
Lightweight PUF-based
Continuous Authentication Protocol

Konstantinos Goutsos
µSystems Group, School of Engineering

Newcastle University
Newcastle upon Tyne, United Kingdom

k.goutsos1@ncl.ac.uk

Alex Bystrov
µSystems Group, School of Engineering

Newcastle University
Newcastle upon Tyne, United Kingdom

a.bystrov@ncl.ac.uk

Abstract—Given the recent rise of the Internet-of-Things (IoT),
networked devices are becoming deeply embedded into everyday
objects, leading to a need for novel security methods. Physical
Unclonable Functions (PUFs) enable the differentiation between
instances of the same device and have the potential to replace
costly cryptographic operations while providing higher security
guarantees, due to their inherent unclonability.

We present a pairwise, continuous authentication protocol
based on Physical Unclonable Functions (PUFs) and support-
ing mutual authentication on resource constrained nodes. The
unclonability provided by the PUFs is an integral part of the
authentication process to continuously prove the existence of the
PUF secrets and the proposed protocol is executed periodically
to enable the establishment of trust between the participants.
This is achieved by refreshing the authentication information in
every protocol round, leading to a ’CRP Ratchet’ mechanism
of renewing the authenticating PUF challenge response pairs
(CRPs).

We also discuss the security and performance of the protocol
in IoT applications with a large number of devices. Since the
only operations used in the periodic protocol phase are hashing
and exclusive OR, low computation, complexity, and energy
consumption overhead is achieved.

Index Terms—authentication, physical unclonable functions,
security protocols, unclonability, internet of things

I. INTRODUCTION

Due to the difficulty in differentiating between instances of
the same hardware, traditional paradigms of network security
treat physically distinct devices as identical. Yet, this approach
is a limiting factor in the development of novel security meth-
ods for resource-constrained, networked devices, especially in
the context of the Internet-of-Things (IoT). Devices are deeply
embedded in a multitude of objects, and thus vulnerable to
physical attacks as well as operator compromise. Furthermore,
the increasing number of devices makes it challenging to in-
dividually manage their digital secrets. As a result, traditional
methods of manually embedding static secrets on devices are
no longer satisfying the security requirements of the new
digital era, as they expose the secrets to human operators,
and do not provide adequate updating mechanisms for these
secrets.

Recently, methods for differentiating between device in-
stances have been developed, building upon the invention of
Physical Unclonable Functions (PUFs). PUFs are exception-
ally useful in IoT applications since they are low cost, easy

This work is partially supported by the School of Engineering, Newcastle
University, and EPSRC through the EPSRC Doctoral Training Partnerships
(DTP) programme.

to integrate into existing designs, and have the potential to
replace expensive cryptographic operations.

While the majority of work around PUFs is in the context of
integrating them into existing security protocols and methods,
we see PUFs as a practical enabler for the unclonability
primitive and its inclusion in networked systems. We envision
a vertical integration of the primitive of unclonability that we
systematise in the form of an unclonability stack, similarly
to the OSI model. The stack, illustrated in Fig. 1, defines
operational layers from the unclonable core through to system
level interactions and applications built on them. Each layer
involves a number of methods aiming to integrate unclonability
in their respective domain, securing the relationships between
participating entities by detecting topology distortions.

In our generic scenario, the nodes comprising the system are
deployed, introduced, configured and otherwise initialised with
the aim of operating autonomously and possibly unattended.
This configuration is done via one or more authority devices
(ADs): mobile, unclonable tokens enabling the secure initial-
isation and management of the system. In [1] we described
the operation and features of such devices in the context of an
’authority device scheme’ for networked nodes. The scheme
provides methods for common network security provisions but,
due to its reliance on static, public keys, it is designed for
infrequent use and does not support the creation of unclonable
pairwise links.

Thus, we present a protocol for PUF-based continuous
authentication that does not present those drawbacks. The
proposed protocol aims to serve as a method for detect nodes
that have been removed, replaced, moved, or newly introduced
to the system and leads to the detection of distortions to the
system topology.

A. Our Contribution

The proposed solution is a lightweight pairwise mutual au-
thentication protocol based on PUFs. Our protocol is designed
to take place periodically between pairs of nodes belonging
a larger group or ’neighbourhood’ organised by a group
management scheme similar to [1].

