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> In Numbers

Students Professors
4.000 ( 135 ) (| | |
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I Studies and Lectures

Technische
Hochschule Ulm
University of
Applied Sciences

> Six departments

Electrical Engineering and

Mechanicaland Automotive
Information Technology

Mathematics, Natural and
Engineering

Economic Sciences

3

Production Engineering and

. Mechatronics and
. - Computer Science
Production Economics

Medical Engineering
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Applied Research
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Hochschule Ulm
University of
Applied Sdences

~

Five focus areas

* Modern Mobility
Digital Technologies
Sustainable Energy Systems

* Technology in Health and Medicine
* Intelligent Industrial Systems
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University of
Applied Sciences

I FPGA and ADAS/AD in B. Eng. EE

Durch die Wahl von 2 Schwerpunkten mit jeweils 4 Modulen kann das
Studium nach eigenen Interessen gestaltet und das fachliche Profil gescharft werden. Schwerpunkte

Elektrotechnik und Informationstechnik B. Eng.
Kommunika-
) Modul Modul
Bachelorarbeit mit Seminar Wahimodul S| Honswstare

High Speed Automati-

7 Electronics sierung
. _ = TR Modul
6 st ==
+ Methadon der Kom- b
5 F [ im mit der Lab munikationstechnik
gk i i "
4 [ o . ; Sof il gefung: u Modul Modul Fanaiation 1 Schal der
elektrische Maschinen Schwerpunkt 1 Schwerpunkt 2 ' I won Kom- ik
mumikatiorssystemen technik
3 F Math fiir die Modul Modul " i F: tschin
in Cas Elektrotechnik Schwerpunkt 1 Schwerpunkt 2 Vertraghchkeit
Lepstunas-
: Internet of e
s elektronik und Thino Wirtschaft
) Tl en ’ § . ) 1ings
2 Elektrotechnik Komm tachnlx  Mikrocomputertechnik Mathematik Physik ik Energietechnik g
Elektratechnik F inc Physik ’( Digitaitechnik
v ' chitek- +BWL
P R + Elektrische Energie- e + English far special
Plic s Schwerpunktmadule Ab dem 3. Semester einzeine Lehr- versorgung » Verteilte Systeme purposes
Ausfihrliche Infos zu den einzeinen Studieninhalten und Modulen unter; wiww thu. defet veranstaltungen in Englisch maglich + Antriebe und » Data Analysis + Europlisches
lagentechnik b Wirtschaftsrecht
+ Elektromagnetische + Projektmanagement

Vertréglichkeit
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nische
Hochschule Ulm
University of
Applied Sdences

In Chip / ECU In Vehicle Infrastructure / Wireless
Networks Networks Networks

NoC, MGT, AMBA AXI, CAN, LIN, Bluetooth, Wi-Fi IEEE 802.11,
LPDDR4/4x, Flexray, MOST Satellite Navigation GPS,
Ethernet AVB/TSN, Ethernet, Radio, TV, Wireless Entry, TPMS,
MIPI, HDMI, SCCB, LVDS, HDBaseT, V21, V2N, V2V,

PCl Express, SATA, Powerline, 125 kHz — 80 GHz,

DAC, ADC, SPI, I°C,
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Technische
Hochschule Ulm
University of
Applied Sciences

Cloud/ Edge

N RC Car
Software ")

as a test and development platform for
Autonomous Driving technology

Anp development

Institute of Communication Technology
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Program m.
;:;“‘;;‘lé‘c?em%
Time (CEST) PROGRAM
09:45-10:00 Registration
10:00-10:20 Opening Remarks fromthe Program Committee

Anestis Terzis, THU, Endric Schubert, MLE, Mathias Glithoff, Xilinx

10:20-11:10 FPGA and SoCDesign using MATLAB and Simulink for Functional Safety
Dimitri Hamidi, The MathWorks GmbH

11:10-11:40 PCle-over-TCP-over-TSN-over-10/25 Gig Ethernet
Endric Schubert, Missing Link Electronics

11:40-12:10 Mirror Replacement System-A FPGA-4-ADAS Story
Stefan Schiitz, Solectrix GmbH

12:10-13:00 Break
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(@THU

Technische
Program S B
Time (CEST) PROGRAM
13:00-13:30 Overview: Xilinx in Automotive, Mathias Githoff, Xilinx

Automotive System Architecturesfrom ADAS to AD, Ralf Neuhaus, Xilinx

13:30-14:00 Xilinx in Al — Versal Al-core, Al-Engine Architecture, Design Flow
Daniele Bagni, Xilinx

14:00- 14:30 Porting a Gesture Recognition Neural Network composed of CNN and LSTM to a FPGA-SoC
R. Briegel, JacoL FPGA Entwicklungen GmbH

14:30-15:00 HAPPi-Net: Hardware-aware performant perception of Neural Networks
Alexander Frickenstein, BMW Group

15:00-15:30 Security solution based on FPGA/SoC

Ralf Neuhaus, Xilinx
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FPGA & SoC Design for R

Meodel Coverage Analyss

F u nctional Safety (LTSt SUReg, SU, SOV e ILTESENG, FPGA Prototyping (FELV)

Back-to-Back HOL Simulstion

ArchitectureVerification Prevertion of Unintended Functionality
(SLTes, SLReg) (HOLY, HOLC)
‘Tic Moded Analysis
Model Reviews
(SLChk, SLDV, . HDL Coding
SLRG, HOLE) StandardsChecking
(HOLC)
L ] L4 ¥ ry ¥ h 4
System | i nts i Tl :

| | e
requirements | Specificaion | #* 7| Specification Model | # 7| Madel

Author Reguirements rehitec Development
(5LReq) fSysCom, 5L, 5F)

[ 2 ] £
Generated ASIC / FPGA
HDL Code Impl ementation

ASIC / FPGA
Implementation

HDL Code Genesation

{HDLC)

Dimitri Hamidi

Senior Application Engineer
MathWorks 0

dhamidi@mathworks.com

© 2020 The MathWorks, Inc.

| 4\ MathWorks

Agenda

» Motivation behind Model Based Design for FPGA/ASIC

» Model Based Design Workflows for 1ISO26262
» Development Workflow for HDL Code

» Verification and Validation

> Deep Learning on FPGA
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FPGA, ASIC, and SoC Development Projects

Wilson Research Report — Mentor Graphics

67% of ASIC/FPGA projects are behind schedule

Over 50% of project time is spent on verification
(42 % on debugging!)

" | 2030
Qi a2z | @3 | @4 | a1 |@2

Root cause of functional flaws in 50% of cases originate |*g, -
from specification - =

84% of FPGA projects have non-trivial
bugs escape into production

Statistics from 2018 Mentor Graphics / Wilson
Research survey, averaged over FPGA/ASIC 3

4\ MathWorks

Many Different Skill Sets Need to Collaborate

Poor communication across teams

RESEARCH REQUIREMENTS Key decisions made in silos
System-level issues found in late stages
SPECIFICATIONS Hard to adapt to changing requirements
System Architecture A o i .
Rapid innovation under a rapid
SPECIFICATIONS +erreesssssemssessssnssd  [rreeseeesssasssessessssans timeline — that's when this flow falls
apart.”
Jamie Haas

Algorithms Allegro Microsystems
SO @ ........................... Eﬁ ......................... |:I ..............
Embedded |  Digtal  :  Analog

Software Hardware Hardware Verification

System Integration
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SoC Collaboration with Model-Based Design

RESEARCH REQUIREMENTS
WHAT am | DESIGN Am | making
= < the right
\ making? System Architecture % thing?
Algorithms S —
R0 - -
HOW am | . . ) Is it going to
.. Implementation Architectures 5
making it? : Export g work?
‘ ) s “ Models i
Implementation Knowledge t ‘Generate Code 2
8 S
=)
Embedded Digital Analog Have | made
1
MAKE IT! Software Hardware Hardware it right?
- : ~—
System Integration
5
4\ MathWorks

IEC Certification Kit — 1S026262
I. Reference Workflow for:
I. Model-Based Design Development Workflow for HDL Code
Il. Systematic verification and validation (V&V) of models and generated code

1.  Tool certification/qualification accomplished by tool test suites, vendor audits

CERTIFICATE
MIL Unit and Integration Testing " g

Model Coverage Analyss —
{SLTes=t, SLI_an, Sa.i:o\f, SLOV) FIL Testing, FPGA Prototyping (HOLW) @

Bl CERTIFICATE
AN

Back-to-Back HOL Simulation . [P ————
Architecture Verifiation Preverrion of Unntended Functionaiity e
(SLTest, SLReqg) {HDLV, HDLC)

SaicModelAnalysis | =

Model Reviews s
[SLChk, SLOV, HDL Coding i

SLRG, HDLC) S andards Checking
(HOLE) =

A A

Y T
System ted ASIC / FPGA

[ B | Sl e— 4
. Feq | hitecture | | tmpl i | ]
requirements & | specification | | specification Model | L Model |_HDLCode 1mpl ementation . %
Author Reguirements chi re Development HDL Code Generation H : - 2
(5LReqg) , 5L, SF) {HDLE) & s Loor L
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Model Based Design Development Workflow for HDL Code

I. Executable specification: a model in early phases of development to
conceptually anticipate the functionality to be implemented, demonstrates
and verifies the compliance of the input-output behavior of
the model subject to the model specifications.

.  Implementation Model: Enhance fist stage by adding design information
and implementation details, used as input for the generation of HDL code .
Executable, final stage of the model evolution process.

m. Production-quality HDL code

System Requirements Architecture Implementation Generated ASIC/FPGA

requirements Specification Specification Model Model HDL Code Implementation
Requirements Architecture Modeling HDL Code Generation L El
Authoring Development Implementation

| 4\ MathWorks

Development Workflow: Author Requirements

> Author Requirements
> Establish biderectional tracebilty to models test and code
> Monitor and manage implementation status

System Requirements Architecture Implementation .| Generated _ ASIC/FPGA

requirements I Specification Specification Model T Model HDL Code Implementation
Requiren‘lents LAEE Modeling HDL Code Generation j il
Authoring Development plementatio

£ Simulink Requirements
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Requirements

Captured in

- Word,

Excel,

- DOORS, etc.,

= and/or
Simulink Requirements

* Changa Information

Smun: S | (Time Sepryr 25:Jeb 2047 1104000
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Development Workflow: Architecture Development

> Define model based hardware architecture

System
requirements

Requirements

Specification

Architecture
Specification Model

4\ MathWorks

Requirements
Authoring

£ Simulink Requirements

Architecture

Development

£s

stem Composer

Modeling

Implementation
Model

Generated
HDL Code

ASIC/FPGA
Implementation

HDL Code Generation

10



Model-Based Systems Engineering

= Architecture Models

= Profiles, stereotypes, properties

= Allocate requirements

= Views to focus on relevant parts

= Perform Analysis

System Composer

4\ MathWorks

Development Workflow: Modeling

> Use Simulink / Stateflow to model behavoir of your system

System Requirements Architecture

requirements Specification j Specification Model
Requirements Architecture
Authoring Development

£Simulink Requirements £System Composer £Simu|ink, Stateflow, Fixed-Point Designer

Flghn feapfon] Corrienrmrns.
g ST Compew
i’ 1 SmauAY
1 1 nstances Mass(hg) 1
§ — o I SmaliuAY 15902
[ « Py Alrframe 0.25
! A P o .- o Fusalage 17
“ a LandingGear 168
— == = @ Tail and Boom 27
| o Wings 3z
- - — « [ Flight Support Components 0626
[ 7 + [P ADSE Madule 0.156
— o ABDSE Antenna 0058
| o ADSE Board 0.008
Y LSS, BYGPS Module 0.398
} & GPS Antenra 0128
3 o GPS Board par
; o Pifot Tubs Moduls 0.075
i = « P FlghiComputar 0388
e = — ‘ o Main Board 0,145
= Profactive Case 0105
"
4\ MathWorks
Implementation | Generated ASIC/FPGA
Model HDL Code Implementation
Modeling HDL Code Generation
12
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Radar Design as an Example!

RequiresA7 different skills to be successful!

at least
System DSP Software Digital Mixed-Signal RF Desian Antenna
Architecture Algorithms Development Hardware Hardware 9 Design

TRANSMITTER

| | Digital .'.
EELEEL Front End b ‘ Targets &

Environment

Digital PHY RF Front End Antenna

Baseband [— Plajtal ADC ..
Front End ‘

RECEIVER 13

4\ MathWorks

Why MATLAB and Simulink?

* Rapid and flexible algorithm exploration, design, and analysis

+ Unified simulation of digital, RF, mixed signal and antenna
elements

Antennas

Algorithms RF Impairments
Array elements, configuration

Modulation, beamforming, synchronization Nonlinearity, noise

% Establish the mumber of component carriers R -

numCC = length (NDLRB) ; e ———

% Create transmission for sach component carries

Waveforms enb = cell(l,numcc);
j. for 4 = l:numCC

-~ enbii) = lreRMCDLI'E.5')s IITTER = -=
e T L snbii) NOLRR = MOLER(iLs 1 7 4
- /

Digital ' ‘ '
Baseband\ — FrolntlEnd » .“ P Targets

&
> Environm
Digital PHY RF Front End Antenna
| | Digital
Easeband Front End

A ™ 74 I e | —

Noise, interference

Measurements . = ‘ Mixed-signal
EVM, BER, ACLR Wo- NSNS '-_5} i ‘ Discrete- and continuous-time
14

12



Large Scale Modeling

Manage Design Related Files with Simulink Projects

Search, manage, and share related files in a Simulink project

= Access version control functionality (SVN/GIT support built-in)
= Peer review of changes and merge using comparison tools

Impact Analysis before making changes

4\ MathWorks

<o (55 L » G » MySandbox » FPGA_Sandbox » Comner Detection HDL_EML workflow + Work b | retye s
Sl Priject - Conver Detacticn s
O Project: Corner Detection -l e|- ey
| B Source Control =..,.,.,.
S Files | Name = Status SVN I Courent
| Fokne 5 U GotmStmind ; °
i B v
i E‘m | MATLAB_Algorithm v @
Lay Shex e 2 1 Models v a
a m"""ﬂ“" | 2dd buffers off.tcl v o
B |"a comerdetection Vecto... @
i s | comnerdetection Vecto.. v @
- O Dependencies [ ceenendorettion Vecta.. @
L Impact " comerdetection Vecto.. + @
"4 cornerdetection_Vecto.. @
| keep_hierarchy softtcl °
% sobel_edge.six v @
& | Requirements v @
® ) Uts v IS)
. Work v @
| ot st el - Y
5 Labels and Shertcats Detaits
B Builtdn SVN Integration Labeils

Development Workflow: Modeling

> Add implementation details
» Convert to fixed point
> Optimize architecture
> Generate production quality code

System Requirements

requirements

Architecture

Specification j Specification Model
Requirements Architecture
Authoring Development

Modeling

Implementation

éSimulink Requirements ﬁSystem Composer ﬁSimuIink, Stateflow, Fixed-Point Designer

e B b
r— s
4ram ——
: =) Annatation (allbsck ————
Ve o
L
-
T
e
_
Vg | B e DR SR -
="
et
=
=
4\ MathWorks
Generated ASIC/FPGA
Model HDL Code Implementation
HDL Code Generation
16
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HDL Coder - Certified by TUV SUD for ISO26262 for any ASIL

DESIGN

@l

Stateflow Re-used IP

MATLAB  Simulink

HDL

— Conforagelel:[s

Template
— TUV Ce
— TUV Re

Synthesizable RTL
AXl Interfaces
Synthesis scripts

onstration

r HDL

-
<
o
o
-
=

2w

| ©
*
o
= =2
<

Certification Artifacts Explorer

La)

File Edit Help

+J3d€ ¥

IEC Cartification Kit -
- 150 26262, IEC 61508, IEC 62304, EN 50128, IEC 61511

CERTIFICATE

No, Z10 067052 0025 Rev. 00

Haolder of Certificate:

Factory(ies) 87082
Caortification Mark:

Product:
Modelis):

Parameters

Tested

mccording to:

g 0

The MathWorks, inc.
) Ap Oove

Software Tool for Safety Related Development
HOL Coder™

e, (4
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Application Domains for HDL

4\ MathWorks
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Workflow & Strategies for hardware optimizations

HDL Optimized

Fixed Point ’ Optimize, "
Conversion = ’i ‘ a Iterate
]
N N
hd ||

Critical Path Estimation,
High-level Resources
Estimation

HDL Coder

)

"

L)
Ideal Floating h 4
Point Model RTL Design
(.v, .vhd)

)

) 4 I

A y

H Timing Report, -
Synthesis, l > Fit Report (area),
P+R Power Report

Fixed-Point Conversion

— Optimal Fixed-Point will save
area

and improve critical path

= Architectural choices, e.g.

— Resource sharing
— Linear, tree, cascade
— FCSD, LUT, CORDIC, Shift Add ..

