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Abstract—The advent of Industry 4.0 and the development
of future industrial applications can be achieved using Cyber-
Physical Systems (CPS). This technological development invokes
high levels of communication and computation in the form of
an interconnected network of industrial resources. Multi-agent
systems precisely can empower such technological evolution by
introducing properties like decentralisation, autonomy, flexibility,
social ability and modularity to the industrial context. In this
regard, the current work surveys recent multi-agent based
manufacturing approaches and provides a general vision of
current trends focusing on frameworks/architectures, comple-
mentary technologies and common applications. This article, ends
with an integrated discussion of emerging agent-based industrial
challenges, a general conclusion and final remarks.

Index Terms—Multi-agent systems, Cyber-physical Systems,
Industry 4.0., Distributed systems, smart manufacturing

I. INTRODUCTION

With the development of various technologies in the field
of computer engineering, the manufacturing sector has wit-
nessed a significant shift in the past decade. This shift can
be attributed to the application of high-performance sensing,
computing & networking devices. A common term used to
represent this new paradigm is called “smart manufacturing”.
This paradigm has supported the manufacturers to withstand
market turbulence like competition from developing markets
and need for mass customization.

One of the emerging technology that support this new
manufacturing paradigm is agent-based computation. Agents
are cognitive entities which exhibits properties like autonomy,
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reactivity, pro-activeness and social ability. A commonly ac-
cepted definition for an agent is that it’s “an encapsulated
computational system that is situated in some environment
and that is capable of flexible, autonomous action in that en-
vironment in order to meet its design objectives[1]”. A single
agent has its computing and knowledge limitations in complex
and large problems like manufacturing systems. Multi-Agent
System (MAS) is one way to solve these problems where each
agent uses its knowledge to solve it’s particular problem but
also co-ordinates with other agents to solve interdependent
problems.

In the last half decade, there were very limited reviews
which gives a general overview of the current frameworks,
technologies, applications and challenges of multi-agent based
manufacturing. Falco and Robiolo [2] presented a detailed
systematic review of the patterns and trends in MAS with focus
on all application domains including transport, healthcare and
manufacturing. Calegari et al [3] presented a systematic review
of MAS but mainly focused on logical technologies. Some
researchers have focused their review on a specific area or
sectors like agent-based programming [4], micro-grid systems
[5][6], shared transport services [7], energy sector [8], image
segmentation [9], smart homes [10] etc. The aim of this
work is to give researchers in manufacturing domain a brief
overview of the current trends and challenges in MAS. We
also wish this work would act as a guide for manufacturers in
implementing MAS for their specific requirements.

II. METHODOLOGY

To understand the current trends and challenges in multi-
agent system a structured literature review was carried



out. The first and the most important step was to identify
relevant research questions (RQs) which would satisfy the
requirements of the review. The 4 Research Questions
identified for this review paper are mentioned below,
RQ1: What are the various frameworks and architectures
developed in recent years for MAS in manufacturing?
RQ2: What are the different technologies that support the
development of MAS in recent years?
RQ3: What are the various applications of MAS in
manufacturing ?
RQ4: What are the current challenges in the development of
MAS in smart Manufacturing ?

The structured literature review methodology is given in
Figure 1. Our review will answer these four research questions
and analyze & discuss their results.

Fig. 1: Adopted Methodology

III. RESULTS AND DISCUSSION

A. Frameworks and Architectures for MAS [RQ1]

Most of the work on framework involves developing the
concepts around application environments. As per the litera-
ture review it is found that mostly there doesn’t exist a standard
framework/architecture to target general manufacturing envi-
ronment but is usually application specific. Applications of
multi-agent frameworks vary from supply-chain negotiations
[11], [12] all the way to manufacturing operation scheduling
[13], [14], [15].

Influx of different technologies have laid foundations of
multiple frameworks and architectures. Service oriented archi-
tecture (SOA) coupled with semantic web ontologies presented
an effective management approach for IoT devices in manu-
facturing processing [16]. SOA in an Holonic Manufacturing
Cell (HMC) generalised decision making strategies for dis-
tributed manufacturing systems [17] along with possibility of

reconfiguration of manufacturing cells [18]. Often these tech-
nologies are aided by others to achieve application purpose.
For instance multi-agent frameworks based on SOA and HMC
technologies are linked with webservice agent, XML schema
and data formats (STEP) to produce a potential case for virtual
production system [19].

