe CVIs indicate the best results 

happeninghappening at around 1.9 to 2. 

 

 



 

 

 

 

 

 

Fig.  4. Effect of fuzziness degree on the clustering results for FCMFCM method 

 

5.3. Hierarchical clustering 

Here, 5 different hierarchical methods with different linkage criteria are compared for varying number of clusters 

and the results are displayed in Fig.  5. The single and centroid linkage models are selected as the best models by all 

CVIs except for MSE. Ward linkage also shows good performance having relatively low values for DBI, MIA, and 

WCBCR, and high values for SIL and Dunn. However, further inspection of the clusters shows that single and centroid 

methods assign most of the daily load curves to only one cluster. It can be observed by the dendrograms of the single 

and ward methods as shown in Fig.  6. For this reason, ward method which well separates load curves into different 

clusters is preferred.  

     

 

Fig.  5. Comparison of hierarchical algorithms 

 



 

 

 

 
(a) 

 
(b) 

Fig.  6. Dendrograms of (a) ward method and (b) single method 

 

5.4. SOM 

To cluster the load curves, the SOM in conjunction with a hierarchical clustering method is used. The parameters 

under study are the neurons population and topology of the neural lattice. For 356 load patterns, the grid size changed 

accordingly from 10 × 10 (5 × √356 ≈ 94 ) to 20 × 20 (20 × √356 ≈ 377). The width, 𝑊1, and height, 𝑊2, of the 

grid are assumed to have the equal size. For each grid size, the effects of hexagonal and rectangular topologies are 

studied.  

Fig.  7 displays a sample 16 × 16 SOM grid which is divided into 10 clusters after applying the hierarchical 

algorithm. To compare different configurations, the values of CVI indexes are calculated in each case as shown in Fig.  

8. In this case, superior results can be observed for the grid size 18 × 18  with hexagonal topology.  

 

 

 
Fig.  7. a 16 × 16 SOM grid and the corresponding clusters after applying the hierarchical method 
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Fig.  8. Effect of grid size and topology on the two-level clustering of load curves using SOM and hierarchical method (R: 

Rectangular, H: Hexagonal) 

 

5.5. GMM 

Generally, GMM produces the best results when the number of variables is limited. Since the load curves have 48 

variables (half-hour recordings) applying GMM might not lead to the promising results. To this end, prior to GMM 

clustering, use of an indirect clustering approach could be advantageous. For instance, in [45] the authors apply GMM 

on a set of features which are extracted from the load data.   

Here, the aprincipal component analysis (PCA) is used to reduce the size of the input data. Therefore, each load 

pattern is represented by a limited number of components. The selection of the best number of components is 

described in the next sections. GMM is applied to the PCA components and the impacts of parameters of covariance 

matrix (full vs. diagonal and shared vs. unshared matrixes) on final results are investigated using AIC as depicted in 

Fig.  9. The lowest values of AIC occur for full-unshared method. By increasing the number of clusters, diagonal-

shared and full-shared observe a decreasing trend while the AIC for full-unshared increases gradually. The results also 

suggest the best segmentations with 8 clusters.   

 



 

 

 

 

Fig.  9. Effects of parameters of covariance matrix on the GMM clustering 

5.6. Comparing clustering methods 

In theprevious sections, some of the most important parameters of different clustering methods are illustrated and 

their effects on clustering results were analysed. In this section, four major clustering algorithms including K-mean, 

FCMFCM, hierarchical, and SOM are compared and the formed clusters are analysed. The final aim is to determine 

the algorithm which can better reveal the various patterns of consumption behavior and form clusters that are more 

compact and well separated from each other.  

The parameters of the methods are selected based on the analysis in previous sections. Correspondingly, the 

fuzziness degree is set to 1.9 for FCMFCM, hierarchical clustering with ward linkage is chosen, and SOM is 

performed for a grid size of 18 × 18  with hexagonal topology. Fig.  10 shows the CVIs for the selected algorithms. 

It can be observed that hierarchical algorithm shows superior results for this special data set which contains the daily 

load patterns of a customer. Furthermore, five CVIs indicate SOM as the worst clustering algorithm for this case study.  