Pipelining
— Input / Output pipelining
— Distributed pipelining

19

Data Types: HDL Coder Capabilities

Automatic Fixed-point Native Floating Point

Conversion

Fixed-point Algorithm Data Type Conversion

Generic Generic ASIC/FPGA
ASIC/FPGA Half/Single/Double Precision
RTL Native Floating Point

4\ MathWorks

Target-Aware Mapping

FTXILINX
Megafunction Logicore

RTL with Floating-point libraries

20

15
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Guided and Automated Fixed-Point Quantization

Simulate with \ Fixed-Point Choose to apply Simulate and
representative data to s Designer proposes proposed types compare

collect required ranges s data types or set your own : results -
e 9 A -|I_| )

w MODEL HIERARCHY = | Resulls o

5 ®y Simulink Root Name ~ Run CompiledDT SpecifiedDT ProposedDT Accept SimMin SimMax ©
g%:&m : %3 Compute Power/Add - Accumulator  Ranges(... double Inherit: Inh... nia 0 0.071427z =
3] [Fa] Pulss Detector 2 s Ranges(... double i e '
' Signal From Worksp'@  Compute Power/Product Ranges(... double Inherit: Inh... fixdi(0,16,15) 0 0.0713574
L3 Signal From Worksp ™ fomceie Amihecte. it Dococol oot Lot bk EL N 46 Sy o3 o AnaeTa0s T
{3 Unit Delay Enabled 4
— , |- Visuakzation of Simulaton Data °
~ RUN BROWSER .
¥|Ranges(@outle) (&) =
2 Al
@
E =
g
% =18
)
T} ==
21
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Generate Bit & Cycle True, Readable and Traceable Code

RcFaptd < FOC * Clarwe Trwegtomn %
& |[FyjsocFuptiaat b {BRFOC Curent Contral b [Py Carie Trasstorm -
a
[ [ —— - o x Clarke Transform
& @ m::g@mg-. ‘quantities into balanced two-phase quaniibes.
¥ — - - converted direct axis (alpha) component and thi axis (beta)
Contents -~ Clarke Tranafors it o e )
. " 18_Enit,
Algha
A
et L

— & raquirements for Date Typs Comversior

w 1,3, 1.8 Alpha

Data Type Conversion outl <= resize (ABC 0_sign DOWNTO 1), 1617 Hapha athits_Eimn <

Alphs <= std logic vector{Data Type Conversion ; Bain

— Block ts for Alpha Ssin 0 16 Ent2 =

pha_ net(3)

- Jul fa component Ll

Alpha_Gain mul temp <= to_signad{168Z4F34, 16) wignad; ']

Alpha_Gain_out <= Alpha_Galn mul_temp{23 DOWN (L W L Beta_Gain

— Block raquiremsnrs for § =

e R SR ¢ 130%. Paasiepcticron. |

ABC 1 signed <= signed{AMC 11t

— Block Seta Gain

- Al 1.1 e

Bata_Gain_mul tesmp <= to_signed{16#49E74, 16) * ABC 1 x

Beta_Gain_cutl <= Beta_Gain_mul tempi2% DoWNTO O) & 0" &

I
1132 Park Transform
3ce be een generated R 0 4 Canverts balanced rwo-phase orthagonal stationary system 1o as orthogonal rotating
S -_ reference frame.
odael andad reg e e 4
E 22
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Optimize Timing

Automation Control

Im -—p

HW Arch Design — >
Adaptive Pipelining Target Frequency Distributed Pipelining
_Insert and balance =200 MHz Balance only
Generated Model

Risource

Timing summary 4
CLBLUT: E— T
CLB Regi 0 Requirement 5

DSPs 2
Block RAM Tile

DSPs

Data Path Delay  2.049
Block RAM Tile

Slack
st

Timing summal ) e
Hmﬂ . . Synthesis &
Deta Path Delay 2.049 Implementation
Slack

o
CLB Registers 0
/]
o

23
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Optimize Hardware Resources

— r—
__{ e | x ’,
B .
|« l
- - }_
T ¥_re — -
i .:I
—’1 ) ¥_im :] -
o= I» Reduce usage of expensive resources
» Gain, Product, Multiply-Add

gm_complex_mult ©
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— o] + Discrete 1 025 i
- - ipariod:
it s 1 {pariad)
"'"* : T
ot % L '
=
oull § darmux
||r- — 1 —in1
it HuwhdodeRagister]

24

17



| 4\ MathWorks

Reference Workflow: Modeling

System

Requirements Architecture Implementation Generted HDL ASIC/FPGA
requirements

Specification Specification Model Model Code Implementation

Requirements

Architecture ASIC/FPGA

Modeling HDL Code Generation

Authoring Development Implementation
Simulink Requirements System Composer Simulink, Stateflow, Fixed-Point Designer HDL Coder Third-party tools
4 4 4 3
| 4\ MathWorks
IP Core Generation & Integration
Input Parameters
Target workfiow: |IP Core Gener
= Generate HDL IP core with standard interfaces e —
e
= Use Provided Reference Design e
Padkage: | o464 Generic Altera Platform
= Define your own Board and Reference Design Ptk i 0 i b
Sat Target Lib ZedBoard
= Integrate IP Core Automatically into Reference Design —_—
IP Core Interfaces
I - Internal/EXternal IO Simulink/MATLAB Generic IP Prototyping the generated IP
. algorithm across platforms on custom Reference Designs and SoC Boards
— AXI4 / AXl4-Lite
AXI Interface
— AXI4-Stream / Video | N [ rrssr | | 15 core \P
I A'&%Z:m HDLCoder » - HDL Coder oo ‘
— AXIl4 Master |/ IP Core Custom Reference Design / '
Custom Reference Design |
26
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| 4\ MathWorks

Verification and Validation in the Model-Based Design
Workflow

I. Verification and validation at the model level (design verification):
Demonstrate that the model used for production code generation behaves
as specified in its requirements and absence of unintended functionality

I. Verification and validation at the HDL code level (HDL code
verification): Demonstrate equivalence between the model and
generated HDL code.

Design Verification HDL Code Verification
| |
[ | | 1
Requirements Architecture Implementation Generated ASIC/FPGA

Specification Specification Model Model HDL Code Implementation
Requirements Architecture Modeling DL Code Generatio ASICIFPGI_\
Authoring Development Implementation

27
| 4\ MathWorks
V&V Workflow: MIL Unit and Integration Testing, Coverage
Analysis
Simulation / test authoring / coverage analysis
Simulink Test
= Simulink Coverage
Requirements |inking _- ‘] MIL unit and integration |~~ _
. . . - < i I > ~
4\ Simulink Requirements - testing / model coverage .
- /, ________________ \\
, — = N
Vs o ~< N
I, 7 ’ S~ ~ \\
//,:: ‘‘‘‘‘‘ ~o \‘\ \\
7 Requirements” S y
" traceability \ v
[ \ (]
L4 v A
System Requirements _ Architecture Implementation | Generated ASIC/FPGA
requirements Specification Specification Model Model HDL Code Implementation
Requiren_Ients Architecture Modeling HDL Code Generation j il
Authoring Development plementatio
éSimulink Requirements ﬁSystem Composer ﬁSimuIink, Stateflow, Fixed-Point Designer HDL Coder Third-party tools
28
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| 4\ MathWorks

Develop, Manage, and Execute Simulation-based Tests
with Coverage Reporting

Test Harnesses Test Manager
Test Sequence Blocks, Pass/Fail Criteria Test Definitions, Pass/Fail Criteria
Synchronized, simulation test environment * Author, execute, manage test cases
B — - * Review, export, report

= LOGICAL AND TEMPORAL ASSESSMENTE

—— Main Model

Tl -y

o Mssesm My postoltee @ a%0  Actaled s firs
DaComES s 2 SRS B for

B awe ™ & ] .

S Gt v ety i

Component
under test

G] ¢ @
I:- -
o 0 i e R e -
S
." .
= e
S omit e e Coverage
Baag Hestmty. -5 - -
o e g e Analysis and Reporting on model and code
29
| 4\ MathWorks
Simulation / test authoring / coverage analysis
Simulink Test Modeling standards checking,
g Simulink Coverage Design error detection
Simulink Check
Simulink Design Verifier
Requirements ||nk|ng - ’I\/IIIL unit and integratiorT S~a v
. . . -7 testing / model coverage RN
,‘\ Simulink Requirements 7 Sa
—a et M
¢ - L. .
’ e RN AN
// L7 SN N \\
I////"—- "\\\ \\ \
'/ Requirements « e RN \
@ traceability e N\ ‘< Sov
[ \ [ ) I’ Wy
‘ v X /I 9 " v
System Requirements Architecture «” S Implementation .| Generated _ ASIC/FPGA
requirements I Specification Specification Model T Model HDL Code Implementation
Requiren‘lents Architecture Modeling HDL Code Generation j il
Authoring Development plementatio
£Simulink Requirements ‘\System Composer ‘\Simulink, Stateflow, Fixed-Point Designer .‘\HDL Coder Third-party tools
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Static Model Analysis | :
Compatibility

Standards &
Guidelines Checks
* Automate compliance
to 18026262

* Customize checks
*Find and fix compliance

issues while you design
with Edit Time Checking

v (W 5 Modeling Standards for IS0 26262

[] =1 “Display configuration managemeant data
| Display model metrics and complexity report
=] Check for unconnect

W] &5 High-Integrity Syster l..'sage of pmhlblted block

? ) Bug Reports

[1] x2 3

4\ MathWorks

Modeling Standards, Metrics & HDL

Model Metrics

* Analyze complexity,
size, reusability

* Assess design quality

( ‘\\\\ P
47.2% 70.5% \\I

High Integrity MAAB

HDL Code Advisor

Model compatibility with
HDL Code Generation

31

Design Error
Detection

*Uncover hard to find
dead logic and design
flaws

ry

Rl
astipattersla/Sum
Owerfow VALID

Eimiee ==
wed @

antipattern]a) Abs
Ovestiow ERROR- View tesf e

Desived Ranges: || Derived Ranges: ]

Oupot [38477] || Outpot 1]-128.127]
b =25 R

Static Model Analysis Il : Formal Verification

Test
Generation

* Automate test case
generation to complete
coverage

4\ MathWorks

Requirements
Proving

*Prove formally design
meets requirements

Property proving completed normally.
1/1 abjective s proven valid.

Results:

obstacle
EndStop 0

—P Act_DownCmc Q

Requirement 1

32
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| 4\ MathWorks

V&V Workflow: Static Model Analysis

Model vs. code

Simulation / test authoring / coverage analysis “\HDL Coder
Simulink Test Modeling standards checking, . HDL Verifier
— Simulink Coverage Design error detection

Simulink Check
Simulink Design Verifier

- ~~o

Requirements ||nk|ng _ -~ "MIL unit and integration ~ ~~ _ o a R e ~o
- . - testing / model coverage s -7 . S
‘\Slmullnk Requirements /’ 9 9 DN // FIL Testing, FPGA S
—p ,’ ___________ \\ < \\
, - BTy N ,/ _ o N
/, /la \\\ \\ / ,’— ‘\\ \\
¢, s ' P o\ HDL Codi N
GRS AN \ F N oding
pRe I;e u|remen;s . N o Bacg:to-lBatc_:k HDL ‘. Standards Checking '\
" q . Leisy PR imulation a i Yy \
" traceability \ ’ N e N Prevention of \ ’ S )
*" v ; ) 4 ;‘v ',i ;’ unintended functionality | ; ; l
’ \ ’
System Requirements Architecture «” S Implementation Generated <’ ASIC/FPGA
requirements Specification Specification Model Model HDL Code Implementation

Architecture ASIC/FPGA

Requirements Modeling HDL Code Generation

Authoring Development Implementation
£Simulink Requirements !}s stem Composer Simulink, Stateflow, Fixed-Point Designer £HDL Coder Third-party tools
33
| 4\ MathWorks

Verify and Debug with MATLAB and Simulink

@M

SystemVerilog

= Use HDL Verifier to:

— Cosimulate RTL back-to-back with the
model to debug before FPGA deployment

HDL Cosimulation
Mentor/Cadence

Simulator

Simulate FPGA-in-the-loop with your
MATLAB/Simulink tests

FPGA-in-the-loop
GAJnh

— Generate SystemVerilog DPI-C

=

components for the verification team: Referen
= Reference models Test‘
) Scoreboard
= Test sequence items sequences
= External models SystemVerilog
Test Bench

34



4\ MathWorks

Model Based Design for FPGA/ASIC

What is your value? T =

Enable collaboration by integrating workflows
with Model-Based Design

Shorten development time and react faster to changing
requirements with Automatic HDL Code generation

Reduce verification time with HDL/FPGA Co-simulation and
increased reuse with automatic test bench generation

Streamline 1S026262 certification with IEC Certification Kit and a
certified toolchain

35

4\ MathWorks

Deep Learning on FPGA

»Deep Learning is state of the art for many
perception problems for AD

Lidar Object Detection Radar Signature Classification

36
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Why deploying DNNs on FPGA?

Throughput

Development

Latency
Power
consumption
Worse Better
Interfaces
Size

effort

GPU

—FPGA

—CPU

'Challenges of deploying Deep learning models on FPGAs

= Large scale matrix computations

4\ MathWorks

37

4\ MathWorks

— TFLOPS: 230M weights and 724M MACs input “"’1"" “2“" °°;" “:“’ “;" fc6 | fe7 | fc8
Parameters 148
(Bytes) nfa | 140K | 1.2M | 3.5M | 5.2M | 1.8M M 64M  16M
» Complex architecture “?m")"s 588K | 1.1M | 728K | 252K | 252K | 168K | 16K | 16K | 4K
105 | 223 149
— Scale of data movement across the DDR FLOPs | mia | 0" | “pg | g |112M| 74M STMEIRGHINISSM

= Manual workflows are tedious

Workflow:
= Exploring multiple networks

= Exploring the resource and performance tradeoffs

Deep learning networks are too big for FPGAs

38
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4\ MathWorks

Prototyping: Design Exploration and Customization

User IOQIC % Run FPGA predict with Profiler turned on
\L ,|\ [prediction, speed] = hW.predict(inputImg, ‘Profile’,'on');

&>

Trained DL
Network

Prototype

Verify

¥

‘deepNetonkDesigner

Deep Learning Froocessor Profiler Performance Results
Latenoy (oyoles) Latenoy (seconds) FramesNom Total Latenoy Frames/s
Deep Learning Processor Profiler Performance Results FIELNLS s
LastLayerlatency(cycles) LastlayerLatency(seconds) Frameshus Total Latency Frames/s
Ketwork 2138558 0.00713 1 1138687 148.3
conv_module 850904 000217
com_1 268213 @.00887
maxpool_1 23588 8.09231
crossnorm 128372 0.0e042
com_2 159355 a.00a30
maxpool_2 20144 @.000a7
fc_module 1487754 0.00406
fc 1 1479124 0.00433
fe 2 BE28 8.00023
* The clock frequency of the DL processor is: 390z
39
4\ MathWorks

Generate Custom Processor for FPGA/SoC Integration

User |OgIC % Run FPGA predict with Profiler turned on
\L ,|\ [prediction, speed] = hW.predict(inputImg, ‘Profile’,'on');

@ | Prototype :
) Verify
Trained DL
Network

‘ deeplletworkDesigner

| S

’ # of threads, int8/single ..

FPGA/SoC

Integration
External Memory |
il L | e—— - —
Mol Coder | Mem I/F IP |
s
S Reference Desian llio|| Pre- | Generated | Post- |fyo
\-_____________________________7__! processing core processing

25



4\ MathWorks

MATLAB supports the entire deep learning workflow — from Data to

Deployment

PREPARE DATA

() Data access and
N preprocessing

4>|i' Simulation-based

data generation

/7 Ground truth labeling

CREATE MODEL

Model design and
tuning

Hardware-
accelerated
training

Model exchange
across frameworks

QJ

DEPLOY SYSTEM

@ Embedded Devices

Enterprise Systems

O

Edge, cloud,
desktop

h Iteration and Refinement A

41

4\ MathWorks

Pedestrian and Bicyclist Classification Using Deep Learning

Bicycle

bic

1000

ed + bic
1000
o
1000

05 1 15
Time (s)

&
1000

05 1 15
Time (s)

Frequency (Hz)
Frequency (Hz)
Frequency (Hz)

=
1]
S
=)

ped+ped

Synthesize
radar signals

-
S
S
S

1000
o " ~ - > q
1000 (8

Frequency (Hz)
)

S
S
=

05 1 15
Time (s)

STFT, scaling,
and
normalization

CNN

classifier

True Class

Predicted Class

testAccuracy = 0.9530

One pedestrian
One Bicyclist
Two pedestrians

Two Bicyclists

One pedestrian
and one bicyclist

42
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‘l MathWorks

Scene Recognition using Radar on Xilinx ZCU102

4\ MathWorks

Thanks for your attention
Questions?

Dimitri Hamidi

Senior Application Engineer
MathWorks @

dhamidi@mathworks.com

a4
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PCle-over-TCP-over-TSN-over-10/25GigE
Dr. Endric Schubert, CTO

Presentation at
“Programmable Processing for the Autonomous / Connected Vehicle” Sep-24 2020

https://innosued.de/workshop-programmable-processing-for-the-autonomous-connected-vehicle/

m-I_e 2020-09-24 Company Confidential 1

Outline
WHY

e Automotive needs 10 Gig networking, or more! Electric vehicles and ADAS / Automated Driving
push the migration from Domain-based over to Zone-based Architectures, which again pushes
for more bandwidth and real-time capabilities in the Automotive Network.

WHAT

e Out patent pending technology integrates IEEE Standards for Time-Sensitive Networking with
Heterogeneous Packet Tunneling for PCle, 100Base-T1, MIPI CSI-2, CAN-FD, and others. Utilizing
Protocol Acceleration in hardware we can scale to 10 Gbps linerates, and beyond.

HOW

® A Software and Semiconductor IP core subsystem which integrates 3rd party IP from German
Fraunhofer with technology from MLE and can be licensed for FPGA and ASIC implementations.

m-I_e 2020-09-24 Company Confidential 2
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Backgrounder Missing Link Electronics

Our Mission is to Head-quartered in Silicon Valley with Design

e Apply FPGA technology for
Domain-Specific Architectures

Offices in Germany

e Founded 2010, employee owned

e Offer pre-validate FPGA subsystems of e 15+ Certified FPGA Designers
FPGA IP blocks and open-source software

e Support customer projects with deep
expertise and hands-on design services

Technology Partnerships

e 50+ Presentations at Technology
Conferences, 4 Patents

] =
~ Fraunhofer  ZZ Fraunhofer
/_7 Heinrich-Hertz-Institut IPMS
£XLNX @ e
ALLIANCE PROGRAM ZP_GA(D(ES'&‘”[ ok 15!
PREM'ER Solutions Networ
aws, B OpenPOWER
m-I_e 2020-09-24 Company Confidential

Our Technology Achievements

e Patented technology in the fields of networking, mixed-signal, functional safety

o

o

o

o

US Patent 9,209,828 - Configurable Mixed-Signal Systems

US Patent 10,140,049 - Partitioning Systems Operation in Multiple Domains
US Patent 10,509,880 - Automation for Configurable Mixed-Signal Systems
US Patent 10,708,199 - Heterogeneous Packet-Based Transport

e 50+ Presentations at Technology Conferences and in Technology Journals

Embedded World Conferences

PCI-SIG Developers Conferences

IBM Open Power Summit

SNIA Storage Developers Conferences

Flash Memory Summits

Xilinx XCELL Magazines

XILINX Developer Forum and Security Workshops

2020-09-24 Company Confidential

29



Domain-Specific Architectures

FPGAs as a very powerful Challenges: The End of Moore’s Law and Scaling

processor that executes
“dataflow software”

16nm Zynq RFSoC

55nm Radeon HD4870

40 Years of Processor Performance

100000

10000

Apply HPC/HA Datacenter
technology to other
verticals - “Proudly
borrowed elsewhere!”

1000

Performance vs. VA11.780

1980 1985 1990 1995 2000 2005 2010 2015

Source: John Hennessy and Dawid Paserson. Computer A e 62018

I I I-I_e 2020-09-24 Company Confidential 5

Our FPGA Design Expertise

e Mentor, Cadence, Xilinx Toolflows

Zyn@g-7000 SoC in designs since Q1/2012

Zynq Ultrascale+ MPSoC in designs since Q4/2015

Zyng UltraScale+ RFSoC in designs since Q2/2018
PetaLinux / Vanilla Linux and Yocto-based SW development

e Multigigabit transceiver configurations
o PCle Gen2/3/4, SATA 3/6G, SAS 6/12G, NVMe,
o  CAPI, JESD204B, DP/HDMI, MIPI CSI-2 D-PHY
o 10/25/4050/100G Ethernet, Low Latency Ethernet
Radar, civil, mil/aero, automotive
camera, Lidar, data recording
Functional Safety Design Flows ISO 26262 (ASIL), IEC 61508 (SIL)
Security & Trust
o PUF, Crypto, Trusted Execution Environment, OP-TEE

I I I-I_e 2020-09-24 Company Confidential 6



Zone-Based 10 GigE Automotive Backbone

Doyou ...

e Prefer open IEEE standards over closed
proprietary ones?
Need 10+ Gbps bandwidth?
Need deterministic, low-latency real-time
network behavior, namely TSN?

e Need heterogeneous connectivity with
PCle, 100Base-T1, MIPI CSI-2, CAN-FD, etc?

e Need Functional Safety and Security /
Hardware Root-of-Trust?

