
 

 

 

Proceedings of the 

4th Workshop  

 

 

PROGRAMMABLE PROCESSING  

FOR THE  

AUTONOMOUS / CONNECTED VEHICLE 
 

– FROM CLASSICAL FPGA TO ADAPTABLE COMPUTING 

 

ALGORITHMS. ARCHITECTURE. REALIZATION. TEST. 
 

 

 

 

 

 

 

 

 

 

 

    24th September 2020 

   THU. Virtual Event. 



Imprint 

 
ISBN 978-3-9820843-2-9 

 

Cover photo © Alexander Limbach #233715262 

 
Editor 
Prof. Dr. Anestis Terzis 

Technische Hochschule Ulm  

University of Applied Sciences 

Prittwitzstr. 10  

89075 Ulm, Germany 

Anestis.Terzis@thu.de 

 
 

 

 

 

 

 

 

 

 

 

 

This work is subject to copyright. All rights are reserved by the publisher or the copyright 

holder. 

 

The use of general descriptive names, registered names, trademarks, service marks, etc. in 

this publication does not imply, even in the absence of a specific statement, that such names 

are exempt from the relevant protective laws and regulations and therefore free for general 

use. The publisher, the authors and the editors are safe to assume that the advice and 

information in this publication are believed to be true and accurate at the date of 

publication. Neither the publisher nor the authors or the editors give a warranty, express or 

implied, with respect to the material contained herein or for any errors or omissions that 

may have been made. 

  



 

 

Proceedings of the 4th Workshop 

 

Programmable Processing for the  

Autonomous / Connected Vehicle 

 

 

 
Program Committee of the Workshop: 
Prof. Dr. A. Terzis, Dr. E. Schubert, M. Güthoff 

 
  



Contents 
 

 

Opening Remarks from the Program Committee…………………………………………………………..1 

Anestis Terzis, THU, Endric Schubert, Missing Link Electronics, Mathias Güthoff, Xilinx  
 

FPGA & SoC Design for Functional Safety.……………………………………………………………………..6 

Dimitri Hamidi, Senior Application Engineer, MathWorks 
 

PCIe-over-TCP-over-TSN-over-10/25GigE……………………………………………………………….....28 

Endric Schubert, CTO, Missing Link Electronics 

 

Mirror Replacement System – An FPGA4ADAS Story…………………………………..………………42 

Stefan Schütz, Managing Director, Solectrix 

 

Automotive System Architectures from ADAS to AD…………..……………………………….……..53 

Ralf Neuhaus, Automotive System Architect EMEA, Xilinx 

 

Xilinx in AI: Versal AI core, AI Engine Architecture, Design Flow………………..……………….65 

Daniele Bagni, DSP / ML Specialist for EMEA, Xilinx 

 

Porting a Gesture Recognition Neural Network composed of CNN and LSTM  

to a FPGA SoC……………..…………………..…………………..…………………..…………………..…………..84 

Robert Briegel, JacoL – FPGA Entwicklungen GmbH 

 

HAPPi-Net: Hardware-aware Performant Perception of Neural 

Networks - Designing Lightweight CNNs on Embedded Platforms…….…………………………92 

Alexander Frickenstein1, Manoj-Rohit Vemparala1, Nael Fasfous2, Lukas Frickenstein1, 

Walter Stechele2, 
1BMW Group, Autonomous Driving, 2Technical University of Munich 
 

Security in Automotive……………………………………………….……………………………………………..99 

Ralf Neuhaus, Automotive System Architect EMEA, Xilinx 

 

 

 

 

 



WELCOME.

Partner:

PROGRAMMABLE PROCESSING FOR THE AUTONOMOUS / CONNECTED VEHICLE

� FROM CLASSICAL FPGA TO ADAPTABLE COMPUTING

ALGORITHMS. ARCHITECTURE. REALIZATION. TEST.

