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Abstract—In functional encryption (FE) a sender,
Alice, encrypts plaintexts for which a receiver, Bob,
can obtain functional evaluations, while Charlie is
responsible for initializing the encryption keys and
issuing the decryption keys. Standard notions of security
for FE deal with a malicious Bob and guarantee the
confidentiality of Alice’s messages despite the leakage
that occurs due to the functional keys that are revealed
to the adversary via various forms of indistinguishability
experiments that correspond to IND-CPA, IND-CCA
and simulation-based security.
In this work we provide a complete and systematic

investigation of Consistency, a natural security property
for FE, that deals with attacks that can be mounted
by Alice, Charlie or a collusion of the two against
Bob. We develop three main types of consistency
notions according to which set of parties is corrupted
and investigate their relation to the standard security
properties of FE. To validate our different consistency
types, we extend the universally composable framework
for FE by Matt and Maurer (CSF 2015) and we show
that our consistency notions naturally complement FE
security by proving how they imply (and are implied
by) UC security depending on which set of parties
is corrupted; in this way we demonstrate a complete
characterization of consistency for FE. Finally, we
provide explicit constructions that achieve consistency
efficiently either directly via a construction based on
MDDH for specific function classes of inner products
over a modulo group or generically for all the consistency
types via compilers using standard cryptographic tools.

I. Introduction
Functional encryption (FE) [22], [56] has emerged as an

important and general purpose cryptographic primitive,
extending and generalizing earlier more specialized en-
cryption concepts that include Identity-Based Encryption
[21], Attribute-Based Encryption [44], [62] and Predicate
Encryption [49]. Similar to these earlier primitives, in FE,
there exists a setup algorithm that produces a master
public-key mpk and a master secret-key msk, and a key-
generation algorithm that receives as input msk and a
function f and produces a function-specific secret-key skf .
Subsequently, using skf along with the decryption algo-
rithm, the computation of the value f(x) is facilitated given
any ciphertext that encrypts x. The potential applications

of FE are numerous and include any setting where there
exist designated entities that are entitled to functional
views of encrypted information that is described in the
form of a function f for which an associated functional key
skf is produced by the key-generation procedure.
In order to define correctness and security of FE it is

helpful to identify three distinct entities associated with
the algorithms that comprise any FE scheme. Alice is the
sender, wishing to transmit data x, Bob is a recipient
wishing to receive f(x) for some function f(·) and Charlie
is an authority that issues the (master) keys. Typically
we think there are multiple Alice and Bob parties for
any given setup instance created by Charlie. As one of
these Bob parties can be corrupted, this also captures
security against an eavesdropper that only observes the
network. Correctness mandates the natural requirement
that Bob receives the value f(x) for properly encrypted
ciphertexts prepared by Alice that contain x. Security on
the other hand is typically captured as a game with an
adversary who attempts to distinguish between two possible
plaintexts x0, x1 for which it holds that fi(x0) = fi(x1) for
all functions fi whose key is possessed by the adversary. A
stronger notion of security puts forth a simulation-based
formulation and asks that ciphertexts can be simulated in
an indistinguishable way. Cf. [5], [6], [14], [16], [22], [32], [43],
[47], [52], [56]. The adversary controls multiple different Bob
sessions and typically interferes with the honest Alice only
in the sense of chosen plaintext attacks, however chosen
ciphertext attacks have also been considered [18] (in which
case the adversary may e.g., manipulate Alice’s ciphertext
and submit it to Bob’s decryption oracle). Our work further
builds on the composable formalization of FE security by
Matt and Maurer [52].1
1) Consistency problems in real-world applications of FE:

A crucial problem for any cryptographic primitive is to
identify the exact set of correctness and security properties
that are necessary and sufficient for deploying the primitive

1Note that while the composable analysis in [52] is formally
conducted in the Constructive Cryptography (CC) framework [53],
the composable guarantees captured via an ideal system in the
CC framework are very close to a UC formulation (via an ideal
functionality). Our work makes this translation on the fly.
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within an intended real world system. To see that there is a
fundamental property of FE that is missing, it is helpful to
recall the most well known applications of FE and showcase
the problems that emerge when consistent behavior of an
FE scheme is not guaranteed.

a) Processing Encrypted Data: In the original paper
[22] the following motivating example for FE is presented:
Alice encrypts a photograph x and uploads it to her cloud
service provider, Charlie, while Bob, a law enforcement
agent, wishes to check whether any photographs in the
cloud match a specific face. Using FE, Bob can achieve
his objective, taking advantage of a functional key which
detects the matching encrypted photographs without re-
vealing any other information. Given the above setting, it is
in everyone’s understanding that if a photograph matches
a specific face being searched, the law enforcement agent
will be able to detect it. Nevertheless, neither standard
notions of security nor correctness of FE can rule out the
possibility that a malicious Alice creates a ciphertext that
will be misclassified by Bob, specifically a ciphertext that in
fact decrypts to a photograph of the person being searched,
and for which the employed face recognition algorithm f
actually works, but which is not detected as such by Bob
when implementing the task using the functional key skf .
As an extreme case, the failure could be selective: Alice
can profit from all other services by the cloud provider (for
different functions f ′) (such recommendation systems or
collaborative filtering), and just exclude that her photo is
detected by the law-enforcement agent. Looking ahead, the
property that rules out this case called input consistency.
The above setting can be more adverse in that a coalition
of Alice and Charlie can together fool the law enforcement
agent, e.g., by creating subverted public keys. The property
that ensures the correct functioning of the classification
task is called strong input consistency. Finally, even if
the input provider Alice is not malicious, a problem with
subverted system parameters can occur: the cloud service
provider could generate a key for the law enforcement
agent that purposefully misclassifies some pictures that
contain for example the specific face that Bob is looking
for and in effect allow Charlie to protect certain people
such as Alice from prosecution. Also the other direction
is possible: Charlie could also wrongfully frame her by
generating a functional key that wrongly detects a specific
face in Alice’s ciphertext. (Both of these attacks could even
be eased in case it is possible to trick Alice and Bob into
using different master-public keys.) Excluding this case
requires the FE scheme to be setup consistent. Surprisingly,
as we will see later, setup consistency is not implied by
strong input consistency. Clearly, similar “misclassification”
inconsistency issue applies to any setting where FE is used
to classify ciphertexts in-transit or in-situ (e.g., for virus-
detection, routing etc.).

b) Attribute Based Encryption: In an attribute-based
encryption (ABE) scheme [44], which is a special case of FE,
Alice encrypts a message together with a set of attributes γ.

Subsequently, Bob, who possesses a key corresponding to
an access structure A will be able to decrypt the message
as long as γ ∈ A. Consider now also another party, say Bob
junior, possessing a key for the access structure A′ ( A.
Given the above setting, it is in everyone’s understanding
that whatever messages Bob junior is able to see, Bob
should see as well. Nevertheless, neither standard notions
of security nor correctness of FE can rule out the possibility
that a malicious Alice crafts a ciphertext that Bob junior
will be able to decrypt but Bob would not. In the context
of access control systems, this would imply that ciphertexts
that appear valid for some parties are not role-respecting
and therefore not compatible with the policy. As above,
the same inconsistent behavior could occur with corrupted
setup parameters and/or functional keys even if Alice is
honest.
2) Consistency as a fundamental property for FE:

What do the above problems tell us? Similar to advanced
properties of ordinary PKE (such as e.g., robustness [1]),
advanced properties for FE are needed when using the
primitive in a real world setting because such properties are
implied by the way the primitive is understood in the real-
world. Moreover, the level at which they should be defined is
at the level of the basic definition and syntax of FE. We call
the enhanced property the above issues point to consistency;
it addresses, at minimum, the adversarial setting where
a malicious Alice produces a specially crafted ciphertext
that causes an honest Bob to misclassify it, or, perhaps
even a malicious Charlie who tampers with the setup to
cause further types of misclassification. Interestingly and
somewhat surprisingly, such a consistency property has
not been considered in the strict context of FE so far and
enhanced FE schemes, departing from the standard syntax
such as [11], do only consider certain consistency aspects
(see below). We show that, as with the confidentiality of
FE, the consistency of FE has several flavors, some of
which are very efficient to ensure, while others require
more sophisticated techniques.

A. Contributions of this Work

We roll out consistency as a fundamental property of
FE scheme from first principles. We provide a number of
constructions for various consistency and security notions
either directly for specific function classes or generically
via compilers that upgrade existing FE constructions to be
consistent. To formally cross-check our new notion, we show
that the defined properties are necessary and sufficient in
realizing the UC characterization of an “ideally” secure and
consistent FE-scheme abstraction derived from [52]. The
modelling of all security properties as an ideal functionality
assures that no important details were omitted and that
our game-based definitions interoperate correctly. In more
details we make the following contributions.
1) Formal definition of consistency: We identify three

main types of consistency, each type naturally corre-
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sponding to a particular set of corrupted parties. The
formalization is given in Section III.
• Input consistency considers a malicious Alice who
computes a ciphertext ct and candidate functions fi.
The ciphertext ct is decrypted under skfi to obtain
the values yi. The adversary wins if there is no single
x that can explain ct in the sense that fi(x) = yi.

• Strong input consistency couples the above goal with
additional adversarial power. It considers the setting
where both Alice and Charlie are corrupted. Therefore,
subverted parameters can assist the adversary in
breaking the scheme.

• Setup consistency is the consistency notion that deals
with a malicious Charlie. In this setting the adversary
issues two plaintexts x1, x2 as well as a secret-key and a
function f . The plaintexts are honestly encrypted and
subsequently their decryptions y1, y2 are evaluated.
The adversary wins the game if exactly one of the
decryptions fails or yi 6= f(xi) for some i. While at
first sight it seems that setup consistency is implied
by strong input consistency, this is not the case. This
is discussed further in Section III-C.

We highlight that consistency in the above sense com-
plements security, as in the latter Alice and Charlie are
honest and Bob is malicious. To show that our definitions
do formally capture what they are intended for, we put
forth in Section IV a complete treatment of consistent FE
in the universal composition (UC) setting [25]. Specifically,
we prove that input consistency/setup consistency/strong
input consistency is sufficient and necessary for UC security
when Alice/Charlie/Alice+Charlie are corrupted respec-
tively. This pairs and complements the result of [52] which
implies that CFE security is sufficient (and necessary) for
UC security in the case Bob is corrupted. We thus position
consistency as an important novel property of FE.
2) Systematic study of consistency vis-à-vis existing

security properties: We carefully analyze the relations in-
between the consistency notions and between consistency
and security. We confirm our intuition that all notions
define separate levels of consistency, the only exception
being that strong input consistency implies input consis-
tency. With respect to security, namely IND-CPA, IND-
CCA and CFE, the composable security notion of [52], we
show that strong input consistency does not imply IND-
CPA security and therefore also not IND-CCA or CFE,
since both of these notions are known to imply IND-CPA.
Furthermore, we show that IND-CPA together with strong
input consistency does not imply any of the other stronger
security notions such as IND-CCA or CFE. Finally, IND-
CCA and CFE individually do not imply input consistency.
We refer to Figure 5 for a relation diagram. Thus, it follows
that consistency is independent from existing notions of
FE security. The proofs are given in Section C.
3) Realizing FE with consistency: We first describe,

in Section V, concrete input-consistent constructions for
an inner-product type of FE under the Matrix DDH

assumption for two different functional classes. The first
construction covers the modified inner-product functional-
ity class over a modulo group and the second construction
covers the function class of exponentiated inner-products
over a modulo group. Both of these constructions are
adapted from the construction of [7].

Interestingly, we observe and prove that previous efficient
constructions for the function class of inner-product over
the integers fail to provide input consistency. We present
explicit attacks, that exploit one core step in DDH based
inner product functional encryption schemes which is the
discrete logarithm computation at the end of the decryption
algorithm: it is possible to generate a malicious ciphertext
which, on two different honestly generated functional keys,
will behave inconsistently in that one decryption yields an
error symbol for one key, and the correct result for the
other functional key. In other words, the two decryptions
are not explainable by an underlying value and hence an
inconsistent behavior occurs.
Subsequently, in Section VI we present compilers that

achieve consistency in a black-box manner from any FE
scheme. Our work is inspired by that of [11] which dismisses
several compiler constructions as too weak when both Alice
and Charlie are corrupt. However, there are scenarios where
this is not the case and for which no compilers have been
analyzed. We give compilers that achieve input consistency
and setup consistency with improved efficiency compared
to the strong input consistency case. Additionally, we not
only prove security preservation for CPA and CFE, but
also present how to lift the security from CPA to CCA
for each compiler using the twin encryption technique [55].
Finally, for strong input consistency, we show that the
compiler in [11], which achieves verifiable FE can be used
to achieve strong input consistency. We actually show the
more general result that any VFE scheme can be turned
into a strong input consistent FE scheme. The reverse,
however is not true and we elaborate on this in Section VI
as well as below in Section I-B.

B. Comparison with Related Work
Relation to VFE: Prior to our work, there is only one

previous, very insightful work [11] which identified some
of the above deficiencies. In more detail, it puts forth a
cryptographic primitive which is substantially stronger and
syntactically different than FE, called verifiable functional
encryption (VFE) (and the compiler presented in [11] has
recently been instantiated using pairing-based NIWIs and
a perfectly correct functional encryption scheme for predi-
cates over inner-products [63]). VFE extends the normal FE
syntax by two additional predicates to check validity of keys
and ciphertexts, respectively. As already mentioned above,
VFE implies strong input-consistent FE. Interestingly, the
reverse is not necessarily true as VFE requires the public
verifiability of ciphertext and well-formedness of functional
key whereas for strong input consistency a private-key
based test, for instance, is sufficent.
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Furthermore, VFE (as well as strong input-consistent FE)
does not imply setup consistency, since it merely guarantees
that an encryption c of plaintext x would consistently
decrypt to something but not necessarily to functions of
x that an honest sender has encrypted (i.e., the setting
where genuinely generated ciphertexts may be mangled
due to a subverted setup). This, however, seems rather
crucial, as additional guarantees for the setting where only
Charlie is dishonest are desirable (see Section III). As briefly
mentioned above, we obtain efficiency improvements for the
specific cases of input and setup consistency compared to
the VFE-compiler of [11]. Our input-consistency compiler
only relies on NIZKs (not NIWIs) and only requires a
single instance of a functional encryption scheme instead
of four instances that the VFE compiler employs. For the
setup-consistency compiler, we also need NIWIs, but show
that only three instances of the FE scheme are sufficient.
As for security, we directly aim at full CPA/CCA security
instead of selective security [11].
Relation to robustness notions: As a first approximation,

input-consistency for FE can be thought of as a natural
well-formedness property of FE ciphertexts which is the
main reason why it is of relevance to the cryptographic
investigation of the FE primitive, in a similar way to
other types of consistency properties for regular public-key
encryption, for instance, plaintext-awareness [31] and non-
malleability [33] (which are independent of weaker notions
of security such as IND-CPA while related to stronger
formulations of security such as IND-CCA. Furthermore,
a consistency-like property more closely related to FE is
robustness of identity-based encryption (IBE) [1], [35].
In the strong robustness attack of Abdalla et al. [1] an
adversary outputs two identities id1 6= id2 and a ciphertext
ct. The game derives decryption keys for both identities
and the adversary wins if the decryption of ct is non-⊥
under both keys. IBE can be viewed as a special case of FE:
encrypt the pair identity and message and let the user with
identity id possess the key for the function “fid(id′,m) = m,
if id = id′ else ⊥.” It is immediate that a robustness attack
is a consistency attack against the above FE scheme, since
it cannot be that two distinct identities id1, id2 equal the
same id′. By this reduction, we see that our notion of
consistency for general FE can be instantiated to yield
such related robustness notions for special cases such as
IBE directly. Besides strong robustness, the authors also
introduce the notion of weak robustness, in which the
adversary outputs a message and two identities and the
challenger encrypts the message under the first identity and
tries to decrypt it using the second identity. The authors
show that weak robustness is implied by strong robustness,
and since strong robustness mirrors our notion of input
consistency, it follows immediately that weak robustness is
also implied by input consistency notion when instantiated
for IBE as above.
A related kind of work is the task of generalizing the

traditional notions of robustness, which roughly captures

that decryption with a secret key that is generated in some
system A must indicate a failure when presented with a
ciphertext that was generated using (different) parameters
of some system B. These notions have been extended
(also to FE) [35], [39], but none of them looks at the
harder problem covered by our work, namely to ensure
that decrypted values (within one system), make sense
relatively to each other, especially in FE.
Relation to distributed setup-generation: Setup consis-

tency focuses on the important question of setup subversion
resistance. A different approach in this realm is decentral-
ized setup generation [50], Our setup consistency notion can
complement such an approach by giving guarantees even
in case all the parties (or a number of parties exceeding a
critical threshold) involved in the MPC are corrupted.

II. Preliminaries
1) Notation: The security parameter is denoted by λ ∈

N and its unary encoding by 1λ. We call a randomized
algorithm A probabilistic polynomial time (PPT), if there
exists a polynomial p(·) such that for every input x the
running time of A(x) is bounded by p(|x|). A function
negl : N → R+ is called negligible if for every positive
polynomial p(λ) a λ0 ∈ N exists, such that for all λ > λ0 :
ε(λ) < 1/p(λ). For a function f with domain X and range
Y, we write f−1(y) := {x ∈ X | f(x) = y} where y ∈ Y.
The set {1, . . . , n} is denoted as [n] for n ∈ N. For

the equality check of two elements, we use “=”. The
assign operator is denoted with “:=”, whereas randomized
assignment is denoted with a ← A, with a randomized
algorithm A and where the randomness is not explicit. If
the randomness is explicit we write a := A(x; r) where x
is the input and r is the randomness. For algorithms A
and B, we write AB(·)(x) to denote that A gets x as an
input and has oracle access to B, that is, the response for
an oracle query q is B(q). We use A(·)[[s]] to denote that
A gets an additional input s which it can update. In more
detail, y ← A(x)[[s]] corresponds to the algorithm that
invokes (y, s)← A(x, s) and returns y and updates s.
We write e`i for the unit vector of length ` that is 1 at

position i and 0 everywhere else. We omit the length when
it is clear from the context.
For the generation of prime-order groups, let GGen be

a PPT algorithm that on input 1λ returns a description
G = (G, p, g) of a cyclic group G of order p for a λ-bit prime
p, whose generator is g. We use the implicit representation
[x]g for group elements of the form gx with a generator
g ∈ G. This notation is also used in the case of matrices.
In more detail, for a matrix A = (ai,j) ∈ Zn×mp , we define
[A]g as the implicit representation of A in G:

[A]g :=

 ga1,1 . . . ga1,m

ga1n,1 . . . gan,m


For games (i.e., random experiments) G that model an

interaction between a challenger and an adversary, we

4



refer to the winning probability of an adversary A by
WinG

A(λ) := Pr[G(λ,A) = 1], where the probability is taken
over the random coins of G and A.
2) Functional Encryption: We now introduce the rele-

vant notation for functional encryption.

Definition 1. We denote by F = {Fλ}λ∈N a family of sets
Fλ of functions f : Xλ → Yλ. We call Fλ a functionality
class where all f ∈ Fλ have the same domain and the same
range. We omit λ when it is clear from the context.

For notational convenience, we further define an exten-
sion for functions f ∈ F in order to develop a formal
language that simplifies expressing decryption consistency
later in this work. We introduce two additional error
symbols ⊥ (invalid ciphertext), � (invalid key) and formally
include them in the domain or range of the functions as
defined below. We note that both symbols do not have any
influence on the behavior of the function f . Rather, we
require that the symbol ⊥ maps to ⊥ and that symbol �
has no preimage:

Definition 2 (Function Extension). Let f : X → Y be a
function of the functionality class F , we define a function
f̃ : (X ∪ {⊥}) → (Y ∪ {⊥, �}), with ⊥, � /∈ X ,Y. The
function f̃ has the following behavior:

f̃(x) =
{
f(x) if x ∈ X
⊥ if x = ⊥

and

f̃−1(y) =


f−1(y) if y ∈ Y
{⊥} if y = ⊥
∅ if y = � .

For a (standard) functionality class F , the induced
extended class is the set of function extensions of all f ∈ F .
When clear from the context, we do not introduce a new
symbol for the extended class.

A functional encryption scheme is defined in the following
way, where we follow the syntax of [11].

Definition 3 (Functional Encryption). Let F = {Fλ}λ∈N
be a family of sets Fλ of functions f : Xλ → Yλ, where
Xλ and Yλ are finite sets that represent domain and range,
respectively, and let f0 ∈ Fλ be a distinguished leakage
function2. A functional encryption scheme (FE) for the
functionality class Fλ is a tuple of four algorithms FE =
(Setup,KeyGen,Enc,Dec):
Setup(1λ): Takes as input a unary representation of the

security parameter λ and outputs the master public key
mpk and the master secret key msk.

KeyGen(mpk,msk, f): Takes as input the master public
mpk, the master secret key msk and a function f ∈ Fλ,

2The leakage function is a modelling technique adopted from [22]
that can, e.g., reveal information about the plaintext length.

and outputs a functional key skf . The key for the
leakage function f0 is the empty string denoted by ε.

Enc(mpk, x): Takes as input the master public key mpk and
a string x ∈ Xλ, and outputs a ciphertext ct or err (to
denote an encryption error).

Dec(mpk, f, skf , ct): Takes as input a functional key skf
and a ciphertext ct and outputs a function value y ∈ Yλ
or one of the special symbols of the function extension:
⊥ indicates an invalid ciphertext and � invalid keys.

A scheme FE is correct, if (for all λ ∈ N), for all pairs
(mpk,msk) in the support of Setup(1λ) all functions f ∈ Fλ
and input values x ∈ Xλ, it holds that

Pr[Dec(mpk, f,KeyGen(mpk,msk, f),
Enc(mpk, x)) = f(x)] = 1.

For notational simplicity, we omit certain input values
when they are not required by a concrete scheme (such as
the additional mpk or f when decrypting).

The security of functional encryption is formally captured
by the CPA [22], CCA2 [18], as well as the CFE [52]
(composable) security notions, that formalize, roughly
speaking that an attacker does not learn anything beyond
what he can anyway decrypt given the functional keys (and
in the case of CCA, additional decryptions) he requested.
We review all the security notions in Section A-A. The

main body of this work can be understood without them.
3) Standard Tools and Assumptions: Now, we recap the

definition of a matrix distribution and the Matrix-Diffie-
Hellman assumption as introduced in [34]. We begin with
the definition for a matrix distribution.

Definition 4 (Matrix Distribution). Let `, k ∈ N with
` > k. We call D`,k a matrix distribution if it outputs
matrices in Z`×kp of full rank k in polynomial time. We
define Dk := Dk+1,k.

We assume, wlog, that the first k rows of A ← Dk
form an invertible matrix. The Dk-Matrix Diffie-Hellman
problem is to distinguish the two distributions ([A], [Aw])
and ([A], [u]) where A← Dk,w ← Zkp and u← Zk+1

p .
Now, we state the Dk-Matrix Diffie-Hellman Assumption

(Dk-MDDH).

Definition 5 (Dk-Matrix Diffie-Hellman Assumption
(Dk-MDDH)). Let Dk be a matrix distribution. The Dk-
Matrix Diffie-Hellman (Dk-MDDH) assumption holds rela-
tive to GGen if for all PPT adversaries A,

AdvDk-MDDH
GGen,A (λ) := |Pr[A(G, [A], [Aw]) = 1]

− Pr[A(G, [A], [u]) = 1]| ≤ negl(λ) ,

where the probability is taken over G = (G, p, g),A ←
Dk,w ← Zkp,u← Zk+1

p and the coin tosses of adversary A.

Finally, we recall non-interactive witness indistinguish-
able (NIWI) proofs [13], [20], [46].
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WINIWI
β (1λ,A) (for relation R)

(x,w1, w2, st)← A1(1λ)
π ← NIWI.Prove(1λ, x, wβ)
α← A2(π, st)
Output: α ∧ (x,w1) ∈ R ∧ (x,w2) ∈ R

Fig. 1: Witness-indistinguishability of a NIWI proof system.
The output condition enforces the use of valid instance
witness pairs.

Definition 6 (Non-Interactive Witness-Indistinguishable
Proofs). Let R be an NP Relation and consider the language
L = {x | ∃w with (x,w) ∈ R} (where x is called a statement
or instance). A non-interactive witness-indistinguishable
proof (NIWI) for the relation R is a tuple of PPT algorithms
NIWI = (NIWI.Prove,NIWI.Verify):
NIWI.Prove(1λ, x, w): Takes as input the unary representa-

tion of the security parameter λ, a statement x and a
witness w, and outputs a proof π.

NIWI.Verify(1λ, x, π): Takes as input the unary representa-
tion of the security parameter λ, a statement x and a
proof π, and outputs 0 or 1.

A system NIWI is complete, if for all statement-witness
pairs in the relation (x,w) ∈ R, it holds that

Pr[NIWI.Verify(1λ, x,NIWI.Prove(1λ, x, w)) = 1] = 1.

A NIWI proof system fulfills additional properties
besides completeness, namely soundness and witness-
indistinguishability.

Definition 7 (Soundness). Let NIWI =
(NIWI.Prove,NIWI.Verify) be a NIWI proof system
for a relation R and the corresponding language L. We
define the advantage of an adversary A as the following
probability:

AdvSound
NIWI,A(λ) := Pr[(x, π)← A(1λ) :

NIWI.Verify(1λ, x, π) = 1 ∧ x /∈ L].

A NIWI proof system NIWI is called perfectly sound if
AdvSound

NIWI,A(λ) = 0 for all algorithms A, and computationally
sound, if AdvSound

NIWI,A(λ) ≤ negl(λ) for all PPT algorithms
A.

Definition 8 (Witness-Indistinguishability). Let NIWI =
(NIWI.Prove,NIWI.Verify) be a NIWI proof system for a
relation R and the corresponding language L. For β ∈
{0, 1}, we define the experiment WINIWI

β (1λ,A) in Fig. 1.
The associated advantage of an adversary A = (A1,A2) is
defined as

AdvWI
NIWI,A,S(λ) := |Pr[WINIWI

0 (1λ,A) = 1]
− Pr[WINIWI

1 (1λ,A) = 1]|.

A NIWI proof system is called witness-indistinguishable, if
AdvWI

NIWI,A(λ) = 0 for all algorithms A = (A1,A2), and com-
putationally witness-indistinguishable, if AdvWI

NIWI,A(λ) ≤
negl(λ) for all PPT algorithms A = (A1,A2).

Regarding feasibility, the NIWI construction in [46] relies
on the decisional linear (DLIN) assumption and provides
perfectly sound non-interactive witness indistinguishability.
In [13], the authors rely on a complexity theoretic assump-
tion and also present (less efficient) perfectly sound proofs.
For the construction in [20], the authors rely on one-way
permutations and indistinguishability obfuscation.

III. Consistency for Functional Encryption
Schemes

Recall that there are three distinct tasks in functional
encryption: parameter/key generation, encryption and
decryption. Following [52], they correspond to three entities
in a system: the input provider, the setup/key manager,
and the decryptor. Consistency must be seen as a guarantee
that an honest decryptor can rely on even in the presence of
other malicious entities. In contrast, confidentiality (in the
sense of CPA/CCA or CFE) is a guarantee that an honest
input provider relies on against a potentially dishonest
decryptor (in the presence of honestly generated setup and
keys). We summarize these combinations in Table I. We
remark that aside from the informal justification that the
games represent what we intend to capture, we cross-check
the games against a constructive and composable model
in Section IV. This shows that our consistency notions
realize the intended idealized UC-functionality for FE.

Entities

Notions Input
Provider

Setup & Key
Generator Decryptor

Correctness Honest Honest Honest
in-CONS Corrupted Honest Honest
set-CONS Honest Corrupted Honest
st-in-CONS Corrupted Corrupted Honest
Confidentiality Honest Honest Corrupted

TABLE I: The different consistency notions and the
corrupted entities

In the following sections, we introduce three different
consistency notions, each corresponding to a different
corruption set of untrusted entities: input consistency (in-
CONS), strong input consistency (st-in-CONS), and setup
consistency (set-CONS).