=> Use time-to-market solutions from MLE
100% “Made-in-Germany”

I I l-I_e 2020-09-24 Company Confidential

MLE LabCar for “Tunneling” PCle (and else)

FPGA-based Prototyping System for
Architecture Exploration and Development

e Example of Zone Gateway Node

:muu

__ PClaAduplar |
i [ vourc | 1
E|_ I 100gE
=== 8L

Commercial Product License for FPGA or ASIC
implementation

Sign-once License for complete subsystem
including 3rd party IP

Customization NRE fee

Prototyping example:

4-node “Lab Car”, incl. Hardware, Software,
Firmware and licenses for in-house evaluation
and FPGA development

=> Use time-to-market solutions from MLE
100% “Made-in-Germany”

I I l-I_e 2020-09-24 Company Confidential



Why PCle?

Future-proof road-map, driven by PCI-SIG
PC, Cloud Computing, Embedded Systems drive this roadmap
Best-in-class price ($) per performance (Gbps) ratio
Modern automotive SoCs all support PCle

2020-09-24

Company Confidential

Why Ethernet?

Future-proof road-map,
driven by PCI-SIG

PC, Cloud Computing,
Embedded Systems
drive this roadmap
Best-in-class price ($)
per performance
(Gbps) per length
(meters) ratio

Distance vs Speed

Ethernet operates at

different speeds over

different distances

depending on the

media :

« backplanes up to Im

= Twinax to 15m

« Twisted pair to 100m

= Multimode fiber to
Skm

= Single-mode fiber to
40km

ethernet alliance

Rate (b/s)
400G 000 O
100G o O [cXe)
40G ce OO0 e .9
10G o 0 e® ®
1000M © eo0o eo
100M @ oe
10M °
M
0.1 1 10 102 10° 104 10°
Key: Distance (m)

O -Backplane @ - Multimode Fiber

@ - Twin-axial

@ - Twisted pair O - In standardization

@ - Single-mode Fiber

mle

2020-09-24

Company Confidential
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Why TSN?

e |EEE open standard
for real-time
networking

e Telcoand
Datacenter drive the

TSN Overview

Time sync:
Timing and Sync (802.1AS)
includes a profile of IEEE 1588

TN
Synchronization

/TSN Components\

Ultra reliability:

Frame Repl & Elim (802.1CB)
Path Control (802.1Qca)
Per-Stream Filtering (802.1Qci)

roadmap Reliability Time sync (P802.1AS-Rev)
Bounded low latency: !
Credit Based Shaper (802.10!,) Resource Mgm) | | Dedicated resources
Preemption (802.3br & 802.1Qbu) [ \_ _/ |&API
Scheduled Traffic (802.1Qbv) Stream Resv Prot (802.1Qat)
Cyclic Q-ing & Fwd (802.1Qch) TSN configuration (P802.1Qcc)
Async Shaping (P802.1Qcr) —> Zero congestion loss YANG (P802.1Qcp, etc.)
Link-local Resv Prot (P802.1CS
Guaranteed data transport with bounded low latency, low delay variation, and extremely low loss
m-I_e 2020-09-24 Company Confidential 11
Unique Technology Combination
1. PCle Range Extension via Robust, Long-Range Protocol Tunnels
2. PCle Non-Transparent Bridging (NTB)
3. PCle/ NVMe Full Acceleration
4. TCP/UDP/IP Full Acceleration (Fraunhofer HHI)
5. Time-Sensitive Network IP (Fraunhofer IPMS)
= Real-Time Multi-Protocol Heterogeneous Packet-Based Transport
Licensed by other Xilinx customers as Platform Subsystem
12

2020-09-24

mle

Company Confidential
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PCle Range Extension via TCP/IP

e Fully transparent to network equipment

O

o

o

@)

e A“distributed” PCle Switch

o
o
o
o

n

Just a bunch of TCP sessions

No special traffic handling required
e Fully transparent to PCle

Reliable transport via TCP
Congestion control via TCP

In accordance to PCle Spec

Scalable via TCP session count
Supports latency requirements for “sideband” signals
Special care needed to avoid deadlocks

e Independent of lower network layers, e.g. physical layer

CPU —

Root
Com plex
(RC)

PCle

PCle

Endpoint

Endpoint

' Endpoint

m-I_e 2020-09-24 Company Confidential 13
Concept of PCle-over-TCP (1)
m-l.e 2020-09-24 Company Confidential 14
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Concept of PCle-over-TCP (2)

TCP/IP TLP1 TLP ...
1 NRRERRERINN
PCle 1 PCle 2 TLP1 TLP2 TCP/IP 1 TCP/IP 2 TLP1 TLP2 PCle 1 PCle 2

DO NN OO COCLCTTDY DL - o - (D I

~ Root Ple Networkl @ TCP/IP o INetwork| '— P i i End-
Complex A ' point.
Host PC FPGA 1 FPGA 2 Device

---- Distributed PCle Switch
m-I_e 2020-09-24 Company Confidential 15

TCP/UDP/IP Full Accelerator

e “Packet Processing” in hardware (FPGA/ASIC)
o Low latency in microseconds
o Deterministic (no CPU, no cache misses)
o Performance scales to 100 Gbps

e Inaccordanceto IETFRFC 1122

Mature technology licensed from Fraunhofer HHI

Z Fraunhofer

Heinrich Hertz Institute

Extensible Real-Time Behavior via TSN MAC

Z Fraunhofer —_—

IPMS

| 1G / 2.5G / 10G / 25G / 40G / 50G / 100G Ethernet ‘

I I I-I_e 2020-09-24 Company Confidential 16
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PCle NTB - enables CPU-to-CPU Direct Comm

e Combines Network-on-Chip

with PCle Upstream Ports
EP A BP T e “Remote” DMA plus
== Mo = =y sl Write-Only Communication
Q £ 2 e Not a PCle Standard, but
Y ! “blessed” by PCI-SIG
i 1
o PCIIB EP Func. 2 2 PCle EP Funr:: 2 PCle (MR-IOV is abandoned as of PCle Spec 6.0)
1 i
m | 84] ! —
E REG | PNTB | SNTB E REG | PNTB llsrsma e nterconnect
‘I:ranslation Translation ——
i s Data Path
3 Iz
________________ &
|

I I I-I_e 2020-09-24 Company Confidential 17

PCle NTB - Via Well Known Network API

Software Stack on Compute Node Application Programmer’s View

(Linux, QNX, Adaptive AUTOSAR, ...)
e  Fully transparent comm. via PCle NTB

= AUTOSAR Adanti o Local (within one ECU)
aptive .

3 P ©  Remote (between multiple ECUs)

w

-§ SOME/IP e [P address for each. Compute Node _

® *  Gateway does routing, fail-over re-routing

OS Networking (TCP/IP) e  Send/receive TCP/IP, UDP/IP, SOME/IP messages

R — - — SOMEIIP Message

2 y - G SRR S AT R mm

H P2P Communication \

8 -

" — ——— Message 1D (Service ID / Method 1D} [32 bit]
LI /m‘ﬂ IV . Length {32 ba struct x1 {
Request 1D (Chiant 1D / Session 1D) [32 bit] uint32 3 vint32 3

Protocol Interface Message Return floatia ba Hoaal 139

2 g Version |8 it] | Version 8 bit] | Type [Bbit) | Code (8 t4) floatiz b1 ‘"‘:‘;‘;’Z{ A

QU

a uint32 2 float32 e[2]

% float32 ee@ ot °F

pat) floati2 e 1

1

™ uints ¥

I I I-I_e 2020-09-24 Company Confidential 18
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PCle NTB High Performance Delivered

. . Host A ’ Host B
e Write-Only Comm via Doorbells : _
Transmitter Address Space 4 Receiver Address Space

and PCle Posted Writes 5000 : 040000
e Avoids difficulties of PCle multi-device :
e Scalesto > 32 PCle RCs

Shadaw
“Borrowed"” from NVMe Spec

I I l-I_e 2020-09-24 Company Confidential 19

Network of PCle - Onchip, Offchip, Backbone

Custom Switch Based Design

I I l-I_e 2020-09-24 Company Confidential 20
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Platform Technology Example

Fully integrated system stack for automotive

connectivity
e Available for ASIC and/or FPGA implementation

TSN Features:

e |EEE 802.1AS, 802.1Qav, 802.1Qbv,
802.1Qci, 802.1Qch

e Switch and Endpoint mode

e Scales to 10/25 Gbps

TCP/UDP/IP Features:

e |ETF RFC 1122 Supported

e Autosar 4.x SOME/IP accelerated
e Scales to 10/25/50/100 Gbps

System-level protocol stack example

PCle Features:
e PCI-SIG Base Spec 3.1 or 4.0 using x1, x4, x8
e Scales to 8/16/32/64/128 Gbps

I I l-I_e 2020-09-24 Company Confidential 21

Implementation with Xilinx FPGA

b bl

!

!

: o 1

I I l-I_e 2020-09-24 Company Confidential 22
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Ongoing Research & Development w/ Partners

e Functional Safety (apply PCle aspects for High-Availability)
o Watchdog for PCle AER (Advanced Error Reporting)
o PCle DPC (Downstream Port Containment)
o |EEE 802.1CB (Frame Replication / Elimination)
e Security
o PCle RC/EP Authentication
o ARM Secure OP-TEE
e Real-Time Behavior
o |EEE 802.1AS and PCle PTM

m-I_e 2020-09-24 Company Confidential 23

m-I_e 2020-09-24 Company Confidential 24
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PCle-over-TCP-over-TSN-over-10GE Lab Car

Uses ASIC Emulators
from ProDESIGN GmbH

“LEGO"-like interface

boards for
e PCle
e 10/25G Ethernet
e efc
m-I_e 2020-09-24 Company Confidential 25

PCle-over-TCP-over-TSN-over-10GE Lab Car

Backbone with
2 FPGA Gateways

for
PCle-over-...

to
m.2 NVMe SSD

from
mini-ITX PC

m-I_e 2020-09-24 Company Confidential 26
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PCle-over-TC P-over-TSN-over-1 0G

V%

E Lab Car B

¢ o

£

Backbone with
2 FPGA Gateways

for
PCle NTB

between
2 mini-ITX PCs

m-I_e 2020-09-24 Company Confidential 27

Our Contact Information

Missing Link Electronics, Inc. Missing Link Electronics GmbH
+1 (408) 475-1490 +49 (731) 141149-0

2880 Zanker Road, Suite 203 Industriestrasse 10

San Jose, CA95134 89231 Neu-Ulm

United States Germany

Email contact; sales-web@mlecorp.com

m-I_e 2020-09-24 Company Confidential 28
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solectrix
Mirror Replacement System
An FPGA4ADAS Story

Dipl. Ing. (FH) Stefan Schiitz
Managing Director Solectrix
R&D Director Automotive

solectrix)

Mirror Functional Safety
Replacerment meets Imagin
Slj/stem P ik Versatile
) Ik Platform Outlook:.
= Overview « Compliance wit . Mext Generation &
- Reasons for a CMS . standards . Soc. FPGA SO\U‘I\OF\ A\ \nkegranion
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- Bjggest Challenge: * Protection at the Object Detection
Functional Safety right place
meets Imaging * Versatile Platform

Mirror Replacement System

An FPGALADAS Story
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Mirror Replacement System - Overview SO:_IeCt__ri@

Topic: Replacing conventional exterior mirrors with equivalent & suitable Camera Monitor System (CMS)

- aerodynamic advantages - allows new design concepts - enabling further ADAS features

Challenges:
Exterior mirrors are safety relevant vehicle parts for securing the driver’s indirect rear view
The CMS must meet specific quality criteria to display the rear view sufficiently
Receive & display more information and integrate certain comfort/ADAS features
Solectrix contributions:
Research since 2012 regarding CMS Core features, i.e. Image Quality and Field of Views
Series development for a “truck-CMS” with ASIL B criteria since 2015 with SOP 07/2019

Research and Development now on 2"9 generation of CMS Features

Supplier Awards 2019 - category innovation

Mirror Replacement System - Overview sulectri@

Mirror Replacement System on a truck

.
R 4 )
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Mirror Replacement System - Reasons for a CMS Spilect__l’i@

Reasons for a CMS as Mirror Replacement:

Better fuel economy due to improved aerodynamics - Reduction of CO2 emissions
Improvement of aeroacoustics
Improved vision
No glare at direct sunlight or due other high-beam headlights
Improved night vision - better than the human eye
Improvement of field of view, blind spot minimized
Improvement of direct vision — smaller obstructions
Integration of smart comfort features and new view options

Enabling new advanced driver assistance systems

Mirror Replacement System - Lot of things to consider ... so:_lect__ri@

Lot of things to consider ...

Optical-electrical-optical transfer function has to be optimized for maximum contrast and true color reproduction,

especially regarding adequate response to changing lighting conditions

Perfect resolution has to be shown, which is also relevant for the selection of the sensor and display resolution and size

Image changes have to be depicted with a minimal time-delay for the whole optical-electrical-optical path

Different general day and night characteristics & properties has to be considered for the whole imaging path

Need of Automatic.-Panning, so that the system always shows the entire trailer (because the FOV cannot be changed by moving the head)
The CMS has to ensure that no image loss and frozen images occurs

The state of the CMS must be clearly recognizable and secured/ensured (boot up, operation, safe state)

The whole image reproduction (color and contrast reproduction) has to be ensured

to avoid any loss of information's, artifacts, etc. and controlled adaptions to changes in ambient conditions
Compliance with standards and laws for indirect vision and CMS and end customer acceptance

High level of integration in vehicle infrastructure and architecture in general
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Mirror Replacement System - Biggest Challenge sqlect__ri@

Biggest Challenge: Functional Safety (1S026262) meets Imaging

HQ Image reproduction - HDR, Anti-Flicker, 3D noise filter, tone mapping, day & night characteristics
Variable FOV (Field of View(s) / Visions) with different view generation

Low latency with defined step function response regarding AEG & AWB (e.g. tunnel scenario)
Trailer Tracking for automatic panning of the shown view (to show the entire trailer)

Digital Assistance e.g. with specific overlays to support docking maneuvers or lane changes

Secured and Safeguarded -

To avoid frozen, delayed or

artifact disturbed images

Functional Safety meets Imaging - Overview S_Ol_le_ct_ri@

irror Functional Safety
icement meets Imaging
‘tem : Verse
i *» Overview

) : . Platf
view * Compliance with
wra CMS standards * SoC FPG
285 to » Tailored and exact * Tailore«
defined Imaging « Comfort
ange: * Protection at the Object
fety > right place
g * Versatile Platform

-~
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Functional Safety meets Imaging - Compliance with standards SOJEﬂ_l’i@

1. Vocabulary

2. Management of functional safety

[2.6 Safety management during the concepl phase | |z-r Safely management after the item’s release |
lor

|2-5 Orwverall safety management Land the product

3. Concept phase = E 4. Product development at the system level 4 Production and operation

tion of product 4-11 Release for produc
it at the system leval

1T _ 4-10 Functional safet . 3 : =
3-6 Intiation of the safaty Wecycle _ Operation, service
nits

imainienance and repair), and

4-0 Safety valida decommissioning

|3-7 Hazard analysés and risk

(3-8 Functional salety
jconcept

5-8 Evi in of the
arc b ectural metrics

5 Evaluaiion of e &
viglations due 1o rando
(alures

5-10 Hardware inlegration 2
(lesting

B. Supporting processes

-5 Interfaces within distribuled developments B-10 Documentation
-6 Specilicalion and management of salely requirements -11 Confidence in the use of software lools
-7 Configuration management -12 Quaillication of software compenents
-8 Change managemani 3-13 Qualfication of hardware componants
-8 Verification -14 Proven in use argument
9. ASIL-ori i and safety-ori |
8-5 Reguirements decomposition with respect to ASIL tailor [8-T Analysis of dependent failures |
8 Crileria for cossistence of skments [9-8 Safely analyses ]

10. Guideline on IS0 26262

Functional Safety meets Imaging - Tailored and exact defined Imaging SD:IBCt__I’iQ

System level for experimental/fundamental research

Systemic test model Stage 1 ~ </
Test model - b l
* Requirements * Benchmarks
» Acceptance criterla »* L i FI:;I‘:‘:‘ > \J\ P + Rating matrix S “ ! - \
= Design T < » Validation A~ f
L T -
| N {1) MIL: Model in the Loop %
N
~ 7
: , \
N\ \
v ~ Stage 2
N
b F
% f & Ref
% Fivad point & bitexact k & eference
| | Cooseten g e et ats ) » release
iy, Fail
| N
| i {2} SIL: Software In the Loop
| Implementation model b % Result analysis
lI N " \ Stage 3
| Waiton -
| Reference Pass
approval Ceode T
b g b o o — 3 (arget)/ > > B Target
VHOL (3] release
Fail
i {3) PiL: Pr in the Loop
Derived implementation Result comparison

Implementation level
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Functional Safety meets Imaging — Protection at the right place SQ_I(-_!Ct__I’i@

Detection Rules at the right places for ASILA/ B/ (C)

Faults: Delayed - Frozen - Disturbed
Frozen image stream - stream of frames with non-increasing framenumbers
Delayed image stream - consistent but delayed stream of frames with increasing framenumbers

Disturbed image stream - loss of information within the content, e.g. due to faults when multiple images

are combined together like stitching or HDR processing

Measures for protection and safeguarding at the right places

Control & Monitor Timing & frame rates - ensure buffer management
Control & Monitor Frame Numbers

Control & Monitor Sensor, HDR Processing and image characteristics in general

Functional Safety meets Imaging — Versatile Platform So:_lect_ri@

Versatile Platform

Compliance with standards
Tailored and exact defined Imaging

Protection at the right place

+ Scalable and versatile solution for integration of smart comfort features &

enabling of new advanced driver assistance systems

=>» Scalable and/or versatile SoCs needed like TI, NVIDIA or FPGA based SOCs

47



Versatile Platform

onal Safety
5 Imaging
rerview

liance with
ndards

land exact
1Imaging
on at the
place

Platform

Versatile
Platform

* SoC FPGA Solution
* Tailored \maging,
» Comfort Features &
Object Detection

Versatile Platform — FPGA based SoC Solution — an example

Sensor Configuration
Image Processing Control Loops
Overlay Generation
SW Isolation

Video Streaming

Processing System

| NEON™

Apphcation Processeng Uit

= Overlay Generation

= (270° Birdview)

Graphics Procesaing Und
ARM Mah ™-400 MP2

solectrix)

Quk
Nexx Ge
A\ \o

solectrix)