For this specific value of fuzziness degree, the obtained results show the good performance for fuzzy clustering. 

However, it should be noted that in some cases, the results of FCM are sensitive to small changes in degree of 

fuzziness. Therefore, while using FCM clustering, it is necessary to study various fuzziness degrees for different 

number of clusters.   

Based on the CVI values for all the algorithms, it can be seen that the optimum number of clusters falls into the 

range of 8 to 10 clusters. Eight clusters appear to produces the satisfactory results since adding more clusters does not 

improve the results significantly. This finding is in accordance with the GMM clustering outcomes. Generally, the 

final number of clusters is decided based on the pre-defined objectives and needs. In practice, the outcomes of 

electricity customer clustering will be used by the utilities for improving different applications such as demand 

response programs and tariff design. Therefore, typically, the number of clusters cannot be very large.  

Fig.  11 and Fig.  12 display the final clusters which are formed by each method when the number of clusters is set 

to 9. The center of each cluster is shown by the red line and is computed by averaging on the load patterns belonging 

to the cluster. It can be observed that clustering can reveal various distinct consumption patterns among the daily load 

curves of the customer. Particularly, the following patterns are distinguishable (Here, the K-means results are 

examined. The analysis is similar for the other methods.): 

 

- Morning peak (cluster #1) 

- Mid-day peak (cluster #5)  

- Morning and afternoon peaks  (cluster #4)  

- Morning and night peaks (cluster #3) 

- Morning and late night peak (cluster #8) 

- Late night peak (cluster #9)  

- Variable consumption pattern (cluster #6) 

 

Cluster #7 resembles to cluster #1; however, its corresponding peak has less magnitude and happens at earlier hours. 



 

 

 

Moreover, cluster #2 characterizes the high consumption during midnight and a local peak at around 10 am.  

 

 

Fig.  10. The CVI values for four different clustering algorithms  

 

 
(a) K-mean clustering 

 

 
(b) Fuzzy cc-mean clustering 

 
(c) Hierarchical clustering 

 
(d) SOM clustering 



 

 

 

Fig.  11 Final clusters of 4 different clustering algorithms 

 

 

Fig.  12. GMM clustering results 

 

5.7.  Clustering of a large number of electricity customers 

Electricity companies desire to segregate their huge number of customers into certain classes based on the daily load 

patterns. However, as we noted in the previous sections, the daily load patterns of a certain customer might change 

significantly from a day to another day. This makes the clustering of customers challenging. To overcome this 

problem, one common approach is to cluster the customers based on their representative load patterns (RLPs). For this 

purpose, initially, a set of different loading conditions are defined based on the user preferences, climate conditions, 

and other affecting parameters. Loading condition refers to the type of the day and the season that the data are 

recorded. The daily load data of each customer in a specific loading condition can be organized to represent the 

customer’s consumption by means of just one load pattern [10], [81]. To this end, the daily load patterns are combined 

instant-by-instant based on a statistical criterion like mean or median to create a representative load diagram. Finally, 

the normalized RLP of each customer can be made by normalizing the original representative load diagram with 

respect to a reference power which is usually assumed as the maximum consumption [23]. This allows the clustering 

of those customers with similar load shapes into a class, regardless of the actual quantities of consumptions. 

Here, the analysed data set comprises load data of 4141 customers over a year. Since the customers usually have 

different consumption behavior on the weekends compared with weekdays, the data set is divided into weekdays and 

weekends (two loading conditions). Fig.  13 and Fig.  14 show the final clusters (obtained by a hierarchical algorithm) 

for weekdays and weekends, respectively. The number of RLPs which belong to each cluster is also displayed in these 

figures. In order to identify various consumption patterns among customers, a sufficiently big number of clusters is 

selected.  

It can be seen that the difference between the weekday and weekend consumption behavior is significant. For 

weekday clusters, generally a small peak happens in the morning and the major peak occurs in the evening and nights. 