2 © Prof. Dr. Anestis Terzis, PROGRAMMABLE PROCESSING FOR THE AUTONOMOUS / CONNECTED VEHICLE, 24.09.2020

Ulm University of Applied Sciences

� In Numbers

Students Professors Other Academics + 

Administration

Partnering UAS 

worldwide

4.000 135 225 70

1



3 © Prof. Dr. Anestis Terzis, PROGRAMMABLE PROCESSING FOR THE AUTONOMOUS / CONNECTED VEHICLE, 24.09.2020

Studies and Lectures

� Six departments

ElectricalEngineering and

Information Technology

Mathematics, Natural and

Economic Sciences

Computer Science

Mechanical and Automotive 

Engineering

Production Engineering and

Production Economics

Mechatronics and

Medical Engineering

4 © Prof. Dr. Anestis Terzis, PROGRAMMABLE PROCESSING FOR THE AUTONOMOUS / CONNECTED VEHICLE, 24.09.2020

Applied Research

� Five focus areas

� Modern Mobility

� Digital Technologies

� Sustainable Energy Systems

� Technology in Health and Medicine

� Intelligent Industrial Systems

2



5 © Prof. Dr. Anestis Terzis, PROGRAMMABLE PROCESSING FOR THE AUTONOMOUS / CONNECTED VEHICLE, 24.09.2020

FPGA and ADAS/AD in B. Eng. EE

Durch die Wahl von 2 Schwerpunkten mit jeweils 4 Modulen kann das 

Studium nach eigenen Interessen gestaltet und das fachliche Profil geschärft werden. Schwerpunkte

6 © Prof. Dr. Anestis Terzis, PROGRAMMABLE PROCESSING FOR THE AUTONOMOUS / CONNECTED VEHICLE, 24.09.2020

Levels of Connectivity - Connected Car

Infrastructure / Wireless

Networks

NoC, MGT, AMBA AXI,

LPDDR4/4x, 

Ethernet AVB/TSN, 

MIPI, HDMI, SCCB, 

PCI Express, SATA, 

DAC, ADC, SPI, I2C,

�

In Vehicle

Networks

In Chip / ECU 

Networks

CAN, LIN,

Flexray, MOST

Ethernet,

LVDS, HDBaseT,

Powerline,

� 

Bluetooth, Wi-Fi IEEE 802.11,

Satellite Navigation GPS, 

Radio, TV, Wireless Entry, TPMS, 

V2I, V2N, V2V,

125 kHz � 80 GHz,

� 

Photo © Daimler Media

3



7 © Prof. Dr. Anestis Terzis, PROGRAMMABLE PROCESSING FOR THE AUTONOMOUS / CONNECTED VEHICLE, 24.09.2020

Platform for Autonomous Driving 

RC Car 

as a test and development platform for

Autonomous Driving technology

Institute of Communication Technology

8 © Prof. Dr. Anestis Terzis, PROGRAMMABLE PROCESSING FOR THE AUTONOMOUS / CONNECTED VEHICLE, 24.09.2020

4



9 © Prof. Dr. Anestis Terzis, PROGRAMMABLE PROCESSING FOR THE AUTONOMOUS / CONNECTED VEHICLE, 24.09.2020

Program

10 © Prof. Dr. Anestis Terzis, PROGRAMMABLE PROCESSING FOR THE AUTONOMOUS / CONNECTED VEHICLE, 24.09.2020

Program

5



1© 2020 The MathWorks, Inc.

Dimitri Hamidi

Senior Application Engineer

MathWorks

dhamidi@mathworks.com

FPGA & SoC Design for 

Functional Safety

2

Agenda

Ø Motivation behind Model Based Design for FPGA/ASIC

Ø Model Based Design Workflows for ISO26262

Ø Development Workflow for HDL Code

Ø Verification and Validation 

Ø Deep Learning on FPGA

6



3

FPGA, ASIC, and SoC Development Projects

67% of ASIC/FPGA projects are behind schedule

Over 50% of project time is spent on verification

(42 % on debugging!)

Statistics from 2018 Mentor Graphics / Wilson 
Research survey, averaged over FPGA/ASIC

84% of FPGA projects have non-trivial 
bugs escape into production

Root cause of functional flaws in 50% of cases originate
from specification

Wilson Research Report – Mentor Graphics

4

Many Different Skill Sets Need to Collaborate

Algorithms

System Architecture

System Integration

REQUIREMENTSRESEARCHRESEARCH

SPECIFICATIONS

Verification

Analog 
Hardware

Embedded 
Software

Digital  
Hardware

SPECIFICATIONS

SPECIFICATIONS

“Rapid innovation under a rapid 

timeline – that’s when this flow falls 

apart.”