High-Speed
Connechvily

Object Detection oo A5

CAN Communication
SW Download
Parameter Memory
Diagnosis

Image Processing
Pipelines

FoV Generation
Object Detection

e SHE | ey | Evtecded
Hoche | Tlacwe |tinagemest| Trace
whwey | wECl | Ut || kool

| Foang Foraum |

Programmable Logic
Slorage & Signal Processing

[ DpiayFonvi za |
[ useao
[ s
[Poetoizn |
I PS-GTR

7 | General Connechvity
GigE |

= Board Monitoring

= Error Handling

= SW Test Library

= Functional Safety
- ASIL-C

= H.264/H.265 Video
Encoding for Video
Streaming / Storage
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Versatile Platform - Tailored Imaging ) IO:_Ie ct__ri@

Tailored Imaging:

Adaptive ToneMapping | s
Anti-flicker mechanisms for mitigation disturbing image flicker

CCT (correlated color temperature) guided AutoWhiteBalance 06§

Adaptive Luminance & Saturation Control L

0.41 rad

Adaptive and optimized noise filters
Day / night mode

Special Views 01

0.0
00 01

02 03 04 05 06 07 08
X

Versatile Platform - Pattern Recognition/ Object Detection SD:_Iect__ri@

Intelligent comfort features and object detection

Trailer Tracking & Automatic Panning
Lane Detection

Support for VRU detection

+ more complex object detection based on CNN approaches as an option
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Outlook: Next Generation & Al Integration

atile
orm Qutlook.
B e ohtion Next Gener a’(\an R
) Al \ntegxation
d \maging
. Features &
- Detection

Outlook: Next Generation & Al Integration

FPGAs ... from an application point of view

» Functional safety

» |mage signal processing

= Restricted in resources

solectrix)

solectrix)
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Outlook: Next Generation & Al Integration

solectrix)

Al / machine learning ... from an algorithmic point of view

» Object detection
» (lassification & Segmentation

= |arge amount of resources required

Outlook: Next Generation & Al Integration

solectrix)

» Bringing both worlds together with a specialized Al-Ecosystem

( ol P

Model Model

Zoo

Generator

Data
sets

Data/Label

Preprocessing

Training

Model

Deployment

Xilinx Compiler

—

.elf File

Xilinx

Embedded
Software
Application

k Tensorflow/Keras /

= Focus on Network selection & Pruning methods

= With the goal either to optimize a network for implementing Al in an embedded
device or to optimize a network for pure performance
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outlook: Next Generation & Al Integration sole Ct[i@

Platform for data aggregation and Al integration - sysiko

Oa
{ <‘:sl\l
=/

1

e~ |
[ = I < [ A
. SMARC Module connestor

fi= = ==t
Ul#|

1 5 1 E] M2 SSD
dexn o

solectrix

high e

solectrix GmbH
Dieter-Streng-Str. 4
90766 Furth
Germany

Managing Directors:
Dipl.-Ing. (FH) Lars Helbig
Dip FH) Stefan Schitz
Dipl.-Ing. (FH) JUrgen Steinert

www.solectrix.de
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Workshop :Programmable Processing for a ir
the Autonomous / Connected Vehicle "IN

Automotive System Architectures —
from ADAS to AD

Advanced Driver Assistance Systems to Autonomous Drive

September 24, 2020

XILINX

» SAE Driving Levels: Evolution vs
Revolution

» Automated Driving System
Requirements

» Scaling the Architecture LO to L4

£ XILINX.
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SAE Driving Levels:
Evolution vs. Revolution

XILINX

Execution of Fallback System
Steering and Monitoring Performance | Capability
Acceleration/ of Driving of Dynamic (Driving
Narrative Definition Deceleration | Environment Driving Task Modes) Examples
Human Driver monitors the driving environment
the full-time performance by the human driver of all

No aspects of the dynamic driving task, even when enhanced Human Driver Human Driver Human Driver n/a
Automation by warning or intervention systems

Blindspot Detection /|
Surround View

the driving mode -specific execution by a driver assistance . .
. system of either steering or acceleration/deceleration using . Some Adaptive Cruise
(s information about the driving environment and with the L anibiey Human Driver Human Driver  driving Control /
Assistance  eypectation that the human driver perform all remaining and system Lane K_QEP ASS_iSt/
aspects of the dynamic driving task Parking Assist
the driving mode -specific execution by one or more driver
assistance systems of both steering and acceleration/ Some
Partial deceleration using information about the driving
Automation environmentand with the expectation that the human
driver perform all remaining aspects of the dynamic driving
task

Automated Driving System ("system") monitors driving envir [ R A

the driving mode -specific performance by an automated Some
Conditional driving system of all aspects of the dynamic driving task
Automation With the expectation that the human driver will respond
appropriately to a request to intervene

modes

System Human Driver Human Driver  driving Traffic Jam Assist
modes

Full Speed Range
System System Human Driver | driving SELEACRLTGNEY
modes Self Parking

the driving mode -specific performance by an automated
High driving system of all aspects of the dynamic driving task,
Automation evenif ahuman driver does not respond appropriately to a
request to intervene

Some
driving
modes

Automated Driving /
Valet Parking

the full-time performance by an automated driving system
Full of all aspects of the dynamic driving task under all roadway All Driving
Automation 2nd environmental conditions that can be managed by a Modes
human driver

Full Autonomous
Driving / Driver-less
Vehicle Operation

XILINX.




Towards Level 4: PoV Evolution vs. Robotaxi Revolution

Transportation as a Service

Sensors & ADAS Cal" 20
» Heading straight to Car 2.0

Delivering Incremental
Improvements

> Y
> "
: b

System Arch Business v Centralized Processing Module(s)
ADAS Domain & &

Mem Mem
Controllers Technical Ecosystem Data
. Implications Implications Pre prosesaing Safety

and Distribution Processor(s)
Device(s)
(DAPD)

Car1.2
In-Cabin High
Compute Performance
Accelerator(s) Serial

Processor(s)
Car 1.1
Mem

. Edge sensors .
Surround View Traditional Complex Signal Process + Perception (Al) Non-traditional

Vendors I I Vendors

Camera 4D Imaging LiDAR
RADAR

XILINX.

Automated Driving System Requirements

XILINX




Automated Driving Case: Sensing Suite
Wide variety of distributed sensor configurations from L0 to L4

Lt Side Rear
Short Range Left

Rear Lt Short Rang

Left Surround

Left OSRV. |t Side Fwd

Short Range

i Tl

152

Rear Long Range|
ong Rang B
Rear Surround
Rea
]
Rear Rt Short Range =
Rt Side Rear Right Right Surroun Rt Side Fwd
Short Range Right OSRV ~ Short Range
== RADAR Interface
== | IDAR Interface @ Cameras ® Radar @® LDAR

=== Camera Interface

=== \/ehicle/Other Interfaces

© Copyright 2020 Xilinx

Automated Driving System Functional Diagram

ront Lt Short Range

* Ultrasonics not shown

Front Long Range

Front Surround
Front

Front Rt Short Range

£ XILINX.

An assortment of different processing functions performed by various

“engines” located in distributed modules

Advanced Sense & Detect Engine(s) Main ADAS/AD Computing Module(s)

Represents distributed elements

Represents centralized Elements

Actuation Modules

Perception

Localizing

Mapping
Other Sensors

4

Motion

Other ECUs
Braking
Steering

1 . Vehicle Control

Driver Interaction

Planning

Other Sensing ECU

Perception Engine Behavior Planning Engine

Some Sense & Detect
Processing may be
done in Main ADAS/AD
Compute Module

© Copyright 2020 Xilinx

Throttle
Suspension
etc

Other ECUs
Displays
User Input
Driver Monitor

HMI Modules

£ XILINX
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AD Central Module Processing Element Architecture

4 primary processing element types

Data Aggregation,
Pre-processing &
Distribution

Devnce(s) (DAPD)

Compute High Performance L,
Accelerator(s) Serial Processor(s)

nmma Safety Processor(s) yad <>

Although sometimes integrated into a single device/package, a centralized AD processing
module is commonly comprised of a heterogeneous set of processing element types:

Data Aggregator, Pre-Processor and Distributor
High Performance Compute Processor(s)
Computational Accelerators

Safety Processor(s)

Desired AD Platform Architecture Characteristics
What do | want in my platform to address L0 to L4?

|—/‘ Scalability

» Adjustment of BoM costs across low to high complexity systems

N

T‘” Portability
— » Migration of designs between device family generations over time

,- 2 \ wgw wg_ wgw

L Adaptability (Flexibility)

» Efficient adaptation of algorithms and interfaces across multiple product life cycles
— New sensing technologies drives new algorithmic and interface approaches (e.g. 1 to 8 Mpix)
— High volume “field lessons” require changes in deployed algorithms (e.g. new edge cases)

— Drive for efficiency requires adaptable processing engines (e.g. 32b FP to 8b INT to binary CNN)

Modularity
» Ability to adjust individual elements of processing performance (e.g. DMIPs vs. TOPs)

» Partitioning and functional Saf%%%%‘éﬁ'}%%@?ﬁnx § XILINX

B
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Scaling the Architecture
LO to L4

XILINX.

Level 0 Example

Surround View

XILINX.




LoRes/LoFps
Surround Cams

LoRes/LoFps
Surround Cams

Vehicle Buses

Displays (status &

Level 0 System Example

Surround View

actuators)

CSI-2 4-lane
Display Port
Ethernet Options

CAN / CAN-
FD PHYs

DDR/
LPDDI

Quad
SERDES

CAN/
CAN- Non-Volatile

FD/FlexRay FLASH Device(s)

/LIN PHYs (bitstreams)

1

1

J Optional:

1

Ins »5“’?) < nstoad use

i ZU+ R5's in
lockstep

O Provides natural-looking 3D hemispheric 360° view of the vehicle’s surrounding

O Virtual flying camera enables super-smooth perspective change at camera frame rates

O Equalizes the multi-camera system under changing illumination conditions

© Copyright 2020 Xilinx

£ XILINX.

Level 0 System Example
Surround View — PL Cores

) Vehicle Buses
Displays (status &
actuators)
CAN / CAN-
FD PHYs
PHY

Display Port

CAN/

CAN- Non-Volatile
FD/FlexRay FLASH Device(s)
/LIN PHYs (bitstreams)

Optional:
. - WO /Instead use
Quad 12 e i
R : eg. ZU+ (or 27000 Pl % ZU+ R5's in
Vlde(‘: Ctrlr depending lockstep
gDRg / Mixer on functions req’d)
1x CSI-2
4-lane
Image
DDRI Warp
Calibration
Accelerator
© Copyright 2020 Xilinx £ XILINX
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Level 1 Example

Surround View, NCAP Fwd Cam, ACC

XILINX.

Level 1 Multi-Feature System Example
Surround View, NCAP Fwd Cam, ACC

Vehicle Buses
(status &
actuators)

Displays

CSI-2 4-lane
Display Port
Ethernet Options

CAN/
CAN- Non-Volatile

FD/FlexRay FLASH Device(s)
/LIN PHYs (bitstreams)

CAN / CAN-
FD PHYs

DDR/

|
= =
LoRes/LoFps e.g. HSSL
Surround Cams ET=1 -1~ E====s=== F )
=y -1 -] H - __Optional:
e — - - g Instead use
______ = > NS ZU+R5'sin
- lockstep

4-lane

Radar

O Provides natural-looking 3D hemispheric 360° view of
the vehicle’s surrounding

O NCAP features include AEB and LDW

O Adaptive Cruise Control

1x CSI-2 4-lane

HiRes/HiFps
Fwd/Rwd Cams

© Copyright 2020 Xilinx £ XILINX.
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LoRes/LoFps
Surround Cams

HiRes/HiFps
Fwd/Rwd Cams

LoRes/LoFps
Surround Cams

HiRes/HiFps
Fwd/Rwd Cams

Quad
SERDES
CSI-2

4-lane

Quad
SERDES
CSI-2

4-lane

Quad

SERDES

Displays

CSI-2 4-lane
Display Port
Ethernet Options

¢ 12C

Peripherals

AX|-Lite
from CPU  AXl4 to

Ctrir(s)

CSI-2 4-lane

Displays

CSI-2 4-lane
Display Port
Ethernet Options

12C

Level 1 Multi-Feature System Example
Vehicle Buses PL COl'eS

(status &
actuators)

CAN/
CAN-

CAN / CAN-
FD PHYs

Non-Volatile
FD/FlexRay FLASH Device(s)
/LIN PHYs (bitstreams)

R

Instead use
Video Ctrir ZU+ R5s in
/ Mixer Sensor Fusion

H:
Accelerator for / lockstep
ACC

Object Classifier Alternative
(or Diverse Redundancy)

Al DPU Engine

Various Optimized
Accelerators that work in
conjunction with
application SW

© Copyright 2020 Xilinx £ XILINX.

Level 1 Multi-Feature System Example
Surr View, NCAP Fwd Cam, ACC

Vehicle Buses
(status &
actuators)

CAN/

CAN / CAN-

FD PHYs Non-Volatile

CAN-
FD/FlexRay

/LIN PHYs

FLASH Device(s)
(bitstreams)

Optional:
. Instead use
= 7U+ R5’s in

/ lockstep

_____________ \

Sensor Fusion
Accelerator for
ACC

m EEM Video Ctrir
DR / Mixer

Note the integration of
both DAPD and Compute
Acceleration into the single
ZU+ Device in this example

Various Optimized
Accelerators that work in

cojunction with
application SW

© Copyright 2020 Xilinx £ XILINX.
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LoRes/LoFps
Surround Cams

DRIVER
MONITORING

———
Radar
PN
I -
Lidar
—eee

HiRes/HiFps

Level 3/3+ Example

NCAP Fwd Cam, DMS, Highway Pilot, APA

XILINX.

Other sensors/ECUs Vehicle Buses

Displays

Level 3+ System Example
NCAP Fwd Cam, DMS, Highway Pilot, APA

(eg Maps, GPS, IMU) [CEITERY

actuators)

CSI-2 4-lane
Display Port
Ethernet Options

CAN/CAN-FD]
Ethernet|

CAN / CAN-
FD PHYs

Versal

Scalar Engines Adaptable Engines intelligent Engines

Al Engines

Csl-2
4-lane

CAN/CAN-FD
/Enet PHYs
100Mb/1Gb
PHYs/Switch

PCle

Switch

Platform

Management

Controdler <

CSI-2 4-la

Non-Volatile
FLASH Device(s)
(bitstreams)
HSSL/Other
1
1 i b
I " __Optional:
L g Instead use
1 W© _—.Versal R5’s
LT —

e in lockstep

DeBug/Devel
Port(s)

NoC
Csl-2 4-lan o [w/OVA

Fwd/Rwd Cams
N/

i

In-Cabin Cams

© Copyright 2020 Xilinx

£ XILINX
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Level 4
AD ECU Summary

XILINX.

A Modular/Scalable AD ECU Architecture offering Flexibility and Portability

. S S s
D D . ]
D D D g

Ultrasonics

LoRes/LoFps

\_Surround Cams )
—

LoRes/HiFps E-
Mirror Cams

HiRes/HiFps
Fwd/Rwd Cams

N/

Other sensors/ECUs

(eg Maps, GPS, IMU) Displays

CSI-2 4-lane

Display Port

Ethernet Options CAN / CAN-
FD PHYs

2x US ASIC

DATAAGGREGATION;
PRE-PROCESSING, AND
DISTRIBUTION
(DAPD)

CAN/CAN-FD
/Enet PHYs

100Mb/1Gb
PHYs/Switch

CSI-2 4-lane

COMPUTE
ACCELERATE

SERDES
CSI-2 4-lane

In-Cabin Cams

Vehicle Buses
(status &
actuators)

© Copyright 2020 Xilinx

Other

compressed
SMMC video sink (?)

(event recording)

264/265 multi-strea
to 4KP60 rate

PCle
Switch

GbE

Switch

Non-Volatile
FLASH Device(s)
(bitstreams)

FD/FlexRay

111N DHVe

SAFETY
PROCESSOR

HIGH

- PERFORMANCE

SERIAL
PROCESSOR

£ XILINX
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Workshop :
Programmable Processing for the
Autonomous / Connected Vehicle

Thank You
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Xilinx in Al:

Versal Al-core, Al-Engine Architecture, Design Flow

Daniele Bagni
daniele.bagni@xilinx.com
DSP / ML Specialist for EMEA

FPGA4ADAS Workshop at Ulm University,
24 September 2020

XILINX

Introduction
The Al Engine

ML inference with Vitis Al

XILINX




Introduction

XILINX

' New Device Category: Adaptive Compute Acceleration Platform

COMPUTE ACCELERATION

et IS
Engines Engines Engines

ADAPTIVE
Diverse Workloads in OSSR = . ®
Milliseconds
Future-Proof for
New Algorithms @ T . ®

Enabling Data Scientists, SW Developers, HW Developers

© Copyright 2020 Xilinx

PLATFORM

Development Tools
HW/SW Libraries
Run-time Stack

SW Programmable
Silicon Infrastructure

£ XILINX
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'Versal Architecture Overview

Adaptable Engines
2X compute density

Scalar Engines

a rm * Platform Management

Controller (PMC)
« Edge Compute

Protocol Engines
* Integrated 600G cores
* 4X encrypted bandwidth

°. Programmable 1/0

» Any sensor, any interface
‘_' « Extendable peripheral set

Intelligent Engines
« Al Compute
@[%] « Diverse DSP workloads
- Network-on-Chip
h‘% * Guaranteed Bandwidth
a" N

- Wy * Enables SW Programmability

DDR Memory
« 2X bandwidth/pin
« Server-class density

; PCle & CCIX
Transceivers ! )
: * 2X PCle & DMA bandwidth
« Broad range, 25G —»112G lm .
» Cache-coherent interface

* 58G in mainstream devices
to accelerators

>>5

© Copyright 2020 Xilinx t: XIL'NX

Al Engines

Hardened Compute, Memory & Interconnect

Al
Engine

Al
Engine

MEMORY

>
&=
<]
>
fre
=

Al
Engine

MEMORY
MEMORY

Huge performance improvements versus UltraScale+ Terabytes/sec of interface bandwidth to other engines

> 8x compute density @ 40% lower power > Direct, massive throughput to adaptable HW engines
1GHz+ VLIW / SIMD vector processors > Implement core application with Al for “Whole App Acceleration”
> Versatile core for ML and other advanced DSP workloads ~ SW programmable for any developer

Massive array of interconnected cores > C programmable, compile in minutes

> Instantiate multiple tiles (10s to 100s) for scalable compute > Library-based design for ML framework developers

>>6 © Copyright 2020 Xilinx & XILINX.
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'Software Programmable: Any Developer

=

Programming
Abstraction Levels

Architecture
Overlay

Data Flow

w/ Xilinx libraries
Kernel Program
Data Flow w/ user
defined libraries

’ C/C++ Frameworks
L — Dxnet 1‘~ Caffe

4G/5G/Radar Al Vision
Library Library Library

2 Compile

’ Al Engine Compiler

>>7

© Copyright 2020 Xilinx $2 XILINX.

'Vitis Unified Software Platform Design Flow

Coming soon...