Specially, this pattern is clearly visible for clusters #8, # 12, #1, and # 4 that have the highest number of RLPs and 

totally account for around 40 per cent of load shapes. On the other hand, weekend clusters and particularly, the clusters 

with the highest number of members i.e. clusters #4, #12, #1, and #6 have a late peak around mid-day or early 

afternoon. Furthermore, it is also noticeable that the magnitude of the afternoon peak is higher or equal of the night 

peaks. In addition it can be observed that the consumption level is higher compared with the weekday consumption. 

Such a difference among usage behavior is predictable since, in the weekends, the residents usually wake up late and 

spend most of the day in the home while in the weekdays they leave their homes in early mornings and are outside the 

home for most of the day. 

 



 

 

 

 

Fig.  13 Clusters of the weekday RLPs of 4141 customers 

 

Fig.  14. Clusters of the weekend RLPs of 4141 customers 

 

 

6. PreliminaryPreliminary stages before the clustering 
 

In the previous sections, we studied the major clustering algorithms and their applications. However, it should be 

noted that the volume of recorded electricity consumptions is enormous. Setting tthe data sampling resolution of smart 

meters to 1 hour, 15 minutes, and 1 minute results in 24, 96, 1440 records per day respectively. This clearly shows the 

effect of sampling rate on the dimensionality of time series data. Specifically, analysing these massive sets of data 

could be a challenging task for electrical utilities. Therefore, data size reduction and feature definition/extraction 

methods are examined in the literature to reduce the size of load data sets (Table 5). The proper use of these techniques 

can reduce the input data of clustering algorithms, save computation time, and produce features that are suitable for a 

specific application. However, in some cases, the new features cannot reflect the daily and intraday consumption 

behavior of the customers and the variations of the load pattern over time. In addition, it might be hard to interpret the 



 

 

 

output features of these techniques or to attribute a physical meaning to them. Therefore, the proper selection of these 

methods depends on the knowledge of experts and the objectives which are expected from the clustering process. In 

the following, firstly, two major data size reduction methods are introduced and their relevant parameters are analysed 

and then, the applications of feature definition/extraction methods are briefly discussed. 

Table 5Feature definition/extraction and data size reduction techniques  

Method    Reference 

Feature definition    [15] [45] [47] [82] [41] [83] 

 

Feature extraction    DFT: [80] [28] 

   WT: [84] [85] [86] [87] 

 

Data size reduction   PCA: [78] [46]  [40] [20] [34] 

  SAX: [37] [78] 

  Other: [78] [20]  

 

6.1. Data size reduction methods 

The first approach uses data size reduction techniques to obtain a reduced data set from the primary data set. 

Symbolic aggregate approximation (SAX) and PCA are among the popular methods for such data reduction. 

SAX is a data size reduction technique which transforms a numeric time series into symbolic strings. The algorithm 

consists of two steps: i) transforming the original time series into a piecewise aggregate approximation (PAA) 

representation and ii) symbolizing the PAA data into a discrete string [88]. In this regard, firstly, it is needed to divide 

the time axis into several intervals. For example, for electricity customers, these time periods can be determined based 

on the periods of household activities and consumption changes during the day. The PAA technique replaces the 

amplitude values falling in the same time interval with their mean values. In the next step, the amplitude axis is 

partitioned into Q intervals and a suitable alphabet of symbols is used for the univocal representation of each range 

[78]. In the next step, SAX representation (SAX word) of the load curve can be made based on the intervals that PAA 

values fall into.  Fig.  15 clarifies the application of SAX method on a household consumption data.   

 

 

Fig.  15. PAA discretization of consumption data and SAX representation of PAA values (SAX word 

“abababacabbcaaacabab”) 

 

After transforming the load curves into SAX words, a suitable clustering method can be used to cluster them. 

Considering that the SAX entries are categorical data, certain clustering algorithms such as K-means cannot be used 

for clustering. Other algorithms such as K-modes, hierarchical, and DBSCAN are suitable for classifying the load 

curves into clusters. For clustering the SAX representations, it is necessary to define a proper distance measure to 

evaluate the similarity of two SAX words. Usually, a distance measure called MINIDIST (based on the work in [88]) 

is used for calculating the distance among SAX words. However, other modified versions of this distance measure are 

also introduced, which can be more suitable for clustering purposes [89].  