Multi-agent frameworks and architectures have been inte-
grated with cloud and edge technologies. These technologies
in manufacturing are being more widely accepted, attributed
to their computational competence and evolving decreasing
latency requirements. A common data structure among all
platforms further leverages the idea of adoption in production.
Using of prior knowledge and data gathered during production
could lead to zero-defect manufacturing. [20] studied this
concept while in cooperation of cloud and edge technology.
High computational capability can be utilised in cloud based
platforms for employing reinforcement learning approach, that
could aid in making highly effective distributed intelligence
based decisions in manufacturing environment [21]. Further
applications to this approach involve process planning [22]
and dynamic task scheduling [15].

Biological insights have also been incorporated in some
frameworks and architectures. These mainly involve studying
their patterns for smart decision making in manufacturing.
Ant based optimisation techniques have been used for control
based system decision making [23], [24]. The action, reward
and decision model is very useful in establishing effective
decision criteria in distributed manufacturing environments
[25]. Additional, remarks of main frameworks and architec-
tural characteristics are detailed in Table 1.

B. Technologies that support the development of MAS [RQ2]

While the theory and concepts behind the application of
MAS in manufacturing are paramount for its understanding,
it is through the tooling that its potential can be fully realised
to solve real world problems. The various recent applications
and frameworks present a large ecosystem of technological
awareness. They are riding and increasing the potential of
smart manufacturing bringing intelligence, interoperability and
integration of systems.

The answer to RQ2 is derived from two figures. The first
one (Figure 2) clusters eight topics that support MAS i.e.
interoperability, internet of things, learning based methods,
enabling technologies, simulation, production management,
modelling and control and optimisation. The second one
(Figure 3) presents the frequency of the appearance of such
technological enablers.

Results of this question do not aim to provide a very strict
statistical analysis but to offer a general vision of what scope
of technologies and with what strength are supporting MAS
in manufacturing.

At least 53% of works (25) are supported by
interoperability-related technologies i.e. in infrastructure,
standards and semantic topics and represent the greatest
technological interest. MAS are utilized to provide resource
communication in the supply chain through the cloud,



TABLE I: Frameworks and Architectures for MAS

Framework/Architecture Main aspects Agent Functionality
Zhang et al. [26] : Virtual Manufacturing
Environment (VME) Architecture

Three layer architecture : User layer, System Layer and Service Layer. User layer is the interaction
layer with operator, customers, supervisors, and suppliers. it’s connected to cloud server in the
service layer through web server. The system layer encapsulates the MAS which is connected to
IoT System (IoT Devices). Decision making is a functionality of MAS at the system layer that
provides a gateway to edge computing and then to manufacturing cloud.

MAS architecture consists of Production Agent (PA), Maintenance Agent (MA), Quality Agent
(QA) and Logistics Agent (LA). PA consists of Process Agent and Scheduling Agent, MA consists
of Monitor Agent and Repair Agent, Quality Agent consists of Analysis and Assurance Agent
along with LA which contains Transfer Agent and Resource Agent.

R. Lu et al [27] : Multi-Agent Deep De-
terministic Policy Gradient (MADDPG)
Algorithm

Critic and Actor network are operated with weights for each agent. The functionality involves
target network parameter optimised with each episode.

Each agent selects action as per policy & exploration noise. Each agent action leads to reward
and the next state is observed. The learning phase incorporates sample batches of optimisation
variables (minimising loss) , updates critic and gives target network parameters.. The actor updates
as per sampled policy gradient.

S. Baer et al. [28] : Petrinet based FMS
Multi-Agent RL (MARL) framework

An online scheduling approach for flexible manufacturing system was developed using reinforce-
ment learning. Virtual representation was achieved by Petri Net modelling for plant topology and
product flow. A four stage training approach aided by agents proposed

The deep reinforcement learning agents guide the product through the setup to achieve near-
optimal processing times and optimal re4source allocation. Agents forsee machine failures, plant
topology re-configuration and optimisation goals.

Rafaella de Souza [29] : MAS system for
Supply Chain

The system developed to study the optimisation of supply chain efficiency. The assumption of
proposed system is the individual and global objective function. The negotiation mechanism in
system is catered around dutch auctions and monotonic concession protocol.