In the rest of this section, whenever we refer to a function
f , or a functionality class F , we implicitly mean the induced
function extension as defined in Definition 2.

A. Consistency with a dishonest Input Provider
An input consistency attack entails the malicious genera-

tion of a ciphertext ct, and the honest generation of several
non-trivial functional keys skf1 , . . . , skfn that interpret the
ciphertext ct in an inconsistent way. We call a ciphertext
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consistent, if there exists a plaintext x that can explain
the decryption of the ciphertext ct under the different
functional keys skf1 , . . . , skfn , and inconsistent otherwise.
We formalize input-consistency as an experiment.

in-CONSFE(1λ,A)
(msk,mpk)← Setup(1λ)
ct← AKeyGen(mpk,msk,·)(1λ,mpk)
Let F := {(skfi , fi)}i∈[n] be the set of key-function pairs

obtained by A.
If n < 1 then output 0
yi := Dec(mpk, fi, skfi , ct), for all i ∈ [n]
If
⋂
i∈[n] f

−1
i (yi) = ∅

Output 1
Output 0

Fig. 2: Input Consistency Experiment.

Definition 9 (Input Consistency). The functional encryp-
tion scheme FE = (Setup,KeyGen,Enc,Dec) satisfies input
consistency (or in-CONS for short), if for any polynomial-
time adversary A interacting with experiment in-CONSFE

in Fig. 2, there exists a negligible function negl such that:

Pr[in-CONSFE(1λ,A)] ≤ negl(λ) .

a) Discussion: The game reflects (in-)consistency:
After the adversary A asked the key generation ora-
cle KeyGen(msk, ·) for functional keys skf1 , . . . , skfn for
functions {f1, . . . , fn}, it outputs a ciphertext ct trying
to win the game. The challenger checks if there exist
plaintext messages that explains the functional decryption
behavior of ct under these keys. Formally, it computes the
intersection

⋂
i∈[n] f

−1
i (Dec(mpk, fi, skfi , ct)). If it is empty,

there is no explanation for the decryption behavior of ct.
This means that the adversary has caused an inconsistency
and wins the game.

Note that in order for our experiment to be well-defined,
we just need the element-of operator x ∈ f−1(y) be
computable (where Xλ, Yλ, and f−1(·) are by definition
finite sets in an experiment parameterized by λ). In terms of
efficiency, it is clear that the entire consistency check might
not always be efficiently computable, for example when
the fi’s are one-way functions. Whether a restriction of
the function class for example w.r.t. efficiently computable
preimages is necessary depends on the bigger construction
in which the FE scheme is employed—and in particular
on their reduction proof.3 Moreover, when used as an
assumption in a proof, then the efficiency restriction is a
simple way to make consistency a falsifiable assumption [54].
Our UC proof in Section IV uses such a restriction, all

3Note that similar thoughts apply, e.g., to extractor games in
interactive zero-knowledge proofs where the experiment need not
be bounded by a polynomial, or in complexity leveraging arguments.

other sections hold irrespective of the exact efficiency
assumptions.

b) The semantics of the special symbols: We intro-
duced the symbols � and ⊥ with the idea of modeling
invalid keys and invalid ciphertexts respectively: If the
decryption of ct outputs � at any time in the game, the
adversary wins because the preimage of � under every
function is empty, i.e. f−1(�) = ∅ (see Definition 2), which
results in an empty intersection; in particular there exists
no x in the message space x ∈ X ∪{⊥} such that f(x) = �
due to the definition of the function extension (Definition 2),
which makes the adversary win the game. This captures
that when the public parameters and the functional keys
are honestly generated, then the decryption algorithm is
not allowed to output � (recall that the symbol indicates
an invalid key).
Analogously, if one of the decryption algorithm in-

vocations outputs ⊥ and another decryption algorithm
invocation outputs a value yi 6= ⊥ then the adversary wins
the game, as the intersection must be empty since the
preimage of ⊥ is ⊥ and cannot be equal to the preimage of
yi (Definition 2). This captures that the ciphertext cannot
be honestly generated, as the keys disagree on its validity.
Remark 1 (On the leakage function). As noted earlier, we
deliberately ignore the leakage function f0 when defining
consistency requirements, since we perceive f0, as already
noted in [52], as a modeling artifact specific to the
confidentiality definitions that we do not need to port to
our new definition: the information captured by f0 models
the general leakage that an adversary might learn just
by observing an honestly generated ciphertext. However, it
seems unreasonable to assume that this must be guaranteed
to be available. For instance, in the case of standard
encryption schemes, computing the length of the plaintext
is not guaranteed by the scheme, but the definition does
formally not require that this information must be hidden.
This distinction is further clarified in our UC treatment,
where f0 is the leakage function for the adversary, but not
an actual function evaluated by (honest) parties.

B. Consistency with a dishonest Input Provider and Key
Generator

We turn our attention to a stronger coalition against an
honest decryptor, namely the setting in which both the
input provider and the parameter/key generation entities
are dishonest. In the experiment in Fig. 3, the adversary
aims to outputs a malicious master public key mpk, two
ciphertexts ct1, ct2 and a set of functional keys {skfi}i∈[n]
that decrypt the ciphertexts ct1, ct2 in an inconsistent way.
Contrary to input consistency, the game considers two
ciphertexts. This is the minimal number of ciphertexts
to formulate and require a consistent decryption behavior
w.r.t. different keys, i.e., have consistent behavior regarding
invalid keys as modeled by the special � symbol (in the
third line of Fig. 3). Minimality follows from the UC
treatment that proves equivalence of this notion with

7



st-in-CONSFE(1λ,A)
(mpk, ct1, ct2, {(skj , fj)}j∈[n])← A(1λ)(Assume skj 6= ε)
yi,j := Dec(mpk, fj , skj , cti), for all j ∈ [n], i ∈ {1, 2}
If y1,j = � ∧ y2,j 6= � or y1,j 6= � ∧ y2,j = � for any j ∈ [n]

Output 1
Let F := {(skj , fj)}j∈[n]∧(y1,j 6=�∨y2,j 6=�)
If F is empty then output 0
For each i ∈ {1, 2} do:

If
⋂
j∈[n],(·,fj)∈F f

−1
j (yi,j) = ∅

Output 1
Output 0

Fig. 3: Strong Input Consistency Experiment. Note that
the consistency check in line 3 is technically redundant
due to the disjunction that appears in the definition of F
in line 5. However, for better accessibility we choose to
highlight this important property explicitly.

an ideal functionality that guarantees the detection of
invalid keys. As for input consistency, an adversary breaks
consistency, if there exists no plaintext x, for at least one of
the challenge ciphertexts, that can explain the decryption
of some ciphertext ct under the different functional keys
skf1 , . . . , skfn . Formally:

Definition 10 (Strong Input-Consistency). The functional
encryption scheme FE = (Setup,KeyGen,Enc,Dec) satisfies
strong input consistency (or st-in-CONS for short), if
for any polynomial-time adversary A interacting with
experiment st-in-CONSFE in Fig. 3, there exists a negligible
function negl such that:

Pr[st-in-CONSFE(1λ,A)] ≤ negl(λ) .

a) Discussion: The experiment above strengthens
the attack capabilities of the input consistency experi-
ment. Here, the adversary can output a master public
key mpk, ciphertexts {cti}i∈[2] and a set of functional
keys {skj , fj}j∈[n] (again, note that we do not give any
guarantees for f0 and the empty key).

In contrast to the weaker notion of the previous section,
not all keys are valid, and hence the set F is defined
as the set of key-function pairs (skj , fj) that yield a
decryption yi,j 6= �, for at least one ciphertext cti. Only
keys in F can provoke a consistency breach. As we detail
below, this assigns the correct meaning of key validity to
�. The challenger checks for a common explanation, i.e.
whether there exists a message in the intersection of the
preimages under the different functions {fj}j∈[n],(·,fj)∈F .
If the intersection is empty, the adversary has generated a
ciphertext cti with a decryption behavior that cannot be
explained. Again, the symbols � and ⊥ of Definition 2
deserve a special observation. A key’s invalidity only
provoke an inconsistency if not all decryptions w.r.t. this

key yield �. If a key yields consistently the “decryption”
�, this key is detected as invalid; otherwise, if for some
ciphertext cti we have that exactly one decryption yi,j 6= �,
the performed intersection check must yield the empty set.
This behavior captures our intention that the decryptor’s
believes about the invalidity of a key cannot vary depending
on what is decrypted.
Analogously, if a ciphertext is deemed invalid, i.e.,

yi,j = ⊥ for some key skj , then all keys in F must
consistently declare this ciphertext invalid and agree on
the single possible preimage {⊥} (since special symbol ⊥
maps only to {⊥}). Otherwise, the adversary has won.

C. Consistency with a dishonest Parameter/Key Generator

We now define consistency for the setting with an
untrustworthy parameter/key generator. A notion we call
setup-consistency. At first sight it might seem that setup
consistency is implied by strong input consistency. Perhaps
surprisingly, it is not. Setup consistency captures the
important case where an authority tampers with the
system’s parameters and hence captures consistency in
the presence of subversion attacks [10], [15]. We model
setup consistency by formalizing the capabilities of an
adversary. The adversary produces the master public key
mpk and a functional key sk and defines inputs (out of
which honest ciphertexts are generated). Note that we allow
the adversary to specify two master public-keys (one for the
input provider and one for the decryptor). We see the need
for this in our UC treatment: if there were only one master
public-key in the experiment, this would imply that one
assumes a broadcast channel between the dishonest setup
generator and the honest input provider and decryptor.
Such a stronger assumption about the agreement on the
master public key among all parties might be justified
in some settings where a reliable public-key infrastructure
(PKI) is available. However, it makes sense that a consistent
FE scheme takes care of it by design independently of
whether a PKI is available.

An attack breaks consistency, if the functional key sk
together with the function f yields inconsistent output
values with respect to the ciphertexts, i.e. the decryption
of the ciphertexts under the functional key sk reveals a
mismatch with respect to the input values and the declared
function f (unless sk is identified as invalid). As for strong
input consistency, consistency of key validity as modeled
by � is captured using a disjunction, this time in the outer
“If” statement. In more detail, we define the following:

Definition 11 (Setup Consistency). The functional encryp-
tion scheme FE = (Setup,KeyGen,Enc,Dec) satisfies setup
consistency (or set-CONS for short), if for any polynomial-
time adversary A interacting with experiment set-CONSFE

in Fig. 4, there exists a negligible function negl such that:

Pr[set-CONSFE(1λ,A)] ≤ negl(λ) .
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set-CONSFE(1λ,A)
(mpk1,mpk2, sk, f, x1, x2)← A(1λ)
(Assume xi ∈ X and sk 6= ε)
cti ← Enc(mpki, xi), for all i ∈ {1, 2}
I := {i | i ∈ {1, 2} ∧ cti 6= err}
(|I| 6= 1 for universal encryption property)
yi := Dec(mpk2, f, sk, cti) for all i ∈ I
If yi 6= � for some i ∈ I

If yi 6= f(xi) for some i ∈ I
Output 1

Output 0

Fig. 4: Setup Consistency Experiment.

In addition, we say that FE satisfies the universal encryption
property, if in the above experiment, |I| ∈ {0, 2} with
overwhelming probability (where I is defined by the game).

a) Discussion: It is instructive to see the nature of
consistency attacks that an adversary can mount against a
scheme. After the adversary A outputted two master public
keys mpk1 and mpk2, a functional key sk, a function f and
two chosen messages x1 and x2, the challenger encrypts
the messages under mpk1 to generate cti = Enc(mpk1, xi).
Now, we are interested in the functional behavior of all
valid encryptions that the input provider produces (i.e.,
that do not return an err symbol upon encryption because
of an bogus mpk1). Let us, for concreteness, discuss the
case where both encryptions are valid: if both decryption
invocations under sk return the special symbol � then
the adversary does not win the game (in this case, the
key is deemed invalid). However, if only one of the two
outputs � the adversary immediately wins the game (as
there can be no value xi in the domain that yields f(xi) = �
(see Definition 2)). Recall that this behavior captures our
intention that the decryptor’s believes about a key’s validity
cannot vary depending on what is decrypted. Now, we
consider the case where both decryption attempts yield
values yi 6= �. In this case, to fulfill consistency, both
of these values must satisfy f(xi) = yi, otherwise the
attacker has broken consistency. If the decryption procedure
would output yi = ⊥ a security breach happens. In more
detail, considering that honestly generated ciphertexts are
committed to a real message (otherwise the decryption must
be considered inconsistent). By Definition 2 the adversary
wins in this case since no message xi 6= ⊥ maps to ⊥.

b) Universal encryption property: We also consider a
stronger property that we term universal encryption. It
requires that either both encryptions are valid or none
is. While this is not a core consistency notion, which
we deem to be about properties of decryption, universal
encryption should be considered by applications if needed.
If the property does not hold, a maliciously generated

mpk1 may only allow for the encryption of a subset of
the plaintext space. When capturing ideal confidentiality
guarantees in UC we see that this is in fact a side-channel
that can provide additional leakage. In fact, it is easy to
come up with a scheme, where the first bit of Alice’s input
is leaked due to this side-channel: take a secure base FE
scheme and prefix the master public key by a global distinct
identifier id. The encryption algorithm of the modified
scheme encrypts using mpk exactly as the base scheme
does whenever the given master public key has the form
id||mpk. However, if given a public key with a different
identifier id′||mpk, the encryption algorithm throws an
error if the input message starts with bit 0; if the input
starts with bit 1, then the input message is encrypted just
as in the base scheme. Hence, although the new scheme
never encrypts differently than the base scheme, signaling
the error perfectly correlates with Alice’s input message
starting with bit 0.
We note that universal encryption follows generically

from an efficiently computable membership-test for the
support of Setup and the perfect correctness of an FE
scheme and refer to the UC treatment to quantify the gain
in terms of additional security provided by the universal
encryption property.

c) Strong robustness against subversion: Looking
ahead to Section IV where we present the justification
of the game by showing that it admits the realization of a
natural ideal repository with access control, we see that in
fact, we must insist that the inputs provided by Alice do
functionally match the values that Bob decrypts. Otherwise,
the guarantee for honest parties in this setting with
subversion of parameters would be too weak, as it would
merely enforce consistent decryption—but potentially with
respect to a common preimage x′ never intended by Alice!
This is a form of robustness not implied by strong input
consistency or verifiable functional encryption [11] and also
goes beyond capturing key validity only. This shows that
a separate notion for the case of subverted setup, namely
setup-consistency, is indeed desirable.
D. Concluding remarks
To formally relate the new consistency notions, we

investigate their relation to the CPA/CCA/CFE security
notions and can conclude that the notion is orthogonal as
depicted in Fig. 5. Furthermore, we verify the relations
among the consistency notions. We note in passing that due
to the disjoint corruption sets in the definitions of input
consistency and setup consistency, the conjunction of the
two notions is not guaranteed to yield protection against
the collution of Alice and Charlie. We give the detailed
proofs of the relations in Section C. Finally, for further
discussion on how the properties can be applied to different
forms of FE in the literature we refer to Section B.
IV. UC Consistency for Functional Encryption
Thanks to the foundational work of Matt and Mau-

rer [52], we can accurately characterize the goal that
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Fig. 5: Relations between consistency and confidentiality,
where the crossed arrows indicate “does not imply” and
“&” denotes both properties simultaneously.

functional encryption tries to achieve in a constructive
sense: the goal is to realize (by means of a simple protocol
using the FE scheme in the intended way) a repository,
where an input provider can store a value x—and receive
a unique handle h generated by an abstract function
getHandle [52]—and where another entity can, using the
handle h, obtain the values f(x) if and only if the function
f was explicitly granted for evaluation by a third-party
(the setup manager). This model puts forth a form of
access control: even a malicious receiver (or a coalition of
malicious receivers) cannot obtain more information than
what f(x) reveals about the value stored under handle h.
The goal of plain functional encryption is to realize this
strong repository from a public one, where the receivers
have read access to all values stored in the repository. The
treatment in [52] focuses on confidentiality (in the sense
that only the receiver is corrupted). Our work extends
the treatment to all other cases, including malicious input
providers and/or malicious setup generators. We thereby
extend their functionality to precisely capture the realistic
composable notion of consistency in functional encryption.
In the following, F denotes the concrete functionality
class of an FE scheme (dropping the index λ), f0 the
distinguished leakage function and F+ the set F \ {f0}, X
the input domain and Y the range of functions. We assume
three distinct party identifiers A, B, C. Furthermore, if p is
an identifier, pi denotes the unique identifier derived from
p that includes a (prefix-free) encoding of the number i.
1) The Ideal Functionality: Our ideal functionality

FuncA,B,C,t
Rep,(F+,f0) is a direct extension of the one given

in [52] and is formally described below. In a nutshell, the
functionality is defined to interact with three types of
parties or roles, denoted by A for the input provider, B for
the receiver or decryptor, and C for the third party that
manages setup and key distribution. As long as A and C
are honest, we enjoy the usual confidentiality guarantees
for FE as described above. UC consistency on the other
hand is a property that protects an honest receiver against
malicious input providers and/or setup generator: if A is
corrupt, we allow it—instead of providing an input from
the domain—to specify that the input is still undefined
(x = unknown). For this case the functionality associates
with the handle h a set of allowed values (initially the
entire domain). The functions assigned to the receivers are

steered by the setup manager C. If this party is corrupt, it
can stop the ideal functionality from accepting inputs for
Alice. This is unavoidable as Alice has to wait for the public
parameters. For an honest party Bi in this setting, the ideal
functionality implements the following guarantee: when an
output value for function f and handle h is requested, the
functionality lets the adversary choose the return value
y upon this request but enforces that the set of values
associated with handle h is reduced to stay consistent with
y. To ensure that this yields an efficient functionality, we
assume an efficiently computable map preMap() satisfying
preMap(M, f, y) = {x′ ∈ M| f(x′) = y}. Hence, at any
time, each handle h is committed to a set of possible values
M⊆ X that are consistent with any output y generated
by an honest receiver when requesting the output of the
function value for an assigned function f for this handle h.

a) On Confidentiality and Subversion: The confiden-
tiality guarantees are the same as in [52] except when
additional parties beyond receivers are corrupted. In such
cases of multiple corrupted roles, we allow the adversary
to read out the stored value per handle since in such cases,
confidentiality is generally lost (a malicious setup generator
can collude with the corrupt receivers).

However, when only the setup manager is corrupted, we
obtain an interesting special case: first, since the setup
manager has no direct access to the ciphertexts in the
real world [52], one would expect that in this case we
still enjoy full confidentiality. Quite surprisingly, this is
not the case in general: for a subverted setup, whether a
ciphertext can be created (cti 6= err) potentially depends
on which element of the plaintext space is encrypted which
is a side-channel revealing information about the plaintext,
which is the reason to admit leakage to the dishonest
setup provider (FuncA,B,C,t

Rep,(F+,f0) generates a public-delayed
output to C). Looking ahead, by relying on the universal
encryption property we can remove the side-channel and
formally obtain the stronger repository which we capture
by FuncA,B,C,t

Rep∗,(F+,f0) below, where the public-delayed output
to C is replaced by a private-delayed output in this case.
This assigns a clean composable semantic to this additional
property introduced in the previous section.
2) The FE Protocol: We define the protocol πA,B,C,t

FE for
parties A, Bi and C, where party A acts as an input provider,
parties Bi act as the receivers, and party C acts as the
setup manager. The distribution of the public key to the
input provider and the receivers is done via an authentic
broadcast channel between C and A and between C and the
receivers {Bi}i∈[t]. Note that we do not require broadcast
from C to every participant, but only to the set of parties
having the same role, which is the minimal assumption we
have to make—to see this, note that otherwise, there could
be two parties with the same role that operate with public
parameters belonging to different schemes, among which
clearly no consistency has to exist, e.g, when one scheme
deems all legitimate encryptions w.r.t. to the other public
key invalid under its own public key.
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Functionality FuncA,B,C,t
Rep,(F+,f0) / FuncA,B,C,t

Rep∗,(F+,f0)

The functionality is parameterized by function class F , the number t of decryptors/receivers, and by three distinct
party identities P := {A, B, C}. These dummy parties interact with the functionality and identify particular roles.

Setup. Upon receiving input (setup, sid) via dummy party C (or from the adversary on behalf of corrupted C),
set setup ← true, Ri ← ∅, for each i ∈ [t]. Ignore the request if the party-id does not correspond to C. Output
(setup, sid) to the adversary to indicate that setup is completed.

Input: Upon receiving input (write, sid, x) via dummy party A (or from the adversary on behalf of corrupted A),
and if setup = true, do the following:
• If pid A is honest then verify that x ∈ X (ignore request otherwise). If party C is honest, then compute handle
h← getHandle and store M [h]← (x, {x}) and return (written, sid, h) to the calling party.
If party C is corrupted, then do one of the following depending on the version of the repository:
Rep: Provide public delayed-output to the adversary and do the previous actions only upon receiving ACK
for this operation.

Rep*: Provide private delayed-output to the adversary and do the previous actions only upon receiving ACK
for this operation.

• If pid A is marked as corrupted, verify that x ∈ X ∪ {⊥, unknown} (and ignore the request otherwise). Then
choose h← getHandle and store M [h]← (x, {x}). Output (written, sid, h) to the adversary.

Access Management: Upon receiving input (assign, sid, f, i) via dummy party C (or from the adversary on behalf
of C), do the following: if f ∈ F+, then update Ri ← Ri ∪ {f} and output (assigned, sid, f, i) to the adversary.

Output: Upon receiving (read, sid, h, f) from some caller via dummy party Bi (or from the adversary on behalf
of corrupted B), first parse M [h] as (x,M). In case M [h] = ⊥, return noData.
• If Bi is honest do:
1) If f 6∈ Ri then give up activation. Otherwise, if x ∈ X and f ∈ Ri, then return (Read, sid, f(x)) to the

caller; else if x = ⊥ then return (Read, sid,⊥) to the calling party. (? ? ?)
2) Otherwise, if x = unknown, output (read, sid, h, f) to the adversary. Upon receiving (read, sid, h, f, (x′, y))

from the adversary, do the following:
a) If x′ ∈M, set M [h]← (x′, {x′}). Output(Read, sid, f(x′)) to the calling party.
b) Else computeMnew ← preMap(M, f, y).

i) If Mnew = ∅ then pick some x′′ at random from M and store M [h] ← (x′′, {x′′}). Output
(Read, sid, f(x′′)) to the calling party. (??)

ii) Otherwise, update the entry either by M [h]← (unknown,Mnew) ifMnew is not a singleton set or by
M [h]← (x∗,Mnew) in caseMnew = {x∗} for some x∗. Output (Read, sid, y) to the calling party.

• If Bi is marked as corrupted but none of A or C, then do the following: If f ∈ Ri then return (Read, sid, f(x))
(for the x guaranteed to exist since the input provider is honest) and if f = f0 then return (Read, sid, f0(x))
to the adversary. Otherwise, give up activation.

• If Bi is corrupted alongside A or C, then output (read, sid, h, f) to the adversary and upon receiving
(read, sid, h, f, (x, y)) from the adversary output (read, sid, y) to the calling party.

Additional adversarial interaction (aside of corruption):
• On top of the standard pid-wise corruption mechanism of UC, the following additional capability is given
to the adversary: If and only if some Bi and at least one more party among {A, C} is corrupted, then the
adversary is allowed to query (reveal, sid, h) upon which M [h] is revealed to the adversary.

Fig. 6: The ideal repository for consistency. We assume standard corruption handling as defined in [25] and do not
describe it specifically.
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As in [52], the protocol requires a point-to-point secret
channel between C and each of the receivers Bi, and we
assume a basic storage repository, where the input provider
(and only the input provider) can store messages of its
choice (and only the receivers Bi can access them). Note
that in UC, these hybrid functionalities are defined and
invoked by the protocol. Hence, if a scheme would require
the random oracle model, πA,B,C,t

FE would additionally invoke
a random-oracle functionality (which is needed to achieve
CFE security for example). The channel functionalities and
the basic real-world repository are given in Section H-A for
completeness. In a nutshell, the protocol works as follows:
Party C generates the public keys (and sends them to
the other parties) and assigns functions to parties Bi by
sending the functional keys. Party A does provide the input
to the real-world repository by encrypting the input x ∈ X ,
and storing valid ciphertexts in the repository. Using the
obtained handle h, the ciphertext can be accessed by some
party Bi and decrypted using a (valid) sk corresponding to
an assigned function f and the result is provided as output.
The protocol is specified in Section H-B.

3) UC Realization: We provide a detailed security anal-
ysis with respect to the different corruption sets possible
in the system and conclude that each of our consistency
games captures exactly what we intended. The theorem
therefore also gives guarantees for a scheme that does only
achieve a subset of the properties (such as CFE and setup
or input consistency): in this case, the scheme can only be
safely used in contexts, where certain people are trusted.4

Theorem 1. Let FE = (Setup,KeyGen,Enc,Dec) be a
functional encryption scheme for functionality class F ,
and let A, B, C be three identifiers. Protocol πA,B,C,t

FE UC-
realizes FuncA,B,C,t

Rep,(F+,f0) (under static corruption) under the
following conditions:
• If party A is corrupted, and C is honest (and potentially
a subset of receivers is corrupted), then in-CONS is a
sufficient requirement on FE such that πA,B,C,t

FE realizes
FuncA,B,C,t

Rep,(F+,f0).
• If party C is corrupted and party A is honest (and possi-
bly a subset of receivers is corrupted), then set-CONS is
a sufficient requirement on FE such that πA,B,C,t

FE realizes
FuncA,B,C,t

Rep,(F+,f0).
• If parties A and C are corrupted (and possibly a
subset of receivers is corrupted), then st-in-CONS is a
sufficient requirement on FE such that πA,B,C,t

FE realizes
FuncA,B,C,t

Rep,(F+,f0).
• If both A and C are honest, and only a subset of receivers
is corrupted, then CFE security is a sufficient require-
ment on FE such that πA,B,C,t

FE realizes FuncA,B,C,t
Rep,(F+,f0).

The above statements hold for the repository
FuncA,B,C,t

Rep∗,(F+,f0) if FE has the universal encryption
property.

4Such trust assumptions could be formally modeled in UC by
defining certain parties to be incorruptible, that is, the corresponding
protocol machine would ignore corruption requests.

Conversely, the consistency notions in-CONS, set-CONS,
and st-in-CONS are the respectively necessary requirements
on the scheme FE in order for πA,B,C,t

FE to realize the
specified security guarantees by FuncA,B,C,t

Rep,(F+,f0) w.r.t. a
given corruption set in the above listing.

Note that the second part of the theorem justifies our
game-based notions for consistency. We refer to Section H
for the proof.

V. Consistency Analysis of Selected Functional
Encryption Schemes

In this section, we analyze the single-input functional en-
cryption schemes for the inner product functionality based
on the MDDH assumption regarding input consistency.
These schemes have been initially introduced for the DDH
assumption in [7] and extended to the MDDH assumption
in [4]. This analysis contains of two parts: The analysis
for the bounded-norm functionality class Fm,X,Y and the
functionality class Fmp over Zmp which we define here for
completeness:
Inner Product (IP) over ZP . Let F = {FmPλ}λ∈N be
a family (indexed by λ) of sets FmPλ , where Pλ is a
modulus of length λ. Omitting the index λ, the set
FmP = {fy : ZmP → ZP , for y ∈ ZmP } where

fy(x) = 〈x,y〉 mod P

defines the inner-product operation over ZP .
Bounded-Norm IP over Z. Let F = {Fm,Xλ,Yλ}λ∈N be
a family (indexed by λ) of sets Fm,Xλ,Yλ . Omitting the
index λ, the set Fm,X,Y = {fy : ZmX → Z, with y ∈ ZmY },
where ZmX := {x ∈ Zm, with ‖x‖∞ < X}, ZmY :=
{y ∈ Zm, with ‖y‖∞ < Y } and where fy(x) = 〈x,y〉,
defines the bounded-norm inner-product over Z.