The partitioning of the time axis and the number of symbols (the number of partitions on the amplitude axis) affect 



 

 

 

the performance of SAX and final clustering results. These effects can be evaluated using CVIs. Fig.  16 depicts the 

application of SAX and a hierarchical algorithm on the customer data set in which the SAX method with 6 alphabets 

shows superior results. In this case, the partitions on the amplitude axis are equal while the time intervals on the time 

axis have different sizes which are selected according to the usual consumption habits of customers. 

 

 
Fig.  16. Performance of a combined clustering of SAX and hierarchical for different number of clusters and alphabet size 

 

SAX is performed in [37] and [78] to reduce the scale of the data set. In [37] the time domain breakpoints are 

determined by taking into account the regular routine of customers and the implementation of time-of-use (TOU) 

tariffs. The amplitude breakpoints, on the other hand, are determined by the quantiles of the statistical distribution of 

amplitudes in the whole data set.  Ref. [78] highlights the application of SAX with a hierarchical clustering. It 

proposes a specific partitioning of the time axis based on the cumulative distribution function of the representative load 

pattern variations in time.  

 

The fundamental idea of PCA is to reduce the dimensionality of a data set consisting of a large number of possibly 

correlated variables while retaining as much as possible of the variation present in the data set. This is achieved by an 

orthogonal transformation that converts the data to a new set of variables called principal components (PCs) which are 

uncorrelated.  This transforms the data to a new coordinate system such that the first few PCs retain most of the 

variation present in all of the original variables [90]. Therefore, the greatest variance by any projection of the data 

becomes the first coordinate (the first component), the second greatest variance the second coordinate, and so on [91]. 

Often the number of PCs needed to sufficiently represent the original data is quite small and this makes PCA a suitable 

tool for dimensionality reduction. 

The application of PCA method to the customer data set for different number of PCA components is carried out as 

shown in Fig.  17. Most of the variance is explained by the first six components and its value does not change 

meaningfully after around 10 PCs. The adequate number of PCs and the suitable number of clusters can be acquired by 

CVIs as displayed in this figure. By increasing the number of PCs from 2 to 4, the results improve significantly. 

However, no considerable change can be observed for more PCs. In this case, the number of final PCs can be selected 

as 5 or 6.  

PCA is applied in several studies to characterise customers’ consumptions. In [46] PCA is employed to understand 

and visualize measured consumption data. K-means clustering is then used to cluster the data set based on the first four 

PCs. In [40], using PCA, 48 half-hour load data are converted to a few PCs and an SOM strategy is applied to reveal a 

number of distinct behavioral components, for example, high consumptions vs. low consumption. Moreover, in [34], 

PCA is used to reduce the dimensionality and to detect the existence of seasonality in load curves. 



 

 

 

 

 

Fig.  17. Performance of a combined clustering of PCA and K-mean for different number of clusters and PCs 

 

6.2. Feature definition (expert knowledge-based feature extraction)  

Each customer load profile might be represented by a limited number of features. In feature definition approaches 

some features are defined and employed by the experts based on the specific applications. In [15] the authors define 

seven features and extract them from the raw data including the mean, standard deviation, skewness, kurtosis, chaos, 

energy, and periodicity. Ref. [47] defines a set of shape indicators, for example, daily average load to maximum load 

factor, to characterize the load patterns. Haben et al. [45] divide each day into four time periods, overnight, breakfast, 

daytime, and evening periods. Using the consumption values in these periods, seven attributes are defined for each 

customer. In [41] different variables are derived from the hourly measured energy consumption of customers such as 

the number of consumption peaks, hourly average consumption, and maximum consumption per day. Also, a 

regression analysis is adopted in [83] which gives eight regression coefficients for the electric load pattern of any 

customer. These coefficients are different for each customer and are used for the clustering purpose. The proper 

clustering methods can be applied on these features to distinguish customer classes. 

6.3. Feature extraction 

Feature extraction techniques can also be employed to extract certain features from the load data using techniques 

such as frequency domain analysis [92], discrete Fourier transform (DFT) [80], and wavelet transform (WT). DFT is 

used in [80] to transform time-domain measurements to the frequency domain. Based on the acquired information on 

amplitude and phase of the harmonic components, a set of features is defined which is used to cluster customers. Ref. 