The environment involves agents as intelligent actors. Agent learning in system is broached by ε
- heuristic.

D’ Aniello et al. [30] : CM based archi-
tecture for operation management

Architecture developed for production planning of decentralised resources. Distributed task
scheduling addressed.

Three type of agents: Task Agent (TA), Master Agent (MA) and Printer Agent (PA). These agents
collaborate to manage and monitor homogeneous manufacturing services.

R. Wang et al. [31] : Multi Agent Manu-
facturing Process Optimization Method

MATLAB enforced MAS method for production scheduling in interest of energy conservation was
developed.

MAS method involves agents that utilised Quantum Particle Swarm Optimization (QPSO)
algorithm for analysing and making decision on real-time energy data for optimisation.

Yang et al. [12] : Negotiation model for
supply chain

The framework is a negotiation method for solving conflict and realisation of cooperation in supply
chain environment.

Agents use request bid system via an Agent Name Server (ANS) for negotiation. Constraint
conditions can be incorporated

Li et al. [32] : Multiobjective Particle
Swarm Optimization Algorithm MAS al-
gorithm

Catered to process industry for complex working condition control. Model is divide into control
and execution layer.

MAS technology works with MOPSO algorithm to optimise system model and reduces time
consumption due to information interaction.

Cagnin et al. [16] : Architecture based on
MAS, SOA and Semantic Web Technol-
ogy

Process automation for applications to coordinate and execute tasks by autonomous devices. Multi-
agent Architecture consists of reactive and cognitive layer.

agent implementation at physical layer at IoT devices followed by agent to agent connection
for multi agent system and enforced by Knowledge base. Ontologies assist in dynamically and
automatically select and execute tasks.

Thomas et al. [17] : HMC SOA agent
framework

Discusses emerging holonic and multi-agent system technology in service oriented and cloud based
approach. Presented a case for utilisation of ICT technologies such as agents, virtualization, big
data and data analytics.

Presented a agent-based optimisation technique, that used fuzzy-multiagent systems to enforce
decision maker’s strategies to value chain environment. HMC and SOA applications using agents
proposed.

Abid et al. [18] : SysML (Systems Mod-
elling Language) framework agent-based
RMS

System integrating using holonic paradigm. Increases productivity through the simulation of
reconfigurability.

Implementing the holonic architecture in the agent-based platform.

Tonelli et al. [33]: Manufacturing sustain-
ability framework

Block libraries, base building blocks used for developing models. Sustainability issues and key
performance indicators (KPIs) are considered. The model defined in environment consists of:
agents, behaviours, etc.

A model agent simulation developed for use-case of food producing plant for animals. Semi-
automatic line conveyors based automated line, buffer, manual line, lift , shaker and finally
packaging.

Kovalenko et al. [34] : Distributed MAS
task Negotiation

Distributed MAS proposed to improve flexibility. Two important components (product and resource
agents).

Architecture consists of: Resource agent Knowledge, RA provided with model of their capabilities:
information of resource capability and Neighbouring. RAs: Information of the states shared with
other resources. Product Agent Knowledge, process plan and product history. Pas communicate
with RA teams through bids. RAs use them to enable task negotiation and PA to formulate better
environmental understating.

Dhokia et al. [35] : generative multi-agent
design methodology

Methodology that relied on termite behavior to simultaneously design, optimise and evaluate parts
produced by additive manufacturing.

Agent based design by 200 termites to optimise design problem under objective conditions.
Iterations are performed by feedback loop to finite element solver to demonstrate AM parts.
Agent based generative design tool developed.

Guizzi et al [13] : decentralized multi-
agent optimisation approach

Dynamic integration is discussed for process planning and scheduling operations in open job-shop
manufacturing systems. Decision making process is distributed at level of agents that overcome
local disturbance to reach overall target.

FIPA CNP protocol and MAS combination proposes a method for solving OJSSP under uncer-
tainty.MAS architecture divides scheduling problem of a big job into constituent smaller problems.
Composite-dispatching rule is developed for scheduling, decreasing in job mean waiting time.

Li et al [36] : Distributed MultiAgent Co-
operation Collaborative Control Method
and HD MAS (Hierarchal Distributed) ar-
chitecture

Provides control mechanism for process industry and process control optimisation. This leads to
a collaborative control model among production units. A DS MADDPG (Distributed Multi Agent
Deep Deterministic Policy Gradient) framework is proposed and utilises MADDPG algorithm to
achieve intelligent distributed collaborative control.