A. Overview
We observe that some schemes for the inner product

functionality seem to be input consistent, but without
specific modifications they are not. Therefore, we analyze
these schemes and the corresponding modifications for
input consistency in this section. For both of the men-
tioned functionality classes we obtain negative results, i.e.
the analyzed scheme is neither input consistent for the
functionality class of bounded-norm inner products nor for
the inner products calculated over Zmp . To prove this, we
present an attack for both cases in Section V-B.
Beside this, we introduce a natural modification of the

above functionality class and denote it by FmP,L below w.r.t.
which the MDDH scheme of Fig. 7 is an input consistent
functional encryption scheme. This is formally defined and
proven in Section V-C.
We then present a modification of the inner-product

scheme described in Fig. 7, which covers a more restricted
functionality class, Pmp introduced below in Section V-D
which is input consistent.
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Setup(1λ) :
G := (G, p, g)← GGen(1λ),
A← Dk,W← Zm×(k+1)

p

mpk := (G, [A]g, [WA]g),msk := W
Return (mpk,msk)
Enc(mpk, x ∈ ZmX x ∈ Zmp ) :

r ← Zkp,

(
c0

c1

)
:=
(
−Ar

x + WAr

)
Return ct := [( c0

c1 )]g ∈ Gk+m+1

KeyGen(mpk,msk, y ∈ ZmY y ∈ Zmp ) :

Return sky := W>y ∈ Zk+m+1
p

Dec(mpk,y, sky, ct) :
Parse ct := [( c0

c1 )]g
C :=

[
c>1 y + c>0 sky

]
g

Return C
Return log(C)

Fig. 7: FE for the standard classes Fm,X,Y , Fmp , and for

classes Fmp,L , Pmp based on the Dk-MDDH assumption.

B. Inconsistency of the Plain Schemes

The final output computation in the decryption proce-
dure of the MDDH based inner product schemes requires
a discrete logarithm computation. To ensure that this
computation is efficiently possible, using for example
Pollard’s kangaroo method [58], it is required that the
computed inner product lies within a specific polynomial
bounded interval {0, . . . , L}, i.e. 〈x,y〉 ∈ {0, . . . , L} with a
known L. By the correctness of the scheme, we assume that
for every encrypted vector x, with ‖x‖∞ < X, and every
functional key corresponding to y, with ‖y‖∞ < Y , the
decryption gives us the right output 〈x,y〉 and otherwise,
it outputs ⊥. Now, we can break the input consistency
of the scheme by maliciously generating a ciphertext ct′
such that, when decrypted using a functional key sky1 , the
inner product does not lie within the polynomial bound
and therefore outputs ⊥, and for another functional key
sky2 it lies within the polynomial bound and therefore the
decryption procedure outputs a valid inner product. For
the case of the inner product computation over Zp, the
attack works in the same way, since the polynomial bound
L for the discrete logarithm computation in the last step
must be significantly smaller than p. Therefore, it is still
possible to find a value L + 1 such that the decryption
procedure outputs ⊥ when used with one of the functional
keys and a valid inner product when used with the other
functional key.

Theorem 2. The functional encryption scheme FE de-

scribed in Fig. 7 for the functionality class Fm,X,Y and
Fmp , with p prime, is not input consistent. Namely, there
exists a PPT adversary A such that

Pr[in-CONSFE(1λ,A) = 1] = 1 .

The details of the proof for this theorem can be found
in Section D-A.

C. Consistency for Inner-product Schemes
Now, we present the modified inner product functionality

class and state the theorem that when instantiating the
scheme in Fig. 7 for this functionality class it achieves
input consistency. The main idea of the new functionality
class is that we allow the decryption procedure to output a
new error symbol oob in the case that it is not able to do
the discrete logarithm computation in the last step. The
preimage of the oob symbol is then defined as all the x such
that 〈x,y〉 exceeds the polynomial bound necessary for the
logarithm computation. This allows to prevent the input
consistency attack described in the proof of Theorem 2.
Modified IP over ZP . Let F = {FmPλ,Lλ}λ∈N be a family
(indexed by λ) of sets FmPλ,Lλ , where Pλ is a modulus of
length λ and Lλ . Omitting the index λ, the set FmP,L =
{fy : ZmP → ZP , for y ∈ ZmP } where

fy(x) =
{
〈x,y〉 mod P if 〈x,y〉 ∈ {0, . . . , L}
oob if 〈x,y〉 > L .

defines the inner-product operation over ZP .
The out-of-bound symbol oob is thereby defined as the

output of the function when the resulting inner product
computation does not lie within a polynomial bound
{0, . . . , L}; consequently, its preimage is f−1

y (oob) = {x ∈
ZmP : 〈x,y〉 > L}. The preimage for all other outcomes
is f−1

y (z) = {x ∈ ZmP : 〈x,y〉 = z}. When we consider
the functional encryption scheme for the modified inner-
product functionality Fmp,L, it achieves input consistency.

Theorem 3. The functional encryption scheme FE de-
scribed in Fig. 7 for the functionality class Fmp,L , with p
prime, is input consistent. Namely, for any PPT adversary
A, it holds that

Pr[in-CONSFE(1λ,A) = 1] = 0 .

The detailed proof is given in Section D-A.

D. Consistency of a related Exponential Inner Product
Scheme

We can turn the inner product functional encryption
scheme into a scheme that is consistent and allows the
evaluation of exponentiated inner products. We can achieve
this by omitting the discrete logarithm computation in the
end of the decryption procedure and just output the value
g〈x,y〉. More formally:
Exponential IP over Zp. Let P = {Pmpλ}λ∈N be a family
of sets Pmpλ , where p is a prime of length λ and G a group
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of size p and generator g.5 The sets are defined by Pmp =
{fg,y : (Zmp )→ G, with y ∈ Zmp } where

fg,y(x) = g〈x,y〉 .

For the scheme in Fig. 7, the input consistency property
for this class follows similarly to the proof of Theorem 3.

Theorem 4. The functional encryption scheme FE for the
functionality class Pmp , with p prime, described in Fig. 7
is input consistent. Namely, for any PPT adversary A it
holds that Pr[in-CONSFE(1λ,A) = 1] = 0 .

VI. Consistency Compilers

In this section, we present black-box compilers that
achieve consistency under the different corruption sets.
Depending on the trust model and the efficiency require-
ments of a given application, an FE scheme can thus be
lifted to withstand certain types of corruptions. As a rule
of thumb, protecting against input consistency is cheaper
than strong-input consistency, whereas setup-consistency
resides between the two. Also, rather intuitively, achieving
CCA security instead of CPA security (in combination
with consistency) is more expensive. More concretely, we
show that input consistency is achievable using only NIZKs
(instead of NIWIs in the other compilers) and a single
instance of a functional encryption scheme (compared to
three resp. four in the following compilers). For the setup-
consistency compiler, which we base on NIWIs, we need
to run three instances of the functional encryption scheme,
which compared to the strong-consistency compiler is one
instance less. For strong input consistency, we show a close
relationship to VFE which complements [11] by showing
that their compiler is UC-secure and implies strong-input
consistency. That compiler uses NIWIs and four instances
of the underlying FE scheme. Finally, and as a result of
independent interest, we also show how to obtain generic
security lifting from CPA to CCA on the fly using the
Naor-Yung approach [55].

A. Input and Strong Input Consistency Compilers
1) Input consistency: To turn a functional encryption

scheme into an input consistent functional encryption
scheme, we make use of NIZKs proofs. In more detail,
we augment the output of the encryption algorithm with a
NIZK proof that an underlying plaintext for this ciphertext
exists. The formal description of this compiler is presented
in Fig. 17 of the supplementary material. The soundness
of the NIZK proof ensures consistency, by preventing
an adversary from generating ciphertexts in a dishonest
manner. This is formally stated in Theorem 16 and
the security preservation for CPA and CFE security are
provided in Theorem 17 and Theorem 18, respectively.

5As mentioned in Section II, we omit λ for simplicity.

The advanced input consistency compiler works in a
similar manner as the input consistency compiler, but with
the main difference that to achieve CCA security, although
the underlying scheme is CPA, we make use of the Naor-
Yung approach [55] by executing two functional encryption
instances in parallel and prove in zero-knowledge that
ciphertexts generated under the different instances encrypt
the same message. The proof that our compiler achieves the
desired CCA security based on a CPA secure FE scheme
works along the lines of [55], but with some technical
differences. The formal compiler is presented in Fig. 20
of the supplementary material. We provide a formal proof
in Theorem 19. The input consistency follows with the
same arguments as for the compiler above. We state it
formally in Theorem 20.
To conclude the treatment on input consistency, we

provide, at the end of Section E, some ideas regarding
instantiations of the compiler from (several) standard
assumptions.
2) Strong Input consistency: To achieve strong input

consistency, we provide a general statement that shows that
the verifiability property of VFE, introduced in [11], can
be understood as providing strong input consistency using
a straightforward reduction. Since VFE schemes come with
two algrithms for cihpertext and functional key verification,
we can derive a (standard) FE scheme that, as part of the
decryption procedure, verfies ciphertexts (and returns ⊥ if
the check fails) and also key-function pairs (and returns �
if the check fails), and only decrypts ciphertexts that pass
both of these tests. The transformation clearly preserves
the confidentiality notion of the underlying VFE scheme
and due to this modular reduction, we also directly inherit
a strong input consistency compiler from a VFE scheme.
The full treatment is given in Section F.

B. Setup Consistency Compilers
1) First Compiler: To achieve setup consistency, we need

to prevent the generation of malicious functional keys under
maliciously generated parameters. While we can still rely on
honest encryption procedures, the parameters are chosen
by the adversary beforehand and we cannot rely on a
common-reference string generated by the adversary.

We replace the role of the NIZK proof in the previous sec-
tion by a non-interactive witness indistinguishable (NIWI)
proof. NIWI proofs allow us to achieve similar properties
in terms of correctness and soundness, as provided by
the NIZK proof, without relying on a common reference
string. As a trade-off, we cannot rely on the zero-knowledge
property but on witness-indistinguishability instead, which
we prove to be sufficient. However, our compiler needs
to run three different instances of the same functional
encryption scheme in parallel. The relation Rset of the
NIWI proof is formally defined in Fig. 9 and formalizes
that (during the key generation procedure) two out of the
three generated functional keys are faithfully generated
(where the different random coins involved in key generation
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Setup′(1λ) :
For i ∈ [3]:
(mpki,mski)← Setup(1λ; si)
mpk′ := {mpki}i∈[3]
msk′ := {(mski, si)}i∈[3]
Return (mpk′,msk′)
KeyGen′(mpk′,msk′, f) :
Parse mpk′ := {mpki}i∈[3],

msk′ := {(mski, si)}i∈[3]
For i ∈ [3]:
ri ∈ {0, 1}λ

skf,i = KeyGen(mski, f ; ri)

Generate π ← NIWI.Prove(1λ, z, w) :
z = ({mpki}i∈[3], {skf,i}i∈[3], f),
w = ({mski}i∈[3], {ri}i∈[3], {si}i∈[3])

and L defined corresponding to Rset

(Fig. 9)
Return sk′f = ({skf,i}i∈[3], π)
Enc′(mpk′, x) :
Parse mpk′ := {mpki}i∈[3]
For i ∈ [3]:
cti ← Enc(mpki, x)
If ∃i ∈ [3] : cti = err then return err
Return ct′ = (mpk′, {cti}i∈[3])

Dec′(mpk′, f, sk′f , ct′) :
Parse mpk′ := {mpki}i∈[3],

sk′f := ({skf,i}i∈[3], π),
ct′ := (mpk′′, {cti}i∈[3])

z := ({mpki}i∈[3], {skf,i}i∈[3], f)
If mpk′ = mpk′′

If NIWI.Verify(1λ, z, π) = 1
For i ∈ [3]:
yf,i := Dec(mpki, f, sk′f,i, cti),
y ← MajVal({yf,i}i∈[3])
Return y

Return �

Fig. 8: Setup consistency compiler. MajVal(·) calculates and returns the majority value of the input values, if there is a
clear majority and � otherwise.

Relation Rset :
Instance: z = ({mpki}i∈[3], {skf,i}i∈[3, f)
Witness: w = ({mski}i∈[3], {ri}i∈[3], {si}i∈[3])
Rset(z, w) = 1 if and only if for at least two indices
j1, j2 ∈ [3], j1 6= j2 we have:
1. The key skf,j1 for function f is generated using mskj1

with rj1 and related to mpkj1 which is generated
using sj1 . Formally:

skf,j1 = KeyGen(mpkj1 ,mskj1 , f ; rj1)
∧(mpkj1 ,mskj1) = Setup(1λ; sj1)
(AND)

2. The key skf,j2 for function f is generated using mskj2

with rj2 and related to mpkj2 which is generated
using sj2 . Formally:

skf,j2 = KeyGen(mpkj2 ,mskj2 , f ; rj2)
∧(mpkj2 ,mskj2) = Setup(1λ; sj2)

Fig. 9: Relation used in the setup consistency compiler

(master key or functional key) serve as the witness). The
decryption procedure then computes the decryption under
all of the three instances and outputs the majority of
the decryptions. If no majority is reached, the algorithm
outputs �. We give a formal description of this compiler
in Fig. 8. This compiler only preserves CPA and, under
certain conditions, also CFE security. Afterwards we also
present a compiler that achieves CCA security by relying
on a CPA secure scheme.

The proof of the following theorem can be found in Sec-
tion G-A.

Theorem 5. Let FE = (Setup,KeyGen,Enc,Dec) be a

functional encryption scheme and NIWI = (NIWI.Prove,
NIWI.Verify) a NIWI proof system for Rset (Fig. 9), then the
construction FE′ = (Setup′,KeyGen′,Enc′,Dec′) defined in
Figure 8 is setup consistent. Namely, for any PPT adversary
A, there exists a PPT adversary B such that:

|Pr[set-CONSFE′(1λ,A) = 1]| ≤ AdvSound
NIWI,B(λ).

We again show that the security of the underlying
functional encryption scheme is preserved. We refer
to Section G-B for these proofs.
2) Second Advanced Compiler: For the advanced setup

consistency compiler that takes a CPA secure scheme and
achieves CCA security, we proceed in a similar way as in
the input consistency case. This is possible since security
(in the sense of confidentiality) is only required w.r.t. an
honest setup generator. Therefore, as long as the stronger
tools required by the Naor-Yung approach [55] do smoothly
integrate and not interfere with the tools needed to obtain
setup consistency as of Theorem 5, we can follow a similar
path, but have to pay attention to the details regarding
the interplay of the three FE instances. Due to space
constraints, we refer the reader to Section G-C for the full
treatment.
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Appendix A
Continued Preliminaries

A. Security Definitions

Definition 12 (CPA & CCA Security of FE). Let
FE = (Setup,KeyGen,Enc,Dec) be a functional encryp-
tion scheme, F = {Fλ}λ∈N a function family and β ∈
{0, 1}. We define the experiments IND-CPAFE

β (1λ,A) and
IND-CCAFE

β (1λ,A) in Fig. 10. The associated advantage
of an adversary A = (A1,A2) for XX ∈ {CPA,CCA} is
defined by

AdvIND-XX
FE,A (λ) = |Pr[IND-XXFE

0 (1λ,A) = 1]
− Pr[IND-XXFE

1 (1λ,A) = 1]|.

An adversary A is valid if for the two submitted challenges
x0 and x1 and all keys skf the attacker obtained for f via
calls to KeyGen (and including the empty key for f0), it
holds that f(x0) = f(x1). For CCA security, the adversary
A is additionally not allowed to query the decryption oracle
QDec(f, ct) on the challenge ciphertext ct = Enc(mpk, xβ).
A functional encryption scheme FE is IND-XX secure, if

for any valid PPT adversary A = (A1,A2), there exists a
negligible function negl, such that AdvIND-XX

FE,A (λ) ≤ negl(λ).

IND-CPAFE
β (1λ,A)

(mpk,msk)← Setup(1λ)
(x0, x1, st)← AKeyGen(mpk,msk,·)

1 (mpk)
ct← Enc(mpk, xβ)
α← AKeyGen(mpk,msk,·)

2 (mpk, ct, st)
Output: α

IND-CCAFE
β (1λ,A)

(mpk,msk)← Setup(1λ)
(x0, x1, st)← AKeyGen(mpk,msk,·),QDec(·,·)

1 (mpk)
ct← Enc(mpk, xβ)
α← AKeyGen(mpk,msk,·),QDec(·,·)

2 (mpk, ct, st)
Output: α

Fig. 10: IND-CPA and IND-CCA security for functional
encryption. The decryption oracle QDec(f, ct) in the CCA
game generates secret key skf = KeyGen(mpk,msk, f) and
outputs Dec(mpk, f, skf , ct) for query (f, ct).

Beside the game based security definitions, we also
recap a simulation based definition, composable functional
encryption (CFE), introduced by Matt and Maurer in [52].
The notion of composable functional encryption (CFE)
security.

RealFE(1λ,A)
(mpk,msk)← Setup(1λ)
(`, τ)← (0, 0)
Repeat
`← `+ 1
x` ← AKeyGen(mpk,msk,·)

1 (mpk)[[τ ]]
ct` ← Enc(mpk, x`)
t← A2(ct`)[[τ ]]

Until t = true
Output: τ

IdealFE(1λ,A,S)
(mpk, s)← S1(1λ)
(`, τ)← (0, 0)
Repeat
`← `+ 1
x` ← A

O(·,x1,...,x`−1)[[s]]
1 (mpk)[[τ ]]

(f1, . . . , fq)← queries by A1

ct` ← S3(f0(x`), . . . , fq(x`))[[s]]
t← A2(ct`)[[τ ]]

Until t = true
Output: τ

Fig. 11: CFE security definition

Definition 13 (Composable Func-
tional Encryption Security). Let
FE be a functional encryption scheme, F = {Fλ}λ∈N a
function family, define the experiments RealFE(1λ,A) and
IdealFE(1λ,A,S) with a PPT adversary A = (A1,A2) and
a PPT simulator S = (S1,S2,S3) respectively in Fig. 11,
where the oracle O is defined as

O(f, x1, . . . , x`−1)[[s]] := S2(f, f(x1), . . . , f(x`−2))[[s]] .

The advantage of the experiments is defined by:

AdvD,CFE
FE,A,S(λ) = |Pr[D(RealFE(1λ,A)) = 1]

− Pr[D(IdealFE(1λ,A,S)) = 1| ,

where D is a PPT distinguisher.
A functional encryption scheme FE is CFE secure, if

there exists a PPT simulator S, such that for any PPT
distinguisher D it holds that AdvD,CFE

FE,A,S(λ) ≤ negl(λ) for any
PPT adversary A, where negl(·) is a negligible function.

Remark 2 (On the leakage function). As already noted
in [52], the leakage function is a modeling artifact specific
to the confidentiality definitions: the information captured
by f0 models the general leakage that might be possible
to compute by an adversary by just observing an hon-
estly generated ciphertext, for example the length of the
underlying plaintext (which some works put in place by

18



default). Because this information is not guaranteed to be
computable f0 does actually not model a real function as
opposed to fi, i > 0. As we will see later, our consistency
guarantees will only require that the guaranteed functions
fi, i > 0 yield consistent results.

B. Non-interactive Proofs
Now, we recapture the definition of non-interactive zero

knowledge (NIZK) proofs [17], [36], [40] and non-interactive
witness indistinguishable (NIWI) proofs [13], [20], [46].

Definition 14 (Non-Interactive Zero-Knowledge Proofs).
Let R be an NP Relation and consider the language L =
{x | ∃w with (x,w) ∈ R} (where x is called a statement or
instance). A non-interactive zero-knowledge proof (NIZK)
for the relation R is a triple of PPT algorithms NIZK =
(NIZK.Setup,NIZK.Prove,NIZK.Verify):
NIZK.Setup(1λ): Takes as input a security parameter λ and

outputs the common reference string CRS.
NIZK.Prove(CRS, x, w): Takes as input the common refer-

ence string CRS, a statement x and a witness w, and
outputs a proof π.

NIZK.Verify(CRS, x, π): Takes as input the common refer-
ence string CRS, a statement x and a proof π, and
outputs 0 or 1.

A system NIZK is complete, if (for all λ ∈ N), for all CRS
in the support of Setup(1λ) and all statement-witness pairs
in the relation (x,w) ∈ R, it holds that

Pr[NIZK.Verify(CRS, x,NIZK.Prove(CRS, x, w)) = 1] = 1.

Besides completeness, a NIZK system also fulfills the no-
tion of soundness and zero-knowledge, which we introduce
in the following two definitions:

Definition 15 (Soundness). Given a proof system NIZK =
(NIZK.Setup,NIZK.Prove,NIZK.Verify) for a relation R and
the corresponding language L, we define the soundness
advantage of an adversary A as the probability:

AdvSound
NIZK,A(λ) := Pr[CRS← NIZK.Setup(1λ);

(x, π)← A(CRS) :
NIZK.Verify(CRS, x, π) = 1 ∧ x /∈ L].

A NIZK proof system is called perfectly sound if
AdvSound

NIZK,A(λ) = 0 for all algorithms A, and computationally
sound, if AdvSound

NIZK,A(λ) ≤ negl(λ) for all PPT algorithms
A.

Definition 16 (Zero-Knowledge). Let NIZK =
(NIZK.Setup,NIZK.Prove,NIZK.Verify) be a NIZK proof
system for a relation R and the corresponding language
L, S = (S1,S2) a pair of algorithms (the simulator),
with S ′(CRS, τ, x, w) = S2(CRS, τ, x) for (x,w) ∈ R, and
S ′(CRS, τ, x, w) = failure for (x,w) /∈ R. For β ∈ {0, 1},
we define the experiment ZKNIZK

β (1λ,A) in Fig. 12. The
associated advantage of an adversary A is defined as

ZKNIZK
0 (1λ,A,S)

CRS← NIZK.Setup(1λ)
α← ANIZK.Prove(CRS,·,·)(CRS)
Output: α

ZKNIZK
1 (1λ,A,S)

(CRS, τ)← S1(1λ)
α← AS′(CRS,τ,·,·)(CRS)
Output: α

Fig. 12: Zero-knowledge property of a NIZK proof system.

AdvZK
NIZK,A,S(λ) := |Pr[ZKNIZK

0 (1λ,A,S) = 1]
− Pr[ZKNIZK

1 (1λ,A,S) = 1]|.

A NIZK proof system NIZK is called perfect zero-knowledge,
with respect to a simulator S = (S1,S2), if AdvZK

NIZK,A,S(λ) =
0 for all algorithms A, and computationally zero-knowledge,
if AdvZK

NIZK,A,S(λ) ≤ negl(λ) for all PPT algorithms A.

Furthermore, we say that a NIZK is one-time simulation-
sound [61], if the following holds.

Definition 17 (One-Time Simulation-Soundness). Given
a proof system NIZK = (NIZK.Setup,NIZK.Prove,
NIZK.Verify) for an NP relation R with corresponding
language L and a simulator S = (S1,S2), we define the
simulation-soundness advantage of an algorithm A by

AdvSim-Sound
NIZK,A,S (λ) := Pr[(CRS, τ)← S1(1λ);

(x, π)← AS2(CRS,τ,·)(CRS) :
(x, π) /∈ Q and x /∈ L
and NIZK.Verify(CRS, x, π) = 1] ,

where Q is the set of all (x′, π′), such that A queried x′
to its oracle and π′ is the matching response.

A NIZK proof system is called one-time simulation
sound with respect to the simulator S = (S1,S2), if
AdvSim-Sound

NIZK,A,S (λ) ≤ negl(λ) for all PPT algorithms A that
make at most one query to oracle S2.

C. Verifiable Functional Encryption
Now, we recap the definition of verifiable functional

encryption as stated in [11].

Definition 18 (Verifiable Functional Encryption).
A verifiable functional encryption scheme VFE =
(Setup,KeyGen,Enc,Dec,VerifyCT,VerifySK) extends a
functional encryption scheme FE = (Setup,KeyGen,Enc,
Dec) by two algorithms VerifyCT and VerifySK which have
the following behavior:
VerifyCT(mpk, ct): Takes as input the master public key

mpk and a ciphertext ct and outputs 1 if the ciphertext
ct was correctly generated using the master public key
mpk for some message x.

VerifySK(mpk, f, sk): Takes as input the master public key
mpk, a function f and a functional key sk and outputs
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1 if the functional key sk was correctly generated as a
functional key for the function f .

Beside the correctness and security definition, a veri-
fiable functional encryption scheme also needs to fulfill
verifiability:

Definition 19 (Verifiability). A verifiable functional
encryption scheme VFE for F is verifiable if, for all
mpk ∈ {0, 1}∗, for all ct ∈ {0, 1}∗, there exists x ∈ X
such that for all f ∈ F and sk ∈ {0, 1}∗, the following
implication holds:

If VerifyCT(mpk, ct) = 1 and VerifySK(mpk, f, sk) = 1

then

Pr[Dec(mpk, f, sk, ct) = f(x)] = 1

D. Overview of the UC Framework
We use the universal composability (UC) framework

introduced by Canetti [25] and provide a brief overview in
this section. The goal of the UC framework is to capture
what it means for a protocol to securely carry out a task.
For this, we need to describe an ideal process and prove
that no (efficient) environment can distinguish the real
process and the ideal process, where the real-process is
an execution of the protocol. Ideal processes are typically
captured by ideal functionalities, which can be thought of as
an incorruptible machine providing capabilities to different
parties. These guarantees can depend on the corruption
status of the parties in the system.

a) Protocol and protocol instances: Formally, a pro-
tocol π is an algorithm for a distributed system and
formalized as an interactive Turing machine. An ITM has
several tapes, for example an identity tape (read-only),
an activation tape, or input/output tapes to pass values
to its program and return values back to the caller. A
machine also has a backdoor tape where (especially in the
case of ideal functionalities) interaction with an adversary
is possible or corruption messages are handled. While an
ITM is a static object, UC defines the notion of an ITM
instance (denoted ITI), which is defined by the extended
identity eid = (M, id), where M is the description of an
ITM and id = (sid,pid) is a string consisting of a session
identifier sid and a party identifier pid ∈ P. An instance,
also called a session, of a protocol π (represented as an
ITM Mπ) with respect to a session number sid is defined
as a set of ITIs {(Mπ, idpid)}pid∈P where idpid = (sid,pid).

The real process can now be defined by an environment
Z (a special ITI) that spawns exactly one session of
the protocol in the presence of an adversary A (also a
special ITI), where A is allowed to corrupt ITIs and gain
their control. Which ITIs and in which form they can be
corrupted is defined in a corruption model. In this work,
we follow the static corruption model, which says that
a party is either corrupted right from the beginning of

the execution, or never. While static corruption is often
needed when encryption schemes are involved, it also makes
it possible to reason in a fine-grained fashion about the
security of a system by looking at the specific set of
corrupted parties. We note that this corruption set in the
system is always known to the environment.
The output of the execution is the bit output by
Z and is denoted by execπ,A,Z(k, z, r) where k is the
security parameter, z ∈ {0, 1}∗ is the input to the
environment, and randomness r for the entire experiment.
Let execπ,A,Z(k, z) denote the random variable obtained
by choosing the randomness r uniformly at random and
evaluating execπ,A,Z(k, z, r). Let execπ,A,Z denote the
ensemble {execπ,A,Z(k, z)}k∈N,z∈{0,1}∗ .

b) Ideal-world process: The ideal process is formulated
with respect to an ITM Func which is called an ideal
functionality. In the ideal process, the environment Z
interacts with Func, an ideal-world adversary (often called
the simulator) S and a set of trivial, i.e., dummy ITMs
representing the protocol machines that forward to the
functionality whatever is provided as inputs to them by the
environment (and return back whatever received from the
functionality). In the ideal world, the ideal-world adversary
(aka the simulator) can decide to corrupt parties. All
corruptions are handled by the functionality which can
assign more or less capabilities to the adversary depending
on which parties are declared as corrupted in the system.
We denote the output of this ideal-world pro-

cess by execFunc,A,Z(k, z, r) where the inputs are as
in the real-world process. Let execFunc,S,Z(k, z) de-
note the random variable obtained by choosing the
randomness r uniformly at random and evaluating
execFunc,S,Z(k, z, r). Let execFunc,S,Z denote the ensemble
{execFunc,S,Z(k, z)}k∈N,z∈{0,1}∗ .

c) Hybrid worlds: To model setup, the UC framework
knows so-called hybrid worlds, which are worlds where
the protocol under considerations invoke make use of
ideal functionalities as subroutines (i.e., they invoke an
ideal process as a subroutine). In this work, we use an
authenticated repository and channel as assumed ideal
functionalities.

d) Secure Realization and Composition: In a nutshell,
a protocol securely realizes an ideal functionality Func if
the real-world process (where the protocol is executed) is
indistinguishable from the ideal-world process (relative to
Func):

Definition 20. Let us denote by
X = {X(k, z)}k∈N,z∈{0,1}∗ and
Y = {Y (k, z)}k∈N,z∈{0,1}∗ two distribution ensembles
over {0, 1}. We say that X and Y are indistinguishable
if for any c, d ∈ N there exists a k0 ∈ N such that
|Pr[X(k, z) = 1] − Pr[Y (k, z) = 1]| < k−c for all k > k0
and all z ∈

⋃
κ≤kd{0, 1}κ. We use the shorthand notation

X ≈ Y to denote two indistinguishable ensembles.