The novelty of the protocol is summarised in the following:
• The overarching goal is to establish a chain of trust

via refreshing the authentication information in every
round. We combine the primitives of ’ratcheting’[2], [3]
and PUFs, providing break-in recovery and continuous
renewal of unclonability. We thus refer to our protocol as
a ’Challenge-Response Pair (CRP) Ratchet’.



Applications

Systems

Neighbourhoods

Links

Protocols

Device

Core

Provider

Logical

Physical

Fig. 1: Unclonability Stack

• We do not assume that either of the nodes has more
resources than its counterpart.

• No third party is involved in the authentication process
after its initialisation, reducing the attack surface and
improving scalability.

• Only one CRP from each device is exchanged and stored
in every round. No CRP database or PUF model is stored
on the verifier, disallowing impersonation and improving
scalability.

• An authority device is required to start the protocol or
reset it after the detection of a potential compromise.

Due to the above properties, the proposed protocol creates
unclonable links, where modifications to the involved nodes
directly lead to a change in the state of the link between them.
This is in contrast to traditional pairwise communication where
the identity of the endpoints has a weaker representation at the
link level.

The rest of the paper is organised as follows: Sections I-B
and I-C introduce the concept of unclonability and how it
is realised in practice with PUFs. Section I-D briefly sum-
marises existing work on PUF-based authentication protocols.
Section II describes the CRP Ratchet principles and operation,
and Section III discusses the security and performance of the
protocol. We conclude with Section IV.

B. Unclonability

Clones of physical objects can be mathematical where the
cloned object only replicates the input-output behaviour of the
original object, and physical where the clone has an identical
physical structure to the original object. Given the difficulty in
achieving perfect cloning results in practice, the task of cloning
is defined by the capabilities of clone detection. To enable this
detection we draw on features which are inherent to the object
and beyond any level of control that would allow their exact
reproduction, given the available technology over the lifetime
of the object, making them individualising features[4].

Unclonability refers to the difficulty in controlling all these
individualising features with the aim of producing a clone that
appears to be an exact copy of the original object. In order
to be exploited these features are required to be: measurable,
stable over the lifetime of the object, and sufficiently differ-
entiating between instances of the same object.

Unclonability is also closely related to ownership, and thus
authority of the owner over an object. At the same time, the
value of objects is often determined by their scarcity which

means that cloning an object may directly diminish its value.
The combination of these issues with the modern practice
of online interaction, leads to the need to unquestionably
prove one’s identity while keeping it safe. Despite the inherent
unclonability of humans however, it is difficult and intrusive
to measure their individualising features directly and digital
devices have to be employed as proxies of authority (authority
devices) to bridge that gap. On a conceptual level, we aim
to provide methods to enable this unification by injecting
unclonability in networking protocols which are already being
increasingly used in the place of human interactions.

C. Physical Unclonable Functions
Physical Unclonable Functions (PUFs) are the most promi-

nent method of extracting individualising features in a stable
and efficient manner. Initially introduced by Pappu[5], PUFs
make use of intrinsic variations present in the fabrication
process of hardware components, to generate unique outputs.
There has a been growing academic and commercial interest
around PUFs in the recent years, leading to a rapid develop-
ment of the field and electronic implementations have been
the target of most of the existing work, since they are easily
integrated into existing systems. Notable constructions include
SRAM[6], arbiter[7], and ring oscillator[8] PUFs.

In essence, electronic physically unclonable constructions
create an additional security layer between the hardware and
the state it represents. This allows us to relax the security
requirements at a hardware level, since letting an adversary
observe the entirety of the hardware gives her no advantage
in predicting or replicating the state that this hardware will
produce when it is powered on.

PUFs have a number of promising properties, including
unclonability, unpredictability, uniqueness, reproducibility, and
tamper-evidence[4]. At a high level, PUFs accept an input,
commonly referred to as a ’challenge’ and produce an output,
referred to as a ’response’. The relationship between the
challenge and the response is determined by the hardware
variations of the PUF, producing responses unique to both
the challenge and the specific instantiation of the PUF. PUFs
also exhibit a degree of instability and, since no errors can be
tolerated in authentication scenarios, a considerable amount of
research has targeted error correction methods for PUFs[4],
[9], [10].