Domain-specific T TensorFlow
development e M FFmpeg
; Caffe Partners
environments Genomics
” » . » Vitis Al Vitis Video DEIEIAGEIIES,
Vitis accelerated BRVSIRRETL Math & Linear Quantitative And more
libraries Processing Algebra Finance

-----------------

Compilers Analyzers Debuggers

Vitis core
development kit

Xilinx runtime library (XRT)

.................

Edge Deployment On-Premise Deployment Cloud Deployment
© Copyright 2020 Xilinx i: Xl LlNX
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' Vitis Target Platform

Reconfigurable
. . . Region
> Pre-Configured Static Region S

>> PCle® Interface Logic Static Region
>> DDR memory interface controllers

>> XDMA logic etc. Embedded Software

>> Hardware Config & Lifecycle Management

> For Embedded Devices, Includes
»> Operating System Operating System
>> Runtime Library (XRT)
>> Runtime Drivers (XRT)
>> Firmware & Boot loader

Runtime
Library
& Drivers
Boot
Loader

Host

Application

Hardware Shell &
Configuration

Use Ready-to-Use Vitis Target Platforms
OR
Build Your Own using Vivado Design Suite

© Copyright 2020 Xilinx i: X| LlNX

The Al Engine

XILINX
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Al Engine: Terminology - & & &

Versal ACAP

Scalar Eng A Eng

i

N \ \

V//’ o E 3
s mdliENgine| 2 —> [SUCHE E > [SMEEY ———>
~-m.- ! - ! .- -

Al Engine . " .

= : HE —
2 [Engine| 2 |Engine] 2 [Enginelil oy pumd
- I -\ I L -~

— I 4——> Al § Al
Engine{ £ Engine| £ Engine|
| )

Al Engine
Tile

Register . Register
f Non-|i 4 ing-Poi
ISA-based
Scalar Unit Vector Unit Al Engine Vector Processor
Al Vector e
Instruction Fetch Core . I
Load UnitA [l Load UnitB [l Store Unit Sabpe Dl 5G Vector
Extensions
Memory Interface Stream Interface 84 i DT
>> 11 © Copyright 2020 Xilinx i: XI LINX.
Al Engine Tile
> Al Engine core <4—» Memory Access
»> 512b SIMD vector units > AXI Stream
- Both fixed and floating point > AXIMM
- 16KB program memory <) Cascade Stream
>> 32b scalar RISC processor
>> 256-bit load (x2) and store units with individual AGUs f
D e (XSWest | AXIS_East

> 128KB direct core memory access
>> 32KB local
> 32KB north, south, east or west

> Interconnects
>>  AXI Memory Mapped (AXI-MM) switch
- Configuration, control and debug
>> AXI-Stream crossbar switch
- Routing N/S/E & west around the array

> Debug/Trace/Profile functionality
>> Debug using memory-mapped AXI4 i/f
> Connect to PMC via JTAG or HSDP

>>12

——

AXIS North

Instruction Load & Store

I;/Irgg:gm Fetch & Address

% 6KBr)y Decode Generation
Unit Units

s2MM|| MEM | MM2S
DMA | IF || DMA

AXIM Switch

Fixed Point Floating Point
e 512b SIMD 512b SIMD
Vector Unit Vector Unit

MEM I/F

Scalar
Register Files

Vector Register Files

Soniral, Accumulator

Debug
& Trace Stream FIFO

Stall
Handler

MEM I/F

© Copyright 2020 Xilinx t: XILlNX
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' Multi-Precision Support
I T I ¥ el

8 real 8 real 48 real 128
16 real 8 real 48 real 64
16 real 16 real 48 real 32
16 real 16 complex 48 complex 16
16 complex 16 real 48 complex 16
16 complex 16 complex 48 complex 8
16 real 32 real 48/80 real 16
16 real 32 complex 48/80 complex 8
16 complex 32 real 48/80 complex 8
16 complex 32 complex 48/80 complex 4
32 real 16 real 48/80 real 16
32 real 16 complex 48/80 complex 8
32 complex 16 real 48/80 complex 8
32 complex 16 complex 48/80 complex 4
32 real 32 real 80 real 8 cfloat is a vector type but is not
32 real 32 complex 80 complex 4 directly supported by the Al
32 complex 32 real 80 complex 4
32 complex 32 complex 80 complex 2
32 SPFP 32 SPFP 32 SPFP 8

>> 13 SPFP: IEEE Single Precision Floating Point

© Copyright 2020 Xilinx t: XIL'NX

' Multiple-levels of Parallelism

> 7-way VLIW machine

> Instruction-level Parallelism (ILP)
>> Very long instruction word (VLIW) - 128-bit
>> Multiple operations issued in one cycle

> Data-level Parallelism (DLP)
>> Vector data path (SIMD)

VLIW Instruction (7-way VLIW)

scalar ops Up to 2 moves Two loads One vector One store
multiplication

>> 14

© Copyright 2020 Xilinx t: XILlNX
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ML inference with Vitis Al

XILINX

User Application

Al Compiler
Al Profiler

Vitis Al Al Quantizer
Development Kit Al Library

Al Optimizer
Vitis runtime

Deep Learning
Processing Unit (DPU)

CNN-Zynq CNN-Alveo LSTM-Alveo CNN-AIE LSTM-AIE

XILINX




'Vitis Al Deployment

Embedded (Zynqg SoC & MPSoC, Versal ACAP)

Xilinx Docker
Registry

.OQO..O.QO..’

Runtime

© Copyright 2020 Xilinx

'Vitis Al Model Zoo

> Shared Repository of Pre-Trained Al Models
>> Ready to Deploy, Pre-Optimized Models
>> Alot of Models Supporting Broad Range of Applications
>> Open and Available on GitHub

> Leverage Standard Frameworks, Networks, Datasets
>> Trained Using TensorFlow and Caffe

> Deploy As-is, Re-Train or Further Optimize
>> Caffe_Xilinx, a custom distribution of Caffe provided to test
& finetune caffe models
>> Training code, test code and train eval instructions provided

© Copyright 2020 Xilinx

Executable _ -
Single Server
P >

Scale Out

QO

-@- kubernetes

£ XILINX

Application Model

Face

Pedestrian

Video Analytics

ADAS/AD

Face detection

Landmark Localization
Face recognition

Face attributes recognition
Pedestrian Detection
Pose Estimation

Person Re-identification
Object detection
Pedestrian Attributes Recognition
Car Attributes Recognition
Car Logo Detection

Car Logo Recognition
License Plate Detection
License Plate Recognition
Object Detection

3D Car Detection

Lane Detection

Traffic Sign Detection
Semantic Segmentation

Drivable Space Detection

£ XILINX.
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Dense Neural Network
(FP32)

Pruning
(Less number of param)

Al Optimizer

Al Quantizer Code:

Al Compiler

system / non-Al
pre-processing

algorithm
pre-processing

L] €
Pruned Neural Network
(FP32)

Neural Network

(FP32)

100101010010
110010101011
001001010100
101100101010
110010010101
001011007010

DPU Instruction

DPU running
NN model

Neural Network
(INTB)

Quantization
(Less bits per param)

Al Quantizer

Al Profiler

system / non-Al
post-processing

algorithm
post-processing

Al Libraries

Xilinx Al Flow Overview

dataset(s)

~

Training &
Evaluation

=)

"

XILINX

Float INT8 Compiled network
~a ~a
SN . El
v —

[LLTTT]
Optimizer Quantizer - Compiler - EE
(optlonal) z [TITIT] B

TARGET
DEVICE

-py
Training &
Eval code
ML framework
TensorFlow
PyTorch
Caffe

Vitis-Al/DNNDK

© Copyright 2020 Xilinx

Vitis/Vivado

£ XILINX
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' Example Using Vitis Al Optimizer

140

120

100

80

60

40

20

0

moperations (G)

mAP (%)

Performance Speedup

SSD+VGG @ Surveillance 4 Classes

120 103
100
80 7
& 60
40 18
20
0
117G 19G 11.6G
OPS
2x DPU-4096@ZU9
© Copyright 2020 Xilinx ﬂ X| LlNX
' Vitis Al Quantizer Result
Classification Float 8 bit quantized After quantized finetune
Networks Top1 Top5 Top1 ATop1 Top5 ATop5 Top1 ATop1 Top5 ATop5
Inception_v1 66.90% | 87.68% | 66.54% | -0.36% | 87.58% | -0.10% | 66.62% | -0.28% | 87.58% | -0.10%
Inception_v2 72.78% | 91.04% | 71.93% | -0.85% | 90.58% | -0.46% | 72.40% | -0.38% | 90.82% | -0.23%
Inception_v3 77.01% | 93.29% | 76.26% | -0.75% | 92.85% | -0.44% | 76.56% | -0.45% | 93.00% | -0.29%
Inception_v4 79.74% | 94.80% | 79.04% | -0.70% | 94.53% | -0.27% | 79.42% | -0.32% | 94.64% | -0.16%
ResNet-50 74.76% | 92.09% | 73.74% | -1.02% | 91.44% | -0.65% | 74.59% | -0.17% | 91.95% | -0.14%
VGG16-3fc-float 70.97% | 89.85% | 70.67% | -0.30% | 89.72% | -0.13% | 70.74% | -0.23% | 89.79% | -0.06%
MobileNet_v1 70.61% | 89.63% | 68.01% | -2.60% | 88.14% | -1.49% | 69.71% | -0.90% | 89.06% | -0.57%
Detection Networks Dataset Float mAP | 8 bit quantized mAP | AmAP
SSD_VGG VOC 21 classes 76.47% 76.27% -0.20%
SSD_MobileNet_v2 BDD100k 11 classes | 30.80% 29.70% -1.10%
SSDLite_MobileNet_v2 Customer’s data 20.28% 20.12% -0.16%
© Copyright 2020 Xilinx i: Xl LlNX
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' Vitis Al Library

Algorithm libraries

classification face

segmentation roadline

Kreaqi v SBIA

Base libraries

dpbase

Vitis Al Runtime

© Copyright 2020 Xilinx

THANK YOU!

daniele.bagni@xilinx.com

XILINX

> Ease of Use
>> Quicker mode deployment
>> Easier Al application development

> Performance Optimized
>> Optimized pre & post processing

> Open
>> Open source
>> Fully sync with Vitis Al Model Zoo

£ XILINX

= V/?/; Al

Adaptable and Real-Time
Al Inference Acceleration

Optmal Artificial Intelligence Inference from Edge %o Cloud
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Where to find more information

XILINX

' More info about Versal ACAP

> https://www.xilinx.com/products/silicon-devices/acap/versal.html

> https://www.xilinx.com/products/silicon-devices/acap/versal-ai-core.html

> https://www.xilinx.com/products/silicon-devices/acap/versal-ai-core.html#productTable

> https://www.xilinx.com/support/documentation/white papers/wp505-versal-acap.pdf

> https://www.xilinx.com/support/documentation/white papers/wp506-ai-engine.pdf

> https://lwww.xilinx.com/support/documentation/white papers/EW2020-Deep-Learning-Inference-AlCore.pdf

> https://www.Xxilinx.com/support/documentation/white papers/ACAP%20Paper.pdf

> https://www.xilinx.com/products/silicon-devices/acap/versal-ai-core.html#qgetStarted

© Copyright 2020 Xilinx i: X| LINX
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'More info about Vitis design flow

> https://lwww.xilinx.com/products/design-tools/vitis/vitis-platform.html

> https://developer.xilinx.com/

> https://lwww.xilinx.com/html docs/xilinx2020 1/vitis doc/index.html

© Copyright 2020 Xilinx §- XILINX.

' More info about Vitis Al tools and Libraries

> Getting Started from Vitis Al Github

> Vitis Al Model Zoo

> Vitis Al Optimizer Lounge*
> Vitis Al DPU TRD

> Vitis Al Library

> Vitis Al Tutorial

> Vitis Al Forum

* Approval required

Adaptable & Real-Time

Introduction

© Copyright 2020 Xilinx i: X| LlNX
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' Further old (but still good) references

> https://www.xilinx.com/publications/events/developer-forum/2018-frankfurt/xilinx-machine-learning-strategies-with-deephi-tech.pdf

> https://www.xilinx.com/publications/events/developer-forum/2018-frankfurt/machine-learning-for-embedded-deep-dive.pdf

> https://github.com/Xilinx/graffitist

© Copyright 2020 Xilinx i: XI LINX‘

About me

XILINX
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http://www.xilinx.com/publications/archives/xcell/Xcell86.pdf

Daniele Bagni is a DSP Specialist FAE for

Xitine EMEA in Milan, ltaly. After carning a degree
in quantum dectronics from the Politeenico of
Milan, he worked for seven years at Philips
Research labs in veal-time digital video processing,
mainly motion estimation for ficld-rate upconvert-
ers. For the next nine years he was praject leador at
STMicroelectronics” R&ED labs, focusing on video
coding algorithm development and optimization for VLIW architecture

bedded DSP p 5. while simul ly hing a course in
multimedia information coding as an external professor at the State
University of Milan. In 2006 he joined the Xiline Milan sales office. . .
What Daniele enjoys most about his job is providing customers with 230000 downloads in the first 2 weeks!
JSeasibility studies awd facing a large variety of DSP applications and
problems. In his spare time, he likes playing tennis and jogging.

© Copyright 2020 Xilinx i: XI LINX.

http://lwww.xilinx.com/publications/archives/xcell-software/xcell-software1.pdf

© Copyright 2020 Xilinx £ XI LINX.
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http://www.sciencedirect.com/science/article/pii/S1077314210000925

2 El ScienceDirect Journals & Books Q

Outline Computer Vision and Image
Abstract " Understanding

p——— ELSEVIER Volume 114, Issue 11, November 2010, Pages 1164-1179

L. Introduction

2. Related work A real-time versatile roadway path
o extraction and tracking on an FPGA

4. FPGA implementation

. - platform
5. Experimental results and discussion
6. Conclusions Roberta Marzotto ®, Paul Zoratti 2, Daniele Bagni ¢, Andrea Colombari #, Vittorio Murino * deg

References &

© Copyright 2020 Xilinx §- XILINX.

' https://lwww.xilinx.com/support/documentation/application notes/xapp1163.pdf

Application Note: Vivado HLS

(v XI LINX Floating-Point PID Controller Design with
-~ ® Vivado HLS and System Generator for DSP

Author: Daniele Bagni, Duncan Mackay

XAPP1163 (v1.0) January 23, 2013

Summary This application note describes how to quickly implement and optimize floating-point
Proportional-Integral-Derivative (PID) control algorithms specified in C/C++ code into an RTL
design using Vivado HLS. You can use System Generator for DSP to easily analyze and verifiy
the design. This enables floating-point algorithm designers to take advantage of
high-performance, low cost, and power efficient Xilinx® FPGA devices.

Introduction Floating-point algorithms are widely used in industries from analysis to control applications.
Traditionally, such algorithms have been implemented on microprocessors. The primary reason
for using microprocessors has been the ease with which floating-point algorithms can be
captured, validated, and debugged in C/C++ code, therefore avoiding the complexity and skills
required to implement them in hardware. However, implementing these algorithms on
optimized and dedicated hardware provides lower cost, higher performance, and power
benefits over a standard, or even optimized microprocessor.

This application note presents a new design flow enabled by the Xilinx Vivado™ Design Suite,
which allows floating-point algorithms to be quickly specified in C/C++ code, optimized for
performance, and implemented on Xilinx FPGA devices. This flow delivers on the cost,

© Copyright 2020 Xilinx i: XI LINX.
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https://www.xilinx.com/support/documentation/application notes/xapp1170-zynqg-hls.pdf

Application Note: Zynq-7000 AP SoC
iv X"_lNX A Zynq Accelerator for Floating Point
el Ml Matrix Multiplication Designed with
XAPP1170 (v2.0) January 21, 2016 Vivado HLS

Author: Daniele Bagni, A. Di Fresco, J. Noguera, F. M. Vallina

Summary

This application note describes how to use Vivado® High Level Synthesis (HLS) to develop a
floating-point matrix multiplication accelerator connected via an AXI4-Stream interface to the
Accelerator Coherency Port (ACP) of the ARM CPU in the Zynq®-7000 All Programmable SoC
(AP SoC) device.

The floating-point matrix multiplication accelerator modeled in C/C++ code can be quickly
implemented and optimized into a Register Transfer Level (RTL) design using Vivado HLS. The
solution is then exported as an IP core connected with an automatically-created AXI4-Stream
interface to the ACP on AP SoC Processing Subsystem (PS). The connection is made through a
Direct Memory Access (DMA) core in the AP SoC Programmable Logic (PL) subsystem. Vivado IP
Integrator (IPI) is used to design the AP SoC PL hardware, including the matrix multiplier
peripheral, the DMA engine, and an AXI timer. The Software Development Kit (SDK) is used to
design the AP SoC PS software to manage the peripherals.

© Copyright 2020 Xilinx $2 XILINX.

https://www.xilinx.com/support/documentation/application notes/xapp1300-lucas-kanade-optical-flow.pdf

Application Note: Zyng-7000 AP SoC

r Demystifying the Lucas-Kanade Optical
& XILINX Flow Algorithm with Vivado HLS

XAPP1300 (v1.0) February 3, 2017 Authors: Daniele Bagni, Pari Kannan, and Stephen Neuendorffer

Summary

The Lucas-Kanade (LK) algorithm for dense optical flow estimation is a widely known and
adopted technique for object detection and tracking in image processing applications. This
algorithm is computationally intensive and its implementation in an FPGA is challenging from
both a design and a performance perspective. This application note describes how to
implement the LK algorithm with the Xilinx Vivado® High-level Synthesis (HLS) tool to achieve
real-time performance in the Zynq®-7000 All Programmable (AP) SoC without image

quality degradation.

A real-time demonstration on a Zyng-7000 AP SoC reference board was built with the SDSoC™
development environment's integrated tool. The design reads video data from a file and writes
back the processed data to a file, instead of reading and writing frame buffers. The design was
created in less than eight weeks by an engineer. This application note also serves as a tutorial
demonstrating good C/C+ + coding techniques for obtaining the best performance from Vivado

Xilinx website. For detailed information about the design files, see Reference Design.

© Copyright 2020 Xilinx i: XI LINX.

82



My Vitis Al tutorials on Deep Learning for Computer Vision

> Quantization and Pruning of AlexNet CNN trained in Caffe with Cats-vs-Dogs
dataset
>> https://github.com/Xilinx/Vitis-Al-Tutorials/tree/VAI-Caffe-ML-CATSvsDOGS

> Deep Learning with Custom GoogleNet and ResNet in Keras and Xilinx Vitis Al
> https://github.com/Xilinx/Vitis-Al-Tutorials/tree/Keras-GoogleNet-ResNet

> FCN8 and UNET Semantic Segmentation with Keras and Xilinx Vitis Al
>> https://github.com/Xilinx/Vitis-Al-Tutorials/tree/VAI-KERAS-FCN8-SEMSEG

© Copyright 2020 Xilinx ‘: XI LINX.