Experiments done with two agent environment gradually learning policy and learn to collab to
manipulate task agent. MADDPG vs DS MADDPG (better results shown).

Leitao et al. [20] : Multi-Agent System
Architecture for Zero Defect

Multi-agent CPS for targeting ZDM in multi-stage production system. MAS architecture for distributed data collection and analysis. Monitoring and adaptation among
cloud/edge layers. It promotes process and product variability with generation of optimised
knowledge based on aggregated data.

Yang et al. [11] : Negotiation of Manufac-
turing enterprise supply chain

Multi-objective negotiation model, negotiating tactics and steps between purchasing agent and
supplier agent

Negotiation model and tactics: agent coordinator communicates through negotiation thread with
suppliers.

Taurino et al. [37] : Multi-agent Systems
for Production Management

A model of the mid-layer multi-agent management negotiation, according to the “game theory”
viewpoint.

The requirement from any agent of the network is to understand the payoff of the part of production
system. To evaluate this payoff, it is necessary to adopt a network model based on “cooperative
game theory” that shows the different way of “players” (agents) to interact and cooperate.

Giret et al. [38] : Sustainable intelligent
manufacturing control systems

Engineering method that helps researchers to design sustainable intelligent manufacturing systems Identification of the manufacturing components and the design and integration of sustainability-
oriented mechanisms in the system specification, providing specific development guide lines and
tools with built-in support.

Mantravadi et al. [39] : Multi-agent Man-
ufacturing Execution System (MES)

A combination of different elements such as hardware, software, organisational practices and other
tool boxes like ML could include MES software as a main actor. Such a collaborating system can
derive benefit for the enterprise.

Multi agent MES consist on sub agents that run on raspberry pi and central agent (a middleware
running on MES server). Sub agent collects data to detect abnormal behaviour and aid MES to
execute.

Yongkui et al. [15] : Multi-agent-based
scheduling in cloud manufacturing

Scheduling issues in cloud manufacturing using multi-agent technologies. An architecture for
scheduling in cloud manufacturing is proposed.

A model is presented that incorporates many-to-many negotiations based on an extended contract
net protocol. It takes into account dynamic tasks arrivals.

Mezgebe et al. [40] : Algorithm for multi-
agent-based manufacturing system

Consensus algorithm for multi agent based manufacturing system (CoMM) - to control rush order
and minimize a makespan. consensus.

Each agent decides when to broadcast its state - controlling decision depends on this state
behaviour.

Liu et al. [14] : Multi-agent architecture
for scheduling

complete manuf. system - distributed physical manuf. and virtual manufacturing mapped from
physical ones resulting in platform-based smart manufacturing systems (PSMSs)

agents used for platfrrm and enterprise level scheduling.

discovering and orchestrating services on demand [41] and
running agent technology in the network or edge if needed
[20]. The integration, of agents is also supported by standards.
Some examples are XML language that formalizes knowledge
base methods for queries and data storage [42] or RFID tags
that provide opportunities for precise data acquisition [23].
Finally, semantic communication and in general ontologies
and semantic web provide methods for data understanding,
knowledge and automatic discovering of information [41].

In terms of modelling and control, at least 38% of works
(18), provide a specification of system modelling, either with
the formalization of methods or with various sources of
inspiration. Some examples are symbolic artificial intelligence
with formal methods[1], behavior modeling[35], Markov pro-
cess [28], contract net protocols [15], graphs, etc. Most of
agent-based approaches have inspiration in Holonic systems

to model and design digital agents with a high level of
compositionability and granularity [43]. With this method, the
level of control is normally possessed by a superior digital
entity (hierarchy) and entities below representing intermediate
decision making. In the lower level, holons abstract physical
objects and information of sensors and actuators. Also, some
of these works, include bio-inspiration (e.g. ants’ pheromones)
as a mechanism to provide indirect agent influence for process
adaptation [23].