The above properties allow PUFs to serve as an unclonable
core in the unclonability stack discussed above. For the re-
mainder of this paper, we model PUFs as a mapping receiving
challenges and producing responses which are both in the form
of binary strings:

τ : C → R : τ(c) = r with c ∈ Z+
n , r ∈ Z+

n (1)

D. Related Work
The strong advantages of using PUFs for entity authen-

tication have sparked a great number of related protocols.
However, to the best of our knowledge, the proposed solution
is the first one to address the scenario discussed above. In
this section, we briefly discuss previous work on PUF-based
authentication, referencing only representative examples due
to the multiplicity of different variations.

Many of the existing protocols rely on the creation of a CRP
database or a model of the PUF on the verifier[8], [11], [12].



We think that these requirements negate the biggest advantage
of unclonability. Furthermore, storing multiple CRPs on the
verifier involves storage costs which are unattainable for IoT
nodes with a large number of neighbours. Similarly, protocols
involving costly operations similar to public key cryptogra-
phy[13] are not suitable for our intended use case.

Based on this asymmetry of resources between the prover
and the verifier, a different group of protocols was later
introduced, sparked by [10], with the aim of reducing the
calculation overhead on the prover and relocating the burden to
the verifier. While they provide significant performance gains
for peers with highly asymmetric resources these solutions fail
to address the issues of CRP databases and in many cases
introduce additional cost on the verifier side which is not
advisable in our scenario[11], [14].

Additionally, the majority of work discussed above includes
the generation of one or more secrets based on the PUF which
remain static after their generation[8], [10], [11]. In our view,
this approach does not exploit the full unclonability potential
as the PUFs are not constantly involved in the protocol but
rather serve as an unclonable random number generator. On
the other hand, proposals that aim to renew the authentication
secrets often require several CRPs to be exchanged in each
protocol round and do not include information from both
participating entities, thus not achieving truly unclonable links
and leading to faster exhaustion of the PUF responses[15],
[16].

Finally, a different class of solutions aim to employ PUFs in
novel ways. For example, SIMPL Systems[17] or commutative
PUFs[18] provide a new perspective on unclonability protocols
that looks promising. Unfortunately, these constructions have
not yet been implemented in practice.

II. PUF CRP RATCHET

The Challenge Response Pair (CRP) Ratchet uses an au-
thentication mechanism involving the PUF as a response gen-
erator. In each ratchet step, both nodes use information from
the previous step to authenticate each other. They subsequently
combine parts of their PUF state to prepare their state for
the next step. The protocol aims to achieve its security goals
while retaining a low computation and energy footprint and
thus expensive cryptographic operations are avoided.

A. Scenario and Assumptions

The proposed protocol operates in the context of a ’neigh-
bourhood’ of nodes. All neighbourhood members have been
enrolled by an AD and have exchanged public keys with
each other and with the AD prior to the start of the CRP
Ratchet. Nodes are assumed to have access to a wired or
wireless communication channel with each other and the AD
can occasionally establish its own channels with the nodes.
The holder of the AD is also assumed to have physical access
to the node with which the AD is communicating.

In the context of this paper, PUFs are considered a compo-
nent providing the behaviour discussed in Section I-C with
responses that are reliably reproduced, error-corrected, and
entropy-enhanced at the hardware level, since these issues have
been extensively studied in literature[4], [10], [19]. Namely,
the PUF component can be modelled as an augmented hash

TABLE I: Summary of symbols

Symbol Value or Operation

AD Authority device
CNTx Monotonic counter for x
ACK Acknowledgement

Px Public key of x
Sx Private key of x

SIGx(y) Signature of x with private key y
VERx(y, z) Verification of signature z of y with public key x
ENCx(y) Public key encryption of y with secret key x
DECx(y) Public key decryption of y with public key x
HMx(y) Calculation of the HMAC of y with secret key x

HV x(y, z) Verification of the HMAC z of y with secret key x

PUFx(y) Evaluation of the PUF of x with challenge y
TRNGx() Evaluation of the True Random Number Generator of x

⊕ Bitwise exclusive OR
‖ Concatenation

function with outputs that are uniformly random based on the
internal PUF state and the corresponding challenge.