Definition 21. Let Func be an ideal functionality and let π
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be a protocol. We say that π securely realizes Func if for any
(efficient) adversary A there exists an (efficient) ideal-world
adversary (the simulator) S such that for every (efficient)
environment Z it holds that execπ,A,Z ≈ execFunc,S,Z , as
defined above.

Note that the definition in [25] allows to capture in a
more fine-grained way the context in which a protocol is
executed as a further condition on the environment. We do
not need this in our work and the statement holds for all
contexts. The realization notion is composable, which is
roughly speaking the guarantee that whenever in a certain
context, the ideal process is used (e.g. as setup in a hybrid
world) then it can be replaced by the protocol realizing it.

Appendix B
Consistency for Different Types of Functional

Encryption
In the present treatment we considered the standard

public-key single-input FE setting. Nevertheless, our con-
sistency notions can be relevant also when considering other
FE settings. In particular it is easy to extend our treatment
and results to give some meaningful guarantees for secret-
key [8], [23], [37], [38], [42], [43] and multi-input/multi-client
FE [9], [12], [24], [41]. It is worth noting that stronger (more
tailored) notions of consistency might be conceivable in
these cases, which depends on the intended applications.
This may lead to a new modeling of these properties as an
interesting further direction.

For secret-key FE, since the input provider and the setup
generator is one party (e.g., consider medical record and
a system that assigns different access rights to different
doctors) strong input consistency seems to be the only
reasonable formulation and is basically covered in the
verifiable FE paper [11].

Regarding Multi-Client FE, our notion still ensures that
it is not efficiently possible to output a ciphertext ct (now
consisting of n components) such that ct would not be
explainable by a vector of input values (x1, . . . , xn) given
output values yi (derived from ct) for functions fi. However,
a stronger notion could be derived and analyzed in the UC
setting that captures consistency across the components of
a ciphertext (while allowing also ciphertexts that can be
“mixed”). In the Multi-client setting, our notion gives again
similar guarantees as above where the master public key is
a vector. In this setting, it must be impossible to generate
a ciphertext that yields inconsistent output values in the
sense that no input vector (x1, . . . , xn) would exist. As in
the case of Multi-Client FE, it might be interesting to define
stronger and more specific notions of consistency for this
setting. Especially setup consistency remains important
in the case of Decentralized Multi-Client FE [2], [3], [28],
[29], where a part of Charlie’s task, i.e., the functional key
generation, is distributed among the clients. Although these
schemes are proven with respect to a passive adversary,
as soon as moving to the active case, consistency, as we
define it in this work, is needed.

Appendix C
Relations (in)between Consistency and Security

If not otherwise quantified, we denote by F a functional-
ity class, the members of F by fi, and refer to the number of
functions (not counting the distinguished leakage function
f0) as the size s of the functionality class.

A. Relations among the Consistency Notions

Let us first summarize the relations between the notions
which can all be seen by simple arguments: strong input
consistency implies input consistency since the attack
model of input consistency is a strict subset of strong input
consistency. Furthermore, since the schemes we present
in Section V are input consistent but neither strong input
consistent nor setup consistent. The only remaining non-
implications are that strong input consistency does not
imply setup consistency and that setup consistency does not
imply strong or normal input consistency. Formally, both
are easy to see: one can always take an input or strong-input
consistent scheme and introduce a special master public
key mpk′ (that has probability zero of being generated
by setup) which takes all messages to special ciphertext
c̄t that decrypts to ⊥. Such a scheme is obviously not
setup consistent but remains consistent because ct decrypts
consistently. Along the same lines, one can introduce a new
special ciphertext c̄t in a setup consistent scheme, that
decrypts to inconsistent outputs but clearly has probability
0 to be output by the encryption algorithm. This scheme
remains setup consistent but is clearly not input consistent.

B. Consistency does not imply Confidentiality

To show that consistency does not imply confidentiality,
we aim to construct a scheme that satisfies st-in-CONS
but is not IND-CPA secure. The scheme is described
in Fig. 13. It is easy to see that the scheme described
in Fig. 13 does not provide any confidentiality guarantee
since the ciphertext reveals the input message. We prove
the consistency of the scheme more formally:

Theorem 6 (Strong input consistency). The functional en-
cryption scheme FE = (Setup,KeyGen,Enc,Dec) described
in Fig. 13 is strongly input consistent for any functionality
class F = {Fλ}λ∈N. Namely, for any PPT adversary A, it
holds that:

Pr[st-in-CONSFE(1λ,A)] ≤ negl(λ) .

Proof. After the challenger has received two ciphertexts
ct1, ct2 and some functional keys {skfi , fi}i∈[n] from A,
it parses ct1 = x̃1, ct2 = x̃2 and sorts out the keys where
skfi 6= fi∨fi /∈ Fλ as demanded by the decryption function.
This results in the set {skfi , fi}i∈[m] with m ≤ n. In the
next step, ciphertext validity is checked (for this scheme,
this is just checking that xi belongs to the domain) and
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Setup(1λ) :
Return (mpk,msk)← {0, 1}λ × {0, 1}λ

KeyGen(msk, f) :
Return skf = f

Enc(mpk, x) :
Return ct = x

Dec(mpk, f, skf , ct) :
Parse ct := x

If x /∈ Xλ
Return ⊥

If skf 6= f ∨ f /∈ Fλ
Return �

Return f(x)

Fig. 13: A strongly input consistent FE scheme which is
not IND-CPA secure.

we distinguish between two cases. First, for each j ∈ [2]
s.t. x̃j ∈ Xλ we have by definition⋂

i∈[m] f
−1
i (Dec(mpk, fi, skfi , ctj))

=
⋂
i∈[m] f

−1
i (fi(x̃j)) 3 x̃j .

And for each j ∈ [2] s.t. x̃j /∈ Xλ it holds that⋂
i∈[m] f

−1
i (Dec(mpk, fi, skfi , ctj))

=
⋂
i∈[m] f

−1
i (⊥) = ⊥ .

In both of these cases, the intersection remains non-
empty and strong input-consistency follows.

The scheme is trivially setup consistent since the encryp-
tor ignores any setup values and Bob just evaluates the
plain functions. Finally, input consistency follows, since it
is implied by strong input consistency.

C. Confidentiality does not imply Consistency
Next, we prove that the strongest confidentiality notions

in use, i.e., IND-CCA and CFE, do not imply consistency
with respect to dishonest input provider or parameter
generator.
1) The IND-CCA case: At first glance, the notions of

IND-CCA security and input consistency seem to be related.
In both games, the scheme must tame the adversaries
capabilities of generating malicious ciphertexts. We show
however that there is no connection between IND-CCA
security and input or setup consistency, by presenting a
scheme that is IND-CCA secure, but not input or setup
consistent. The scheme is described in Fig. 14, it is based
on the brute-force construction of [22, Section 4].

Theorem 7. Let PKE = (PKE.Setup,PKE.Enc,PKE.Dec)
be an IND-CCA secure public-key encryption scheme,
then the functional encryption scheme FE = (Setup,

Setup(1λ) :
For i = 1, . . . , s run (pki, ski)← PKE.Setup(1λ)
(mpk,msk) = ({pki}i∈[s], {ski}i∈[s])
KeyGen(msk, fi) :
Parse msk := {ski}i∈[s]

Return skfi = ski
Enc(mpk, x) :
Parse mpk := {pki}i∈[s]
Compute cti = PKE.Enc(pki, fi(x)),∀i ∈ [s]
Return ct = (cti)i∈[s]

Dec(mpk, skfi , fi, ct) :
Parse mpk := {pki}i∈[s], skfi := ski, ct := (cti)i∈[s]

Return y := PKE.Dec(ski, cti)

Fig. 14: An IND-CCA secure, but not consistent functional
encryption scheme.

KeyGen,Enc,Dec) in Fig. 14 is IND-CCA secure for any
functionality class F of polynomial size s (in the security
parameter). Namely, for any PPT adversary A, there exists
a PPT adversary B such that

AdvIND-CCA
FE,A (λ) ≤ s · AdvIND-CCA

PKE,B (λ) .

Proof. To prove this statement, we use a hybrid argument
over the games G0, . . . ,Gs as defined in Fig. 15. Note that
G0 corresponds to the game IND-CCAFE

0 and game Gs to
the game IND-CCAFE

1 . By using the triangle inequality, we
get:

AdvIND-CCA
FE′,A (λ) ≤

s∑
k=1
|WinG0.k−1

A (1λ)−WinG0.k
A (1λ)| .

We conclude the proof by showing that for any k ∈ [s],
there exists an adversary Bk such that:

|WinG0.k−1
A (1λ)−WinG0.k

A (1λ)| ≤ AdvIND-CCA
PKE,Bk (λ) .

The adversary B of the statement is then defined as the
monolithic adversary that first samples k ← [s] uniformly
at random and then runs the code of Bk.
We build an adversary Bk that simulates G0.k−1+β to
A, when interacting with the underlying IND-CCAPKE

β

experiment.
In the first step of the reduction, the adversary Bk

receives the public key pk from the experiment. It sets
pkk = pk and generates public key instances (pki, ski)←
PKE.Setup(1λ) for all i ∈ [s]\{k}, defines the master public
key as mpk := {pki}i∈[s] and sends it to A.
Whenever A asks for a functional key skfi , with i ∈

[s]\{k}, Bk outputs ski toA. IfA asks for the functional key
skfk the adversary Bk outputs a random value α← {0, 1}
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Game ct
justification/

remark

G0 Enc(mpk, fi(x0)), for all i ∈ [s] G0 = G0.0

G0.k
Enc(mpk, fi(x1) ), for all i ≤ k
Enc(mpk, fi(x0)), for all i > k

IND-CCA
of PKE

G1 Enc(mpk, fi(x1) ), for all i ∈ [s] G1 = G0.s

Fig. 15: Overview of the games to prove the IND-CCA
security of the functional encryption scheme described in
Fig. 14.

as its guess. Note that by definition, A is in this case
restricted to submit identical challenge messages w.r.t. the
public key pk for which case the behavior of G0.k−1 and
G0.k are identical (and thus independent of β).
When A submits its challenge messages (x0, x1), the

adversary Bk computes cti = PKE.Enc(pki, fi(x1)) for
all i < k and cti = PKE.Enc(pki, fi(x0)) for all i > k.
To generate the ciphertext ctk, Bk creates the challenge
(fk(x0), fk(x1)) and submits it as its own challenge. Bk
receives ctk = PKE.Enc(pkk, fk(xβ)) as an answer and
creates the ciphertext ct := (cti)i∈[s], which it sends to
A.

If A queries the decryption oracle QDec(fi, ct) with i ∈
[s] \ {k}, Bk computes fi(x) = PKE.Dec(ski, ct) and sends
fi(x) to A. In the case A queries QDec(fk, ct), Bk forwards
ct to its own decryption oracle and sends the reply to A.

In the last step, the adversary Bk outputs the same bit
β′ returned by A. Since Bk perfectly emulates G0.k−1+β
to A as long as the public key pkk is not asked, and since
for the latter exception case, the advantage of A is zero,
Bk’s distinguishing advantage in the CCA game is at least
the advantage of A distinguishing systems G0.k−1+β , for
β ∈ {0, 1}.

After showing the IND-CCA security of the scheme, we
describe a successful attacker for the input consistency
game.

Theorem 8. Let PKE = (PKE.Setup,PKE.Enc,PKE.Dec)
be an IND-CCA secure public-key encryption scheme,
then the functional encryption scheme FE = (Setup,
KeyGen,Enc,Dec) in Fig. 14 is not input consistent for
a concrete functionality class F of size s = 2 (as described
in the proof). Namely, there exists a PPT adversary A such
that

Pr[in-CONSFE(1λ,A) = 1] = 1 .

Proof. We consider a functionality class that contains two
functions (s = 2), i.e. F = {f1, f2}, with f1 : Xλ → {0, 1}
and f2(x) := f1(x), where denotes the bit complement.
The adversary A generates a ciphertext ct = (ct1, ct2) =

(Enc(pk1, 0),Enc(pk2, 0)), asks the KeyGen oracle for the
two secret keys and sends (ct, f1, f2) to the challenger.
We observe that both decryptions will yield yi = 0 as

an output. Therefore, we have obtain in any case f−1
1 (0)∩

f−1
2 (0) = f−1

1 (0)∩f−1
1 (0) = ∅, which contradicts the input-

consistency requirement.

The scheme described in Fig. 14 is also not setup
consistent.

Theorem 9. Let PKE = (PKE.Setup,PKE.Enc,PKE.Dec)
be an IND-CCA secure public-key encryption scheme,
then the functional encryption scheme FE = (Setup,
KeyGen,Enc,Dec) in Fig. 14 is not setup consistent for
a concrete function class F of size s = 2 (as described in
the proof). Namely, there exists a PPT adversary A such
that

Pr[set-CONSFE(1λ,A) = 1] = 1 .

Proof. Similarly to the proof of input consistency, we
consider a functionality class that contains two functions
(s = 2), i.e. F = {f1, f2}, with f1 : Xλ → {0, 1} and
f2(x) := f1(x). The adversary A executes the setup
algorithm Setup(1λ) to receive (mpk,msk) and generates
a functional key skf1 ← KeyGen(msk, f1). It chooses a
message x ← Xλ and sends (mpk1,mpk2, skf1 , f2, x, x)
to the challenger, which uses mpk and x to compute
ct ← Enc(mpk, x). In the next step, the challenger com-
putes Dec(skf1 , f2, ct) = f1(x) (note that the scheme by
design does not aim at verifying skf1 vs. f2) but then then
verification tests whether f1(x) = f2(x). This check is
always false, due to the definition of f2 (f2(x) = f1(x) 6=
f2(x),∀x ∈ Xλ), and gives us the consistency attack.

2) The CFE case: The analysis presented in the last
section can be adapted to the case of CFE security. More
precisely, we show that CFE security does not imply
consistency, by presenting a scheme that is CFE secure but
not consistent. The scheme is presented in Fig. 16, it is the
CFE secure version of the brute force scheme as introduced
in [22, Section 5] and further analyzed in [52].

Theorem 10. Let PKE = (PKE.Setup,PKE.Enc,PKE.Dec)
be an IND-CPA secure public-key encryption scheme,
then the functional encryption scheme FE = (Setup,
KeyGen,Enc,Dec) in Fig. 16 is CFE secure in the ran-
dom oracle model for H for any functionality class F of
polynomial size s (in the security parameter). Namely, for
any PPT adversary A there is a PPT simulator S such that

AdvCFE
FE,A,S(λ) ≤ negl(λ) .

Proof. We refer to [52] for a security proof of the construc-
tion.

We show that this scheme does not imply input consis-
tency.

Theorem 11. Let PKE = (PKE.Setup,PKE.Enc,PKE.Dec)
be an IND-CPA secure public-key encryption scheme,
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then the functional encryption scheme FE = (Setup,
KeyGen,Enc,Dec) in Fig. 16 is not input consistent for
a concrete functionality class of size s = 2. Namely, there
exists a PPT adversary A such that

Pr[in-CONSFE(1λ,A) = 1] = 1 .

Proof. The attack described in the proof of Theorem 8
also applies here, since, for skfi , the scheme in Fig. 16 still
performs a simple decryption at position i and hence will
produce inconsistent outputs.

The scheme described in Fig. 16 is also not setup
consistent.

Theorem 12. Let PKE = (PKE.Setup,PKE.Enc,PKE.Dec)
be an IND-CPA secure public-key encryption scheme,
then the functional encryption scheme FE = (Setup,
KeyGen,Enc,Dec) in Fig. 16 is not setup consistent for
a concrete functionality class of size s = 2. Namely, there
exists a PPT adversary A such that

Pr[set-CONSFE(1λ,A) = 1] = 1 .

Proof. The attack described in the proof of Theorem 8 still
applies here, since the scheme in Fig. 16 does not verify the
claim on the function to be decrypted (and simply takes
the matching dimension).

Setup(1λ) :
For i = 1, . . . , s run (pki, ski)← PKE.Setup(1λ)
(mpk,msk) = ({pki}i∈[s], {ski}i∈[s])
KeyGen(msk, fi) :
Return skfi = ski
Enc(mpk, x) :
Parse mpk := {pki}i∈[n]
Sample ri ← Yλ, for all i ∈ [s]
Compute cti = (Enc(mpk, ri),H(ri)⊕ fi(x)),∀i ∈ [s]
Return ct = (cti)i∈[s]

Dec(skfi , fi, (cti)i∈[s]) :
Parse cti := (cti,1, cti,2)
Compute ri = PKE.Dec(skfi , cti,1)
Return y := H(ri)⊕ cti,2

Fig. 16: A CFE secure but inconsistent functional encryp-
tion scheme.

D. Consistency does not amplify Confidentiality
To conclude the relationship graph in Fig. 5, we analyze if

consistency allows to lift security, i.e., whether consistency
coupled with IND-CPA would directly yield (any of the)
IND-CCA or CFE security notions. Both of these results are
answered in the negative in this section by showing that in
general, malleability and consistency are not contradicting

requirements as can bee seen by existing ordinary PKE
schemes (cast as special cases of FE).
We provide an explicit proof of this insight for strong

input consistency. For concreteness, let R be an (efficiently
computable) map on the plaintext space and let maulRFE be
(an efficiently computable) map such that for all plaintexts
x and public parameters mpk in the range of Setup, and
for any fixed randomness r, maulFE(Enc(mpk, x; r),mpk) =
Enc(mpk, R(x); r′) for some randomness string r′. We call
the map R separating for a function f ∈ F (or f -separating
for short), if the composed map f◦R : X → Y is an injective
map.

Theorem 13. If a functional encryption scheme FE =
(Setup,KeyGen,Enc,Dec) for a functionality class F admits
an efficiently computable map maulRFE for a plaintext map
R that is f -separating (as defined above) for a given f ∈ F
then the scheme cannot be CCA-secure. Furthermore, such
CPA-secure schemes and concrete functionality classes exist
in the standard model (under computational assumptions)
which satisfy strong input consistency but are neither CFE-
secure nor CCA-secure.

Proof. To prove the first part we construct a generic attack
given the assumptions on R: the adversary does never
invoke its oracle KeyGen, picks two challenges x0 6= x1 of
the same length and obtains the challenge ciphertext ctβ
as the encryption of mβ . The adversary can now query
the decryption oracle for function f on maulRFE(ctβ ,mpk)
to obtain the function value y′β (by the perfect correctness
of the scheme). Since R is f -separating, y′β = f(R(xβ)) 6=
f(R(x1−β)) and thus β can be guessed perfectly.
To prove the second part of the scheme we cast the El

Gamal encryption scheme as an FE scheme with function
class F = {id, f0} which is therefore CPA-secure under
DDH [22]: Let G = 〈g〉 be a prime-order group (for a
prime 2λ−1 < q < 2λ) with generator g. More concretely,
we let (mpk,msk) ← (ga, a) for a random exponent a;
an encryption of x is defined as (gr, grax) for a random
exponent r; and finally, define Dec(mpk, skid = msk =
a, ct′ = (ct′0, ct′1)) to return � if ga 6= mpk, and otherwise
to return x′ ← ct1 · (ct′0)−a. The scheme satisfies strong
input consistency, since given the ciphertext and the
public-private key-pair (ga, a), the underlying message is
committed to. Furthermore, the scheme is malleable and
the mapping R : x 7→ c · x for a constant c is an injective
mapping which is separating the identity function id ∈ F .
We conclude the proof of the second part of the theorem by
observing that CFE security for this scheme is impossible
by the impossibility result given in [52, Theorem 5.1].

Appendix D
Details on the Inner-Product Schemes of

Section V
A. Proofs of Section V-B

We prove Theorem 2 by separating it into two Lemmas.
First, in Lemma 1, we show that the scheme described
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in Fig. 7 is input inconsistent for the functionality class
Fm,X,Y . Second, in Lemma 2, we show that the same
scheme is input inconsistent for the functionality class Fmp .

Lemma 1. The functional encryption scheme FE for the
functionality class Fm,X,Y described in Fig. 7 is not input
consistent. Namely, there exists a PPT adversary A such
that:

Pr[in-CONSFE(1λ,A) = 1] = 1 .

Proof. For the computation of the final output in the de-
cryption procedure, it is necessary to compute the discrete
logarithm of [〈x,y〉]g. As described in [7], we assume that
the computed inner product lies in an polynomial bounded
interval {0, . . . , L}, i.e. 〈x,y〉 ∈ {0, . . . , L} with a known
L. This ensures that the discrete logarithm computation
can be performed in Õ(L1/2), using Pollard’s kangaroo
method [58] (or even Õ(L1/3), by precomputing a table
of size Õ(L1/3) [19]). Due to correctness, we assume that
for every encrypted vector x, with ‖x‖∞ < X, and every
functional key corresponding to y, with ‖y‖∞ < Y , the
decryption gives us the right output 〈x,y〉. This results in
the fact that L must be bigger than m ·X · Y . In this case,
the decryption procedure outputs ⊥.

Now, we describe the behavior of an attacker A against
the input consistency of the scheme. After the challenger
has generated the parameters, (mpk,msk)← Setup(1λ) and
has sent mpk to the adversary, the adversary generates a
ciphertext ct, by encrypting the vector x := (L+1)·e1 after
the rules defined in the encryption procedure. In the next
step, A queries the key generation oracle for the vectors
e1 and em, receives ske1 and skem as a reply and sends ct
to the challenger.
After receiving ct, the challenger computes y1 =

Dec(mpk, e1, ske1 , ct) and y2 = Dec(mpk, em, skem , ct). We
consider the computation of y1 and y2 in more detail. In the
decryption Dec(mpk, e1, ske1 , ct), the decryptor computes
g〈(L+1)·e1,e1〉 = gL+1 and tries to perform the discrete
logarithm computation. This computation fails, due to the
fact that L+1 is not part of the bounded interval {0, . . . , L},
therefore the procedure outputs ⊥ (this argument can
be made for any fixed bound L). For the decryption
procedure Dec(mpk, em, skem , ct), the decryptor computes
g〈(L+1)·e1,em〉 = g0 = 1, for which the discrete logarithm
can be easily computed. This results in y1 := ⊥ and y2 = 0.
For the consistency check, we need to compute the

preimages of the two different encryptions, i.e. f−1
e1

(⊥) and
f−1

em (0). The first preimage is defined as f−1
e1

(⊥) = {⊥}
(due to Definition 2) and the second preimage as f−1

em (0) =
{x ∈ ZmX : 〈x, em〉 = 0} = {( x

0 ), with x ∈ Zm−1
X }. For the

final step in the consistency check, we compute the
intersection of the two preimages f−1

e1
(⊥) ∩ f−1

em (0) =
{⊥} ∩ {( x

0 ), with x ∈ Zm−1
X } = ∅

This results in a consistency attack and therefore proves
the lemma.

Lemma 2. Let FE be the IND-CPA secure functional
encryption scheme for the functionality class Fmp , with p
prime, described in Fig. 7, then the scheme FE is not input
consistent. Namely, there exists a PPT adversary A such
that:

Pr[in-CONSFE(1λ,A) = 1] = 1 .

Proof. The proof works in the same manner as for Lemma 1.
The polynomial bound L for the discrete logarithm com-
putation in the last step must be smaller than p, such that
we can still find a value L + 1 for which the described
attack works. If this is not the case, and the decryption
procedure still remains efficient, it is possible to compute
the discrete logarithm of gx for all x ∈ Zp by letting the
decryption algorithm perform the task on random group
elements. This yields a contradiction against the MDDH
assumption and therefore, due to the fact that the security
of the scheme is based on MDDH, a contradiction against
the IND-CPA security of the scheme.

B. Proof of Theorem 3
Proof. To prove the input consistency of the scheme
described in Fig. 7, we need to show that no matter what
ciphertext an adversary generates there exists at least one
underlying plaintext that explains the decryption behavior
of ct under different functional keys skyi queried by the
adversary A during the game. We prove this by relying
on the algebraic properties of the groups for which the
functional encryption scheme is defined. In more detail,
we show that there exists always a solution for a linear
equation system that is defined by the different inner
product computations between the functional keys and the
submitted ciphertext. The existence of a solution shows
that there exists at least one plaintext that explains the
functional decryption behavior.
Now, we describe how the game proceeds. In the first

step, the challenger generates the master public key and
the master secret key by executing the setup procedure
(mpk,msk) = ((G, [A]g, [WA]g),W) ← Setup(1λ). In the
next step, the adversary A receives mpk and has access
to a key generation oracle KeyGen(mpk,msk, ·). Whenever
A queries the key generation oracle with a vector yi, the
challenger generates skyi = KeyGen(mpk,msk,yi), adds
(skyi ,yi) to the list F and sends skyi to A. At some point
in the game, A sends ct to the challenger and the challenger
computes [zi]g := Dec(mpk,yi, skyi , ct) for all (skyi ,yi) ∈
F . We consider how the decryption works in more detail
and determine [zi]g specifically corresponding to yi.

For the ciphertext, output by the adversary A, we write
ct =

(
c′0
c′1

)
, with c′0 = [c0]g ∈ Gk+1 and c′1 = [c1]g ∈ Gm.

To be more specific, we also write c′0 ∈ Gk+1 and c′1 ∈ Gm

as explicit group elements, i.e. c′0 :=
(

gc0,1...
gc0,k+1

)
and c′0 :=(

gc1,1...
gc1,m

)
with the generator g, c0 := (c0,1, . . . , c0,k+1) ∈

Zk+1
p and c1 := (c1,1, . . . , c1,m) ∈ Zmp . To show that the
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decryption procedure always decrypts to one underlying
element, we compute the decryption procedure for an
arbitrary honestly generated key sky. We denote the master

secret key as W :=
(

w1 ... wk+1

)
, and correspondingly

W> :=
(

w>1...
w>k+1

)
. Using the matrix description, the

functional key is defined as W> · y =
(
〈w>1 ,y〉...
〈w>k+1,y〉

)
∈ Zk+1

p .

For the decryption, we need to compute two different
components: [c>0 sky]g and [c>1 y]g.
First, we describe how to compute [c>0 sky]g: We ex-

ponentiate all of the components of c′1 with the com-
ponents of sky and compute the product of the re-
sulting vector components. In more detail, we com-
pute

∏
i∈[k+1] g

c0,i·〈w>i ,y〉 = g

∑
i∈[k+1]〈c0,i ·w>i ,y〉 =

g
〈
∑
i∈[k+1] c0,i ·w>i ,y〉 = g〈W·c0,y〉. We proceed in the

same way for the second component
∏
i∈[m] g

c1,i·yi =

g

∑
i∈[m] c1,i · yi = g〈c1,y〉.