To a lesser extent, learning based approaches (approx.
25% or 12 works) present learning mechanisms that guaran-
tee the utilisation of experience-based knowledge. Generally,
supervised and unsupervised techniques support agent-based
decision-making. This integration provides also embedded
functionalities: anomaly detection, data storage, continuous
adaptation of parameters and information [39]. Additionally,



Fig. 2: Scope of relevant technologies that support MAS

Fig. 3: Technology frequency appearance

reinforcement learning can efficiently guide agent policies to
achieve near-optimal production specification e.g. scheduling
or resource allocation of resources [28].

Similarly, optimisation methodologies (approx. 17% or 8
works) provide necessary support for process and parameter
optimisation. Normally, these techniques are based on evo-
lutionary computation [44] e.g. particle swarm optimisation
(PSO) [25] to adjust agent behaviour considering influencing
factors, modelling of the system and manufacturing restric-
tions. We consider at the number of works that have simulation
as means to test or enhance their approaches (15% 7 works).
Simulations are used for testing in a risk-free environment
and for enhancing real-time decision-making. In the latter
case, simulations work as a future prediction mechanism. A
popular tool for agent implementation is the JADE framework.
In addition, NetLogo provides a graphical and interactive
language programming for agent implementation and testing.

The number of works that utilised production management
tools and technologies is reduced (8%, 4 works). Here we
refer to agents with high level of abstraction, mostly related
to supply chain or operations out of shop floor. In this context,
agents provide support for intelligent communication and
autonomous decision making in applications like Product Life-

cycle Management (PLM), Manufacturing Execution System
Operations [39], Virtual Enterprises [19], etc.

Finally, multi-agent technologies work in symmetry with
other technological enablers. Undoubtedly, this integration
provides necessary tools to potentiate manufacturing expec-
tations and serve as example for future practitioners e.g.
industrial robots, augmented reality, virtual reality, internet of
things, etc. The high relevance of industrial robotics should
be emphasised and their integration with agent technologies
to provide an intelligent manufacturing control. Agents act as
the digitisation mechanism for such resources.

C. Applications of MAS in manufacturing [RQ3]

In our analyses, we found that majority of papers (64%)
address 5 major applications namely: production planning
(16%), energy and emission reduction (16%), manufacturing
scheduling (14%), logistics & supply chain management
(10%) and decision support system (8%). Considering the
ISA 95 levels, the results shows that most of the publications
addresses the higher levels i.e., Manufacturing Operations
Management (L3) and Business Planning and Logistics (L4).
Others in Figure 4 represent applications which are addressed
in less than or equal to 5% of publications. These include
applications like maintenance, quality control, manufacturing
control, performance and efficiency improvement, Anomaly
detection, self-organisation etc.

Fig. 4: Applications frequency appearance



Here we are presenting some of the most relevant works
in each application. Sarkar et al. [41] proposed an agent
framework for developing a generic planning agent based on
Belief, Desire and Intention mechanism (BDI). The proposed
model can be used for planning at any level of aggregation di-
mension. At each level, the lower level resource agent presents
specifications and upper level agent proposes matching capa-
bilities for lower level agent to accept or reject it. Wang et
al. [45] compared communication between each agent using
Particle Swarm Optimization (PSO) and Quantum-behaved
PSO algorithm for achieving energy conservation and emission
reduction. The authors used real time energy and production
data from the production of 1000kg of glass fiber in a kiln.
They concluded that use of Quantum-behaved PSO reduces
oxygen, natural gas and machine power consumption. Liu et al
[46] presented a multi-agent architecture for scheduling with a
centralized management. The architecture manages scheduling
process for task executed in both platform and enterprise-level.
The process is based on bidding and negotiations between
different types of agents. Farsi et al [47] proposed a 3-
layer Multi-Agent Cyber Physical Manufacturing System for
interaction between shop floor phases and external stakehold-
ers within a supply chain. The 3-layers represent multi-layer
agents from micro to macro level for global manufacturing
supply chain. Takahashi et al. [48] constructed a sharing and
non-sharing durable goods market model. The duopoly model
has two groups of agents; Manufacturer agents and Consumer
agents. The authors used multi-agent simulation using Q-
learning for agents’ decision making.
Table II presents various technologies which support each
MAS application. In analysing the table we notice that certain
technologies are used in almost all types of applications. These
includes reinforcement learning, Edge & Cloud technologies
and simulation techniques. These technologies could be iden-
tified as promising technologies for the future development
of MAS. Interoperability and modelling & control are the
technological enablers which was used for the realisation
of all applications indicating the importance of focus in its
development for a better implementation of MAS.