We further assume that the PUF chip is included in a
cryptographic core similar to the one we outlined in [1] that
executes protocol operations and only exposes their results
thus protecting the PUF and any other secrets from direct
access. In essence, the only information leaving this core is
the data transmitted to peers. Finally, the cryptographic core
has access to a true random number generator (TRNG) which
can be implemented by means of another PUF chip[20].

B. Symbols and Definitions

In our descriptions we assume that every device keeps track
of the protocol progress and will reject unexpected requests.
Additionally, we make use of the symbols of Table I.

We also define two security parameters: the step interval ts
represents the time period between two successive, successful
steps of the ratchet, and the failure threshold tf represents
the number of authentication failures after which a node is
assumed to be compromised. The tf parameter can be mea-
sured in time units or in number of successive retries. These
parameters aim to capture the realities of practical applications
where transient faults are possible (e.g. networking issues)
without being the result of malicious actions.

When the threshold is exceeded, the detecting node deletes
the ratchet state concerning the peer which is now in an
unverified state, and notifies the higher layers of the stack,
making the neighbourhood aware of a security incident. The
suspected node is now marked as untrusted and authority
action has to be taken to restart the ratchet protocol. With
this design we signify that a human operator would have to
manually inspect the node in question and, after clearing the
threat, reset the system to its normal state using an authority
device (AD).

C. Initialisation

This is a ’bootstrapping’ phase introducing the nodes to
each other in preparation for the periodic ratchet phase. It
also allows the corresponding AD to approve the initialisation
of the protocol. Thus, this phase is required in two cases: (a)
when the nodes are first introduced and (b) after a protocol
failure which means that the threshold of acceptable authenti-
cation failures has been exceeded. Since the nodes have not yet
been introduced, a temporary secure channel is established by



means of public cryptography, with the previously exchanged
public keys, and parties use a monotonic initialisation counter
to prevent reply attacks. The Initialisation Phase takes place
as follows:

Protocol 1 (Ratchet Initialisation). Nodes A and B have been
enrolled into a neighbourhood with AD X . At the end of the
protocol, both nodes have established a state that will be used
in subsequent Ratchet Step phases (Protocol 2). See Fig. 2 for
the detailed interactions.

1) X generates a random authorisation token TAB and
signs it including the counter.

2) X encrypts the token with the public keys of A and B
separately.

3) X sends the corresponding encrypted token and the
signature to A and B.

4) A and B decrypt the token, verify the signature and
reply with an acknowledgement or abort accordingly.

5) X , A and B increment their initialisation counters.
6) A initiates the initialisation process by authenticating B

with a public key authentication process (e.g. [1]).
7) A generates a random PUF challenge C0

B and signs it
the including the authorisation token.

8) A sends the challenge and its signature to B.
9) B verifies the signature and aborts on failure.

10) B uses the challenge to produce a PUF response R0
B =

PUFB(C
0
B).

11) B encrypts the response with the public key of A.
12) B generates a random PUF challenge C0

A and signs
C0

A‖R0
B including the authorisation token.

13) B sends the encrypted response, the challenge, and the
signature to A.

14) A verifies the signature and aborts on failure.
15) A decrypts the response of B and derives K0

A = R0
B ⊕

C0
A.

16) A generates a PUF response with the received challenge
C0

A: R0
A = PUFA(C

0
A).

17) A encrypts the PUF response and signs it, including the
authorisation token.

18) A sends the encrypted response and the signature to B.
19) B verifies the signature and aborts on failure.
20) B decrypts the response of A and derives K0

B = R0
A ⊕

C0
B .

21) B stores the initial state K0
B and C0

A and replies with
an acknowledgement.

22) A stores the initial state K0
A and C0

B .
23) Both nodes delete the authorisation token. They also

discard any intermediate information used in this phase.