For the final computation, before the discrete logarithm
computation, we need to multiply the two components,
which results in g〈W·c0,y〉 · g〈c1,y〉 = g〈W·c0,y〉+〈c1,y〉 =
g〈W·c0+c1,y〉.
In the final step of the decryption procedure the dis-

crete logarithm computation happens. We denote the
final decryptions with respect to the different yi’s by
zi := log(g〈W·c0+c1,y〉).
To prove the input consistency, we show that the

preimage of zi contains the value W · c0 + c1 for the
case that zi = oob and the case that zi 6= oob. This
leads to the fact that W · c0 + c1 ∈

⋂
i∈[n] f

−1
yi

(zi) for all
zi ∈ {0, . . . , L}∪{oob}, which covers all the possible values
of zi.

Both of these cases follow directly from the definition of
the preimage. In more detail, as described in the beginning
of Section V-C, it holds that f−1

y (oob) contains all the
vectors x such that 〈x,y〉 > L. For the case that zi = oob
it holds that 〈W ·c0 +c1,yi〉 > L, after the analysis above,
and therefore W · c0 + c1 ∈ f−1

yi
(oob). For the case that

zi ∈ {0, . . . , L} it holds that the preimage contains all the
vectors x, such that 〈x,yi〉 = zi. Therefore, again with
the analysis above, it follows that W · c0 + c1 ∈ f−1

yi
(zi)

for zi ∈ {0, . . . , L}. Overall, this leads to the fact that
W ·c0 ∈

⋂
i∈[n] f

−1
yi

(zi) for all i ∈ [n] with zi ∈ {0, . . . , L}∪
{oob}.

The scheme described in Fig. 7 is obviously CPA secure
for the functionality class Fmp,L if the base FE scheme is
CPA secure.

Theorem 14. Let FE = (Setup,KeyGen,Enc,Dec) be the
IND-CPA secure functional encryption scheme for the func-
tionality class Fmp , with p prime, described in Fig. 7. Then
the functional encryption scheme FE′ = (Setup′,KeyGen′,

Enc′,Dec′) for the functionality class Fmp,L , with p prime,
described in Fig. 7 is IND-CPA secure. Namely, for any
PPT adversary A, there exists a PPT adversary B such
that

AdvIND-CPA
FE′,A (λ) ≤ AdvIND-CPA

FE,B (λ) .

C. Consistent Scheme for the Exponential Inner Product
Functionality Class

The scheme used in this section, is another modified
version of the inner product encryption scheme (described
in Fig. 7) for the functionality class of exponential inner
products Pmp . We define the functionality class more
formally:
To modify the inner product encryption scheme to

fit our new functionality class, we proceed without the
discrete logarithm computation in the end of the decryption
procedure and just output the value g〈x,y〉. For this scheme,
the input consistency property can be proven formally.

Proof. We proceed in a similar way as in the proof
of Theorem 3. To prove the input consistency of the
described scheme, we need to show that no matter what
ciphertext an adversary generates there exists at least one
underlying plaintext that would explain the decryption
behavior of ct under different functional keys skyi queried
by the adversary A during the game. We prove this by
relying on the algebraic properties of the groups for which
the functional encryption scheme is defined. In more detail,
we show that there exists always a solution for a linear
equation system that is defined by the different inner
product computations between the functional keys and the
submitted ciphertext. The existence of a solution shows
that there exists at least one plaintext that explains the
functional decryption behavior.
Now, we describe how the game proceeds. In the first

step, the challenger generates the master public key and
the master secret key by executing the setup procedure
(mpk,msk) = ((G, [A]g, [WA]g),W) ← Setup(1λ). In the
next step, the adversary A receives mpk and has access
to a key generation oracle KeyGen(mpk,msk, ·). Whenever
A queries the key generation oracle with a vector yi, the
challenger generates skyi = KeyGen(mpk,msk,yi), adds
(skyi ,yi) to the list F and sends skyi to A. At some point
in the game, A sends ct to the challenger and the challenger
computes [zi]g := Dec(mpk,yi, skyi , ct) for all (skyi ,yi) ∈
F . We consider how the decryption works in more detail
and determine [zi]g specifically corresponding to yi.

For the ciphertext, output by the adversary A, we write
ct =

(
c′0
c′1

)
, with c′0 = [c0]g ∈ Gk+1 and c′1 = [c1]g ∈ Gm.

To be more specific, we also write c′0 ∈ Gk+1 and c′1 ∈ Gm

as explicit group elements, i.e. c′0 :=
(

gc0,1...
gc0,k+1

)
and c′0 :=(

gc1,1...
gc1,m

)
with the generator g, c0 := (c0,1, . . . , c0,k+1) ∈

Zk+1
p and c1 := (c1,1, . . . , c1,m) ∈ Zmp . To show that the

decryption procedure always decrypts to one underlying
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element, we compute the decryption procedure for an
arbitrary honestly generated key sky. We denote the master

secret key as W :=
(

w1 ... wk+1

)
, and correspondingly

W> :=
(

w>1...
w>k+1

)
. Using the matrix description, the

functional key is defined as W> · y =
(
〈w>1 ,y〉...
〈w>k+1,y〉

)
∈ Zk+1

p .

For the decryption, we need to compute two different
components: [c>0 sky]g and [c>1 y]g.
First, we describe how to compute [c>0 sky]g: We ex-

ponentiate all of the components of c′1 with the com-
ponents of sky and compute the product of the re-
sulting vector components. In more detail, we com-
pute

∏
i∈[k+1] g

c0,i·〈w>i ,y〉 = g

∑
i∈[k+1]〈c0,i ·w>i ,y〉 =

g
〈
∑
i∈[k+1] c0,i ·w>i ,y〉 = g〈W·c0,y〉. We proceed in the

same way for the second component
∏
i∈[m] g

c1,i·yi =

g

∑
i∈[m] c1,i · yi = g〈c1,y〉.

To generate the final output, we need to multiply the
two components, which results in g〈W·c0,y〉 · g〈c1,y〉 =
g〈W·c0,y〉+〈c1,y〉 = g〈W·c0+c1,y〉.

Coming back to the initial description of the game, the
decryption procedure outputs [zi]g := [〈W · c0 + c1,yi〉]g.
Due to the fact that the vectors c0 and c1 are set by
the adversary and the matrix W is fixed after the setup
procedure, the decryption relies only on the value yi. This
results in the decryptions g〈W·c0+c1,y1〉, . . . , g〈W·c0+c1,yn〉

for all the different secret key queries yi. Consequently,
W · c0 + c1 ∈ f−1

g,y1
([z1]g), . . . ,W · c0 + c1 ∈ f−1

g,yn
([zn]g),

which further implies that

W · c0 + c1 ∈
⋂
i∈[n] f

−1
g,yi

([zi]g) .

This makes the intersection non-empty for every possible
ciphertext ct generated byA. Therefore, the scheme is input
consistent.

The scheme described in Fig. 7 for the functionality class
Pmp achieves IND-CPA security:

Theorem 15. Let FE = (Setup,KeyGen,Enc,Dec) be the
IND-CPA secure functional encryption scheme for the func-
tionality class Fmp , with p prime, described in Fig. 7. Then
the functional encryption scheme FE′ = (Setup′,KeyGen′,
Enc′,Dec′) for the functionality class Pmp , with p prime,
described in Fig. 7 is IND-CPA secure. Namely, for any
PPT adversary A, there exists a PPT adversary B such
that

AdvIND-CPA
FE′,A (λ) ≤ AdvIND-CPA

FE,B (λ) .

This statement follows by a straightforward reduction
to CPA security by observing that the restriction on the
functional keys, i.e., the requirement fy(x0) = fy(x1) is

preserved for all keys, because if 〈x0,y〉 = 〈x1,y〉 then it
follows that g〈x0,y〉 = g〈x

1,y〉.

Appendix E
Input Consistency Compiler

A. First Compiler
To achieve input-consistency under CPA and CFE

security, we augment the output of an encryption algorithm
with a non-interactive zero-knowledge (NIZK) proof that
an underlying plaintext exists. The NIZK proof is generated
over the master public key, the encryption algorithm’s ran-
domness and the underlying plaintext. The zero-knowledge
property of the NIZK makes sure that no information
about the underlying plaintext is leaked, whereas the
soundness prevents a malicious party from generating a
valid proof over an invalid ciphertext. A formal description
of this compiler is presented in Fig. 17 and the relation
Rin, that needs to be supported by the NIZK scheme, is
defined in Fig. 18. We show that the described construction
indeed turns a functional encryption scheme into an input
consistent functional encryption scheme.

Setup′(1λ) :
CRS← NIZK.Setup(1λ)
(mpk,msk)← Setup(1λ)
Return (mpk′,msk′) = ((CRS,mpk),msk)
KeyGen′(mpk′,msk′, f) :
Parse mpk′ := (CRS,mpk),msk′ := msk
skf = KeyGen(mpk,msk, f)
Return sk′f = skf
Enc′(mpk′, x) :
Parse mpk′ := (CRS,mpk)
ct = Enc(mpk, x; r) with r ← {0, 1}λ

Generate π ← NIZK.Prove(CRS, (mpk, ct), (x, r))
for Rin (Fig. 18)

Return ct′ = (ct, π)
Dec′(mpk′, f, sk′f , ct′) :
Parse mpk′ := (CRS,mpk), sk′f := skf , ct′ := (ct, π)
If NIZK.Verify(CRS, (mpk, ct), π) = 1

Return Dec(mpk, f, skf , ct)
Else

Return ⊥

Fig. 17: Input consistency compiler

Theorem 16. Let FE = (Setup,KeyGen,Enc,Dec) be a
functional encryption scheme and NIZK = (NIZK.Setup,
NIZK.Prove,NIZK.Verify) a NIZK proof system for rela-
tion Rin, then the construction FE′ = (Setup′,KeyGen′,
Enc′,Dec′) defined in Figure 17 satisfies input consistency.
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Relation Rin:
Instance: z = (mpk, ct)
Witness: w = (x, r), x ∈ X , random coins r
Rin(z, w) = 1 if and only if:

ct = Enc(mpk, x; r)

Fig. 18: Relation used in the input consistency compiler

Namely, for any PPT adversary A, there exists a PPT
adversary B such that:

|Pr[in-CONSFE′(1λ,A) = 1]| ≤ AdvSound
NIZK,B(λ) .

Proof. To prove the input consistency of the scheme FE′,
we rely on the soundness of the NIZK proof system. In
more detail, we construct an adversary B that generates
a malicious proof, by relying on an adversary A for the
input consistency experiment in-CONSFE.

In the beginning of the reduction, B receives a common
reference string CRS from its underlying experiment, it gen-
erates (mpk,msk) ← Setup(1λ), sets mpk′ := (CRS,mpk)
and sends mpk′ to A.

Whenever A asks a key generation query f , B computes
the key skf ← KeyGen(msk, f), adds (skf , f) to the list F
and sends skf to A.
At some point, A sends a ciphertext ct′ = (ct, π) to B.

If NIZK.Verify((mpk, ct), π) = 0 then the adversary B halts.
In this case, Dec(mpk, fi, skfi , ct) yields ⊥ for all i ∈ [n],
by definition of the compiler (and hence the adversary A
loses the game). If NIZK.Verify((mpk, ct), π) = 1, B simply
outputs (mpk1, ct, π) as its forgery and halts.

Let us analyze the output of A to see that the condition
to break input consistency must imply a soundness viola-
tion of the NIZK scheme. In more detail, we define the event
E as the event that the adversary A performs a consistency
attack under the assumption that (mpk, ct) ∈ L and show
that the occurrence of the event E would contradict the
assumption.
Now, we analyze the possible outcomes for the decryp-

tions yi in the case of a consistency attack. We show
that yi 6= ⊥ for all i ∈ [n] (this is covered by event E1).
Furthermore we show that if yi 6= ⊥ then there exists an x
such that x ∈

⋂
i∈[n] f

−1
i (yi) (this is denoted by event E2).

In the case of event E1, we assume that at least one of
the decryptions is equal to ⊥, i.e. yi 6= ⊥. We distinguish
between two cases:
1) It holds that yi = ⊥ for all i ∈ [n]. In this case, the

adversary A did not perform a consistency attack.
In more detail, the intersection

⋂
i∈[n] f

−1
i (yi) will

contain the ⊥ value.
2) At least one, but not all, of the decryptions are equal

to ⊥, i.e. yi = ⊥. Since ⊥ is not an element X , and
therefore not an encryption value, then, by perfect
correctness of the underlying FE scheme, it follows that
there exists no w such that ((mpk, ct), w) ∈ Rin (i.e. it

cannot be a valid instance). This is a contradiction to
the assumption that (mpk, ct) ∈ L.

Considering both the above mentioned points, we can
conclude that yi 6= ⊥ for all i ∈ [n].

For the analysis of event E2, we assume, for the sake of
contradiction, that the intersection

⋂
i∈[n] f

−1
i (yi) is empty

and it holds (with respect to event E1) that yi 6= ⊥ for all
i ∈ [n]. In this case, the adversary A has generated a valid
proof π for an x /∈ Lin. Again, by the perfect correctness
of the FE scheme, the adversary B broke the soundness
of the NIZK scheme, because it has found a ciphertext ct
and provided a proof to be a valid encryption while the
functional outputs say that there is no such underlying
plaintext.

By combining the events E1 and E2, we have proven that
event E cannot occur. To recap, whenever (mpk, ct) ∈ L, it
is not possible for an adversary A to perform a consistency
attack. Hence the only way the adversary can break setup
consistency is by breaking the soundness property of the
NIZK scheme, i.e., providing the statement (mpk, ct) /∈ L.
This yields the bound

|Pr[in-CONSFE′(1λ,A) = 1]| ≤ AdvSound
NIZK,B(λ) .

and therefore we obtain the theorem.

Besides proving that the compiler achieves input con-
sistency, we also need to prove the security preservation
under the two different notions of IND-CPA security and
CFE security.

We first prove the security preservation of the compiler
under CPA security and conclude with the preservation
for CFE security.

Theorem 17. Let FE = (Setup,KeyGen,Enc,Dec)
be an IND-CPA secure functional encryption scheme
and NIZK = (NIZK.Setup,NIZK.Prove,NIZK.Verify) a
NIZK proof system, then the construction FE′ =
(Setup′,KeyGen′,Enc′,Dec′), defined in Figure 17, is IND-
CPA secure. Namely, for any PPT adversary A, there exist
PPT algorithms B and B′ such that

AdvIND-CPA
FE′,A (λ) ≤ 2 · AdvZK

NIZK,B(λ) + AdvIND-CPA
FE,B′ (λ) .

Proof. To prove this statement, we use a hybrid argument
with the games defined in Fig. 19. Note that G0 corresponds
to the game IND-CPAFE

0 (1λ,A) and G3 to the game
IND-CPAFE

1 (1λ,A). This results in:

AdvIND-CPA
FE′,A (1λ) = |WinG0

A (1λ)−WinG3
A (λ)| .

We describe the different games in more detail:
Game G1: In this game, we change from an honestly

generated CRS and honestly generated proofs to a
simulated CRS and simulated proofs. The transition
from G0 to G1 is justified by the zero-knowledge
property of the NIZK. Namely, in Lemma 3, we exhibit
a PPT adversary B0 such that:
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|WinG0
A (1λ)−WinG1

A (1λ)| ≤ AdvZK
NIZK,B0

(λ) .

Game G2: In this game, we change from an encryption
of x0 to x1 for the encryption queries. The transition
from G1 to G2 is justified by the IND-CPA security of
FE. Namely, in Lemma 4, we exhibit a PPT adversary
B1 such that:

|WinG1
A (1λ)−WinG2

A (1λ)| ≤ AdvIND-CPA
FE,B1

(λ) .

Game G3: This game is the IND-CPAFE
1 (1λ,A) game.

The transition from G2 to G3 is almost symmetric
to the transition from G0 to G1 except from the
fact that the reduction encrypts x1 instead of x0. As
in Lemma 3, the transition is justified by the zero-
knowledge property of NIZK. Namely, we can exhibit
a PPT adversary B0 such that:

|WinG2
A (1λ)−WinG3

A (1λ)| ≤ AdvZK
NIZK,B0

(λ) .

Putting everything together, we obtain the theorem.

Lemma 3 (Transition from G0 to G1). For any PPT
adversary A, there exists a PPT adversary B0 such that

|WinG0
A (1λ)−WinG1

A (1λ)| ≤ AdvZK
NIZK,B0

(λ) .

Proof. We build an adversary B0 that simulates Gβ to-
wards A when interacting with the underlying ZKNIZK

β

experiment.
In the beginning of the reduction, B0 receives CRS from

the ZKNIZK
β experiment. It generates a functional encryption

instance (mpk,msk)← Setup(1λ), sets mpk′ = (CRS,mpk)
and gives mpk′ to the adversary.

Whenever A asks an encryption query (x0, x1), B0 gen-
erates the ciphertext ct = Enc(mpk, x0; r) with r ← {0, 1}λ
and sends y = (mpk, ct) and w = (x, r) as a statement-
witness pair to its challenger. As an answer, B0 receives a
proof π for Rin. It sets ct′ = (ct, π) and sends it to A.
For a key generation query f , B0 generates skf ←

KeyGen(mpk,msk, f) for and sends sk′f = skf as a reply to
A.
This covers the simulation of the game Gβ . Finally B0

outputs the same bit β′ returned by A. It follows, from the
perfect simulation, that the advantage of B0 is the same
as the advantage of A.

Lemma 4 (Transition from G1 to G2). For any PPT
adversary A, there exists a PPT adversary B1 such that

|WinG1
A (1λ)−WinG2

A (1λ)| ≤ AdvIND-CPA
FE,B1

(λ) .

Proof. We build an adversary B1 that simulates G1+β to-
wards A when interacting with the underlying IND-CPAFE

β

experiment.
In the beginning of the reduction, B1 receives mpk from

the experiment. It simulates a CRS, i.e. (CRS, τ)← S1(1λ),
sets mpk′ = (CRS,mpk) and gives mpk′ to the adversary.

Whenever A asks an encryption query (x0, x1), B1
forwards it to its own encryption oracle to receive ct ←
Enc(mpk, xβ), simulates a proof for the relation Rin, i.e.
π ← S2(CRS, τ, xβ) and sends ct′ = (ct, π) to A.
For a key generation query f , B1 queries its own key

generation oracle on f to receive skf ← KeyGen(mpk,
msk, f), sets sk′f = skf and sends sk′f to A.

This covers the simulation of the game G1+β . Finally B1
outputs the same bit β′ returned by A. It follows, from the
perfect simulation, that the advantage of B1 is the same
as the advantage of A.

Beside showing the IND-CPA security preservation, we
also need to show the CFE security preservation.

Theorem 18. Let FE = (Setup,KeyGen,Enc,Dec) be a
CFE secure functional encryption scheme, i.e., there exists
a simulator S = (S1,S2,S3) such that RealFE(1λ,A) ≈
IdealFE(1λ,A,S) w.r.t. any adversary A, and let further
NIZK = (NIZK.Setup,NIZK.Prove,NIZK.Verify) be a NIZK
proof system for the relation Rin, then for the construction
FE′ = (Setup′,KeyGen′,Enc′,Dec′), defined in Figure 17,
we can design a simulator S ′ = (S ′1,S ′2,S ′3) such that for
any adversary A′ = (A′1,A′2) against the new scheme we
can design adversarys A and B such that

AdvD
′,CFE

FE′,A′,S′(λ) ≤ AdvD,CFE
FE,A (λ) + AdvZK

NIZK,B(λ).

Proof. The simulator is defined as follows: S ′1 runs S1 to
obtain the pair (mpk, s) and runs the simulator of the NIZK
scheme to obtain (CRS, τ) and outputs mpk′ := (mpk,CRS).
Next, S ′2 := S2, and finally, S ′3 runs S3, receives a ciphertext
ct`, and simulates a NIZK proof using the trapdoor τ for
instance (mpk′, ct). Note that the internal state managed
by S is managed by S ′. We obtain the statement again
by a sequence of hybrid steps. Let G0 be the real CFE
experiment and G2 the ideal CFE experiment with the
above simulator. Let G1 be a hybrid experiment, where
the only change is that we replace the CRS and simulate
all NIZK proofs. Analogous to the proof of Theorem 17,
an adversary B with advantage α in distinguishing the
outputs of experiments G0 and G1 (with respect to a certain
adversary A′′) directly yields a distinguisher telling apart
simulated and genuine proofs with the same advantage.
For the second step, we see that any pair (D′,A′) with
advantage α in distinguishing the outputs of the experi-
ments G1 and G2 can be transformed into a pair (D,A) such
that the outputs of RealFE(1λ,A) and IdealFE(1λ,A,S) are
distinguishable by D with advantage α. To see this, note
that by the modular design of the scheme, the adversary can
be defined as follows: when the first adversary A1 receives
mpk it simulates CRS and internally runs an instance of
A′1((mpk,CRS)). For requests to the key-generation oracle,
A1 simply relays them to the oracle of A′1. Besides this,
any internal state of A′1 is maintained by A1, and passed
on to the second adversary. A1 outputs whatever A′1
outputs. Second, whenever A2 receives some ciphertext,
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say ct`, it internally runs A′2 on input (ct`, π), where
π is a simulated proof for the relation Rin. Finally, A2
outputs whatever A′2 outputs. We see that the output
distribution of RealFE(1λ,A) is identical to the output
of A′ in experiment G1 and the output distribution of
IdealFE(1λ,A,S) is identical to the output distribution of
G2, the ideal experiment with FE′ and simulator S ′. This
proves the theorem.

B. Second Advanced Compiler
For the advanced input consistency compiler that takes

a CPA secure scheme and achieves CCA security, we make
use of the Naor-Yung approach [55] and combine it with the
approach of the presented input consistency compiler. In
more detail, we run two different instances of the functional
encryption scheme and create a proof that shows that both
of these encryptions are generated in a valid way, i.e. there
exists a random ri and a message xi to create a ciphertext
cti for i ∈ [2]. The compiler is displayed in Fig. 20. In
comparison to the NIZK proof system used in the input
consistency compiler above, we need to assume one-time
simulation-soundness for this advanced case. This leads
to the following theorem which is of independent interest
beyond the study of consistency.

Theorem 19. Let FE = (Setup,KeyGen,Enc,Dec) be
an IND-CPA secure functional encryption scheme and
NIZK = (NIZK.Setup,NIZK.Prove,NIZK.Verify) a NIZK
proof system satisfying one-time simulation soundness, then
the construction FE′ = (Setup′,KeyGen′,Enc′,Dec′), defined
in Figure 20, is IND-CCA secure. Namely, for any PPT
adversary A, there exist PPT adversaries B,B′ and B′′,
such that:

AdvIND-CCA
FE′,A (λ) ≤ 2 · AdvZK

NIZK,B(λ)
+ AdvSim-Sound

NIZK,B′ (λ) + 2 · AdvIND-CPA
FE,B′′ (λ).

Proof. To prove this statement, we use a hybrid argument
with the games defined in Fig. 22. Note that G0 corresponds
to the game IND-CCAFE

0 (1λ,A) and G4 to the game
IND-CCAFE

1 (1λ,A). This results in:

AdvIND-CCA
FE′,A (1λ) = |WinG0

A (1λ)−WinG4
A (1λ)| .

We describe the different games in more detail:
Game G1: In this game, we change from an honestly

generated CRS and honestly generated proofs to a
simulated CRS and simulated proofs. The transition
from G0 to G1 is justified by the zero-knowledge
property of NIZK. Namely, in Lemma 5, we exhibit a
PPT adversary B0 such that:

|WinG0
A (1λ)−WinG1

A (1λ)| ≤ AdvZK
NIZK,B0

(λ) .

Game G2: In this game, we change from an encryption of
x0 to x1 in the first component of the ciphertext, i.e.

ct = (Enc(mpk1, x
1),Enc(mpk2, x

0), ). The transition
from G1 to G2 is justified by the IND-CPA security
of FE and the one-time simulation-soundness of NIZK.
Namely, in Lemma 6, we exhibit PPT adversaries B1
and B2 such that:

|WinG1
A (1λ)−WinG2

A (1λ)| ≤ AdvSim-Sound
NIZK,B1

(λ)
+ AdvIND-CPA

FE,B2
(λ) .

Game G3: In this game, we change from an encryption of
x0 to x1 in the second component of the ciphertext, i.e.
ct = (Enc(mpk1, x

1),Enc(mpk2, x
1), ). The transition

from G2 to G3 is almost symmetric to the transition
from game G1 to G2 except that it is not necessary to
rely on the one-time simulation soundness of the NIZK
system and the ciphertext contains an encryption of
x1 in the first position. As in Lemma 6, the transition
is justified by the IND-CPA security of FE. Namely,
we can exhibit a PPT adversary B2 such that:

|WinG2
A (1λ)−WinG3

A (1λ)| ≤ AdvIND-CPA
FE,B1

(λ) .

Game G4: This game is the IND-CCAFE
1 (1λ,A) game.

The transition from G3 to G4 is almost symmetric
to the transition from G0 to G1 except from the
fact that the reduction encrypts x1 instead of x0. As
in Lemma 5, the transition is justified by the zero-
knowledge property of NIZK. Namely, we can exhibit
a PPT adversary B0 such that:

|WinG3
A (1λ)−WinG4

A (1λ)| ≤ AdvZK
NIZK,B0

(λ) .

Putting everything together, we obtain the theorem.

Lemma 5 (Transition from G0 to G1). For any PPT
adversary A, there exists a PPT adversary B0 such that

|WinG0
A (1λ)−WinG1

A (1λ)| ≤ AdvZK
NIZK,B0

(λ) .

Proof. We build an adversary B0 that simulates Gβ to-
wards A when interacting with the underlying ZKNIZK

β

experiment.
In the beginning of the reduction, B0 receives CRS

from the ZKNIZK
β experiment. It generates two functional

encryption instance (mpki,mski) ← Setup(1λ) for i ∈ [2],
sets mpk′ = (CRS, {mpki}i∈[2]) and gives mpk′ to the
adversary.
Whenever A asks an encryption query (x0, x1), B0

generates the ciphertext cti = (Enc(mpki, x0; ri))i∈[2] with
ri ← {0, 1}λ for i ∈ [2] and sends y = (mpki, cti)i∈[2]
and w = (x, {ri}i∈[2]) as a statement-witness pair to its
challenger. As an answer, B0 receives a proof π for the
relation RCCA

in . It sets ct′ = ({cti}i∈[2], π) and sends it to
A.
For a key generation query f , B0 generates skf,i ←

KeyGen(mpki,mski, f) for i ∈ [2] and sends sk′f =
{skf,i}i∈[2] as a reply to A.
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Game CRS & π ct justification/remark

G0
CRS← NIZK.Setup(1λ)
π ← NIZK.Prove(CRS, x, w)

Enc(mpk, x0)

G1
CRS← S1(1λ)
π ← S2(CRS, τ, x)

Enc(mpk, x0) Zero-knowledge of NIZK

G2
CRS← S1(1λ)
π ← S2(CRS, τ, x)

Enc(mpk, x1 ) IND-CPA security of FE

G3
CRS← NIZK.Setup(1λ)
π ← NIZK.Prove(CRS, x, w)

Enc(mpk, x1) Zero-knowledge of NIZK

Fig. 19: Overview of the games to prove the IND-CPA security preservation of the input consistency compiler described
in Fig. 17.

Whenever A submits a decryption query
(f, ct′), with ct′ = ({cti}i∈[2], π), B0 generates
the functional key skf,1 ← KeyGen(mpk1,msk1, f)
and executes NIZK.Verify(CRS, (mpki, cti)i∈[2]). If
NIZK.Verify(CRS, (mpki, cti)i∈[2]) = 1, B0 computes
y := Dec(mpk1, f, skf,1, ct1) and sends y to A. Otherwise,
B0 sends ⊥ to A.
This covers the simulation of the game Gβ . Finally B0

outputs the same bit β′ returned by A. It follows, from the
perfect simulation, that the advantage of B0 is the same
as the advantage of A.

As in [51], we prove a claim that shows that whenever a
decryption oracle query is asked and this query contains
a valid NIZK proof, then the corresponding ciphertext is
explainable under the queried function. This is necessary for
the proof of the transition from G1 to G2 for the simulation
of the decryption oracle.