[85] proposes two approaches based on WT for clustering one-year load data of a group of French electricity 

customers. The first method employs discrete WT for feature extraction and K-means algorithm for clustering. This 

approach is very fast and allows the elimination of non-informative features. On the other hand, the second approach is 

to cluster using a continuous WT and partitioning around medoid algorithm and can result in more refined clusters. 

Ref. [84] and [86] define a clustering strategy by combining an individual signal pre-processing by wavelet denoising, 

a dimensionality reduction step by wavelet compression, and a hierarchical clustering algorithm which is applied to a 

suitably chosen set of wavelet coefficients. 

 

 

 

 



 

 

 

7. Applications and Future trends 

7.1. Applications 

The smart metering concept is seen as an essential part of the future smart grids, providing invaluable data which 

can be used for the improvement of the electrical network operation. Clustering, as a suitable data mining tool, is able 

to facilitate various applications in the power system domain which, in turn, can contribute significantly to sustainable 

power grids. 

Basically, the outcomes of clustering give general insights into the energy behavioral use of customers which can be 

beneficial for operation and management of power systems. Besides this obvious advantage, identifying the classes of 

customers with similar characteristics might be used in more sophisticated ways.  

One of the most important applications of clustering of electricity users is to design suitable tariffs for different 

customers based on the classes that they belong to. As different customers show different load patterns, clustering can 

help to design cluster-specific tariff structures which can result in the reduction of peak load [47], [51].  

In addition, clustering of customers to different classes is a promising way for DR program targeting and customer 

engagement [11]. For instance, if households whose peak demand corresponds to the total system peak are identified, 

they may be good prospects for recruiting for DR programs [14].  

Other studies have investigated the cluster-based load forecasting in which the customers are firstly divided into 

classes with similar consumption behaviors and then, the load is forecasted for each cluster of customers separately 

[36], [86]. These works can be categorized according to their clustering techniques and the applied prediction methods.  

The goal of classification is to classify observations into a set of predefined classes or categories. In power systems, 

classification can be used to assign new customers or the customers without smart meters to the classes that are 

previously formed by the clustering process [26], [39]. Furthermore, the use of clustering and classification techniques 

can help to the detection of non-technical losses [93], [94].  

Surveys provide a lot of information regarding physical characteristics of the dwellings and various data regarding 

households’ socio-economic situations. For an individual dwelling, it is hard to evaluate the correlation between these 

attributes and its consumption. On the other hand, clustering can reveal those possible correlations between household 

features and energy usage, as customers with specific attributes usually belong to the same cluster [29], [21].  

7.2. Future trends 

The changes which are gradually happening in power systems and the advancements in data mining techniques will 

affect customer segmentation in various ways. The improvements in algorithms of time series clustering, 

advancements in the parallel, distributed, and on-line clustering, and introduction of other novel technologies in smart 

grids such as cloud computing [95], [96] will have a great impact on clustering of electricity customers.  

In recent years, new methods have been evolved and applied for clustering of customers. One of these approaches is 

time series clustering. A time series is defined as a series of data points indexed in time order. These data can be the 

values of a quantity obtained at successive times, often with an equal interval between them [97], [56]. The measured 

data by smart meters also represent a time series data. The same goals that are set for all other clustering applications 

are also applicable to the clustering of time series data, however, the nature of time series data poses unique challenges 

for applying any efficient clustering algorithm.  

For time series clustering, use of dynamic time warping (DTW) [98] as a similarity measure can be beneficial. The 

Minkowski similarity measures such as Euclidean distance are only defined for series of equal length and are sensitive 

to scale and time shifts [99]. They also reflect similarity in time by performing a one-to-one mapping between the data 

instances of the time series under comparison. On the other hand, DTW distance reflects similarity in shape by 

performing a one-to-many mapping, hence allowing time shifting, and thus matches similar shapes even if they have a 

time-phase difference [56]. However, one should notice that calculating DTW is computationally expensive [100].  

In [32] the clustering results of K-means and K-medoids with different distance measures are compared. While the 

former utilizes Euclidean distance as the similarity measure, the latter uses DTW. The results show the advantage of 

DTW metric for the clustering.  