D. Challenges in MAS in smart Manufacturing [RQ4]

On the level of framework a significant challenge that
exists for adoption of agent technology in manufacturing
setting is related to lack of framework and architecture that
targets general manufacturing environment. MAS on the other
hand are seen to fail in dealing with real-time properties, as
they typically go for the best-effort approach. This approach
although feasible does not account for worst-case scenario or
prepare the system well in advance before such a case occurs.
An issue in this regard is to ensure real-time compliance that
could be achieved by interoperablility. The next missing link
in the MAS framework is the missing rules and mechanisms
that may be triggered due to any timing errors causing delay in
synchronisation and scheduling of tasks. Real-time constraints
can cause MAS frameworks to be incompatible across differ-
ent platforms, therefore requiring certain functionalities within

TABLE II: Technologies that support MAS Applications

Application Area of Interest Technological enablers

Production
Planning

Negotiation,
Collaboration,
Task decomposition,
Route Planning,
Coordination,
Market Simulation

Interoperability: RFID, XML, ontologies, cloud, semantic web
Internet of Things
Learning based: reinforcement learning
Simulation
Enabling technologies: Virtual and Augmented Reality
Modelling and control: pheromones,bio-inspired, formal methods,
graph,contract net

Energy and
Emission
Reduction

Green manufacturing,
Sustainability,
Green decision making

Interoperability: Edge Computing
Internet of Things
Learning based: reinforcement learning
Enabling technologies: Energy Hub
Simulation
Modelling and control: holonic systems,behaviour,Markov decision
Optimization: particle swarm optimization

Manufacturing
Scheduling

process scheduling,
job dispatching,
rush order optimization

Interoperability: Cloud
Learning based: reinforcement learning
Production Management: Operation
Modelling and control: contract net, bio-inspired, Markov decision
Optimization: Game theory

Logistics &
Supply Chain
Management

Logistics Outsourcing,
Logistics Optimizaiton

Interoperability: RFID
Internet of Things
Simulation: NetLogo
Modelling and control: contract net, holonic systems
Optimization: Game theory, evolutionary

Decision
Support System

distributed
decision making,
decision
support mechanism,
price estimation

Interoperability: XML, Cloud, Ontologies
Learning based: machine learning, reinforcement learning
Simulation
Production Management: MES, Virtual enterprise
Modelling and control: Holonic Systems

framework to undergo changes to match the constraints. In
the same sense the protocol used in the framework must be
cross-platform compatible to deal with real-time constraint.
Frameworks and architecture should be extendable to incor-
porate changing aspects. A general lack of reference models
present a challenge in applications of industrial agent-driven
automation control that deals with analysis and verification of
real-time code generation (to target constraints). Mostly the
agent technology implementation cases involve FIPA standard
specification. A bigger challenge in this regard is to include
specific requirements in the specifications like event notifica-
tion, service unsubscribing and protocol change mechanisms.
A benchmark mechanism is also needed to test the validity
and performance of developed frameworks.

MAS Frameworks and architecture should offer compatibil-
ity with other technologies like web-based technologies (such
as web services and Semantic Web) and computing paradigms.
Some work on combining SOA with MAS technologies are
in place; however, standards and open protocols are needed
to support this combination transition. In terms of control
technology, a significant challenge is due to lack of vendor
support in terms of design tools and run-time support for
agent-based IEC 61499 deployments. In manufacturing setups,
disturbances produced cause deviation from plan and degrada-
tion of performance in overall systems. The frameworks usu-
ally developed do not account for these. Future works on agent
frameworks should also factor in treatment of disturbances and
exceptions for intelligent manufacturing operation execution.