Claim 1. For any PPT adversary A participating in G1+β
for β ∈ {0, 1}, the probability that, during the experiment,
A queries its decryption oracle QDec with a function-
ciphertext-pair that is not explainable but has an accepting
proof is negligible. Namely, we exhibit a PPT adversary B1,
such that

Pr


∃(f, {ct′i}i∈[2], π

′) ∈ Q :
({ct′i}i∈[2], π

′) 6= ({cti}i∈[2], π),
NIZK.Verify(CRS, {ct′i}i∈[2], π

′) = 1 and
Dec(mpk1, skf,1, ct′1) 6= Dec(mpk2, skf,2, ct′2)


≤ AdvSim-Sound

NIZK,B1
(λ),

where skf,i ← KeyGen(mpki,mski, f) for i ∈ [2],
({cti}i∈[2], π) is the reply to the encryption query (x0, x1)
made by A and Q the list containing all the decryption
queries (f, {ct′i}i∈[2], π

′) asked by A, knowing the master
public key mpk′ := (CRS, {mpki}i∈[2]), the reply to its
challenge query ({cti}i∈[2], π) and by having access to the key
generation oracle KeyGen′(mpk′,msk′, ·), during the game.

Proof. We build an adversary B1 that simulates G1+β
towards A when interacting with the underlying one time
simulation-soundness experiment.

After the adversary B1 has received CRS from the under-
lying experiment, it generates (mpki,mski)← Setup(1λ) for
i ∈ [2], sets mpk′ := (CRS, {mpki}i∈[2]) and sends mpk′ to
A. Whenever A submits a key generation query f , B1 gen-
erates the functional keys skf,i ← KeyGen(mpki,mski, f)
for i ∈ [2], sets sk′f = {skf,i}i∈[2] and sends it to A.

For the challenge query (x0, x1) asked by A, B1 computes
ct1 = Enc(mpk1, x

β) and ct2 = Enc(mpk2, x
0) (where β = 0

in game G1 and β = 1 in G2) and asks its experiment for a
simulated proof π of the statement (mpki, cti)i∈[2]. It sets
ct′ := ({cti}i∈[2], π) and sends ct′ to A.
Whenever A outputs a decryption query (f, ct′ :=

({ct}i∈[2], π)), B1 verifies the proof. If the output of the
verification is 1, B1 computes yf,1 = Dec(mpk1, skf,1, ct1)
and yf,2 = Dec(mpk2, skf,2, ct2). If yf,1 6= yf,2, B1 sends
({ct}i∈[2], π) as a proof forgery to its challenger. Otherwise
it sends yf,1 to A. If the verification outputs 0, B1 sends
⊥ to A.

After introducing and proving Claim 1, we prove the
transition from G1 to G2.

Lemma 6 (Transition from G1 to G2). For any PPT
adversary A, there exist PPT adversaries B1 and B2, such
that

|WinG1
A (1λ)−WinG2

A (1λ)| ≤ AdvSim-Sound
NIZK,B1

(λ)
+ AdvIND-CPA

FE,B2
(λ) .

Proof. We build an adversary B2 that simulates G1+β
to A when interacting with the underlying IND-CPAFE

β

experiment.
In the beginning of the reduction, B2 receives mpk1

from the underlying experiment. It simulates a CRS,
i.e. (CRS, τ) ← S1(1λ), generates a functional encryp-
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Setup′(1λ) :
CRS← NIZK.Setup(1λ)
For i ∈ [2]

(mpki,mski)← Setup(1λ)
Return (mpk′,msk′)

= ((CRS, {mpki}i∈[2] ), {mski}i∈[2] )
KeyGen′(mpk′,msk′, f) :
Parse mpk′ := (CRS, {mpki}i∈[2] ),msk′ := {mski}i∈[2]

For i ∈ [2]
skf,i = KeyGen(mpki,mski, f)

Return sk′f = {skf,i}i∈[2]

Enc′(mpk′, x) :
Parse mpk′ := (CRS, {mpki}i∈[2] )
For i ∈ [2]

cti = Enc(mpki, x; ri) with ri ← {0, 1}λ

If ∃i ∈ [2] : cti = err then return err
π ← NIZK.Prove(CRS, (mpki, cti)i∈[2], (x, {ri}i∈[2]))

for RCCA
in (Fig. 21)

If NIZK.Verify(CRS, (mpki, cti)i∈[2], π) = 0 return err
Return ct′ = ( {cti}i∈[2] , π)
Dec′(mpk′, f, sk′f , ct′) :
Parse mpk′ := (CRS, {mpki}i∈[2] ), sk′f := {ski,f}i∈[2] ,

ct′ := ( {cti}i∈[2] , π)
If NIZK.Verify(CRS, (mpki, cti)i∈[2] , π) = 1

Return Dec(mpk1, f, skf,1, ct1)
Else

Return ⊥

Fig. 20: Advanced input consistency compiler. Shaded
instructions indicate difference to the simpler input consis-
tency compiler.

Relation RCCA
in :

Instance: z = (mpki, cti)i∈[2]

Witness: w = (x, {ri}i∈[2]), x ∈ X , random coins ri
RCCA

in (z, w) = 1 if and only if:
cti = Enc(mpki, x; ri), for both i ∈ [2]

Fig. 21: Relation used in the advanced input consistency
compiler.

tion instance (mpk2,msk2) ← Setup(1λ) sets mpk′ :=
(CRS, {mpki}i∈[2]) and sends mpk′ to A. Whenever A
submits a key generation query f , B2 forwards this query
to its own key generation oracle KeyGen(mpk1,msk1, ·), to
receive skf,1 as an answer. Then, B2 generates skf,2 ←
KeyGen(mpk2,msk2, f) by itself, sets skf = {skf,i}i∈[2] and
sends it to A.
For the challenge query (x0, x1) asked by A, B2

forwards it to its own encryption oracle and receives
ct1 = Enc(mpk1, x

β) as an answer. It generates ct2 =
Enc(mpk2, x

0) by itself, simulates a valid proof π of the
relation Rin using the statement y = (mpki, cti)i∈[2], i.e.
π ← S2(CRS, τ, y) and sends ct′ := ({cti}i∈[2], π) to A.
Whenever A asks a decryption query (f, ct′ :=

({cti}i∈[2], π)), B2 first verifies the proof π, i.e. it executes
NIZK.Verify(CRS, (mpki, cti)i∈[2], π). If the verification out-
puts 1, B2 generates skf,2 ← KeyGen(mpk2,msk2, f),
executes Dec(mpk2, f, skf,2, ct2) and sends the result
to A. This is contrary to the actual decryption or-
acle, which would always generate the key skf,1 ←
KeyGen(mpk1,msk1, f) and use it to decrypt the first
ciphertext ct1. Since Claim 1 shows that for all ciphertext
queries made by A that have a valid proof (except with
negligible probability) it holds that Dec(mpk1, skf,1, ct1) =
Dec(mpk2, skf,2, ct2). Therefore, it is possible to generate
a functional key for either of the position and use the
corresponding decryption output as a reply for A6. If the
verification outputs 0, B2 sends ⊥ to A.

This covers the simulation of the game G1+β . Finally
B2 outputs the same bit β′ returned by A. Together with
the analysis of adversary B1, this yields the advantage
mentioned in the lemma.

After proving that the compiler does the security lifting
from CPA to CCA, we also need to show that the compiler
achieves input consistency.

Theorem 20. Let FE = (Setup,KeyGen,Enc,Dec) be a
functional encryption scheme and NIZK = (NIZK.Setup,
NIZK.Prove,NIZK.Verify) a NIZK proof system for RCCA

set
(Fig. 26), then the construction FE′ = (Setup′,KeyGen′,
Enc′,Dec′) defined in Figure 20 is input consistent. Namely,
for any PPT adversary A, exists a PPT adversary B such
that

|Pr[in-CONSFE′(1λ,A) = 1]| ≤ AdvSound
NIZK,B(λ) .

Proof. The proof proceeds exactly in the same way as the
proof of Theorem 16. It is ensured by the soundness of the
NIZK proof that both of the ciphertexts encrypt the same
underlying message.

1) Instantiations: Our compilers can be instantiated
with any NIZK scheme such as [45], [46]. An important
special case are lattice based constructions. Since recent

6It is not necessary to rely on Claim 1 in the transition from G2 to
G3, since B2 is able to generate a functional key for the first position
and therefore is able to generate the decryption oracle perfectly.
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Game CRS & π ct justification/remark

G0
CRS← NIZK.Setup(1λ)
π ← NIZK.Prove(CRS, x, w)

Enc(mpk1, x
0)

Enc(mpk2, x
0)

G1
CRS← S1(1λ)
π ← S2(CRS, τ, x)

Enc(mpk1, x
0)

Enc(mpk2, x
0)

Zero-knowledge of NIZK

G2
CRS← S1(1λ)
π ← S2(CRS, τ, x)

Enc(mpk1, x
1 )

Enc(mpk2, x
0)

IND-CPA of FE and
simulation-soundness of NIZK

G3
CRS← S1(1λ)
π ← S2(CRS, τ, x)

Enc(mpk1, x
1)

Enc(mpk2, x
1 )

IND-CPA of FE

G4
CRS← NIZK.Setup(1λ)
π ← NIZK.Prove(CRS, x, w)

Enc(mpk1, x
1)

Enc(mpk2, x
1)

Zero-knowledge of NIZK

Fig. 22: Overview of the games to prove the IND-CCA security of the advanced input consistency compiler described
in Fig. 20.

results [57], [60] show how to construct NIZKs from LWE, it
can be combined with a functional encryption scheme for all
classes of circuits from LWE known from [27], [42], to obtain
a specific instantiation of the presented compiler from
LWE. Furthermore, specific versions of the compiler for
restricted classes, namely inner-product classes achievable
from standard assumptions [7], could be obtained by
employing designated verifier NIZKs from [26], [30], [48],
[59]. Since the latter are based on the Diffie-Hellman
assumption, the overall scheme is input-consistent based on
standard assumptions. (The reason designated verification
is sufficient follows from the fact that the key distribution
process can be trusted in the input consistency scenario.)
We note that it is an interesting research direction to
investigate efficient constructions of consistent FE schemes.

Appendix F
Strong Input Consistency Compiler

In this section, we show that the verifiability property
introduced in [11], can be understood as providing strong
input consistency. Due to this modular reduction, we also
directly inherit their compiler, and in general any compiler
that achieves verifiable functional encryption.
We recall the syntax of VFE in Definition 18. In a

nutshell, VFE extends standard FE by two additional
algorithms:
VerifyCT(mpk, ct): A predicate on ciphertexts (w.r.t. the

public key) that decides whether ct is valid.
VerifySK(mpk, f, sk): A predicate on pairs (sk, f)

(w.r.t. the public key) that decides whether the pair
is a valid key-function pair.

The verifiability property of [11] restated in Definition 19
of the supplemental material requires that whenever
VerifyCT(mpk, ct) = VerifySK(mpk, f, sk) = 1, we have
Pr[Dec(mpk, f, sk, ct) = f(x)] = 1 (where the implication

must hold over all possible values of the involved argu-
ments).
We define a simple compiler, defined Fig. 23, in that

makes use of these two verification procedures to achieve
strong input consistency. Informally, the first algorithm is
used as a ciphertext verification check (and we return ⊥ if
the check fails) and the second function is used to verify
key-function pairs (and return � if the check fails). Note
that the transformation clearly preserves the confidentiality
notion of the underlying VFE scheme.

Theorem 21. Let VFE = (Setup,KeyGen,
Enc,Dec,VerifyCT,VerifySK) be a verifiable functional
encryption scheme then the construction FE′ = (Setup′,
KeyGen′,Enc′,Dec′) defined in Figure 23 is strongly input
consistent. Namely, for any PPT adversary A, it holds
that:

|Pr[st-in-CONSFE′(1λ,A) = 1]| = 0 .

Proof. To prove the strong input consistency of the scheme
FE′, we rely on the verifiability of the VFE scheme. In
more detail, we construct an adversary B that violates
verifiability with the probability with which A wins the
strong input consistency experiment st-in-CONS.
In the beginning of the reduction, B receives a mas-

ter public key mpk, two ciphertexts ct1, ct2, and a
tuple of secret keys with the corresponding functions
{(skj , fj)}j∈[n] from A. In the next step, B computes
yj,i := Dec′(mpk′, fj , skj , cti) for all j ∈ [n], i ∈ {1, 2}
and defines the set F as all the functional keys that do not
output �, i.e. F := {(skj , fj)}j∈[n]∧(yj,1 6=�∨yj,2 6=�). Let E de-
note the event that the intersection

⋂
j∈[n],(·,fj)∈F f

−1
j (yj,i)

is equal to ∅. We show that the occurrence of E contradicts
the verifiability notion.

For the sake of contradiction, we assume that verifiability
holds as stated. Now, we analyze the different scenarios in
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Setup′(1λ) :
(mpk,msk)← Setup(1λ)
Return (mpk′,msk′) = (mpk,msk)
KeyGen′(mpk′,msk′, f) :
Parse mpk′ := mpk,msk′ := msk
skf = KeyGen(mpk,msk, f)
Return sk′f = skf
Enc′(mpk′, x) :
Parse mpk′ := mpk
ct = Enc(mpk, x)
Return ct′ = ct
Dec′(mpk′, f, sk′f , ct′) :
Parse mpk′ := mpk, sk′f := skf , ct′ := ct
If VerifyCT(mpk, ct) 6= 1

Return ⊥
If VerifySK(mpk, f, skf ) 6= 1

Return �
y := Dec(mpk, f, skf , ct)
Return y

Fig. 23: Strong input consistency compiler

which the intersection is empty and show that these cannot
occur. For this purpose, we define the events E1, E2, E3:
Event E1 denotes the case that if yj,i 6= ⊥ for a single

j ∈ [n] and a fixed i ∈ {0, 1}, then yj,i 6= ⊥ for all j ∈ [n]
and the same fixed i ∈ {0, 1}. Event E2 denotes the case
that if yj,i 6= � for a single i ∈ {0, 1} and a fixed j ∈ [n],
then yj,i 6= � for both i ∈ {0, 1} and the same fixed j ∈ [n].
The final event, event E3, denotes the case that if yj,i /∈
{⊥, �}, then yj,i = fj(xi).

We start by analyzing event E1. Let one of the yj,i = ⊥
for a single j ∈ [n] and a fixed i ∈ {1, 2}. Now, if VerifyCT
was satisfied by cti, then by the verifiability condition, ⊥ is
a valid output and thus by definition of the special symbol
⊥, the only “preimage” explaining the output is ⊥ and
all the decryptions of cti under different functional keys
would lead the same output. Therefore, under the above
assumption, all other yj,i must yield ⊥.
In the other case, the VerifyCT algorithm outputs 0

for the ciphertext cti (for a fixed i). However, then the
VerifyCT algorithm also outputs 0 on every other decrypt
request since it is deterministic and does not depend on
any functional key skj′ , j′ ∈ [n] \ {j}. This leads to the
fact that yj,i = ⊥ for all j ∈ [n] and a fixed i ∈ {1, 2}. In
this case, the intersection contains the ⊥ symbol.

For event E2, let one of the yj,i = � for a single i ∈ {1, 2}
and a fixed j ∈ [n]. If this case occurs, then the VerifySK
algorithm must have output 0 for the functional key skj
for a fixed j as otherwise, since by definition of the special

symbol �, there is no “preimage” explaining the output
(and thus the verifiability property violated). As before,
the VerifySK algorithm also outputs 0 if it gets queried
using another ciphertext cti′ but the same functional key
skj . This yields that yj,i′ = � for i′ 6= i and directly deletes
the key skj from the list F (due to the definition of F ).

Finally, we analyze event E3. Let yj,i /∈ {⊥, �}, then both
of the verify algorithms, VerifyCT and VerifySK, output 1
in the decryption procedure. This ensures, together with
the verifiability property, i.e. Pr[Dec(mpk, fj , sk, cti) =
fj(xi)] = 1, where fj is the function associated with skj
and xi the plaintext associated with cti, that yj,i = fj(xi).

Taking into account the analysis of event E1 and E2, the
decryption yj′,i, corresponding to a different functional key
skj′ , is unequal to � (due to event E4 and the definition
of F ) and unequal to ⊥ (due to event E1 and the fact
that yj,i is a valid decryption). By doing the same analysis
for yj′,i as for yj,i as in event E2, we obtain that yj′,i =
fj′(xi). We can do the same analysis for all the remaining
yj′′,i with j′′ ∈ [n] \ {j, j′} and therefore it follows that⋂
j∈[n],(·,fj)∈F f

−1
j (yj,i) 6= ∅. The same analysis also needs

to be done for the second ciphertext cti′ with i′ 6= i.
This shows that event E cannot occur and therefore that

the proposed construction achieves strong input consistency.

By showing the relation above, our treatment nicely
includes the verifiability property and hence the analysis
in the next section also gives a UC interpretation of the
construction (achieved by both strong input consistency
and verifiability).
In comparison, our strong input consistency notion is

more positioned as a property that an attacker tries to
break, rather than a general requirement of a scheme
that holds for all arguments and follows directly as a
strengthening of input consistency.
While the verifiability property is also necessary for

our concrete compiler (as long as Dec is deterministic),
strong input consistency does not achieve the verifiability
property on its own. The reason for this is that the
definition of strong input consistency does not change the
FE syntax, verification checks are inherently done by Dec
with access to at least one secret key. Thus, no guaran-
teed verifiability algorithm of the form VerifyCT(mpk, ct)
(or VerifySK(mpk, f, skf )) can be directly deduced from
a generic FE scheme that is strongly input-consistent
according to our notion. Hence, our notion puts forth a
seemingly weaker form of (implicit) secret-key verifiability.

Also, when leaving the standard model (e.g. switching to
the random-oracle model), Definition 19 could technically
be violated even though finding these values by an efficient
adversary A—which the strong input consistency definition
asks for—might be infeasible. We further observe as an
interesting open problem, whether strong input consistent
(and also verifiable) FE schemes exist that satisfy CCA or
CFE security (e.g., in the random-oracle model).
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Appendix G
Details on the Setup Consistency Compilers

A. Proof of Theorem 5
Proof. To prove the setup consistency of the scheme FE′,
we rely on the soundness of the NIWI proof system. In
more detail, we construct an adversary B that successfully
generates a valid proof for a statement not in the language
by assuming an adversary A for the setup consistency
experiment set-CONS.
In the beginning of the reduction, B receives (mpk′ :=

(mpk1,mpk2,mpk3),mpk′′ := (mpk′1,mpk′2,mpk′3), sk :=
({ski}i∈[3], π), f, x1, x2) from A. If π is such that the con-
dition NIWI.Verify(1λ, ({mpk′′i }i∈[3], {ski}i∈[3], f), π) = 0 or
mpk′′ 6= mpk′, then B halts. Note that in this case, A would
never win, as the outcome of decryption procedure is equal
to “�” for all ciphertexts. Another case, in which B halts, is
the case in which Dec′(mpk′′, f, sk,Enc(mpk′, xi)) = f(xi)
for both i ∈ [2]. Here, the generated functional key and the
public parameters have an honest behavior and therefore A
has not generated a forgery for the NIWI proof. Therefore
the adversary B halts. Otherwise, the adversary outputs
the statement ({mpk′′i }i∈[3], {ski}i∈[3], f) and proof π as a
NIWI forgery.
Let us analyze the output of A to see that the con-

dition to break setup consistency must imply a sound-
ness violation of the NIWI scheme. In more detail, we
define the event E as the event that the adversary
A performs a consistency attack under the assumption
that ({mpk′′i }i∈[3], {ski}i∈[3], f) ∈ L and show that the
occurrence of E would contradict the assumption. Let
us compute ct′i := (mpk′, {ctj}j∈[3]) ← Enc′(mpk′, xi) for
i ∈ [2] and yi = Dec′(mpk′′, f, sk, ct′i) for i ∈ [2]. For
concreteness, assume that both ciphertexts are not equal
to err (however, the argument holds for any pattern, since
erroneous ciphertexts are ignored in the setup consistency
game).
Now, we analyze the possible outcomes for the decryp-

tions y1 and y2 in the case of a consistency attack. We
show that yi 6= �, we denote this by event E1, enforces
that yi = f(xi) for all i ∈ [2] and furthermore that yi 6= �
for all i ∈ [2].
In the case of event E1, we assume y1 6= � (we do

the analysis for y1, the case for y2 follows respectively)
and, for the sake of contradiction, we also need to assume
that ({mpk′′i }i∈[3], {ski}i∈[3], f) ∈ L holds. Under these
circumstances consistency must be satisfied.

By the perfect correctness of the underlying FE scheme
and the validity of the proof, at least two functional keys
ski and skj , for i 6= j are correctly generated and matching
to the master public keys mpki and mpkj in the encryption
(note that by the definition of Dec′ that decryption is
only performed if both Enc′ and Dec′ use the same triple
(mpk1,mpk2,mpk3)) and thus y(i)

f,1 ← Dec(mpki, f, ski, ct1)
and y

(j)
f,1 ← Dec(mpkj , f, skj , ct1) are equal to f(x1).

Therefore also the majority of the decryption values for ct1

is equal to f(x1) and the final decryption outputs f(x1).
Hence assuming y1 6= � implies y1 = f(x1).
For event E2, we need to show that y1 6= � and

y2 6= � in the case of a consistency attack and under the
assumption that ({mpk′′i }i∈[3], {ski}i∈[3], f) ∈ L. We start
by considering the case that y1 = y2 = �. If y1 = y2 = �,
then the adversary A did not perform a consistency attack.
This is a contradiction to our assumption and therefore
this case cannot occur. In the next step we assume that
y1 6= � and y2 = � (or y1 = � and y2 6= � respectively).
If y1 6= �, then follows, with the analysis for E1, that
y1 = f(x1) and that at least two of the functional keys ski
and skj are correctly generated and matching the master
public keys mpki and mpkj . But this would also lead, due
to perfect correctness of the functional encryption scheme,
to a correct decryption of the ciphertext ct′2, which yields
y2 = f(x2). This shows that the case y1 6= � and y2 = �
(or y1 = � and y2 6= �) cannot occur.

By combining the events E1 and E2, we proved that
event E cannot occur. To recap, whenever ({mpk′′i }i∈[3],
{ski}i∈[3], f) ∈ L, it is not possible for an adversary A
to perform a consistency attack. Hence the only way the
adversary can break setup consistency is by breaking the
soundness property of the NIWI scheme, i.e., providing the
statement ({mpk′′i }i∈[3], {ski}i∈[3], f) 6∈ L.
This yields the bound

|Pr[set-CONSFE′(1λ,A) = 1]| ≤ AdvSound
NIWI,B(λ) .

and therefore we obtain the theorem.

B. Security Preservation of the First Compiler
We start with the CPA case, which is straightforward:

Theorem 22. Let FE = (Setup,KeyGen,Enc,Dec) be
an IND-CPA secure functional encryption scheme and
NIWI = (NIWI.Prove,NIWI.Verify) a NIWI proof system for
Rset (Fig. 9), then the construction FE′ defined in Fig. 8 is
IND-CPA secure. Namely, for any PPT adversary A, there
exits a PPT adversaries B and B′ such that:

AdvIND-CPA
FE′,A (λ) ≤ 3 · AdvIND-CPA

FE,B (λ) + 2 · AdvWI
NIWI,B′(λ) .

Proof. To prove this statement, we use a hybrid argument
with the games defined in Fig. 24. Note that G0 corresponds
to the game IND-CPAFE

0 (1λ,A) and G5 to the game
IND-CPAFE

1 (1λ,A). This results in:

AdvIND-CPA
FE′,A (1λ) = |WinG0

A (1λ)−WinG5
A (1λ)| .

We describe the different games in more detail:
Game G0: This game is the IND-CPAFE

0 (1λ,A) game. We
assume, without loss of generality, that the challenger
uses the indices j1 = 2 and j2 = 3 for the generation
of the NIWI proof in the key generation procedure.

Game G1: In this game, we change the encryption under
the first master public key mpk1 from x0 to x1. The
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transition from G0 to G1 is justified by the IND-CPA
security of FE. Namely, in Lemma 7, we exhibit a PPT
adversary B0 such that:

|WinG0
A (1λ)−WinG1

A (1λ)| ≤ AdvIND-CPA
FE,B0

(λ) .

Game G2: In this game, we change the indices that are
used in the generation of the NIWI proof in the key
generation procedure from j1 = 2 and j2 = 3 to j1 = 1
and j2 = 3. The transition from G0 to G1 is justified
by the witness-hiding property of NIWI. Namely, in
Lemma 8, we exhibit a PPT adversary B1 such that:

|WinG1
A (1λ)−WinG2

A (1λ)| ≤ AdvWI
NIWI,B1

(λ) .

Game G3: In this game, we change the encryption under
the second master public key mpk2 from x0 to x1.
The transition from G2 to G3 is almost symmetric
to the transition from game G0 to G1 except that
the ciphertext under the first master public key mpk1
contains an encryption of x1. As in Lemma 7, the
transition is justified by the IND-CPA security of FE.
Namely, we can exhibit a PPT adversary B0 such that:

|WinG2
A (1λ)−WinG3

A (1λ)| ≤ AdvIND-CPA
FE,B0

(λ) .

Game G4: In this game, we change the indices that are
used in the generation of the NIWI proof in the key
generation procedure from j1 = 1 and j2 = 3 to j1 = 1
and j2 = 2. The transition from G3 to G4 is almost
symmetric to the transition from game G1 to G2 except
that the ciphertexts under the first two master public
keys mpk1 and mpk2 contain encryptions of x1. As
in Lemma 8, the transition is justified by the witness-
hiding property of NIWI. Namely, we can exhibit a
PPT adversary B1 such that:

|WinG3
A (1λ)−WinG4

A (1λ)| ≤ AdvWI
NIWI,B1

(λ) .

Game G5: This game is the IND-CPAFE
1 (1λ,A) game,

where the challenger uses the indices j1 = 1 and
j2 = 2 for the generation of the NIWI proof in the key
generation procedure. The transition from G4 to G5 is
almost symmetric to the transition from game G0 to G1
except that the ciphertexts under the first two master
public keys mpk1 and mpk2 contain encryptions of
x1. As in Lemma 7, the transition is justified by the
IND-CPA security of FE. Namely, we can exhibit a
PPT adversary B0 such that:

|WinG4
A (1λ)−WinG5

A (1λ)| ≤ AdvIND-CPA
FE,B0

(λ) .

Putting everything together, we obtain the theorem.

Lemma 7 (Transition from G0 to G1). For any PPT
adversary A, there exists a PPT adversary B0 such that

|WinG0
A (1λ)−WinG1

A (1λ)| ≤ AdvIND-CPA
FE,B0

(λ) .

Proof. We build an adversary B0 that simulates Gβ to-
wards A when interacting with the underlying IND-CPAFE

β

experiment.
In the beginning of the reduction, B0 receives mpk1 from

the experiment. It generates two other functional encryp-
tion instances (mpki,mski)← Setup(1λ), for i ∈ [3] \ {1},
sets mpk′ = {mpki}i∈[3] and gives mpk′ to the adversary.
Whenever A asks an encryption query (x0, x1), B0

forwards it to its own encryption oracle to receive ct1 ←
Enc(mpk1, x

β), generates cti ← Enc(mpki, x0), for i ∈
[3] \ {1} on its own and sends ct′ = {cti}i∈[3] to A.
For a key generation query f , B0 queries

its own key generation oracle on f to receive
skf,1 ← KeyGen(mpk1,msk1, f), generates
skf,i ← KeyGen(mpki,mski, f) for i ∈ [3] \ {1} on
its own and generates a proof π ← NIWI.Prove(1λ, z, w)
with z = ({mpki}i∈[3], {skf,i}i∈[3], f), w =
({mski}i∈[3]\{1}, {ri}i∈[3]\{1}, {si}i∈[3]\{1}) for the relation
Rset, by using its information of two-out-of-the-three
different instances. As a reply for the key generation query,
B0 sends sk′f := ({skf,i}i∈[3], π) to A.
This covers the simulation of the game Gβ . Finally B0

outputs the same bit β′ returned by A. It follows, from the
perfect simulation, that the advantage of B0 is the same
as the advantage A.