D. Ratchet Step

The Ratchet Step phase serves a dual purpose: authenti-
cating the remote node, and refreshing the secrets used for
authentication. This phase is repeated continuously with the
step interval ts defined above. In the context of this phase,
the nodes make use of one key each, which we refer to as
’ratchet key’ and a common key which we refer to as ’round
key’. The Ratchet Step phase for round j, j ∈ Z+ takes place
as follows:

X A

TAB = TRNGX()

QX =
SIGSX

(TAB‖CNTAB)

ETA = ENCPA
(TAB)

ETB = ENCPB
(TAB) QX , ETA

TAB = DECSA
(ETA)

VERPX
(TAB‖CNTAB , QX)

Abort on failure
ACK CNTB = CNTB +1

X B

QX , ETB

TAB = DECSB
(ETB)

VERPX
(TAB‖CNTAB , QX)

Abort on failure
ACK CNTA = CNTA +1

CNTAB = CNTAB +1

A B

Mutual Authentication

C0
B = TRNGA()

QA = SIGSA
(C0

B‖TAB)

C0
B , QA

VERPA
(C0

B‖TAB , QA)

Abort on failure

R0
B = PUFB(C

0
B)

ER0
B = ENCPA

(R0
B)

C0
A = TRNGB()

ER0
B , C

0
A, QB QB =

SIGSB
(C0

A‖R0
B‖TAB)

VERPB
(C0

A‖R0
B‖TAB , QB)

Abort on failure

R0
B = DECSA

(ER0
B)

K0
A = R0

B ⊕ C0
A

R0
A = PUFA(C

0
A)

ER0
A = ENCPB

(R0
A)

QA = SIGSA
(R0

A‖TAB) ER0
A, QA

VERPA
(R0

A‖TAB , QB)

Abort on failure

R0
A = DECSB

(ER0
A)

K0
B = R0

A ⊕ C0
B

ACK Store K0
B , C

0
A

Store K0
A, C

0
B

Delete TAB Delete TAB

Fig. 2: Ratchet Initialisation

Protocol 2 (Ratchet Step). Nodes A and B, performing the
j-th ratchet step with A as the initiator. At the end of this
phase, the nodes have mutually identified each other and the
necessary information to enable the next iteration. See Fig. 3
for the detailed interactions.

1) Node A has the state information Kj−1
A and Cj−1

B . Node
B has the state information Kj−1

B and Cj−1
A .

2) A generates a random PUF challenge Cj
B and calcu-

lates the HMAC tag of Cj
B and Cj−1

B with its ratchet
key Kj−1

A .
3) A sends the challenges and the tag to B.
4) B derives the ratchet key of A as Kj−1

A =
PUFB(C

j−1
B )⊕Cj−1

A and validates the received HMAC
tag. If there is a mismatch it aborts. If the failure
threshold is reached, the failure procedure is followed.

5) B derives the round key Kj = Kj−1
A ⊕Kj−1

B .
6) B generates the PUF response Rj

B = PUFB(C
j
B) and

a random PUF challenge Cj
A.

7) B encrypts the PUF response ERj
B = Rj

B ⊕ Kj and
calculates the HMAC tag of Cj−1

A ‖Cj
A‖R

j
B with the

round key.
8) B sends the two challenges, the encrypted PUF response



A B

Cj
B = TRNGA()

XCA =
HMKj−1

A
(Cj−1

B ‖Cj
B)

Cj−1
B , Cj

B , XCA

Kj−1
A =

PUFB(C
j−1
B ) ⊕ Cj−1

A

Kj = Kj−1
A ⊕ Kj−1

B

HVKj−1
A

(Cj−1
B ‖Cj

B , XCA)

Abort on failure

Rj
B = ERj

B ⊕ Kj

Rj
B = PUFB(C

j
B)

Cj
A = TRNGB()

ERj
B = Rj

B ⊕ Kj

ERj
B , C

j−1
A , Cj

A, XCB XCB =
HMKj (Cj−1

A ‖Cj
A‖R

j
B‖C

j
B)

Kj−1
B =

PUFA(C
j−1
A ) ⊕ Cj−1

B

Kj = Kj−1
A ⊕ Kj−1

B

Rj
B = ERj

B ⊕ Kj

HVKj (Cj−1
A ‖Cj

A‖R
j
B‖C

j
B , XCB)

Abort on failure

Rj
A = PUFA(C

j
A)

ERj
A = Rj

A ⊕ Kj

XRA = HMKj (Rj
A‖C

j
A) ERj

A, XRA

Rj
A = ERj

A ⊕ Kj

HVKj (Rj
A‖C

j
A, XRA)

ACK Abort on failure

Store Kj
A = Rj

B ⊕ C
j
A

and Cj
B

Store Kj
B =

Rj
A ⊕ Cj

B and Cj
A

Delete Kj−1
A , Cj−1

B Delete Kj−1
B , Cj−1

A

Fig. 3: Ratchet Step

and the HMAC tag to A.
9) A derives the ratchet key of B as Kj−1

B =
PUFA(C

j−1
A )⊕Cj−1

B and the round key Kj = Kj−1
A ⊕

Kj−1
B and decrypts the PUF response of B.