Please Read: Important Legal Notices

The information disclosed to you hereunder (the "Materials") is provided solely for the selection and use of Xilink products. To the
maximum extent permitted by applicable law: (1) Materials are made available "AS 1" and with all faults, Xilinx hereby DISCLAIMS ALL
WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable {whether in
contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related to,
arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect, special,
incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a result
of any action brought by a third party} even if such damage or loss was reasonably foreseeable or Xilinx had been advised of the
possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to notify you of updates to the
Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display the Materials without prior written
consent. Certain products are subject to the terms and conditions of Xilink's limited warranty, please refer to Xilinx's Terms of Sale which
can be viewed at http://www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and support terms contained in a license
issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use in any application requiring fail-safe
performance; you assume sole risk and liability for use of Xilinx products in such critical applications, please refer to Xilinx's Terms of
Sale which can be viewed at http://www.xilinx.com/legal.htm#tos.

Automotive Applications Disclaimer

XILINX PRODUCTS ARE NOT DESIGNED OR INTENDED TO BE FAIL-SAFE, OR FOR USE IN ANY APPLICATION REQUIRING FAIL-SAFE
PERFORMANCE, SUCH AS APPLICATIONS RELATED TO: (I) THE DEPLOYMENT OF AIRBAGS, (II) CONTROL OF A VEHICLE, UNLESS THERE
IS A FAIL-SAFE OR REDUNDANCY FEATURE (WHICH DOES NOT INCLUDE USE OF SOFTWARE IN THE XILINX DEVICE TO IMPLEMENT THE
REDUNDANCY) AND A WARNING SIGNAL UPON FAILURE TO THE OPERATOR, OR (IIl) USES THAT COULD LEAD TO DEATH OR
PERSONAL INJURY. CUSTOMER ASSUMES THE SOLE RISK AND LIABILITY OF ANY USE OF XILINX PRODUCTS IN SUCH APPLICATIONS.
© Copyright 2013-2016 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Vivado, Zyng, and other designated brands
included herein are trademarks of Xilinx in the United States and other countries. All other trademarks are the property of their
respective owners.
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Porting a Gesture Recognition Neural Network

composed of CNN and LSTM

fo a FPGA-SoC

ROBERT BRIEGEL

(RATHU = i
$Hs= ZEpAc Zlacol
i Jacol
Ag en d a FPGA ENTWICKLUNGEN
1. Goals
2. SiComAs Algortihnm
3. Approach
4. Readlization
5. Results
6. Further Improvements

24.09.2020 FPGA4ADAS 2020 - ROBERT BRIEGEL 2
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Goals i Jacol

Porting the Neural Network SiComAs
to a FPGA-SoC platform

> Retention of the architecture of the NN and
achieved accuracy

» Maximizing throughput

24.09.2020 FPGA4ADA! S 2020 - ROBERT BRIEGEL 3

. £ Jacol
What's the SiIiComAs? FPGA ENTWICKLUNGEN

» Sign Communication Assistant
developed by EDAG in Lindau

» Takes video as input and recognizes gestures

» Developed to further improve Human-Vehicle
interface while not excluding the hearing impaired

24.09.2020 FPGA4ADAS 2020 - ROBERT BRIEGEL 4
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Sign Commmunication # Jacol
Assistant FPGA ENTWICKLUNGEN

29%220x100x3
(Bsp.)

»

m @, python" ®TensorFlow = EDAG

Tx1

| ry=0.98
fo

Approach i Jacol

FPGA ENTWICKLUNGEN
Framework

Xi|inX DeepNeuroINe’rworkDeveIopmen’rKi’r (Now part of VITIS-Al)
* Allows porting of CNNs

*LSTM cells are not (yet) supported, therefore must
be computed in other ways

Tensorflow Interface

*Inference using a co-processor in programmable
logic (DPU)

FPGA4ADAS 2020 - ROBERT BRIEGEL b
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Approqch £ Jacol

FPGA ENTWICKLUNGEN
Hardware and Top-Level Architecture

CPC ACZUTEV-IFIVOTIISE  MOMIMOW Dby Pont e
! ZCU104
oAt XILINX ZYNC . & = 2ynq Ultrascale+ ZU7EV
fra Z PS
wnninns e — (e Lt o sD Petalinux 05 ‘-; I
Vorverarbeitung T T DORA
d Ty - Card 5 -+ RAM
: i i B m | DPuApplikation | Python Applikation |
- - i > st o LSty
4 ) B o -4 e [2 e
e ¥ ! -§ — DPU Treiber Python Interpreter Jelol ETH Je [ SSH
. gt 7 NN g . L I
e —
3 [ (| PL
- - ; - Cow 01
3 17y |
" Teil des
Referenz Designs
Xilinx ZCU104 Zyng Ultrascale+ ke v do
MPSoC Evaluation Kit'
https://www.xilinx.com/products/boards-and-kits/zcu104.html|
11.12.2019 FPGA4ADAS 2020 - ROBERT BRIEGEL 7

Readlization i Jacol
Splitting into subnets PGA ENTWICKLUNG

CNN Subnetz
(Input Layer 224x224x1
e v
o $&  onnok
lInputLayer  224x224x1 | / (Output Layer 35x11x11x64
'CNN
|LSTM + FC Layer
\Output Layer 7xi| (InputLayer ~ 35x11x11x64
i -
Urspriingliches it o ¢ TensorFlowl ite
Netz |bulput Layer 7x1|
LSTM Subnetz
24.09.2020

FPGA4ADAS 2020 - ROBERT BRIEGEL
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Realization
Preparing the CNN

method 0, parser=tensorflow,

mode=normal,
C::E:_::rl:::o‘ cpu_arch=armé4
ght_bit 8, def=.ZCU104.dcf

activation_bit 8

“'CNN Subnetz
{frozen_cnn.pb)

n =

Calibration Dataset
bestehend aus 1000
224x224x1 MFF
ohne Label

deploy_model.pb

BN Layer

v

24.09.2020 FPGA4ADAS 2020 - ROBERT BRIEGEL

Realization
Changing the layer sequence

v | v

Conwlutional Layer | Convolutional Layer ]

44; ¢ ﬁ Conwolutional Layer

| RelU _' BN Layer |
BN Layer >< RelU | i

i | |

[ éon\.old_t'icnalnLayar |

i Jacol

FPGA ENTWICKLUNGEN

!

Folded
Convolutional Layer

i

i Jacol

FPGA ENTWICKLUNGEN

*Re-training of the network led to a loss of classification accuracy

of 2.15% (absolute)

24.09.2020 FPGA4ADAS 2020 - ROBERT BRIEGEL
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Realization
Preparing the LSTM

optimizations=
OPTIMIZE_FOR_SIZE

TF Lite Converter
Quantize

Weights

2 Convert
7 LSTM Subnetz

(frozen_lstm.pb)

i Calibration
% taset :

24.09.2020 FPGA4ADAS 2020 - ROBERT BRIEGEL

Realization
Preprocessing

i Jacol

FPGA ENTWICKLUNGEN

“t" TensorFlowLite

{
Quantize —}
Activations
¥

i Jacol

FPGA ENTWICKLUNGEN

* Implemented in C++ ‘
using the OpenCYV library "

* Loads videos from the SD card
and performs pre-processing:
»Motion Fusion

PS

Vorverarbeitung

Petalinux OS

DPU Applikation
(CNN)

Python Applikation

(LSTM+FC)

DPU Treiber

Python Interpreter

> Resize
»RGB->SW

»Fixed video length: 35 Frames

24.09.2020 FPGA4ADAS 2020 - ROBERT BRIEGEL
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Realization
DPU Application

i Jacol

FPGA ENTWICKLUNGEN

* Implemented in C++ using
the DPU driver provided by Xilinx

 Initializes the DPU IP core,
controls the data flow and
triggers the inference of the

compiled_
CNN .eff

PS

Petalinux OS
Vorverarbeitung

DPU Applikation Python Applikation
(CNN) (LSTM+FC)

DPU Treiber Python Interpreter

individual frames

*Mulfithreading ensures full DPU
utilization of the DPU IP core
§  onnok
A
Realization i Jacol
. . FPGA ENTWICKLUNGEN
Python Application
* Implemented using Python and i e
Vorverarbeitung

the Tensorflow Lite Interpreter

» performs inference of the LSTM cell
and the final classification layer

DPU Applikation Python Applikation

(CNN) (LSTM+FC)

DPU Treiber Python Interpreter

24.09.2020 FPGA4ADAS 2020 - ROBERT BRIEGEL

LST™M
Aiite

‘¢ TensorFlowl ite
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Results £ Jacol
In Summary

FPGA ENTWICKLUNGEN

* Top 1 classification accuracy was
measured at 89.86 %

(compared to 92.00% originally)

* Inference time CNN: @ 22.90 milliseconds
(35 Frames, 4 Threads)

e Inference time LSTM: @ 263.69 milliseconds

Further Improvements £ Jacol
FPGA ENTWICKLUNGEN

...yet to be made

- g ——

e L

. oy

FPGA4ADAS 2020 - ROBERT BRIE!
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2020 4™ Workshop on Programmable Processing for the Autonomous / Connected Vehicle

HAPPi-Net: Hardware-aware Performant Perception of Neural
Networks - Designing Lightweight CNNs on Embedded Platforms

Alexander Frickenstein*!, Manoj-Rohit Vemparala*l, Nael Fasfous*2, Lukas Frickenstein*!, Walter Stechele?

Abstract—1In the field of autonomous driving and other
robotic applications, embedded hardware (HW) platforms are
either resource or power constrained limiting the computational
complexity, the memory utilization and/or the memory band-
width. This circumstance hinders modern convolutional neural
networks (CNNs) being deployed on such systems, however, em-
phasizes the role of CNN optimization. Individual approaches
for CNN optimization are discussed in the context of a complete
HW-CNN co-design process. In this work, we demonstrate one
top-down approach leveraging a filter-wise pruning technique,
namely the autoencoder-based low rank filter sharing (ALF)
technique, to be used on various parallelized algorithms and
hardware accelerators. In the context of a meet-in-the-middle
design approach, we present a binary drivable area detection
neural network (binary DAD-Net) which is accelerated by
the run-time reconfigurable processing element OrthrusPE, for
embedded friendly applications. Based on the aforementioned
co-design processes, it becomes clear that different optimization
techniques leverage their efficacy later in the design process or
depend on consecutive optimizations.

I. INTRODUCTION

The automobile has formed the basis for private transporta-
tion for over 100 years. It has made a significant contribution
to the comfort and freedom of people. In the past few years,
increased traffic volumes have led to undesirable outcomes,
namely traffic jams and environmental pollution. With the
electrification and automation of cars, private transportation
can be made more productive and relaxing for people and
their environment. Here, neural networks are the key tech-
nology for autonomous vehicles. More broadly, in the field
of computer vision, tasks such as image classification or
semantic segmentation form the fundamental complexity of
most applications. This has made neural network algorithms
the de facto standard for solving many tasks in the field.
Only the storage requirements, the computing complexity
and the energy demand pose great challenges for electric au-
tonomous cars. Optimization methods offer a good solution
to this. Since the optimization has a significant impact on the
deployment process, a detailed consideration of the methods
used and their interaction with the respective design phase
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is crucial. An understanding of the optimization methods in
the deployment process is beneficial in two ways. Firstly,
more efficient applications are achieved that either allow the
use of less expensive control devices and/or provide space for
additional features. Secondly, it simplifies the design process
in a data driven development by better separation of design
steps (CNN design, optimization, hardware implementation),
forming understandable dependencies between stakeholders
and a clearer assignment of expert knowledge. Since a uni-
directional, deep-dive deployment approach can be complex
and lead to many inefficiencies in the design, we illustrate
alternative approaches of two design methodologies.

II. RELATED WORK

Mitigating the challenges of deploying deep and wide,
high-performance neural networks on the resource con-
strained environment of edge devices is a focal point of
enabling CNNs for embedded applications. Thus, both in-
dustry and academia focus to reduce redundancies arising
from training deeper and wider network architectures [1].

A. Neural Network Compression

Quantization and pruning render compression techniques
that can potentially be exploited to reduce the aforemen-
tioned redundancies, resulting in efficient CNNs for deploy-
ment on embedded hardware.

Pruning, aims to reduce the parameter or feature redun-
dancy in a neural network. The removal of network parame-
ters has a direct impact on the network’s memory footprint,
as well as the total number of computations necessary. For
the latter, the inference platform needs to be compatible with
the pruning granularity applied to the network. A common
example of mismatched pruning and inference hardware is
using element-wise pruning on a general matrix multipli-
cation (GEMM) accelerator. Removing individual elements
from a kernel makes it sparse, however, the GEMM operation
is inherently rigid and cannot trivially accommodate sparsity
in its execution. GEMM flattens the convolution’s strided
operation into replicated inputs and kernels to reshape the
problem at hand and execute it on fast matrix-matrix or
matrix-vector multipliers.
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We can classify pruning techniques into two general
domains, namely rule-based and learning-based compres-
sion. As implied, rule-based compression techniques rely on
having static or pseudo-static rules, which enforce/impose
the compression of a given CNN accordingly. Hand-crafted
pruning represents a further subgroup of rule-based compres-
sion, where heuristics are utilized to determine the saliency
of neurons. An example of this is where Han et al. [2] utilize
the magnitude of weights to determine their saliency, result-
ing in element-wise pruning and leading to irregular com-
pute structures (irregular pruning). The resulting inefficient
memory accesses render irregular pruning as impractical for
general purpose computing platforms. To overcome these
limitations, introducing regularity in the pruning process
becomes an essential criterion for performing accelerator-
aware compression. The design process for matching the
target hardware to the software/model is simplified such
that designing complex hardware, e.g. the Efficient Inference
Engine (EIE) [3] or the Sparse-CNN (SCNN) accelerator [4],
becomes unnecessary. Due to the compelling characteris-
tics of regular pruning, Frickenstein et al. [5] proposed
a structured, kernel-wise magnitude pruning method along
with a scalable and sparse algorithm. He et al. [6] utilize
a geometric mean heuristic to prune redundant filter in a
CNN, resulting in a hardware inference friendly network.
However, removing filters directly impacts the input channels
of subsequent layers, potentially resulting in a more signifi-
cant task-related accuracy degradation. Despite the tempting
simplicity of rule-based compression techniques, they overly
generalize the problem and struggle to find a one-size-fits-all
rule considering the varying nature of CNNs with respect to
complexity, structure and target task.

To address the shortcomings of rule-based compression,
recent works in literature [7], [8] have adopted learning-
based compression techniques. Both works utilize a rein-
forcement learning (RL) agent that is capable of learning
the criteria of the pruning process, which is formalized as
an optimization problem and a corresponding cost function.

Further, Huang et al. [7] define the environment for an
RL-agent as a CNN, where both an accuracy term and
an efficiency term are utilized to formulate the training
policy for the agent. This non-differentiable policy is used
to maximize the contrary objectives and the agent tries to
find a balanced trade-off. The fact that an agent needs to be
trained individually for each layer and the increasing search
complexity for layers with multiple channels results in a slow
and greedy process of the model exploration. He et al. [8] cut
down the exploration time by utilizing a RL-agent that prunes
without fine-tuning at intermediate stages. Additionally, layer
characteristics such as size, stride and operations (0OPs) serve
as further inputs to the agent. However, the formulation
of the cost function of such techniques is non-trivial and
is dependent on expert knowledge and trial-and-error. The
design space of the environment of the agent renders an
additional configuration parameter, making it difficult to test
many configurations of the underlying problem. Each of such
combinations of neural network and target task combination

results in a new and unique problem, requiring a unique
solution.

The pruning scheme presented by Guo et al. [9] incor-
porates pruning in the training flow by introducing learn-
able parameters, which can be recovered if necessary, to
dynamically prune the underlying CNN, resulting in irregular
sparsity. Cardinality constraints are incorporated by Zhang et
al. [10] into the training objective to obtain different pruning
regularities. Bagherinezhad et al. [11] proposed Lookup-
based CNNss to learn a dictionary of shared filters at training
time. The lookup dictionary is then utilized during inference
to perform the convolution on the input, resulting in low
computational complexity. When considering the similarities
for filter-sharing and weight-sharing, the weight-sharing ap-
proach presented by Bagherinezhad is arguably closest to
the technique presented in ALF framework [12]. However,
the methodology and the training procedure fundamentally
differ.

Differently, Neural Architectural Search (NAS) techniques
demonstrated the capability to successfully optimize CNN
models at design-time. Synergies emerged between CNN
design and the target hardware platform by combining
NAS with Hardware-in-the-Loop (HIL) testing. MNAS-Net,
proposed by Tan et al. [13], comprises NAS with a RL-
agent for mobile devices. Cai et al. [14] focus on deriving
specialized, hardware-specific CNN architectures from over-
parameterized models with their proposed ProxylessNAS.

Quantization, including its most drastic form, binarization,
aims to reduce the representation redundancy of model
parameters by constraining the range of possible values and
mapping them to a discrete domain of quantized represen-
tations [15], [16], [17]. It is worth mentioning, that both
quantization and binarization are orthogonal to pruning and
can be applied in combination with e.g. our ALF method.

Binarization of a CNN constrains its weights and activa-
tions to {—1, 1}. Along with the compelling benefits of com-
putational efficiency and reduction in memory requirements,
binarization leads to a degradation in accuracy compared to
the full-precision counterpart. To tackle the degradation in
accuracy, Rastegari et al. [18] introduced XNOR-Net, where
they estimate real-valued weights and activations by intro-
ducing a scaling factor and corresponding binary weights
and activations. With the introduction of CompactBNN,
Tang et al. [19] observed that binarizing activations is more
challenging compared to the binarization of weights and thus,
focused on improving the approximation of activations. They
further improved the training by proposing a ReLU activation
function with trainable parameters. In ABC-Net [20], Lin
et al. approximate full-precision weights and activations by
a linear combination of binary representations with corre-
sponding shifting and scaling factors. They highlighted the
appealing characteristic of BinaryNets with multiple weight
and activation bases against equivalent fixed-point quantized
CNNs with regard to embedded systems. Considering 45nm
CMOS technology, a MAC operation consumes > 8 X more
power than a bit-wise operation [21].

The previous mentioned publications focused on improv-
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ing binary neural networks for image classifications, however
another set of work studied binary object detection models
such as the work from Hanyu et al. [22]. Further, Zhuang et
al. [23] propose GroupNet with multiple binary bases, where
they extend the approximation towards the structural level.
GroupNet’s structural complexity allows it to extend the
effectiveness of BNNs to challenging semantic segmentation
tasks. In the scope of GroupNet, Zhuang et al. introduce the
Binary Parallel Atrous Convolution (BPAC) module, con-
sisting of multiple dilated convolutions with various dilation
rates, up to 16. This results in irregular memory accesses
and a higher power-consumption of the memory controller,
as pointed out in [5].