Lemma 8 (Transition from G1 to G2). For any PPT
adversary A, there exists a PPT adversary B1 such that

|WinG1
A (1λ)−WinG2

A (1λ)| ≤ AdvWI
NIWI,B1

(λ) .

Proof. We build an adversary B1 that simulates G1+β
towards A when interacting with the underlying WINIWI

β

experiment.
In the beginning of the reduction, B1 samples si ←
{0, 1}λ, generates the keys for the three functional encryp-
tion instances (mpki,mski) := Setup(1λ; si), for i ∈ [3], sets
mpk′ = {mpki}i∈[3], saves {si}i∈[3] and gives mpk′ to the
adversary.
Whenever A asks an encryption query (x0, x1), B1

encrypts x1 using the first public key and x0 using the
second and third public key, i.e ct1 ← Enc(mpk1, x

1) and
cti ← Enc(mpki, x0), for i ∈ [3] \ {1}. Afterwards, it sends
ct′ = {cti}i∈[3] to A.
For a key generation query f , B1 samples ri ← {0, 1}λ

and generates skf,i ← KeyGen(mpki,mski, f ; ri)
for i ∈ [3]. Afterwards, B1 submits (z, w0, w1)
with z = ({mpki}i∈[3], {skf,i}i∈[3, f), w0 =
({mski}i∈[3]\{1}, {ri}i∈[3]\{1}, {si}i∈[3]\{1}) and
w1 = ({mski}i∈[3]\{2}, {ri}i∈[3]\{2}, {si}i∈[3]\{2}) as a
challenge query to its challenger and receives π as a reply.
Finally, B1 sends ({skf,i}i∈[3], π) to A as a reply to the
key generation query.

This covers the simulation of the game G1+β . Finally B1
outputs the same bit β′ returned by A. It follows, from the
perfect simulation, that the advantage of B1 is the same
as the advantage A.
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Game ct
NIWI

Witness
justification/remark

G0

Enc(mpk1, x
0)

Enc(mpk2, x
0)

Enc(mpk3, x
0)

j1 = 2
j2 = 3

G1

Enc(mpk1, x
1 )

Enc(mpk2, x
0)

Enc(mpk3, x
0)

j1 = 2
j2 = 3

IND-CPA security
of FE

G2

Enc(mpk1, x
1)

Enc(mpk2, x
0)

Enc(mpk3, x
0)

j1 = 1
j2 = 3

Witness-hiding
of NIWI

G3

Enc(mpk1, x
1)

Enc(mpk2, x
1 )

Enc(mpk3, x
0)

j1 = 1
j2 = 3

IND-CPA security
of FE

G4

Enc(mpk1, x
1)

Enc(mpk2, x
1)

Enc(mpk3, x
0)

j1 = 1
j2 = 2

Witness-hiding
of NIWI

G5

Enc(mpk1, x
1)

Enc(mpk2, x
1)

Enc(mpk3, x
1 )

j1 = 1
j2 = 2

IND-CPA security
of FE

Fig. 24: Overview of the games to prove the IND-CPA
security preservation of the setup consistency compiler
described in Fig. 8.

Due to the much stronger simulation-based security
requirement of CFE, the existence of simulators S1 (for
setup generation), that outputs a simulated mpk and an
initial (joint) state s = sinit, S2 for the simulation of
functional keys (based on the joint state s which might
be update in this process), and finally S3 for simulating
ciphertexts (again with access to the joint state s) does
formally not imply knowledge of a master secret key that
would be needed to create valid proofs for the relation Rset.
Hence, the theorem captures preservation only for a specific
class of simulators and not all CFE secure schemes. We
note that for the brute-force scheme in Fig. 16 in Section C
there exists a simulator that belongs to the class we are
proving the security preservation for.

More formally, we require S1 to output mpk and maintain
state s such that (mpk,msk) = Setup(1λ; s) holds with
probability 1 in IdealFE(1λ,A,S). Additionally, we require
that for any adversary A any functional key skf output
by S2 on input f satisfies skf = KeyGen(mpk,msk, f) with
probability 1 in IdealFE(1λ,A,S) where mpk and msk are
the values obtained by Setup(1λ; s) where s is the initial
private state output by S1.
Note that the simulator for the brute-force scheme

described in [52] runs the normal setup-algorithm in the
simulation (and can hence provide the randomness used
during the generation) and the master secret key fixes all
secret keys.

Theorem 23. Let FE = (Setup,KeyGen,Enc,Dec) be a
CFE secure functional encryption scheme with respect to
simulators (S1,S2,S3) that satisfy the above condition in
IdealFE(1λ,A,S) (for any adversary A). Let further NIWI =
(NIWI.Prove,NIWI.Verify) be a NIWI proof system for Rset
(Fig. 9). Under the assumption that KeyGen is deterministic,
the construction FE′ defined in Figure 8 is CFE secure.

Proof. Under the theorem’s assumptions, the simulator
S1’s output is essentially equivalent to the master secret key.
Together with the fact that key derivation is deterministic,
we see that all NIWI proofs can be generated without
problem. More detailed, we can run three independent sim-
ulations of the FE scheme for the overall simulation. That is,
let S1,S2,S3 be the simulators for FE. Then the composite
simulator S ′ = (S ′1,S ′2,S ′3) works as follows: S ′1 runs S1
three times to obtain (mpki, si). To answer key-generation
queries for functions f , S ′2 runs S2 three times on the
respective joint state (and the function values of all previous
queries) to obtain skf,i. Note that by the assumption on the
simulation for the underyling scheme, for (mpki,mski) =
Setup(1λ; si) we have that skf,i = KeyGen(mpki,mski, f).
By the theorem assumption, KeyGen is deterministic and
hence we have all witnesses to simulate a genuine proof π ←
NIWI.Prove(1λ, z, w) with z = ({mpki}i∈[3], {skf,i}i∈[3], f)
and w = ({si}i∈[3], {ri}i∈[3]). Finally, simulating a ci-
phertext is done by invoking S3 three times on all three
simulated instances (and on the joint state and the function
values of the actual plaintext).

C. Advanced Setup Consistency Compiler

Theorem 24. Let FE = (Setup,KeyGen,Enc,Dec) be an
IND-CPA secure functional encryption scheme, NIWI =
(NIWI.Prove,NIWI.Verify) a NIWI proof system and NIZK =
(NIZK.Setup,NIZK.Prove,NIZK.Verify) a NIZK proof sys-
tem system satisfying one-time simulation soundness, then
the construction FE′ defined in Figure 25 is IND-CCA
secure. Namely, for any PPT adversary A, there exist PPT
adversaries B, B′,B′′ and B′′′ such that:

AdvIND-CCA
FE′,A (λ) ≤ 2 · AdvZK

NIZK,B′(λ)
+ 5 · AdvSim-Sound

NIZK,B′ (λ) + 3 · AdvIND-CPA
FE,B′′ (λ).

Proof. To prove this statement, we use a hybrid argument
with the games defined in Fig. 27. Note that G0 corresponds
to the game IND-CCAFE

0 (1λ,A) and G7 to the game
IND-CCAFE

1 (1λ,A). This results in:

AdvIND-CCA
FE′,A (1λ) = |WinG0

A (1λ)−WinG7
A (1λ)| .

We describe the different games in more detail:
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Setup′(1λ) :
CRS← NIZK.Setup(1λ)
For i ∈ [3]:

(mpki,mski)← Setup(1λ; si) with si ← {0, 1}λ

Return (mpk′,msk′)
= (({mpki}i∈[3], CRS ), {(mski, si)}i∈[3])

KeyGen′(mpk′,msk′, f) :
Parse mpk′ := ({mpki}i∈[3], CRS ),

msk′ := {(mski, si)}i∈[3]
For i ∈ [3]:
skf,i = KeyGen(mpki,mski, f ; ri) with ri ∈ {0, 1}λ

Generate πsk ← NIWI.Prove(1λ, z, w) with
z = ({mpki}i∈[3], {skf,i}i∈[3], f)
w = ({mski}i∈[3], {ri}i∈[3], {si}i∈[3])
where L is defined corresponding to Rset (Fig. 9)
Return sk′f = ({skf,i}i∈[3], πsk)
Enc′(mpk′, x) :
Parse mpk′ := ({mpki}i∈[3], CRS )
For i ∈ [3]:

cti ← Enc(mpki, x;ui) with ui ∈ {0, 1}λ

If ∃i ∈ [3] : cti = err return err
πct ← NIZK.Prove(CRS, (mpki, cti)i∈[3], (x, {ui}i∈[3])),

for RCCA
set (Fig. 26)

If NIZK.Verify(CRS, (mpki, cti)i∈[3], πct) = 0 return err
Return ct′ = (mpk′, {cti}i∈[3], πct)
Dec′(mpk′, sk′f , f, ct′) :
Parse mpk′ := {mpki}i∈[3], sk

′
f := ({skf,i}i∈[3], πsk),

ct′ := (mpk′′, {cti}i∈[3], πct)
If mpk′ = mpk′′

If NIZK.Verify(CRS, (mpki, cti)i∈[3], πct) = 1
If NIWI.Verify(1λ, ({mpki}i∈[3], {skf,i}i∈[3], f),

πsk) = 1
yf,i := Dec(mpki, skf,i, f, cti), for i ∈ [3]:
If there are indices a, b ∈ [3], a 6= b s.t.

yf,a = yf,a

Return y ← MajVal(yf,1, yf,2, yf,3)
Return �

Fig. 25: Advanced setup consistency compiler. MajVal(·)
calculates and returns the majority value of the input
values, if there is a clear majority and � otherwise. Shaded
instructions again indicate the difference to the simpler
setup compiler.

Relation RCCA
set :

Instance: z = ({mpki}i∈[3], {cti}i∈[3])
Witness: w = (x, {ui}i∈[3])
RCCA

set (z, w) = 1 if and only if:
cti = Enc(mpki, x;ui) for all i ∈ [3]

Fig. 26: Relation used in the advanced setup consistency
compiler

Game G0: This game is the IND-CCAFE
0 (1λ,A) game. We

assume without loss of generality that the challenger
uses the indices j1 = 2 and j2 = 3 for the generation
of the NIWI proof in the key generation procedure.

Game G1: In this game, we change from an honestly
generated CRS and honestly generated proofs to a
simulated CRS and simulated proofs. The transition
from G0 to G1 is justified by the zero-knowledge
property of NIZK. Namely, in Lemma 9, we exhibit a
PPT adversary B0 such that:

|WinG0
A (1λ)−WinG1

A (1λ)| ≤ AdvZK
NIZK,B0

(λ) .

Game G2: In this game, we change the encryption under
the first master public key mpk1 from x0 to x1. The
transition from G1 to G2 is justified by the IND-CPA
security of FE and the one-time simulation-soundness
of NIZK. Namely, in Lemma 10, we exhibit PPT
adversaries B1 and B2 such that:

|WinG1
A (1λ)−WinG2

A (1λ)| ≤ AdvSim-Sound
NIZK,B1

(λ)
+ AdvIND-CPA

FE,B2
(λ) .

Game G3: In this game, we change the indices that are
used in the generation of the NIWI proof in the key
generation procedure from j1 = 2 and j2 = 3 to j1 = 1
and j2 = 3. The transition from G2 to G3 is justified by
the witness-hiding property of NIWI and the one-time
simulation-soundness of NIZK. Namely, in Lemma 11,
we exhibit PPT adversaries B1 and B3 such that:

|WinG2
A (1λ)−WinG3

A (1λ)| ≤ AdvSim-Sound
NIZK,B1

(λ)
+ AdvWI

NIWI,B3
(λ) .

Game G4: In this game, we change the encryption under
the second master public key mpk2 from x0 to x1.
The transition from G3 to G4 is almost symmetric
to the transition from game G1 to G2 except that
the ciphertext under the first master public key mpk1
contains an encryption of x1. As in Lemma 10, the
transition is justified by the IND-CPA security of
FE and the one-time simulation-soundness of NIZK.
Namely, we can exhibit PPT adversaries B1 and B2
such that:
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Game CRS & π ct
NIWI

Witness
justification/remark

G0
CRS← NIZK.Setup(1λ)
π ← NIZK.Prove(CRS, x, w)

Enc(mpk1, x
0)

Enc(mpk2, x
0)

Enc(mpk3, x
0)

j1 = 2
j2 = 3

G1
CRS← S1(1λ)
π ← S2(CRS, τ, x)

Enc(mpk1, x
0)

Enc(mpk2, x
0)

Enc(mpk3, x
0)

j1 = 2
j2 = 3

Zero-knowledge of NIZK

G2
CRS← S1(1λ)
π ← S2(CRS, τ, x)

Enc(mpk1, x
1 )

Enc(mpk2, x
0)

Enc(mpk3, x
0)

j1 = 2
j2 = 3

IND-CPA of FE and
one-time simulation-
soundness of NIZK

G3
CRS← S1(1λ)
π ← S2(CRS, τ, x)

Enc(mpk1, x
1)

Enc(mpk2, x
0)

Enc(mpk3, x
0)

j1 = 1
j2 = 3

Witness-hiding of NIWI
and one-time simulation-

soundness of NIZK

G4
CRS← S1(1λ)
π ← S2(CRS, τ, x)

Enc(mpk1, x
1)

Enc(mpk2, x
1 )

Enc(mpk3, x
0)

j1 = 1
j2 = 3

IND-CPA of FE and
one-time simulation-
soundness of NIZK

G5
CRS← S1(1λ)
π ← S2(CRS, τ, x)

Enc(mpk1, x
1)

Enc(mpk2, x
1)

Enc(mpk3, x
0)

j1 = 1
j2 = 2

Witness-hiding of NIWI
and one-time simulation-

soundness of NIZK

G6
CRS← S1(1λ)
π ← S2(CRS, τ, x)

Enc(mpk1, x
1)

Enc(mpk2, x
1)

Enc(mpk3, x
1 )

j1 = 1
j2 = 2

IND-CPA of FE and
one-time simulation-
soundness of NIZK

G7
CRS← NIZK.Setup(1λ)
π ← NIZK.Prove(CRS, x, w)

Enc(mpk1, x
1)

Enc(mpk2, x
1)

Enc(mpk3, x
1)

j1 = 1
j2 = 2

Zero-knowledge of NIZK

Fig. 27: Overview of the games to prove the IND-CCA security of the advanced setup consistency compiler described
in Fig. 25.

|WinG3
A (1λ)−WinG4

A (1λ)| ≤ AdvSim-Sound
NIZK,B1

(λ)
+ AdvIND-CPA

FE,B2
(λ) .

Game G5: In this game, we change the indices that are
used in the generation of the NIWI proof in the key
generation procedure from j1 = 1 and j2 = 3 to
j1 = 1 and j2 = 2. The transition from G4 to G5
is almost symmetric to the transition from game G2
to G3 except that the ciphertexts under the first two
master public keys mpk1 and mpk2 contain encryptions
of x1. As in Lemma 11, the transition is justified by
the witness-hiding property of NIWI and the one-time
simulation-soundness of NIZK. Namely, we can exhibit
PPT adversaries B1 and B3 such that:

|WinG4
A (1λ)−WinG5

A (1λ)| ≤ AdvSim-Sound
NIZK,B1

(λ)
+ AdvWI

NIWI,B3
(λ) .

Game G6: In this game, we change the encryption under
the third master public key mpk3 from x0 to x1.
The transition from G5 to G6 is almost symmetric
to the transition from game G1 to G2 except that the
ciphertext under the first two master public keys mpk1
and mpk2 contains encryptions of x1. As in Lemma 10,
the transition is justified by the IND-CPA security of
FE and the one-time simulation-soundness of NIZK.
Namely, we can exhibit PPT adversaries B1 and B2
such that:
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|WinG5
A (1λ)−WinG6

A (1λ)| ≤ AdvSim-Sound
NIZK,B1

(λ)
+ AdvIND-CPA

FE,B2
(λ) .

Game G7: This game is the IND-CCAFE
1 (1λ,A) game,

where the challenger uses the indices j1 = 1 and
j2 = 2 for the generation of the NIWI proof in the key
generation procedure. The transition from G6 to G7
is almost symmetric to the transition from G0 to G1
except from the fact that the reduction encrypts x1

instead of x0. As in Lemma 9, the transition is justified
by the zero-knowledge property of NIZK. Namely, we
can exhibit a PPT adversary B0 such that:

|WinG6
A (1λ)−WinG7

A (1λ)| ≤ AdvZK
NIZK,B0

(λ) .

Putting everything together, we obtain the theorem.

Lemma 9 (Transition from G0 to G1). For any PPT
adversary A, there exists a PPT adversary B0 such that

|WinG0
A (1λ)−WinG1

A (1λ)| ≤ AdvZK
NIZK,B0

(λ) .

Proof. We build an adversary B0 that simulates Gβ to-
wards A when interacting with the underlying ZKNIZK

β

experiment.
In the beginning of the reduction, B0 receives CRS

from the ZKNIZK
β experiment. It generates three functional

encryption instances (mpki,mski) ← Setup(1λ; si) with
si ← {0, 1}λ for i ∈ [3], sets mpk′ = (CRS, {mpki}i∈[3])
and gives mpk′ to the adversary.
Whenever A asks an encryption query (x0, x1), B0

generates the ciphertext cti = (Enc(mpki, x0;ui))i∈[3] with
ui ← {0, 1}λ for i ∈ [3] and sends y = (mpki, cti)i∈[3]
and w = (x, {ui}i∈[3]) as a statement-witness pair to its
challenger. As an answer, B0 receives a proof πct for the
relation RCCA

set . It sets ct′ = ({cti}i∈[3], πct) and sends it to
A.
For a key generation query f , B0 generates skf,i ←

KeyGen(mpki,mski, f ; ri) with ri ← {0, 1}λ for i ∈ [3] and
creates a NIWI proof πsk over the relation Rset for the
statement-witness pair y = ({mpki}i∈[3], {skf,i}i∈[3], f) and
w = ({mski}i∈[3], {ri}i∈[3], {si}i∈[3]). Then, B0 sends sk′f =
({skf,i}i∈[3], πsk) as a reply to A.

Whenever A submits a decryption query
(f, ct′ = ({cti}i∈[2], πct)), B0 generates the functional
keys ski,f ← KeyGen(mpki,mski, f) for i ∈ [3]
and executes NIZK.Verify(CRS, (mpki, cti)i∈[3]). If
NIZK.Verify(CRS, (mpki, cti)i∈[2]) = 1, B0 computes
yf,i := Dec(mpki, f, skf,i, cti) for i ∈ [3] and sends the
majority vote, y ← MajVal(yf,1, yf,2, yf,3), to A. If the
verification outputs 0, B0 sends ⊥ to A.

This covers the simulation of the game Gβ . Finally B0
outputs the same bit β′ returned by A. It follows, from the
perfect simulation, that the advantage of B0 is the same
as the advantage of A.

As in [51] and in the proof of Theorem 19, we prove a
claim that shows that whenever a decryption oracle query is
asked and this query contains a valid NIZK proof, then the
corresponding ciphertext is explainable under the queried
function. This is necessary for the proof of the transition
from G1 to G2 for the simulation of the decryption oracle.

Claim 2. For any PPT adversary A participating in Gk for
k ∈ {1, . . . , 6}, the probability that, during the experiment,
A queries its decryption oracle QDec with a function-
ciphertext-pair that is not explainable but has an accepting
proof is negligible. Namely, we exhibit a PPT adversary B1,
such that

Pr


∃(f, {ct′i}i∈[3], π

′) ∈ Q :
({ct′i}i∈[3], π

′) 6= ({ct′i}i∈[3], π
′),

NIZK.Verify(CRS, {ct′i}i∈[3], π
′) = 1

and for all i, j ∈ [3], i 6= j :
Dec(mpki, skf,i, ct′i) 6= Dec(mpkj , skf,j , ct′j)


≤ AdvSim-Sound

NIZK,B1
(λ),

where skf,i ← KeyGen(mpki,mski, f) for i ∈ [3],
({cti}i∈[3], π) is the reply to the encryption query (x0, x1)
made by A where ({cti}i∈[3], π) is the reply to the encryption
query (x0, x1) made by A and Q the list containing all the
decryption queries (f, {ct′i}i∈[3], π

′) asked by A, knowing
the master public key mpk′ := (CRS, {mpki}i∈[2]), the reply
to its challenge query ({cti}i∈[3], π) and by having access
to the key generation oracle KeyGen′(mpk′,msk′, ·), during
the game.

Proof. We build an adversary B1 that simulates Gk to-
wards A when interacting with the underlying one-time
simulation-soundness experiment.
After the adversary B1 has received CRS from the

underlying experiment, it generates (mpki,mski) ←
Setup(1λ; si) with si ← {0, 1}λ for i ∈ [3], sets mpk′ :=
(CRS, {mpki}i∈[3]) and sends mpk′ to A. Whenever A
submits a key generation query f , B1 generates the
functional keys skf,i ← KeyGen(mpki,mski, f ; ri) for i ∈ [3]
and creates a NIWI proof πsk over the relation Rset for
the statement-witness pair y = ({mpki}i∈[3], {skf,i}i∈[3], f)
and w = ({mski}i∈[3], {ri}i∈[3], {si}i∈[3]). Then, B1 sends
sk′f = ({skf,i}i∈[3], πsk) as a reply to A.

For the challenge query (x0, x1) asked by A, B1 computes
cti = Enc(mpk1, x

1) for i ≤ k and cti = Enc(mpki, x0) for
i > k and asks its experiment for a simulated proof π of
the statement (mpki, cti)i∈[3]. It sets ct′ := ({cti}i∈[3], π)
and sends ct′ to A.
Whenever A outputs a decryption query (f, ct′ :=

({ct}i∈[3], π)), B1 verifies the proof. If the output of the
verification is 1, B1 computes yf,i = Dec(mpki, skf,i, cti) for
all i ∈ [3]. Then, B1 computes y ← MajVal(yf,1, yf,2, yf,3)
and if y = � then B1 sends ({ct}i∈[3], π) as a proof forgery to
its challenger. Otherwise it sends y to A. If the verification
outputs 0, B1 sends ⊥ to A.

After introducing and proving Claim 2, we prove the
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transition from G1 to G2

Lemma 10 (Transition from G1 to G2). For any PPT
adversary A, there exist PPT adversaries B1 and B2, such
that

|WinG1
A (1λ)−WinG2

A (1λ)| ≤ AdvSim-Sound
NIZK,B1

(λ)
+ AdvIND-CPA

FE,B2
(λ) .

Proof. We build an adversary B2 that simulates G1+β
to A when interacting with the underlying IND-CPAFE

β

experiment.
In the beginning of the reduction, B2 receives mpk1

from the underlying experiment. It simulates a CRS, i.e.
(CRS, τ) ← S1(1λ), generates several functional encryp-
tion instances (mpki,mski) ← Setup(1λ; si) with si ∈
{0, 1}λ for i ∈ [3] \ {1}, sets mpk′ := (CRS, {mpki}i∈[3])
and sends mpk′ to A. Whenever A submits a key
generation query f , B2 forwards this query to its
own key generation oracle KeyGen(mpk1,msk1, ·), to re-
ceive skf,1 as an answer. Then, B2 generates skf,i ←
KeyGen(mpki,mski, f ; ri) for i ∈ [3] \ {1} by itself and
creates a NIWI proof πsk over the relation Rset for the
statement-witness pair y = ({mpki}i∈[3], {skf,i}i∈[3], f)
and w = ({mski}i∈[3], {ri}i∈[3], {si}i∈[3]). Then, B2 sends
sk′f = ({skf,i}i∈[3], πsk) as a reply to A.
For the challenge query (x0, x1) asked by A, B2

forwards it to its own encryption oracle and receives
ct1 = Enc(mpk1, x

β) as an answer. It generates cti =
Enc(mpki, x1;ui) with ui ← {0, 1}λ, for i ∈ [3] \ {1},
simulates a valid proof π of the relation RCCA

set using the
statement y = (mpki, cti)i∈[3], i.e. πct ← S2(CRS, τ, y) and
sends ct′ := ({cti}i∈[3], πct) to A.
Whenever A asks a decryption query (f, ct′ :=

({ct}i∈[3], πct)), B2 first verifies the proof πct, i.e. it executes
NIZK.Verify(CRS, (mpki, cti)i∈[3], πct). If the verification
outputs 1, B2 generates skf,i ← KeyGen(mpki,mski, f)
for i ∈ [3] \ {1}, computes yf,i ← Dec(mpki, f, skf,i, cti)
for i ∈ [3] \ {1} and y ← MajVal({yf,i}i∈[3]\{k}), to
A. Since Claim 2 shows that for all ciphertext queries
made by A that have a valid proof (except with negligi-
ble probability), it holds that Dec(mpk1, f, skf,1, ct1) =
Dec(mpk2, f, skf,2, ct2) = Dec(mpk3, f, skf,3, ct3). There-
fore, it is sufficient to generate the decryptions yf,2 and
yf,3 and use them as the decryption output and a reply
for A. If the verification outputs 0, B2 sends ⊥ to A.
This covers the simulation of the game G1+β . Finally

B2 outputs the same bit β′ returned by A. Together with
the analysis of adversary B1, this yields the advantage
mentioned in the lemma.

Lemma 11 (Transition from G2 to G3). For any PPT
adversary A, there exist PPT adversaries B1 and B2 such
that

|WinG2
A (1λ)−WinG3

A (1λ)| ≤ AdvSim-Sound
NIZK,B1

(λ)
+ AdvWI

NIWI,B2
(λ) .

Proof. We build an adversary B2 that simulates G2+β
towards A when interacting with the underlying WINIWI

β

experiment.
In the beginning of the reduction, B2 simulates a CRS, i.e.

(CRS, τ)← S1(1λ), generates several functional encryption
instances (mpki,mski) ← Setup(1λ; si) with si ∈ {0, 1}λ
for i ∈ [3], sets mpk′ := (CRS, {mpki}i∈[3]) and sends mpk′
to A.
Whenever A asks an encryption query (x0, x1), B2

encrypts x1 using the first public key and x0 using the
second and third public key, i.e ct1 ← Enc(mpk1, x

1;u1)
and cti ← Enc(mpki, x0;ui), for i ∈ [3] \ {1}, where
ui ← {0, 1}λ. Afterwards, B2 simulates a valid proof π of
the relation RCCA

set using the statement y = (mpki, cti)i∈[3],
i.e. πct ← S2(CRS, τ, y) and sends ct′ := ({cti}i∈[3], πct) to
A.
For a key generation query f , B2 samples ri ← {0, 1}λ

and generates skf,i ← KeyGen(mpki,mski, f ; ri)
for i ∈ [3]. Afterwards, B2 submits (z, w0, w1)
with z = ({mpki}i∈[3], {skf,i}i∈[3, f), w0 =
({mski}i∈[3]\{1}, {ri}i∈[3]\{1}, {si}i∈[3]\{1}) and
w1 = ({mski}i∈[3]\{2}, {ri}i∈[3]\{2}, {si}i∈[3]\{2}) as a
challenge query to its challenger and receives π as a reply.
Finally, B2 sends ({skf,i}i∈[3], π) to A as a reply to the
key generation query.
Whenever A asks a decryption query (f, ct′ :=

({ct}i∈[3], πct)), B2 first verifies the proof πct, i.e. it executes
NIZK.Verify(CRS, (mpki, cti)i∈[3], πct). If the verification
outputs 1, B2 generates skf,i ← KeyGen(mpki,mski, f)
for i ∈ [3], computes yf,i ← Dec(mpki, f, skf,i, cti) for
i ∈ [3] and sends y ← MajVal({yf,i}i∈[3]\{k}) to A. If
the verification outputs 0, B2 sends ⊥ to A.
This covers the simulation of the game G2+β . Finally
B2 outputs the same bit β′ returned by A. Together with
the analysis of adversary B1, this yields the advantage
mentioned in the lemma.