10) A validates the HMAC tag. If there is a mismatch it
aborts. If the failure threshold is reached, the failure
procedure is followed.

11) A generates the PUF response Rj
A = PUFA(C

j
A),

encrypts it with the round key and calculates the HMAC
tag of the PUF response with the round key.

12) A sends the encrypted response and the tag to B.
13) B decrypts the response and validates the HMAC tag.

If there is a mismatch it aborts. If the failure threshold
is reached, the failure procedure is followed.

14) B replies with an acknowledgement and stores Kj
B =

Rj
A ⊕ C

j
B and Cj

A.
15) A stores Kj

A = Rj
B ⊕ C

j
A and Cj

B .
16) Both nodes delete the previous ratchet keys and chal-

lenges. They also discard any intermediate information
used in this phase.

III. ANALYSIS

A. Security

In this section we discuss the security of the proposed
protocol, focusing our analysis on the Step phase since it
occupies the majority of the protocol runtime. Our analysis
is based on a software proof-of-concept that was developed in
Python using an emulated SRAM PUF.

We use an adversary model based on the Dolev-Yao
model[21], namely allowing the observation and recording
of transmitted messages, and the decryption of ciphertexts if

TABLE II: Step Phase Operations

Operation Executions on A Executions on B

TRNG 1 1
PUF 2 2
XOR 5 6
HMAC 3 3

the key becomes compromised. The adversary is also able to
access the memory of the devices but does not have direct
access to the PUF or to protocol state while the latter is
executed. Thus it is expected that hardware provisions have
been taken for the aforementioned access control.

1) XOR encryption security: The encryption of the PUF
responses is based on XORing them with the round key.
Therefore, to ensure the security of the encryption, the PUF
challenges and round keys are required to have the same
length. Since the round keys are in turn a combination of
PUF challenges and responses, essentially the requirement is
that PUF challenges and PUF responses have the same length
which is true in our design. In addition both the keys (round
keys) and the plain texts (PUF responses) are random and are
refreshed in every round, preventing chosen plaintext attacks.
Thus, we conclude that the security of the XOR encryption is
ensured.

2) Message entropy: Three kinds of information are ex-
changed between the nodes: PUF challenges, encrypted PUF
responses, and HMAC tags of both. Given that challenges and
responses are generated uniformly at random by the TRNGs
and the PUFs respectively, and due to the entropy-preserving
nature of HMAC, we conclude the messages of the Ratchet
phase appears fully random to an eavesdropping adversary.

3) Replay attacks: The round key of the Step phase is
derived from a combination of the state of both participants
and is used as the HMAC secret. This directly prevents replay
attacks in the ratchet steps since the HMAC verification for
older messages will fail. In the communication with the AD
during the Initialisation phase, a monotonic counter is used to
prevent similar attacks.

4) PUF responses: It is vital for the PUF responses to
have a certain length that will prohibit simple brute-force
attacks and allow for a large number of responses without
repetition. For the proposed protocol, the ratio of the expected
lifetime of the system over the step interval ts determine
the required response length. In most practical applications a
length that is over 32 bits is deemed sufficient. For example,
a response length of 32 bits and a step interval of 100ms
would support over 13 years of continued protocol operation
a time period which exceeds the average lifetime of modern
electronic systems. Nevertheless, certain PUF constructions
are unable to provide responses of the required length, and
thus additional methods are needed to improve the number of
available responses and extract the required entropy.

5) Node compromise: Every protocol exchange is signed
and/or encrypted with a ratchet key or the round key. Further-
more, these keys are derived locally and are protected from
invasive attacks. Thus we conclude that the protocol provides
break-in recovery since an adversary who compromises one
of the nodes for a limited time does not gain any advantage
over the protocol once her access has been removed.