Regarding the technological level, agent-based cyber-
physical infrastructures normally lack of a connectivity anal-
ysis. This is necessary due to high number and sometimes-
complex negotiation mechanisms applied. This can generate
high levels of latency and thus communication bottlenecks.
Therefore, the measuring and optimisation of related KPIs are
necessary. Learning based methods should be highly consid-
ered in future applications. So far, most of approaches rely
in predefined knowledge based models. However, the imple-



mentation of more innovative techniques has been elusive. For
example, the inclusion of deep reinforcement learning could
be utilised for the creation of dynamic learning agents. This
can reduce the dependence from classical negotiation protocols
and potentiate the development of more open architectures.
In addition, the consideration of the context where agents
are applied or the human-agent interactions as a way to
reinforce policies or rules seems to be not highly applied.
This still open issue can enhance framework adaptability
and thus provide continuous process improvement. In terms
of enterprise management, there is a clear gap among the
integration of low level agents (e.g. shop floor resources)
with agents representing high level enterprise actors. Also,
few works consider inter-enterprise communication. Thus, the
need of generating more detailed models that can showcase
the integration of all actors in manufacture value chain and the
development of more complete generic framework in stead of
application specific.

In application of MAS in manufacturing, one challenge
which was clear while reviewing the literature was that
distributed task scheduling problem is yet to be addressed.
Giuseppe D’Aniello et. al.[49] has partially tacked this issue
in the context of cloud manufacturing by considering an
architecture based on autonomous scattered manufacturing
resources with dynamically re-configurable network. There is
still a lack of MAS based decision support capabilities for
manufacturing execution systems on shop floor.

IV. CONCLUSION

The paper presents an overview of the applications of multi-
agent systems in manufacturing, the current trends in research,
academia and industry along with underlying challenges that
must be addressed for further enforcing of the concept. This
paper breaks down the focus into four major research questions
namely discussing frameworks, technologies,application and
challenges. The fundamental methodology of the review of the
topic in the research domain is presented for reference. The
paper presents an in-dept overview of different frameworks
and architectures developed in order to target multi-agent
system implementation. This gives an idea on the current focus
and trends that are applicable to the area of research in-terms
of techniques that solutions are based on, most common areas
targeted, frequent problems identified, role of agent interaction
and consideration. This in-depth review also gives rise to an
observation on technologies used to support development of
MAS. The most common technologies used for realisation are
broken into fields of application or scope of application and
presented. Common overlaps of technologies and characteris-
tics of MAS enablers are highlighted. The application section
breaks down the gathered research into the targeted areas in
manufacturing. The analysis leads to an idea on the most
targeted areas in manufacturing for MAS implementations, and
assists in mapping of the reasons for those areas to be targeted
along with major challenges witnessed for current and future
research.

Finally, the section on challenges presents the gaps that
exists in frameworks, technologies and application that hinder
the progression of MAS integration in manufacturing. The
main reasons are primarily attributed to lack of standard
architectures/frameworks, lack of real-time adaptable execu-
tion and compliance, interoperability, lack of synchronisation
and scheduling methodologies, real-time constraints, reference
models and lack of methods of specification requirement
association in current standards. Compatibility issues across
technologies can restrict integration and in others if a means
is present then the protocols, standards and specifications are
needed to support such transitions. In addition to this, con-
nectivity issues between components of platforms needed for
agent-negotiation, improvement of system based on learning
techniques and instantiating context-awareness in the manu-
facturing setting are significant challenge. Also, distributed
systems in manufacturing see a general lacking of cloud
service models. Future works should target these areas for
better MAS integration in manufacturing.
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[22] A. Sarkar and D. Šormaz, “Multi-agent System for Cloud Manufacturing
Process Planning,” Procedia Manufacturing, vol. 17, pp. 435–443, 2018.

[23] A. Vatankhah Barenji and R. Vatankhah Barenji, “Improving multi-agent
manufacturing control system by indirect communication based on ant
agents,” Proceedings of the Institution of Mechanical Engineers. Part
I: Journal of Systems and Control Engineering, vol. 231, no. 6, pp.
447–458, 2017.

[24] C. E. Pereira, R. V. B. Henriques, and J. D. O. Mutiz, “Multi-
Agent Systems and Bio-Inspired Coordination applied to Manufacturing
Industries,” 2018 IEEE 2nd Colombian Conference on Robotics and
Automation, CCRA 2018, no. 1, p. 1, 2018.

[25] M.-a. Modeling, Z. Li, H. Zhu, Q. Meng, C. Wu, and J. Du, “Manufac-
turers ’ Green Decision Evolution Based on,” vol. 2019, 2019.

[26] X. Zhang, S. Tang, X. Liu, R. Malekian, and Z. Li, “A novel multi-
agent-based collaborative virtual manufacturing environment integrated
with edge computing technique,” Energies, vol. 12, no. 14, 2019.