 

 

 

In spite of current achievements, the sheer quantity of data from smart meters poses challenges for traditional data 

analysis tools of utility companies. In order to deal with this “big data”, new infrastructure and tools are required. Big 

data is usually characterized by three main features [101]: volume, variety, and velocity. Companies in the energy 

sector, facing this challenge of big data, need to implement more powerful analysis tools to extract value from the 

collected data. In this respect, leading companies have started working on data science solutions for power systems to 

control and monitor the network, and increase their profits [102], [103]. 

A few studies in the literature have addressed the “dynamic”/“online” clustering of load data and the problem of big 

data. Dynamic clustering of time series data is considered in [104] and [105] to deal with the dynamic evolution of the 

consumption data through time.  The presented framework in [104] for dynamic clustering of load curves compares the 

performance of K-means and FCM algorithms with different similarity measures including the Euclidean distance, the 

Pearson correlation coefficient, and another measure called Hausdorff distance.  

Ref. [36] proposes an online clustering method for high dimensional time series data. It applies an adaptive K-

means algorithm and performs analysis of clustering based on an online algorithm. The principle behind this online 

time series clustering is a batch divide-and-conquer scheme in which the clustering is applied on chunks of data points 

and once the entire data set is scanned, it combines the results to find the final clustering. Moreover, to tackle the 

problem of big data, a fully distributed clustering framework is introduced in [37]. The procedure starts with dividing 

the data set into k parts and applying an adaptive K-means to each individual part to obtain the cluster centers. Then, 

these cluster centers are selected as the inputs to another clustering algorithm to obtain the global clustering results.  

In another approach, a novel encoding engine based on an artificial neural network is developed [106] which 

encodes and clusters load profiles in real-time by a distributed approach. The advantage of this neural network based 

auto-encoder is that it does not need to know anything a priori about the input, nor use any fixed distance metrics like 

Euclidean distance. 

Deep learning-based clustering methods are other novel trends in the clustering of smart meter data.  In deep 

learning, multiple layers are used to extract higher level features from raw input. These methods can be divided into 

two categories: two-stage approaches and integrated approaches [107]. While the former performs the feature 

extraction and clustering in two stages, the latter combines the representation learning process and the clustering stage 

into one model. A probabilistic baseline estimation framework is proposed in [107] for DR applications. It employs a 

deep embedded clustering which is able to extract the new features and forms the clusters jointly. A combination of 

deep neural networks and K-shape clustering is used in [108] for load forecasting. Ryu et al. [109] propose a joint deep 

learning and clustering process that captures daily and seasonal variations. Deep learning techniques are used in other 

studies for example, for identifying the socio-demographic information from the load data [110] and designing 

incentive DR programs [111].  

In addition to above-mentioned progresses, with the advancements in smart meter technologies, DMS tools, and 

data transfer standards and protocols, fine grained electricity data with shorter time resolutions can be made available. 

The immediate impact will be on the real-time operation of power networks. Due to the fundamental limitations, most 

of the clustering studies consider the offline data of customers. However, due to these advancements, on-line 

monitoring and real-time management of power systems will be achievable. Possible applications include very short 

term load forecasting and dynamic demand response. For instance, system operators and DR aggregators will be able 

to analyse the load consumption data at very short time scales to forecast the electricity demand and to initiate DR 

programs such as load curtailments.  

 

8. Conclusion 
 

In this paper, we comprehensively explored the clustering of electricity customers according to their daily load 

patterns. The primary aim is to detect different consumption patterns which, subsequently, can be used for improving 

the other applications in the power system domain. Firstly, the past trends of customer segmentation and the stages of 

customer clustering were presented. In the next step, the major clustering algorithms were introduced and the main 

parameters of them are discussed. The case studies were performed to show the effect of these parameters and to 



 

 

 

compare different clustering methods. Furthermore, the applications of cluster validity indexes were described. In 

another section, some of the most important data size reduction techniques were illustrated and the parameters of them 

were evaluated. Finally, the future trends and applications were discussed in detail. In each part, an extensive review of 

the literature was provided to support the discussions.  
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