B. Performance

1) Calculations: Table II summarises the operations in-
volved in a single ratchet step. Regardless of the hardware
specifics, a single evaluation of the TRNG or the PUF has
the cost of a memory access or an I/O read operation. In
addition, XOR and HMAC are efficiently computed in modern
processors and can be accelerated further with hardware imple-
mentations. The Initialisation phase makes use of symmetric
cryptography which is relatively more computationally expen-
sive but can nevertheless also be accelerated and is designed
to be used very infrequently.

2) Storage and Message size: Each node is required to store
only one challenge and one ratchet key between Step phases,
with their size determined directly by the PUF response
length which was discussed above. Similarly, the size of the
exchanged messages and the corresponding network overhead
is only affected by the same response length since the HMAC
output size does not depend on its inputs. In our proof-of-
concept implementation with 64-bit PUF responses and 256-
bit HMACs the maximum message length was 56 bytes.

3) Step interval and Failure threshold: The ts and tf
parameters also have an important effect on the overhead of the
proposed protocol. The failure threshold tf needs to account
for application-dependent issues including network latency,
dropped packets etc. Conversely, while the minimum step
interval ts is mainly determined by the maximum throughput
of the protocol implementation, the maximum step interval
is determined by the human factor. Conceptually, the Step
phase is required to be repeated at a rate that is high enough
to prevent an adversary from accessing and modifying the
participating nodes. Thus, ts can range from milliseconds to
a few seconds or even minutes, depending on the particular
deployment, greatly reducing the overhead without necessarily
harming the overall security of the system.

IV. CONCLUSIONS

We have presented CRP Ratchet, a lightweight pairwise
protocol providing mutual authentication based on Physi-
cal Unclonable Functions. We detailed the operation of the
protocol and provided a short analysis of its security and
performance in IoT scenarios. Our protocol’s strength lies in
the renewal of the authentication secrets through combining
parts of the secrets of the participating entities. This feature
creates unclonable links between nodes and supports break-in
recovery.

Future improvements to the proposed protocol include a for-
mal security proof, performance optimisations, and a hardware
proof-of-concept to complement the software implementation.
Additionally, we are currently working on variants of the
protocol for different adversary models and with different
hardware assumptions, to enable the inclusion of the proposed
’unclonability stack’ in a variety of scenarios.

ACKNOWLEDGMENT

We would like to thank the anonymous reviewers for their
suggestions.

REFERENCES

[1] K. Goutsos, “PUF-Based Authority Device Scheme,” New-
castle University, Tech. Rep., 2019. [Online]. Available: http:
//async.org.uk/tech- reports/NCL- EEE- MICRO- TR- 2019-
212.pdf.

[2] M. Abdalla and M. Bellare, “Increasing the Lifetime of a
Key: A Comparative Analysis of the Security of Re-keying
Techniques,” in Advances in Cryptology — ASIACRYPT 2000,
2000, pp. 546–559.

[3] M. Marlinspike and T. Perrin, “The Double Ratchet Algo-
rithm,” Tech. Rep. [Online]. Available: https : / / signal . org /
docs/specifications/doubleratchet/doubleratchet.pdf.

[4] R. Maes, Physically unclonable functions: Constructions,
properties and applications. Springer Berlin Heidelberg, 2013,
pp. 1–185, ISBN: 9783642413957.

[5] R. Pappu, “Physical One-Way Functions,” Science, vol. 297,
no. 5589, pp. 2026–2030, 2002.

[6] J. Guajardo, B. Škorić, P. Tuyls, S. S. Kumar, T. Bel,
A. H. M. Blom, and G. J. Schrijen, “Anti-counterfeiting, key
distribution, and key storage in an ambient world via physical
unclonable functions,” Information Systems Frontiers, vol. 11,
no. 1, pp. 19–41, 2009.

[7] J. Lee, D. L. D. Lim, B. Gassend, G. Suh, M. V. Dijk, and
S. Devadas, “A technique to build a secret key in integrated
circuits for identification and authentication applications,”
Symposium on VLSI Circuits, pp. 176–179, 2004.

[8] G. E. Suh and S. Devadas, “Physical Unclonable Functions
for Device Authentication and Secret Key Generation,” in 44th
ACM/IEEE Design Automation Conference, 2007, pp. 9–14.