B. Efficient Hardware Processing

Several accelerators have been developed with processing
elements designed to exploit performance boosts due to
variable quantization levels [24], [25], [26], [27]. Other
accelerators were designed to solely execute BNNs [28],
[29], [30]. With the popularity of quantization as a compres-
sion technique, commercial hardware providers also offer
support for low-bitwidth operations on their compute plat-
forms [31], [32], [33], [34]. NVIDIA’s Turing architecture
employs Tensor Cores which can operate at FP16 precision,
while offering higher throughput at lower INT8 and INT4
precision modes [32]. Intel provides Vector Neural Network
Instruction (VNNI) libraries which pack more low-precision
operations in a single processor instruction. Intel’s Arria 10
FPGAs provide support for efficiently utilizing their DSPs’
native bitwidth to execute parallel low-precision operations,
effectively transforming them into vectorized processing
elements [35]. Similarly, the Xilinx DSP48 blocks can be
utilized to perform up to 48 parallel binary operations [17].
The Xilinx Versal platform [34] provides AI-Engine cores
which can perform 32, 16 and 8 bit operations, at higher
degrees of vectorization respectively. Coupled with the DSP
engines and the programmable logic block, a wide variety
of quantization levels can be supported on a single compute
platform.

Bit Fusion [24], UNPU [25], Stripes [26] and Loom [27]
are all based on ASIC designs. UNPU, Stripes and Loom
offer single bit operations while the Bitbricks structure used
in Bit Fusion allows the execution of operations at fixed
quantization levels, making the smallest possible precision
bounded by the size of a single Bitbrick. UNPU, Stripes
and Loom are capable of performing both binary and fixed-
point operations, however, with a non-negligible overhead,
due to the support of variable quantization levels. Further
ASIC-based works, BRein [29] and YodaNN [28], were
developed precisely to accelerate BNNs. However, they do
not implement the binary bases required for accurate binary
nets, nor do they support the shifting and scaling of the
intermediate maps.

FINN [30] is a popular framework for accelerating BNNs
on FPGAs. The framework is geared towards BNNs similar
to the ones proposed in [36]. FINN compiles HLS code
from a BNN description to create a bit file that exactly

suits that network. The first and last layers are not binarized
in their CNV network, making the fixed-precision hardware
utilized for those layers only useful for those two parts of
the network. In our proposed solution, every instantiated DSP
can be used for any part of the entire network, due to the
dual modes of the PE that can be reconfigured at run-time.
Furthermore, FINN is not compatible with multiple binary
bases, but rather simpler BNNs suited for problems such
as MNIST, CIFAR-10 or SVHN. Other FPGA-based BNN
accelerators [37], [38], [39] also execute binary operations
purely on LUTs and utilize DSPs for fixed-point operations,
where they are supported.

The authors of Double MAC [40] extract more func-
tionality from FPGA hard blocks. They precondition the
signals going into DSP blocks such that two multiplications
can be obtained with some post-processing. This leverages
quantization, since the two results obtained at the output are
calculated from operands that are smaller than the maxi-
mum possible precision that the DSP can offer. Their work
virtually turns DSPs into SIMD multipliers. Similarly, our
proposed solution turns DSPs into SIMD binary Hadamard
product processing units. Our solution is orthogonal to Dou-
ble MAC, making it possible to include Double MAC as a
third mode in OrthrusPE.

Efficient exploitation of hard blocks on FPGAs can play
a key role in lowering the efficiency gap between ASIC and
FPGA implementations [41]. This is evident in the recent
trend of FPGA manufacturers adding more hard blocks
to their chips aimed at accelerating deep neural network
applications [34].

C. Semantic Segmentation

One of the first prominent semantic segmentation mod-
els proposed was the Fully Convolutional Network (FCN),
which was successfully adopted by Shelhamer et al. [42].
An important aspect of FCN are the skip connections which
capture the intermediate features from the high level feature
maps during the up-sampling stage through 1 x 1 convolu-
tions. This method paved the way to more structured models
such as UNet [43]. This structured up-sampling provides
higher accuracy than single x8 up-sampling present in FCN.
However, this increases the computational complexity due to
additional up-sampling layers.

DeepLab, proposed in [44], utilizes dilated convolution
instead of down-sampling the feature maps, maintaining
a sufficient receptive field. The pooling or strided convo-
Iution is avoided for the last set of feature maps. This
would increase the computational costs as the convolution
is performed on larger feature maps. The encoder network
is downsampled by a factor of 8/16 instead of 32. The
down-sampled feature maps are then passed to a spatial
pyramid pooling module, which consists of parallel dilated
convolution with different rates followed by concatenation
and point-wise convolution. This module produces better
segmentation results by extracting multi-scale information.
Multi-class semantic segmentation has a negative effect on
the precision of the drivable area detection algorithm and
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their vast number of MAC operations making the application
impractical for embedded systems.

III. DESIGN PROCESS OF EFFICIENT DEEP NEURAL
NETWORKS

To meet the ever-increasing challenges of automated driv-
ing, such as quality of service or security requirements,
modern CNN architectures are becoming larger and deeper.
In this context, the interest in model compression, i.e. the
process of deploying a lightweight CNN, is gaining more
importance. A lightweight model is the optimal variant
from the designer’s point of view, i.e. with the lowest
memory requirements, the best performance, the lowest
energy consumption or a trade-off from different criteria.
The deployment process varies for different optimization
methods and hardware accelerators. On the one hand, the
optimization methods have different dependencies in the
algorithmic or hardware implementation. On the other hand,
different hardware accelerators require different program-
ming mechanisms. The design process can be formulated
as a top-down or bottom-up approach. In the case of a two-
sided deployment, i.e. a concurrent top-down and bottom-
up work, a meet-in-the-middle approach can emerge. Based
on the abstraction (architectural, algorithmic and hardware)
and separation of dependencies, the effectiveness of different
optimization methods can be seen later in the development
process or depend on other optimization measures, see Fig. 1.
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Fig. 1. Design process of hardware-aware performant perception of neural
networks.

In the following we introduce two design processes: First,
a simple top-down approach that enables lightweight models
by means of structured pruning, which in turn can be applied
to a variety of hardware accelerators using parallel libraries
such as GEMM. Second, a meet-in-the-middle approach
where binarization of the neural network has very good
task related properties and a specially designed processing
element favors its execution on an FPGA.

A. Top-Down Application of Structured Pruned CNNs

In this section we present a learning-based filter-wise
pruning method, i.e. the autoencoder-based low rank filter
sharing (ALF) technique [12]. By means of the method,

a simple top-down design process is leveraged. In detail,
ALF makes use of the inherent structure of CNNs, maintains
it throughout the compression, and results in an easy to
implement representation. A conversion into a matrix form
by using standard linear algebra libraries (e.g. BLAS) makes
the model applicable to various off-the-shelf hardware accel-
erators. Furthermore, it can be observed that no algorithmic

adjustments nor custom hardware are necessary.
The ALF approach is based on the publication [12] and

provides the following contributions:
« Approximation of weight filters of convolutional layers
using ALF-blocks, consisting of sparse autoencoders.
o A two player training scheme allows the model to learn

the desired task while slimming the CNN.
The goal of the proposed filter-sharing technique is to replace
the standard convolution with a more efficient alternative,
namely the autoencoder-based low rank filter sharing-block.

Without loss of generality, A'~! € RHixWixCi jg con-
sidered as an input feature map to a convolutional layer
1 € [1,L] of an L-layer CNN, where H; and W; indicate the
height and width of the input, and C; is the number of input
channels. The weights W' € REXKXCixCo are the trainable
parameters of the layer [, where K and C, are the kernel
dimensions and the number of output channels respectively.

In detail, the task is to approximate the filter bank W in a
convolutional layer during training by a low-rank version
Weode € REXEXCixCute  wwhere Cioge < C,. The low-
rank version of the weights Wiy is utilized later in the
deployment stage for an embedded-friendly application.

In contrast to previous structured pruning approaches [11],
[5], [6], this method does not intend to alter the structure of
the model in a way which results in a changed dimensionality
of the output feature maps A' € RHoxWoxCo  where H,
and W, indicate the height and width of the output. This
is done by introducing an additional expansion layer [45].
The advantages are twofold. First, each layer can be trained
individually without affecting the other layers. Second, it
simplifies the end-to-end training and allows comparison of
the learned features.

The expansion layer is comprised of point-wise convo-
lutions with weights Wy, € R*1XCwwexC  for mapping
the intermediate feature maps after an ALF-block A' €
RHoxWoxCeoxe to the output feature map A, as expressed in
Eq. 1.

Al = U(Al * Wexp) = O'(O'inter(A171 * chde) * Wexp) (D

As the point-wise convolution introduces a certain overhead
with regard to operations and weights, it is necessary to
analyze the resource demands of the ALF-block compared
to the standard convolution and ensure Cgode < Coodemaxs
where Ciodemax denotes the number of filters which have to
be removed to attain an efficiency improvement, see Eq. 2.

CiCoK? LOKQJ 2)
Ccode(CiK2 + Co) C;K?2+C,
As stated before, the autoencoder is required to identify

correlations in the original weights W and to derive a com-
pressed representation W o4, from them. The autoencoder is

— Ocode,max = L
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only required in the training stage and is discarded in the
deployment stage.

According to the design of an autoencoder, Eq. 3 gives the
complete expression for calculating the compressed weights
Weode- The encoder performs a matrix multiplication between
the input W and the encoder filters We,, € RE XK XCoxCoote
Mprune zeroizes elements of Wcode and o, refers to a non-
linear activation function, i.e. tanh().

Wcode - Uae(WcodeG)Mprune) = Jae((W'Wenc)QMprune) (3)

Eq. 4 provides the corresponding formula for the recon-
structed filters W of the decoding stage. The symbol -
stands for a matrix multiplication and ® for a Hadamard
product respectively. The pruning mask Mpnne acts as a gate,
allowing only the most salient filters to appear as non-zero
values in Weqqe, in the same manner as sparse autoencoders.
The decoder must, therefore, learn to compensate for the
zeroized filters to recover a close approximate of the input
filter bank.

Weee = Uae(Wcode : Wdec) 4

In order to dynamically select the most salient filters,
an additional trainable parameter, denoted mask M €
R1x1x1xC g introduced with its individual elements m; €
M. By exploiting the sparsity-inducing property of L1
regularization, individual values in the mask M are driven
towards zero during training. Since the optimizer usually
reaches values close to zero, but not exactly zero, clipping
is performed to zero out values that are below a certain
threshold ¢. Further, the clipping function Mpwne = (M, t) =
Ifjm;| >eymq allows the model to recover a channel when
required.

Unlike other pruning approaches which require a pre-
trained CNN and incorporate heuristics to determine the
saliency of the weights, ALF dynamically prunes a given
CNN during task-specific training. With minimal accuracy
degradation, we reduce the number of training parameters of
ResNet-20 by 3.9x and operations by 2.6x on CIFAR-10
dataset [46]. In summary, no pre-trained CNN is required for
ALF-based pruning simplifying the compression. Addition-
ally, as entire filters are removed, various parallel algorithms
and hardware accelerators can be used in a subsequent
deployment.

B. Meet-in-the-Middle Deployment of Binary Drivable Area
Detection

The meet-in-the-middle design approach promotes the
productivity of ML-engineers and HW-designers by allowing
the expertise of both to meet at an optimal, tightly-coupled
deployment. Deployment targets and constraints are allowed
to flow in both directions of the design (top-down and
bottom-up), leading to a better exchange in information
among the expert groups. In this section, we show an
example of this design methodology through binary DAD-
Net [47] and OrthrusPE [17]. Binary DAD-Net provides ef-
ficient binary operations which tackle the two class, drivable
area detection problem in an efficient and effective manner.

However, to maintain high accuracy, it requires some fixed-
point operations, e.g. scale and shift operation. OrthrusPE
provides an effective, high-throughput, low-power and low-
utilization processing element, which can perform binary
and fixed-point operations through run-time reconfigurability,
fulfilling the requirements of binary DAD-Net. From the
perspective of the HW-designer, binary DAD-Net inherently
provides a lightweight CNN that can efficiently be deployed
on FPGAs. Conversely, from the perspective of the ML-
engineer, OrthrusPE offers the freedom of designing CNNs
which have multiple types of operations (binary and fixed-
point).

Top-Down: The binary DAD-Net approach provides the

following contributions:

o A fully binarized drivable area detection neural network
which has binary weights and activations in all parts of
the model, i.e. encoder, bottleneck and decoder.

o The proposed binary model performs similar to the full-
precision network gaining 14.3x computational effi-
ciency and 15.8x memory saving for Cityscapes dataset
[48] on the DAD task.

o The performance of binary DAD-Net is increased when
pre-trained on automatic annotations.

The proposed drivable area detector is inspired by
autoencoder-based networks with skip connections,
i.e. DeepLabV3 [44]. As the name implies, binary DAD-Net
has binary representations in all three parts of the model:
the encoder, bottleneck (latent space) and decoder. Binary
DAD-Net adopts the binarization scheme of Rastegari
et al. [18]. As backbone (encoder) the 18 layered CNN
ResNetl8 is chosen, where the first convolutional layer
is not binarized due to very few trainable parameters and
computations compared to the remaining binary DAD-Net’s
layers. This aspect is one of many where the emphasis is
on a processing element that is reconfigurable at run-time.

Furthermore, quantizing input image leads to high in-

formation loss leading to severe accuracy degradation. For
the remaining layers, the sign-function binarizes the real-
valued activations H;_; ~ sign(A4;_1). In the inference-
stage the weights are considered to B ~ sign(W) €
{—1,41}. Scale factors o and S, introduced in [18], find
better estimations for W ~ aB and A =~ [H, see Eq. 5.
The convolution between B! and H!~' can be computed
using xnor-popcount operation.

Ay = conv(Wi, fi1) ~ aBconv(B!, H'™Y)  (5)

A typical binary convolution block consists of 1) binarization
of the activations and weights, 2) binary convolution, 3)
Batch Normalization and 4) non-linear activations such as
ReLU. The residual block, introduced by He et al. [49],
can be easily binarized learning more complex features by
adding consecutive binary convolutional layers with Batch
Normalization and non-linear activation function along with
fused shortcut connections. The shortcut connections in
binary residual blocks favor the BNNs by overcoming the
gradient saturation problem. Inspired by DeepLabv3 [50],
we use dilated convolutions in the bottleneck to increase the
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receptive field of the respective convolutions to increase the
receptive field of a convolutional layer, dilated convolution
introduces zeros to the weights of the respective layer. Our
observation for dilated convolution fits previous investiga-
tions for vanilla binary convolution layer [18], [19], [20].

The central part of the DeepLab [50] inspired binary DAD-
Net is the bottleneck. In detail, the bottleneck consists of two
consecutive binary residual blocks and a binary atrous spatial
pyramid pooling (ASPP)-block. The dilation rate d = 2 is
used for the last residual block. For the parallel convolutions
in ASPP block, four different dilation rates {1,8,12,18} are
assigned. Different to previous residual blocks, the dilated
residual blocks do not downsample the feature maps. Thus,
the feature resolution of the binary bottleneck is efficiently
increased. Upsampling by a factor of 16 instead of 32 is
required.

The decoder of binary DAD-Net is binarized for the task of
drivable area detection. Employing only binary convolutions
enlarges the output of the bottleneck to the size of the
original input image I generating pixel-wise predictions for
the task of drivable area detection. The binary decoder also
consists of bilinear upsampling and a binary score layer.
In detail, after the binary dilated convolution, described
in the previous section, linear combination (binary 1 x 1
convolution) of the ASPP feature maps and the encoder
skip connection (after the first residual block) is computed.
Next, the feature maps are fused in two consecutive binary
refinement blocks. The binary refinement blocks consist of
3 x 3 kernels, which is similar to the binary convolutional
layer, described above. Instead of transpose convolutions,
bilinear up-sampling enlarges the feature maps to the size
of the input I. This is important as the binary transpose
convolution would introduce additional operations and would
lead to an accuracy degradation.

We introduce normalized compute complexity (NCC), al-
lowing an implementation-wise comparison, by determining
optimal utilization of fixed-point and binary operations in one
compute unit. The reference implementation of OrthrusPE
using DSP-48 block is used to compute NCC. In particular,
OrthrusPE enables of perform two 16-bit fixed-point multi-
plications or 48 XNOR operations at once. Binary DAD-Net
achieves 96.23% mean intersection over union (mIOU) using
0.9MB of training parameters on the CityScapes dataset.
By incorporating the automatic annotations of drivable area
using Train Data Generator [51], we increase the mIOU to
96.60%. Moreover, binary DAD-Net shows its superior per-
formance w.r.t. an embedded implementation, by drastically
reducing the NCC (20.4x) compared to the full precision
implementation of DeepLabv3 [44].

Bottom-Up: The OrthrusPE design provides the following
contributions:

o A flexible computation unit for accelerating a wide

range of BNNs.

« Execution of SIMD-based binary Hadamard product on

FPGA hard blocks.

« A run-time reconfigurable processing element which dy-

namically supports binary and fixed-point computations.

OrthrusPE is a run-time reconfigurable processing element
(PE) which can satisfy all the functions required by accurate
BNNSs, while capitalizing on resource reuse. Accurate BNNs
cannot be achieved without fixed-point operations and re-
liance on DSP blocks. Instead of separating binary and fixed-
point computations to two types of hardware resources, Or-
thrusPE improves the efficiency of the computation by exe-
cuting both on FPGA hard blocks. OrthrusPE and OrthrusPE-
DS (Dual-Static) were evaluated across multiple target ac-
celerator frequencies. Both solutions achieved improved re-
source utilization and power efficiency compared to typical
BNN accelerator processing elements. OrthrusPE presents a
well-suited processing element to compute the operations of
binary DAD-Net, which involve binary Hadamard products,
as well as fixed-point operations in the form of scaling
factors, necessary for the XNOR-Net binarization in binary
DAD-Net. Accurate BNNs solve many of the computation
and memory challenges for deep neural network workloads
on edge devices. Efficiently executing their mixed-precision
computations can further exploit the advantages they offer at
the hardware level.

IV. CONCLUSION

Knowledge of the design process for the deployment
of CNNs on embedded ECUs, such as in robotics or au-
tonomous driving, helps to establish lightweight applications.
We show the design process by means of two prominent
optimization methods, namely pruning and quantization. In
the first methodology, channel-wise pruning is conducted
to a CNN allowing it to be deployed with minimal imple-
mentation overhead on various hardware accelerators (pre-
venting lock-ins). Here, structured learning-based pruning
outperforms irregular handcrafted pruning in terms of appli-
cability of the compressed model and facilitates the design
process. Taking the autoencoder-based low rank filter-sharing
technique into consideration, CNNs are compressed. Its’
compressed variants can easily be deployed with of-the-
shelf algorithms and hardware accelerators. In the second
method, we show the use of a novel binary drivable area
detection neural network together with a run-time recon-
figurable processing element. In the design phase of the
binary neural network we evaluate different local and struc-
tural binarization methods. A thorough selection of methods
and composition of the CNN architecture brings the BNN
close to the accuracy of its full-precision counterpart. For a
concurrent bottom-up design, the BNN’s requirements from
the top-down design are made accessible. This allows the
targeted conception of a reconfigurable processing element.
All in all, the meet-in-the-middle design shows very fruitful
results, where synergies between HW and lightweight CNN
are made. In summary, we show that a successful deployment
requires data scientists to prepare the training data, ML
experts to design the CNN, programmers to develop high-
performance algorithms and hardware specialists to provide
the target accelerator. The specific expertise of the individual
participants makes it necessary to abstract the process of
optimizing CNNs.
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'Security is important!

ahlic Service Anng

s

www.heise.de/news from 22.Sep. 2020

Danger for cars: ""Everything that is

networked will also be attacked".
-

researchers evalud
remote exploits of motor vel
could gain significant control over vehi
wireless communications vulnerabilities. While tl
have been addressed, it is important that consumers an
aware of the possible threats and how an attacker may seek to remo
exploit vulnerabilities in the future. Third party aftermarket devices with

d be directed to your local
FBI Field Office.