[27] R. Lu, Y. C. Li, Y. Li, J. Jiang, and Y. Ding, “Multi-
agent deep reinforcement learning based demand response for
discrete manufacturing systems energy management,” Applied
Energy, vol. 276, no. July, p. 115473, 2020. [Online]. Available:
https://doi.org/10.1016/j.apenergy.2020.115473

[28] S. Baer, J. Bakakeu, R. Meyes, and T. Meisen, “Multi-agent rein-
forcement learning for job shop scheduling in flexible manufacturing
systems,” Proceedings - 2019 2nd International Conference on Artificial
Intelligence for Industries, AI4I 2019, no. September, pp. 22–25, 2019.

[29] R. de Souza Henriques, “Multi-agent system approach applied to a
manufacturer’s supply chain using global objective function and learning
concepts,” Journal of Intelligent Manufacturing, vol. 30, no. 3, pp. 1009–
1019, 2019.

[30] G. D’Aniello, M. De Falco, and N. Mastrandrea, “Designing a multi-
agent system architecture for managing distributed operations within
cloud manufacturing,” Evolutionary Intelligence, no. 0123456789, 2020.
[Online]. Available: https://doi.org/10.1007/s12065-020-00390-z

[31] R. Wang, X. Jiang, and J. Zhao, “Research on multi agent manufacturing
process optimization method based on QPSO,” Proceedings - 2017 10th
International Symposium on Computational Intelligence and Design,
ISCID 2017, vol. 2, no. 5, pp. 103–107, 2018.

[32] D. Li, X. Jiang, and X. Wei, “Research on Manufacturing ProcessControl
Based on,” 2018 IEEE 4th Information Technology and Mechatronics
Engineering Conference (ITOEC), no. Itoec, pp. 1306–1309, 2018.

[33] F. Tonelli, M. Paolucci, M. Demartini, and D. Anghinolfi, “Multi-agent
framework for manufacturing sustainability analysis and optimization,”
Studies in Computational Intelligence, vol. 694, pp. 143–155, 2017.

[34] I. Kovalenko, D. Tilbury, and K. Barton, “The model-based product
agent: A control oriented architecture for intelligent products in
multi-agent manufacturing systems,” Control Engineering Practice,
vol. 86, no. March, pp. 105–117, 2019. [Online]. Available:
https://doi.org/10.1016/j.conengprac.2019.03.009

[35] V. Dhokia, W. P. Essink, and J. M. Flynn, “A generative
multi-agent design methodology for additively manufactured parts
inspired by termite nest building,” CIRP Annals - Manufacturing
Technology, vol. 66, no. 1, pp. 153–156, 2017. [Online]. Available:
http://dx.doi.org/10.1016/j.cirp.2017.04.039

[36] Z. Li, X. Jiang, S. Yao, and D. Li, “Research on Collaborative Control
Method of Manufacturing Process Based on Distributed Multi-Agent
Cooperation,” Proceedings - 2018 11th International Symposium on
Computational Intelligence and Design, ISCID 2018, vol. 2, pp. 41–
46, 2018.

[37] T. Taurino and A. Villa, “Multi-agent systems for production manage-
ment in collaborative manufacturing,” IFIP Advances in Information and
Communication Technology, vol. 506, pp. 175–182, 2017.

[38] A. Giret, D. Trentesaux, M. A. Salido, E. Garcia, and
E. Adam, “A holonic multi-agent methodology to design sustainable
intelligent manufacturing control systems,” Journal of Cleaner
Production, vol. 167, pp. 1370–1386, 2017. [Online]. Available:
http://dx.doi.org/10.1016/j.jclepro.2017.03.079

[39] S. Mantravadi, C. Li, and C. Møller, “Multi-agent Manufacturing Ex-
ecution System (MES): Concept, architecture & ML algorithm for a
smart factory case,” ICEIS 2019 - Proceedings of the 21st International
Conference on Enterprise Information Systems, vol. 1, no. January, pp.
465–470, 2019.

[40] T. T. Mezgebe, G. Demesure, H. Bril El Haouzi, R. Pannequin, and
A. Thomas, “CoMM: a consensus algorithm for multi-agent-based
manufacturing system to deal with perturbation,” International Journal
of Advanced Manufacturing Technology, vol. 105, no. 9, pp. 3911–3926,
2019.
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