[9] Y. Dodis, R. Ostrovsky, L. Reyzin, and A. Smith, “Fuzzy
Extractors: How to Generate Strong Keys from Biometrics
and Other Noisy Data,” SIAM Journal on Computing, vol. 38,
no. 1, pp. 97–139, 2008.

[10] A. Van Herrewege, S. Katzenbeisser, R. Maes, R. Peeters,
A. R. Sadeghi, I. Verbauwhede, and C. Wachsmann, “Re-
verse fuzzy extractors: Enabling lightweight mutual authen-
tication for PUF-enabled RFIDs,” in Lect. Notes Comput Sc.,
vol. 7397, 2012, pp. 374–389.

[11] M. Rostami, M. Majzoobi, F. Koushanfar, D. S. Wallach, and
S. Devadas, “Robust and Reverse-Engineering Resilient PUF
Authentication and Key-Exchange by Substring Matching,”
IEEE Trans. Emerg. Topics Comput., vol. 2, no. 1, pp. 37–49,
2014.

[12] C. Huth, J. Zibuschka, P. Duplys, and T. Güneysu, “Securing
systems on the Internet of Things via physical properties of
devices and communications,” in SysCon 2015, 2015, pp. 8–
13.

[13] S. Kerr, M. S. Kirkpatrick, and E. Bertino, “PEAR,” in 3rd
ACM SIGSPATIAL International Workshop on Security and
Privacy in GIS and LBS, 2010, p. 18.

[14] M. Barbareschi, A. De Benedictis, and N. Mazzocca, “A PUF-
based hardware mutual authentication protocol,” Journal of
Parallel and Distributed Computing, vol. 119, pp. 107–120,
2018.

[15] M. N. Aman, K. C. Chua, and B. Sikdar, “Physical Unclonable
Functions for IoT Security,” in Proceedings of the 2nd ACM
International Workshop on IoT Privacy, Trust, and Security -
IoTPTS ’16, 2016, pp. 10–13.

[16] M. H. Mahalat, S. Saha, A. Mondal, and B. Sen, “A PUF
based Light Weight Protocol for Secure WiFi Authentica-
tion of IoT devices,” in 2018 8th International Symposium
on Embedded Computing and System Design (ISED), 2018,
pp. 183–187.

[17] U. Rührmair, “SIMPL Systems as a Keyless Cryptographic
and Security Primitive,” in Lect. Notes Comput Sc. Vol. 6805
LNCS, 2012, pp. 329–354.

[18] Y. Guo, T. Dee, and A. Tyagi, “Barrel Shifter Physical Un-
clonable Function Based Encryption,” Cryptography, vol. 2,
no. 3, p. 22, 2018.

[19] C. Herder, B. Fuller, M. van Dijk, and S. Devadas, “Public
Key Cryptosystems with Noisy Secret Keys,” IACR Cryptol-
ogy ePrint Archive, 2017.

[20] E. Leobandung, SRAM as Random Number Generator, 2017.
[Online]. Available: https : / / patents . google . com / patent /
US20190182054A1/en.

[21] D. Dolev and A. Yao, “On the security of public key proto-
cols,” IEEE Trans. Inf. Theory, vol. 29, no. 2, pp. 198–208,
1983.

http://async.org.uk/tech-reports/NCL-EEE-MICRO-TR-2019-212.pdf
http://async.org.uk/tech-reports/NCL-EEE-MICRO-TR-2019-212.pdf
http://async.org.uk/tech-reports/NCL-EEE-MICRO-TR-2019-212.pdf
https://signal.org/docs/specifications/doubleratchet/doubleratchet.pdf
https://signal.org/docs/specifications/doubleratchet/doubleratchet.pdf
https://patents.google.com/patent/US20190182054A1/en
https://patents.google.com/patent/US20190182054A1/en

	Introduction
	Our Contribution
	Unclonability
	Physical Unclonable Functions
	Related Work

	PUF CRP Ratchet
	Scenario and Assumptions
	Symbols and Definitions
	Initialisation
	Ratchet Step

	Analysis
	Security
	XOR encryption security
	Message entropy
	Replay attacks
	PUF responses
	Node compromise

	Performance
	Calculations
	Storage and Message size
	Step interval and Failure threshold


	Conclusions