After proving that the compiler achieves the security
lifting from CPA to CCA, we also need to show that the
compiler guarantees setup consistency.

Theorem 25. Let FE = (Setup,KeyGen,Enc,Dec) be
a functional encryption scheme, NIWI = (NIWI.Prove,
NIWI.Verify) a NIWI proof system for Rset (Fig. 9) and
NIZK = (NIZK.Setup,NIZK.Prove,NIZK.Verify) a NIZK
proof system for RCCA

set (Fig. 26), then the construction
FE′ = (Setup′,KeyGen′,Enc′,Dec′) defined in Fig. 25 is
setup consistent. Namely, for any PPT adversary A, exists
a PPT adversary B such that

|Pr[set-CONSFE′(1λ,A) = 1]| ≤ AdvSound
NIWI,B(λ).
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Sketch. The proof proceeds following the same reasoning as
the proof of Theorem 5. The reason is that the introduction
of the additional proof of the ciphertext must always yield
1 (as otherwise, the ciphertext will not be considered by
set-CONS) and only those ciphertexts are considered by
Dec′, as defined in the compiler. Hence, we can invoke
the same analysis, based on the invariant that for each
ciphertext ct′i = (cti, πi) (i = 1, 2), πi is valid therefore we
can perform the identical case distinctions as in the proof
of Theorem 5 based on the ciphertexts cti.

Appendix H
Details Of the UC Analysis

A. Assumed Functionalities
We now describe the channels that we assume as

setup. Together with FE they realize the ideal repository.
The authenticated broadcast channel between sender S
and receiver R leaks the message to the adversary. The
functionality follows the standard UC corruption model,
i.e., in case sender S is corrupted, the adversary can choose
the message that is sent but cannot send different messages
to different recipients. Since we consider static corruption,
our channels are slightly simplified and do not capture the
situation where an honest sender is corrupted before one of
its messages is delivered (since either the sender is corrupt
from the start or remains honest).

Functionality FuncS,R1,...,Rn
auth

The functionality is parameterized by sender (ex-
tended) identity S and receiver (extended) identities
Ri. The functionality initializes an empty array M .
• On input (Send, sid,m) from S, store M ←
M ||m and output (Sent,m) to every Ri.

• Upon input (GetMsgs, sid) from the adversary
(on the backdoor tape) outputM to the adversary.

Furthermore, we assume point-to-point secure channels
and existence of the real-world repository as defined next.

Functionality FuncS,Rsec

The functionality is parameterized by sender S and
receiver R. It initializes an empty array M .
• On input (Send, sid,m) from S, store M ←
M ||length(m) and output (Sent,m) to R.

• Upon input (GetMsgs, sid) from the adversary
(on the backdoor tape) outputM to the adversary.

Functionality FuncA,B,t
basic-rep,C

The functionality is parameterized by a set C ⊆ {0, 1}∗
and the party identifiers A, Bi, i ∈ [t], it interacts with.
It manages a lookup table M , which is initially empty.

a) Input.: Upon receiving (write, sid, x) from a party
with party-id A do: If c ∈ C, then compute handle
h← getHandle and store M [h]← c. Return h to the
calling party.
b) Output.: Upon receiving (read, sid, h) from a party
with party-id Bi, i ∈ [t], do: If M [h] = ⊥ then return
noData. Otherwise, i.e., if M [h] ∈ C, return M [h] to
the calling party.

B. The FE protocol
The UC protocol πA,B,C,t

FE (based on a functional encryp-
tion scheme FE) to realize FuncA,B,C,t

Rep,(F+,f0) from the basic
repository an authenticated broadcast channel, and secure
channels:

C. Proof of the UC Realization (Theorem 1)
Proof. We start by proving the first part of the theorem
for the repository FuncA,B,C,t

Rep,(F+,f0) and only then prove the
necessary direction. Thereafter, we turn our attention to
FuncA,B,C,t

Rep∗,(F+,f0).
Consistency implies the UC realization: We first

describe the simulator S for the dummy UC adversary
D, which basically means that S receives the instructions
by the environment Z. We are in the static corruption
case and thus can structure the proof by a case distinction
according to the actual corruption set in the system to
obtain the detailed claims of the theorem for each case,
which we cast as separate lemmata below.
1) Simulation with only a corrupted input provider:

Upon receiving (setup, sid) from FuncA,B,C,t
Rep,(F+,f0), the

simulator S executes (msk,mpk) ← Setup() to obtain
the master public and private key and provides mpk
to the environment as the message received by the
dishonest input provider and decryptors (or leaked by
the authenticated broadcast channel). Upon receiving
(assigned, sid, f, i) from FuncA,B,C,t

Rep,(F+,f0) then S computes
F0 ← F0 ∪ {f} (where F0 is initially empty) and evaluates
skf ← KeyGen(mpk,msk, f) and provides skf to the
environment when asked (read, sid) (meant for the secure
channel between the setup generator and some corrupted
decryptor that receives the functional key for f). Finally,
update F ← F ∪ {(skf , f)} (again F is initially empty).
When given the adversarial input (write, sid, ct) (an

input meant for the real-world repository), the simulator
does the following: it sets x ← unknown and outputs
(write, sid, x) to FuncA,B,C,t

Rep,(F+,f0) in the name of A and
returns the obtained handle to the environment.
Upon receiving (read, sid, h, f) from FuncA,B,C,t

Rep,(F+,f0),
recall the ciphertext ct associated to h (previously
input by the corrupted input provider). Then com-
pute y ← Dec(mpk, f, skf , ct) and provide the input
(read, sid, h, f, (unknown, y)) to FuncA,B,C,t

Rep,(F+,f0).
If any receiver is corrupted, the adversary can instruct

them to input (read, sid, h) to directly obtain the cipher-
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Protocol πA,B,C,t
FE

• Upon each invocation, protocol πA,B,C,t
FE first verifies that this ITIs party identifier matches pid ∈ {A, Bi, C} (i ∈ [t])

and rejects the message otherwise. This means that the ITI running the protocol must have the extended
identity eidpid = (πA,B,C,t

FE , sid||pid) for some sid and pid ∈ {A, Bi, C} (for some i ∈ [t]).
• Depending on the encoded pid, match the input to the following commands:
pid = C: The behaviour of the manager is as follows:

– On input (setup, sid) execute (mpk,msk)← Setup(), store the pair internally and send mpk via FunceidC,eidA
auth

to the input provider and via FunceidC,eidB1 ,...,eidBt
auth to the decryptor.

– On input (assign, sid, f, i), ensure that f ∈ F and otherwise ignore the input. Execute skf =
KeyGen(mpk,msk, f), send skf via FunceidC,eidBisec to the decryptor.

pid = A: The behaviour of the input provider is as follows:
– On input (write, sid, x), ensure that x ∈ X and that an mpk has been received (otherwise ignore the

input). Then, execute ct← Enc(mpk, x) and if ct 6= err output (write, sid, ct) to FuncA,B,t
basic-rep,C and return

the obtained handle h from the basic repository back to the caller by returning (Written, sid, h). (Give
up activation if an error occurs).

– On receiving the master public key mpk from FunceidC,eidA
auth and if this is the first time the key is delivered,

store it internally for future reference. Ignore any future message from the channel.

pid = Bi: The behaviour of the decryptor is as follows:

– On input (read, sid, h, f) output (read, sid, h) to FuncA,B,t
basic-rep,C to obtain a ciphertext ct. If no ciphertext

is received or a pair (skf , f) is not recorded, then give up activation. Next, execute y ← Dec(mpk, f, skf , ct)
for each candidate pair (skf , f) recorded and delete the pair if y = � is obtained. Finally, give up the
activation if all values returned �. Otherwise, return the first y ∈ Y ∪ {⊥} obtained by decrypting and
output (Read, sid, y) to the caller.

– On receiving the master public key mpk from FunceidC,eidB1 ,...,eidBt
auth and if this is the first time the master

public key is delivered, store it internally for future reference.
– On receiving a pair (sk, f) from FunceidC,eidBisec and if f ∈ F , then store the pair (sk, f) in the list of received

functional keys.
• Ignore the input if no case applies.

text associated to h. The simulated answer simply returns
the previously input ciphertext ct for handle h.

Lemma 12. For any environment Z (and dummy ad-
versary) with non-negligible advantage in distinguishing
the real and ideal worlds (w.r.t. simulator S above) when
only corrupting party A (and possibly a subset of the
receivers), we give a reduction ρ1 to construct an adversary
A := ρ1(Z) that violates input-consistency with non-
negligible probability.

Proof. For the reduction to the input-consistency game,
consider the following events defined in the real-world
execution: Let E1 denote the event that at any point in the
execution of Z (with the protocol and dummy adversary D),
there is a handle h such that the set of associated output
values y(h)

i obtained by party B on queries (read, h, fi) are
such that {x′ ∈M|∀i : fi(x′) = y

(h)
i } = {}.

As long as ¬E1 holds in the execution, the simulator S
executes the real-world view perfectly, since the instruction
marked with (??) must never be executed in the ideal
world and any value y returned to an honest decryptor

is explainable by an element x ∈ X ∪ {⊥} that fulfills
f(x) = y for the queried function f ∈ F (and thus also �
is never observed).
Hence, let A := ρ1(Z) be the consistency adversary

that internally runs Z and emulates the real-world view
towards Z, i.e., upon any request by Z, ρ1 emulates the
actions of the protocol when generating its replies to
Z. Note that such an emulation is possible with access
to the honestly generated master public-key and with
access to the key-generation oracle provided by the input-
consistency game. Once event E1 is observed, ρ1 identifies
the handle h that caused the event and outputs the
associated ciphertext cth stored for handle h. Note that
A is efficiently implementable by the assumption of (the
efficiently implementable function) preMap() which can be
used to detect E1 (and further events in the other cases).7

7We note that by picking one ciphertext at random, ρ1 could avoid
the dependence on preMap() at the cost of obtaining a security loss.
However, since in order to define the ideal UC functionality (which
must be an efficient program) such an efficient map must exist, and
since assuming it here yields more straightforward arguments, we rely
on it throughout this proof.
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The proof for this case is concluded by observing
that A contradicts the theorem assumptions: we have
that the evaluation of a set of functions f1, . . . , fn for
a handle h returned values y1, . . . , yn that do not have
a common explanation (event E1) which implies that
in-CONSFE(1λ,A) returns 1 with the same probability as
the event that Z provokes event E1.

2) Simulation with a corrupted setup generator: In this
case we have that all inputs provided to party A must define
a valid base value x ∈ X and thus, upon read queries by an
honest receiver/decryptor Bi only 2.(a) in the description
of FuncA,B,C,t

Rep,(F+,f0) is triggered. The main task of simulator
S in this simulation is to translate dishonest actions of
party C when sending values towards the other two parties
and controlling the influence on Alice actions. Thus, upon
receiving (Send, sid,m) for the channel from C to A, S
just remembers that mpk1 ← m (and similarly for the
message sent to the receivers which is defined to be mpk2).
As soon as mpk1 is defined, C sends (setup, sid) to the
ideal functionality (allowing the sender to input values).
As soon as both values mpk1 and mpk2 are defined

the simulator starts producing functional secret keys as
follows (note that before the master public key is received,
no honest decryptor would extend its function set). For
messages (Send, sid,m) for the channel from C to some
honest receiver Bi, the simulator first parses m as (sk, f)
and if f 6∈ F , it gives up activation. Otherwise, it encrypts
a fixed message ct ← Enc(mpk1, m̄) and performs a
trial decryption y ← Dec(mpk2, f, sk, ct). If y = � then
give up activation. Otherwise, output (assign, sid, f, i) to
FuncA,B,C,t

Rep,(F+,f0) to assign the function f to be available for
the decryptor. Note that in case the decryptor is dishonest,
simply simulate the receipt of message m.

When activated by FuncA,B,C,t
Rep,(F+,f0) with a public delayed

output (write, sid, x) (in response to Alice’s input), the
simulator performs a trial encryption ct ← Enc(mpk1, x)
and sends ACK for this operation if and only if ct 6= err.
Otherwise, the simulator activates the environment as next
entity.8
Finally, for corrupted decryptors we have to simulate

real-world ciphertexts corresponding. This is simple, as we
do not have any ideal privacy guarantees anymore when
aside of C at least one decryptor is dishonest: hence to
simulate the ciphertext for handle h the simulator first
obtains the message x via the command (reveal, sid, h)
to the ideal-world repository and encrypts x as done in the
real world and associates the obtained ciphertext ct with
handle h. This concludes the simulation for this case.

Lemma 13. For any environment Z (and dummy adver-
sary) with non-negligible advantage in distinguishing the
real and ideal worlds (w.r.t. simulator S above) when only

8Recall that this leakage is implied by the fact that the property
whether Alice encrypts successfully could depend on the plaintext
she tries to encrypt.

corrupting party C (possibly alongside a subset of receivers),
we give reductions ρ2 and ρ3 to construct adversaries
Ai := ρi(Z) such that at least one of the Ai violates setup-
consistency with non-negligible probability.

Proof. For this case, we first make a hybrid argument:
consider the protocol π′, which is defined as πA,B,C,t

FE but
where party A provides its received master-public key mpk1
to parties Bi via an additional covert broadcast channel
and where parties Bi, already upon receiving a functional
key (sk, f), perform a trial decryption and rejects the key
if Dec(mpk2, f, sk,Enc(mpk1, m̄)) = �, where mpk2 is the
master public key sent from part C to parties Bi. We observe
that protocol π′ and πA,B,C,t

FE have equivalent behaviors as
long as the environment is not able to provide an input
(write, sid, x) to party A that provokes event E3 defined
by the condition that Dec(mpk2, f, sk,Enc(mpk1, m̄)) = �
but Dec(mpk2, f, sk,Enc(mpk1, x)) 6= � (of course within
an honest receiver/decryptor and where f and sk have
been received together from party C). In case ¬E3, the
function f is never evaluated upon input (read, h, f) (for
any h) by protocol π′, whereas in πA,B,C,t

FE it might. Hence, let
A := ρ2(Z) be the adversary for the setup consistency game
defined as follows: ρ2 internally runs Z and emulates the
execution of protocol πA,B,C,t

FE towards Z (by monolithically
executing all required protocol steps) until event E3 is
observed. In this case, ρ2 outputs (mpk1,mpk2, sk, x, m̄),
where x and sk are the values fulfilling the condition of event
E3. ρ2 wins set-CONSFE(1λ,A) with the same probability
as event E3 in the execution with Z.

For the final argument, we proceed with the same pattern.
This time, let E4 be the event that in an execution with π′,
Z provokes for some handle h that a query (read, sid, h, f)
to party B, following a write instruction (write, sid, x)
to party A that returned this handle h, yields an output
value y 6= f(x). Again, the simulation S interacting
with the repository FuncA,B,C,t

Rep,(F+,f0) is a perfect simulation
of π′: in both worlds, functions are assigned that pass
the trial-decryption test, and all function evaluations,
for some assigned function f , yield f(x) as output as
in this case only instruction (? ? ?) of the ideal-world
repository is executed. Again, we can upper bound the
distinguishing advantage of the real and ideal world by
the probability that Z provokes E4. The corresponding
reduction A := ρ3(Z) emulates a real-world execution
towards Z, where it mimics the protocol actions of the
honest parties A and Bi. This includes the receipt of two
message mpk1 and mpk2 for parties A and Bi, respectively.
The reduction ρ3, once it detects event E4 is provoked, can
output (mpk1,mpk2, sk, f, x, x), where (sk, f) is defined as
the key function pair provoked event E4. Hence, A achieves
set-CONSFE(1λ,A) = 1 with at least the probability of Z
provoking E4.

3) Simulation with a corrupted input provider and setup
generator: The simulator in this case needs to combine
parts of the above two simulation strategies for maliciously
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generated setup parameters. That is, it defines mpk as
the claimed master public key that party C sends to an
honest party Bi. For the other messages (Send, sid,m) for
the channel from C to Bi, the simulator again parses it
as a key-function pair (sk, f) and does the validity tests
as above and in case f ∈ F and the trial decryption
Dec(mpk, f, sk,Enc(mpk, m̄)) (with respect to one master
public key) does not yield �, then output (assign, sid, f, i)
to FuncA,B,C,t

Rep,(F+,f0). Simulating a dishonest receiver is
straightforward.
For adversarial inputs by party A, S again sets x ←

unknown for the current set of key-function pairs, provides
(write, sid, x) to FuncA,B,C,t

Rep,(F+,f0) in the name of A and
returns the obtained handle to the environment.
Finally, upon receiving (read, sid, h, f) from

FuncA,B,C,t
Rep,(F+,f0) (upon a reading instruction by honest

party Bi), obtain the ciphertext ct associated to h, compute
y ← Dec(mpk, f, skf , ct) and x ← unknown and provide
the input (read, sid, h, f, (x, y)) to FuncA,B,C,t

Rep,(F+,f0).

Lemma 14. For any environment Z (and dummy ad-
versary) with non-negligible advantage in distinguishing
the real and ideal worlds (w.r.t. simulator S above) when
only corrupting parties A and C (and possibly alongside
a subset of receivers), we give reductions ρ4 and ρ5 to
construct adversaries Ai := ρi(Z) such that at least one of
the Ai violates strong input-consistency with non-negligible
probability.

Proof. We again make a first hybrid step and consider
the protocol π′′, where each party Bi, upon receiving
a functional key sk together with its claimed function
f , performs a trial decryption Dec(mpk, f, sk, c̄t), where
c̄t ← Enc(mpk, m̄) (i.e., just with respect to the claimed
master public key). Analogously to above, let E5 be
the event defined for an execution characterized by the
condition that the environment provides a ciphertext ct
and a secret key (sk, f) to some honest party Bi such
that Dec(mpk, f, sk, c̄t) 6= � and Dec(mpk, f, sk, ct) = �.
Again, πA,B,C,t

FE and π′′ have an identical behavior for any
honest party Bj until event E5 is triggered. As above,
this yields a reduction A := ρ4(Z), which emulates party
B’s actions towards Z and if Z provokes E5, it outputs
(mpk, c̄t, ct, {sk}), where the triple c̄t, ct and sk are the
values provided by Z that trigger event E5.

The final reduction is obtained by defining, for an
execution of Z with π′′ the event E6 (analogous to
E1 above): Let E6 denote the event that at any point
in the execution of Z (with the protocol and dummy
adversary D), there is a handle h such that the set of
associated output values y(h)

i obtained by some honest
receiver/decryptor Bi on queries (read, h, fi) are such that
{x′ ∈ M|∀i : fi(x′) = y

(h)
i } = {}. As long as E6 does

not occur, the outputs generated by any honest party Bi
are the decrypted values computed by the simulator and
thus computed as in the real-world execution where (??)

is not executed in this case (this includes that � is not
computed by the simulator as a return value y in this case).
The final adversary A := ρ5(Z) for st-in-CONSFE(1λ,A) is
now designed analogous to ρ1: Here, ρ5 only emulates the
honest receivers’ actions towards an environment. When
it detects event E6, it outputs (mpk, ct, ct, F ) where ct
is the ciphertext that provoked the output and F the
key-function pairs provided (and simulated) w.r.t. the
union of honest receivers. Again, we see that the adversary
A contradicts the theorem assumptions, since it wins
st-in-CONSFE(1λ,A) (event E6).

4) Simulation only with corrupted receivers: This case
handles the scenario when the input provider and the setup
generator are honest, and we have to argue anything that
the union of dishonest receivers/decryptors can do in the
real world—where they have access to all ciphertexts and
received a set of secret keys—is simulatable in the ideal
world, where we by definition only leak the information
f(x) if x is an input and f is an assigned function to one
of the dishonest receivers in the corruption set.

Since our repository construction is functionally equiva-
lent to the construction presented by Matt and Maurer [52],
we inherit the security statement in this case by their
statement: in particular, assume the algorithms S1,S2, and
S3 guaranteed to exist by CFE security. The simulator
acts as follows (where the union of corrupted receivers is
simply seen as one “large corrupted decryptor” and treat
it as the one corrupted party): it first simulates the public
parameter by executing (mpk, s)← S1(). Upon receiving
(assigned, sid, f, j) (for some index i) from FuncA,B,C,t

Rep,(F+,f0)
then S computes computes F0 ← F0 ∪ {f} and out-
puts (Read, hi, f) for each available label h1, . . . , hn in
FuncA,B,C,t

Rep,(F+,f0) to obtain the associated value yi, and
execute skf ← S2(f, y1, . . . , yn)[[s]]. This key is then output
whenever the simulator must simulate the transmission of
this key towards a dishonest receiver.
On input (read, sid, h) from a dishonest decryptor

(expecting a real-world ciphertext), do the following: if
a handle h has been generated (i.e., assigned to a value
by FuncA,B,C,t

Rep,(F+,f0)) and a ciphertext cth has already been
simulated, then return cth to the adversary. Otherwise, the
ciphertext for this handle is simulated as follows: for all
already assigned functions fi ∈ F0, ask (Read, h, fi) to
FuncA,B,C,t

Rep,(F+,f0) to obtain all function values y1, . . . , yk for
this handle (of the underlying input) and also y0, which
is the output of the leakage function f0. Simulate (and
internally store) the ciphertext cth ← S3(y0, y1, . . . , yk)[[s]]
and return ch as the answer to the adversary.

The reduction to CFE security directly follows from [52,
Lemma 4.2].
5) All parties honest: The remaining case is a straight-

forward simulation of the real-world view: if all parties
are honest, then the simulator simply has to generate and
output honest public parameters as above.
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The necessary direction.: To prove that the con-
sistency requirements described by in-CONS, set-CONS,
and st-in-CONS are also necessary, we show that if, for
a given scheme FE there are adversaries A1, A2, A3 such
that Pr[in-CONSFE(1λ,A1)], Pr[set-CONSFE(1λ,A2)], or
Pr[st-in-CONSFE(1λ,A3)] is non-negligible, then we can
distinguish a real execution of πA,B,C,t

FE from any ideal-world
execution for FuncA,B,C,t

Rep,(F+,f0) and an arbitrary simulator S ′.
From the assumed adversaries we construct environments
Z1 and Z2 that distinguish the real and ideal worlds, the
former for the case when only A is corrupted, and for the
latter when only party C is corrupted. For the sake of
the argument, we only have to consider the simple setting
with one honest receiver/decryptor B1 and one corrupted
receiver B2.

Case in-CONS: Z1 internally runs A1 and answers
its KeyGen-queries for functional keys correspond-
ing to a given function f by providing the input
(assign, sid, f, 2) and obtaining the corresponding
functional key from obtaining the value of the secure
channel from party C to B2 since B2 is corrupted. When
A1 outputs a ciphertext ct, Z1 does the following: it
corrupts party A and instructs it (all via the dummy ad-
versary) to issue the write instruction (write, sid, ct)
(destined for the real-world repository) and expect
handle h in return. Then issue n read instructions
(read, sid, h, fi) to (honest) receiver B1 to obtain n
values yi, 1 ≤ i ≤ n. If {x′ ∈M|∀i : fi(x′) = yi} = {}
then Z1 outputs 1 and otherwise it outputs 0. It is
clear that Z1 never outputs 1 when interacting with
any simulator and functionality FuncA,B,C,t

Rep,(F+,f0), since
FuncA,B,C,t

Rep,(F+,f0) will never output inconsistent values.
On the other hand, Z1 outputs 1 whenever A1 detects
an inconsistency. Hence, the distinguishing advantage
equals Pr[in-CONSFE(1λ,A1, )].

Case set-CONS: Z2 internally runs A2 until it outputs
(mpk1,mpk2, sk, f, x0, x1). Z2 then interacts with hon-
est party A and B1 as follows via the party C that it
corrupts: it instructs the corrupted party to send (via
the channels) mpk1 and mpk2 to the respective parties
A and B1 and sk to B1. Then it chooses a bit j at
random and provides the inputs (write, sid, xj) and
(write, sid, x1−j) to party A to obtain the handles h1
and h2. Finally, it provides the input (read, h1, f) to
party B1. If it obtains an answer y1 (and the input is
hence not ignored) and y1 6= f(xj), then Z2 outputs
1 as its decision bit. Otherwise, it provides the input
(read, h2, f) to party B1. If it obtains an answer y2
(and the input is hence not ignored) and y2 6= f(x1−j),
then Z2 outputs 1 as its decision bit. Finally, if exactly
one query returned an answer, then Z1 outputs 1
as its decision bit. In any other case, Z2 outputs
0. By assumption, the probability that at least one
of the equation Dec(mpk2, f, sk,Enc(mpk1, xj)) 6= �
holds is at least Pr[set-CONS(1λ,A2)] and therefore,

with probability at least Pr[set-CONS(1λ,A2)]
2 reading

h1 will return a result when interacting with the
protocol (as otherwise, the key sk would be ignored).
When interacting with the ideal functionality and any
simulator S ′, then by definition of FuncA,B,C,t

Rep,(F+,f0),
either both requests are ignored, or both requests
return the expected result f(xj) and f(x1−j) upon the
first and second decryption, respectively. Therefore, we
conclude that the probability that Z2 outputs 1 when
interacting with the ideal world is zero and we obtain a
distinguishing advantage of at least Pr[set-CONS(1λ,A2)]

2
for Z2.

Case st-in-CONS: Z3 internally runs A3 which outputs
(mpk, ct0, ct1, {(sk1, f1), . . . , (skn, fn)}). Z3 then cor-
rupts parties A and C and instructs party C to send
mpk to (honest) party B1. Z3 then instructs party A to
write each ciphertext ctj to the real-world repository
to obtain handle hj . Then, it does the following for
each secret key ski, 1 ≤ i ≤ n:
1) It instructs party C to send ski to party B1, followed

by a query (read, sid, h1, fi).
2) If the above requests got ignored, then it instructs

party C to resend ski. In any case, it then issues
(read, sid, h2, fi).

3) When exactly one of the two queries gets ignored,
then Z3 outputs decision bit 1 and halts. If both
returned a value, it records them as y

ctj
i and

proceeds with the next functional key.
If no decision has been reached, then Z3 defines the
sets Sj := {x′ ∈ M|∀i : fi(x′) = y

(ctj)
i } and outputs

decision bit 1 if and only if at least one of S0 or S1 is
equal to the empty set. Otherwise, Z3 outputs 0. When
Z3 interacts with the protocol, then the values yctj

i are
computed exactly as in the game st-in-CONS(1λ,A3)
and the decision bit is 1 if and only if the winning
condition of the game is met (note that a query (w.r.t.
fi) is ignored if and only if the ciphertext decrypted
to � with respect to ski in the above execution with
Z3). On the other hand, if Z3 is interacting with
the ideal system, then it would never output 1, as
FuncA,B,C,t

Rep,(F+,f0) does either answer both queries per
evaluation for fi or none. Furthermore, the above
sets Sj are non-empty as ensured by FuncA,B,C,t

Rep,(F+,f0)
(ensured by instruction (??)). On the other hand, it
outputs 1 when interacting with the real protocol if
and only if the conditions of the game are fulfilled by
the output of A3, yielding a distinguishing advantage
of Pr[st-in-CONS(1λ,A3)].
Universal encryption property.: We finally turn

our attention to FuncA,B,C,t
Rep∗,(F+,f0). The only difference to

FuncA,B,C,t
Rep,(F+,f0) is the case treated in Lemma 13 (dishonest

setup generator, honest input provider): FuncA,B,C,t
Rep∗,(F+,f0)

does, upon an input by Alice, not provide a public delayed
output revealing x (instead, x is kept private); recall that
the simulator S of Lemma 13 crucially needs to perform
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a trial encryption of x to see whether to acknowledge
Alice’s write request or to reject it. However, if we assume
the universal encryption property, knowledge of x is no
longer needed: instead of doing a test dependent on x, the
simulator performs a trial encryption as soon as mpk1 is
defined on a random message x∗. If successful, any future
write-request by Alice can be acknowledged irrespective of
the content (as otherwise, this contradicts the universal
encryption property) and if the trial-encryption yields an
error, the simulator will always deny Alice’s write attempts
irrespective of the content of the message. Hence a private
delayed output that does not reveal x is sufficient in this
case.

This concludes the proof of the theorem.
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