Local Field Office Locations:
www.fbi.gov/contact-us/field

wireless vulnerabilities.

© Copyright 2020 Xilinx

Potential attack surfaces of a connected car

Cloud services /

Internet or cellular access plugged into diagnostics ports could also introduce

£ XILINX 8

Smart
phone
OTA

Via Remote
APP

OBD I
Bluetooth

USB

Ethernet

DSRC & Cellular-v2X
Remote Key

Passive Keyless Entry

TPMS
Each feature enhancement brings
another potential attack surface !!!

*IT consulting company Capgemini

J

Wallbox
Via Powerline
communication

ECU’s
VI
ADAS
Gateway
Steering,
Engine,
Lighting
Vehicle Access

A 4
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'Trends in Automotive

> Moving towards Hardware Root of Trust
> Growing desire for every network connected device to support OTA

> Products that will have some unique and evolving security requirements

v
v

Vehicle Gateways and many ECUs
— Needs for authentication and/or encryption on CAN and Ethernet messaging between ECUs
= Enhanced AUTOSAR + crypto extensions e.g. with HSM
>> Domain Controllers
— Hypervisors or several secure operating systems may be used to provide another layer of security
= Need for additional protection our XMPU and XPPU
>> Event Recorders
- Secure storage on encrypted video as a method to protect user data
= Need for high bandwidth AES accelerator
C-v2X
- Large number of key exchanges
= Need for HSM low latency and high throughput

v
v

b ALy

© Copyright 2020 Xilinx

' Ind ustry Focus Source: SAE J3061: Cybersecurity Guidebook for Cyber-Physical Vehicle Systems; Appendix H; Jan 2016
| Project | Timeline | Origin |
EVITA 2008-2011 EU
. PRECIOSA 2008-2010 EU
> Lack of an industry standard creates challenges
SeVeCOM 2006-2010 EU
DRIVE-C2X  2011-2014 EU
> Xilinx’s primary focus is on = AN S AR EU
> Auto-ISAC v OVERSEE 2010-2012 EU
> 18021434 _‘ EURO-MILS  2012-2015 EU
>> HSM Architecture (e.g. EVITA) SESAMO 2012-2015 EU
SHIELDS 2008-2010 EU
CVIS 2006-2010 EU
> Others? TECOM 2008-2011 EU
@) \"/ ® SEPIA 2010-2013 EU
= @ Now 2004-2008 Germany
PR S0 ARAMIS 2011-2014 Germany
\ Feedback HEAVENS  2013-2016 Sweden
=6 © Copyright 2020 Xlinx L X )FILINX?
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'Automotive Groups & Standards

Partners

> Auto-ISAC (Information Sharing & Analysis Center)
——
AUTO-ISAC
> 1S021434 Road vehicles — Cybersecurity engineering
>> Requirements around development process
- Cybersecurity management
- Risk management & assessment
— Productdevelopment
- Verification & validation
- Operations & maintenance
>> Latest https://www.sae.org/standards/content/iso/sae21434.d1/ (from 202002)

> SAE J3101 - Requirements for Hardware-Protected Security for Ground Vehicle Applications
>> Requirement for security implemented in hardware
>> Latest https://www.sae.org/standards/content/j3101_202002/

> SAE J3061 - Cybersecurity Guidebook for Cyber-Physical Vehicle Systems

- g

© Copyright 2020 Xilinx

' 1ISO21434 Details

> Process for OEMs, Tier 1 and Tier 2 Suppliers

> Contains requirements around
>> Cybersecurity Management
>> Project Dependent Cybersecurity Management
> Risk Assessment
>> Concept Phase
>> Development Phase
> Production, Operations, Maintenance and Decomissioning
>> Management Systems
> Distributed activities (i.e. between OEM and Suppliers or between Suppliers)

*DIA— Development Interface Agreement

>> 8 | | £ XILINX @8

© Copyright 2020 Xilinx
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'Agenda

> Automotive Trends & Security Standards

> Secure Boot for Automotive Applications

> Security Features for Automotive Applications
> Safety and Security

>Summary

v
>>9 © Copyright 2020 Xilinx (‘ é!pgslolﬂ.é '

'Security through Product/System Lifecycle

Digital Signatures, User Passwords, Tokens, Biometrics Customer
Role-based Accounts, etc. ~Responsibility

Hypervisors, Microkernels, TrustZone, Isolation Shared
Design Flow Protections, Security Monitor, etc.
Asymmetric/Symmetric Authentication,

AES Crypto, DPA Protections, etc.

Security Critical Redundancy, JTAG i
Protections, Environmental Monitors, Xilinx
Tamper Detection/Penalties, etc. Responsibility

World Class Best Practices,
Authorized Suppliers, Blind
Buys, Anti-counterfeit, etc.

£ XILINX G

© Copyright 2020 Xilinx SECURE SOLUTIONS
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' Two Secure Boot Modes in ZU+
|| HwRootofTrust | Encrypt-Only |

Asymmetric Authentication Yes w/ RSA-4096 No

Confidentiality Optional w/ AES-GCM Required w/ AES-GCM'
(256 bit key) (256 bit key)

Symmetric Authentication Optional WAES-GCM Required w/ AES-GCM'
(256 bit key) (256 bit key)

Boot Time* Longer Shorter

Differential Power Analysis (DPA) Yes No?

Protection

Physical Unclonable Function (PUF) Yes? No

Support for Black Key Storage

Key Revocation/Anti-Replay Yes No

RMA Support No Yes

1. ALL partitions must be encrypted

2. DPA Protection requires RSAand AES

4. See Boot Time Estimator

3. 128bitentropy PUF (SCD#4687)is supported in XA devices

© Copyright 2020 Xilinx

' Secure Boot and Operation Protections (ZU+)

Side Channel

Fault Injection

Physical

Environmental

Test / Debug

General

Built-In Differential Power Analysis Countermeasures
and/or Protocol (Authentication and Key Rolling)

PMC Triple Redundant Processors and ECC on PMC Memories;
Temporal and Physical Redundancy in HW and ROM Code
SHA Integrity Checks on Immutable ROM Code

PMC Triple Redundant Processors and ECC on PMC Memories;
Temporal and Physical Redundancy in HW and ROM Code;
SHA Integrity Checks on Immutable ROM Code

ECC on PMC Memories;
SHA Integrity Checks on Immutable ROM Code

By Design (disabled upon power up and fault tolerant);
JTAG Monitoring;
Permanent disable capability
Immutable ROM Code;
PMC clocked by internal, uninterruptable clock source;

Pre-boot: sensitive info is the device key — protected via PUF (eFUSE)

© Copyright 2020 Xilinx

(https://www.xilinx.com/support/answers/67475.html)
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'Agenda

>

>

> Security Features for Automotive Applications
>

>

— &AL

© Copyright 2020 Xilinx

. e . . . https://github.com/Xilinx/boot
' Slmpllfled Per-Device Un|que Keylng ps://github.com/Xilinx/bootgen

> Enabled by open source Bootgen running on A53/A72
>> Facilitates unique keying architectures that require unique boot images per device

¢ | -

Traditional Provisioning Advanced Provisionin
Prebuilt boot image Bootimage encrypted & signed “on-the-fly”
PUF KEK is unique per device PUF KEK is unique per device
One boot image encryption key Supports unique encryption keys per device
Single signature across devices Unique signature per device

° ° ° °
L] L] L] L]

*See XSWG2019 Provisioning / Secure Provisioning Service presentation i XlLINx9

>> 14 . .
© Copyright 2020 Xilinx
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'ZU+ Fielded System Test/Debug

> What test capability do you have for a fielded system?
>> Enabling Secure Boot protects test interfaces

>> JTAG is automatically protected w/Secure Boot Enabled

- You do not have to program the JTAG Disable eFUSE to
protect the device

>>
16 © Copyright 2020 Xilinx

'ZU+ Fielded System Test/Debug

> What test capability do you have for a fielded system?
> Enabling Secure Boot protects test interfaces
> JTAG is automatically protected w/Secure Boot Enabled

- You do not have to program the JTAG Disable eFUSE to
protect the device

> Test Capabilities
>> Boundary Scan/Connectivity testing when secure boot fails
- Automatically enabled if you do not program SEC_LK eFUSE

>> 17 . .
© Copyright 2020 Xilinx

PS RESET
(PORB = 0)

!

PS in Boot

References from ZU+ TRM v1.8 (UG1085) Y X| |_| NX ?
-

v

Failed Secure Boot
Secure Lockdown

Disable
Reboot Fuse
Blown?
SEC_LK)

no

AES or RSA
eFuse Blown? VESJ

SOFT RESET

I

PS in Boot

I

Enable BSCAN
Device Held in Reset

References from ZU+ TRM v1.8 (UG1085) ‘ X| |_| Nx ?
-
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'ZU+ Fielded System Test/Debug

> What test capability do you have for a fielded system?
>> Enabling Secure Boot protects test interfaces

> JTAG is automatically protected w/Secure Boot Enabled regeser
- You do not have to program the JTAG Disable eFUSE to !
protect the device
PS in Boot
> Test Capabilities
>> Boundary Scan/Connectivity testing when secure boot fails _—
- Automatically enabled if you do not program SEC_LK eFUSE Secure Boot

>> Full test capability via JTAG when secure boot passes
- Load an FSBL that enables JTAG

Althenticated
SW enables
JTAG?

yes

no
A4

JTAG not

JTAG Enabled Enabled

References fromZU+ TRM v1.8 (UG1085) i
>>18 © Copyright 2020 Xilinx “ X| LIN.X ?

'ZU+ Fielded System Test/Debug

> What test capability do you have for a fielded system?
> Enabling Secure Boot protects test interfaces

> JTAG is automatically protected w/Secure Boot Enabled

- You do not have to program the JTAG Disable eFUSE to
protect the device

> Test Capabilities Table 6-13: ITAG Error Register Description
Lo . . Error source Bit on JTAG Error Status|
>> Boundary Scan/Connectivity testing when secure boot fails m=rmrssmemers .

- Automatically enabled if you do not program SEC_LK eFUSE | PMU pre-boot error (same as bit 78). !

- . PMU ROM service error (same as bit 99). 2
> Full test capability via JTAG when secure boot passes T X e
- Load an FSBL that enables JTAG Inchaces ROM valision, T, uncorrectabie RAM ECC, and .
local register address errors, '
> What is not covered? csu error. ¢
. . . . . PLL lock errors [VideoPLL, DDRPLL, APUPLL, RPUPLL, 13:9
>> Failure during boot / boot logic; Status available via JTAG  [lorwt
PL generic errors passed to PS. 1714
- PS TAP Controller Full-power Subsystem Gme-ouEemon: T
— JTAG Error Status Low-power subsystem time-out error. (-]
. Re: d 24:20
>> Do NOT program the JTAG Disable eFUSE S B
XPMU errors [LPD XMPU, FPD XPMLU]. 27:26
References from ZU+ TRM v1.8 (UG1085)
719 © Copyright 2020 Xlinx L X XILINX?
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'ZU+ Fielded System Test/Debug

> What test capability do you have for a fielded system?

>> Enabling Secure Boot protects test interfaces

>> JTAG is automatically protected w/Secure Boot Enabled
- You do not have to program the JTAG Disable eFUSE to

protect the device

> Test Capabilities

>> Boundary Scan/Connectivity testing when secure boot fails
- Automatically enabled if you do not program SEC_LK eFUSE
>> Full test capability via JTAG when secure boot passes

- Load an FSBL that enables JTAG

> What is not covered?

>> Failure during boot / boot logic; Status available via JTAG

- PS TAP Controller
— JTAG Error Status

>> Do NOT program the JTAG Disable eFUSE

>> 20

'How to do an RMA in ZU+ and Versal

© Copyright 2020 Xilinx

Toble 35-6: PS5 TAP Controller Status Register

Bit Vahue Description
31-28: | PS_VERSION Indicates the PS version, same as csu.version [ps_version] register bit
2720 | Reserved Ignore

1% Reserved ignore

18 Reserved Reads 0
17-14 | BOOT_MODE Dwvice boot mode

13 CBR_DONE ;;\fﬁ&l:g&?::::ﬁ:;écﬂm has finished running and the full ITAG

12 SCAM_CLEAR FAILED | Pre-boot SCAN CLEAR function failed

n LBIST_FAIRED Pre-boot LBIST functeon failed

0 BISR_FAILED Pre-boot BISA function failed

L

PL_PWR_STS

Powar status of the PL cannot connect to the PL TAP if this bit is 0

a7

Reserved

ignoee

&

PMU_MDM_SEC_GATE

PMU MO security gate is disabled

PL_TAP_SEC_GATE

PL TAP security gate is disabled

4

ARM _DAP_SEC_GATE

Arm DAP security gate |5 diabled

ARM_DaP

Arm DAP is connected in the ITAG chain

PLTAP

PLTAP is connected in the JTAG chain

1

]

o

References fromZU+ TRM v1.8 (UG1085)

£ XILINX @9

ZU+

field factory

> Encrypt Only boot mode
>> Step 1 — Provision device for Encrypt Only boot mode
— Provision ENC_ONLY eFUSE and AES eFUSE key

>> Step 2 — Deploy system

>> Step 3 — When device fails, encrypt Xilinx RMA boot loader with your symmetric key
— Xilinx boot loader opens test interfaces
>> Step 4 — Return device and encrypted boot load to Xilinx using approved process

> HWRoT boot mode is NOT supported

Versal

> Encrypt Only boot mode support
> HWRoT boot mode support

>>21

© Copyright 2020 Xilinx
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' EVITA HSM Architecture

ECC-256 UTC Clock | AES-PRNG |Internal RAM le C% Application | Application
NIST FIPS GF(D) | Ext pmeed ik counter | wilh TRNG seed 64 B, W A S e NVM RAM
WHIRLPOOL | AES-128 Counter  |Internal NVM|EVITA hardware| _fintemal Application | Buscomm,
AESbased hash | CCMGCM for AE | 16 8w monafonic| 3% +10w ROM|  interface CPU interface

Crymiagraphic hudaing block Lo taiivng bicck
EVITA cryptographic boundary Applcation coe
ECU chip boundary
Invohicle bus system

Figure 7: EVITA full hardware security module (V2X level)

> Security Requirements
>> SR.1 Integrity/Authenticity of e

>> SR.6 Secure in-vehicle data st

>> SR.8 Privacy

>> 24

-Safety related events

>> SR.2 Integrity/Authenticity of ECU/firmware installation/configuration
>> SR.3 Secure execution environment
>> SR.4 Vehicular Access Control

>> SR.5 Trusted In-Vehicle ECU Platform. Integrity/Authenticity of operated software

orage

>> SR.7 Confidentiality of in-vehicle and external communications

>> FR.9 Interference of security functionality
- Layman’s definition — security cannot negatively impact system availability

© Copyright 2020 )Glnx

' Pre-Engineered Solution

> Silex Insight HSM eSecure IP

SoC .
Integration
Crypto
Engine
Host X +DMA
Processor
MCU / MPU / :

Anti-
Tampering

Secure
Storage

4

External ¥ L
Storage

>> Secure operations in the PL

- Keys/Secure Processing isolated from PS
> HostFW executes on RPU or APU

- Interface with AUTOSAR API

> Flexible: Tradeofffeatures, logic and
performance

> See XSWG2019 ZU+ Hardware Security
Module (HSM) IP Solution presentation

>> 25

SECURE SC

€2 XILINX

MLUTIONS

®

Cortex-R5
32KB I/ID Host FW
128KB TCM

APU

I Cortex-A53
hE 32KB I/D

| Microblaze
200MHz

|
|
|
|
|
mm |

| VB L2
|

MIo |

pfivvér ii: S(\i:)itr:h 1 X [ CCl
PMU Switch
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128KB RAM
CsuU

PL

32kB I/D

64KB RAM

Quantum
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'Automotive Security Enhancements in next gen products

Authenticated
Debug via
NEVAXE

XA
AES Masking

RMA Support
in all Secure
Boot Modes

HSM “Out of
the Box” IP

RMA using a
3" Primary -
Public Key

- Full PUF
AMMABLE 11O Support

Additional Additional

Volatile Non-Volatile
User Keys User Keys

© Copyright 2020 Xilinx

'Agenda

>
>
>

> Safety and Security

>
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' Safety Collateral
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B

[SMA NSRM 003] The following modules contained in the LPD can be
used to initialize, service, and support the application but shall
never be used during the time when the application is actively
performing the safety mission:
1) AXI Trace Monitor (ATM)

) AXI Performance Monitor (APM)
3) Real Time Clock (RTC)
4) JTAG
5)
6)

i
H

> CSU Usage in FuSa application i
>> Previous version of ZU+ Safety Manual (UG1226) )

prevented use of hardened crypto acceleratorsin CSU

>> Not good for safety applications requiring security !!!

ARM debug access port (ARM DAP)
Crypto Interface Block (CIB)
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'ZU+ Automotive Developments

> CSU Usage in FuSa application

>> 30

>> Previous version of ZU+ Safety Manual (UG1226) prevented use of hardened crypto

accelerators inCSU

>> New version of ZU+ Safety Manual defines assumptions of use for using hardened crypto
accelerators inCSU

>> Much better for security applications!!!

[SMA CSU 001] The CSU shall be clocked by the SysOsc clock.

[SMA CSU 002] The CSU Crypto Interface Block (CIB) contains RSA,
SHA3, AES-GCM, PUF, PCAP, and CSU DMA functions. When using these
CIB functions, all safety-related communication dependent on these
blocks, shall use end-to-end protection measures.

£ XILINX @9
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' Safety Collateral

> Functional Safety Lounge (link)

> The Functional Safety Lounge is home to much of Xilinx Functional Safety Collateral
>> Contact your FAE for access details

> Xilinx Functional Safety Working Group (FSWG)

>> FSWG s for safety what XSWG is for security
>> Two day working group
> 2020 will be its 4" year

Xilinx Functional Safety Working Group (FSWG)
2020 Virtual Event

Registration to be opened starting 15t of October

£ XILINX @8
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'Summary

> ZU+ security can address the cybersecurity Automotive needs today
>> Multiple Secure Boot modes
>> Support for secure external non-volatile memory
>> Run-time security through hardened accelerators and tamper monitoring

> Versal security continues automotive security with additional enhancements
> Hardware Security Module (HSM) IP provides canned Security Solution

> Safety requires security!!
>> Xilinx’s security solutions complement our functional safety solutions

Information on older families can be found in prior year’'s XSW G presentations

. LKy
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Workshop : Programmable Processing for the Autonomous / Connected Vehicle
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