Jamie Haas
Allegro Microsystems

• Poor communication across teams
• Key decisions made in silos
• System-level issues found in late stages
• Hard to adapt to changing requirements

7



5

DESIGN

SoC Collaboration with Model-Based Design

Algorithms

System Architecture

System Integration

REQUIREMENTSRESEARCHRESEARCH

Analog 
Hardware

Embedded 
Software

Digital  
Hardware

Implementation Architectures

Implementation Knowledge Generate Code

Export 
Models

V
e
rifica

tio
n

V
a
lid

a
tio

n
 &

ImImIm

HOW am I 

making it?

Is it going to 

work?

WHAT am I 

making?

MAKE IT!
Have I made 

it right?

Am I making 

the right 

thing?

6

IEC Certification Kit – ISO26262

I. Reference Workflow for:

I. Model-Based Design Development Workflow for HDL Code

II. Systematic verification and validation (V&V) of models and generated code

II. Tool certification/qualification accomplished by tool test suites, vendor audits

8



7

Model Based Design Development Workflow for HDL Code

I. Executable specification: a model in early phases of development to 
conceptually anticipate the functionality to be implemented, demonstrates 
and verifies the compliance of the input-output behavior of 
the model subject to the model specifications.

II. Implementation Model:  Enhance fist stage by adding design information 
and implementation details, used as input for the generation of HDL code . 
Executable, final stage of the model evolution process.

III. Production-quality HDL code

Requirements

Specification

Architecture 

Specification Model
Implementation

Model

Generated 

HDL Code
ASIC/FPGA

Implementation

System 

requirements

Architecture 

Development

Requirements 

Authoring
Modeling HDL Code Generation

ASIC/FPGA

Implementation

8

Development Workflow: Author Requirements

Requirements

Specification

Architecture 

Specification Model
Implementation

Model

Generated 

HDL Code
ASIC/FPGA

Implementation

System 

requirements

Architecture 

Development

Requirements 

Authoring
Modeling HDL Code Generation

ASIC/FPGA

Implementation

Simulink Requirements

Requirements

Specification

Ø Author Requirements

Ø Establish biderectional tracebilty to models test and code

Ø Monitor and manage implementation status

9



9

Requirements

Captured in 

§ Word, Excel, 

§ DOORS, etc., 

§ and/or 
Simulink Requirements

DOORS
DOORS 
Next Generation

Siemens
Polarion

Siemens
Teamcenter

PTC
Integrity

10

Development Workflow: Architecture Development

Requirements

Specification

Architecture 

Specification Model
Implementation

Model

Generated 

HDL Code
ASIC/FPGA

Implementation

System 

requirements

Architecture 

Development

Requirements 

Authoring
Modeling HDL Code Generation

ASIC/FPGA

Implementation

Simulink Requirements

Architecture 

Specification Model

System Composer

Ø Define model based hardware architecture

10



11

Model-Based Systems Engineering

§ Architecture Models

§ Profiles, stereotypes, properties

§ Allocate requirements

§ Views to focus on relevant parts

§ Perform Analysis

System Composer

12

Development Workflow: Modeling

Requirements

Specification

Architecture 

Specification Model
Implementation

Model

Generated 

HDL Code
ASIC/FPGA

Implementation

System 

requirements

Architecture 

Development

Requirements 

Authoring
Modeling HDL Code Generation

ASIC/FPGA

Implementation

Simulink Requirements

Architecture 

Specification Model

System Composer Simulink, Stateflow, Fixed-Point Designer

Ø Use Simulink / Stateflow to model behavoir of your system

11



13

Baseband
Digital

Front End
DAC PA

LNAADCBaseband
Digital

Front End

Radar Design as an Example!

RF Design
DSP 

Algorithms

Software 

Development

System

Architecture

Digital 

Hardware

Mixed-Signal  

Hardware

Antenna

Design

Digital PHY RF Front End Antenna

TRANSMITTER

RECEIVER

Requires 7 different skills to be successful!

at least

˅

Targets & 

Environment

14

Baseband
Digital

Front End
DAC PA

LNAADCBaseband
Digital

Front End

Targets

& 
Environment

Digital PHY RF Front End Antenna

TRANSMITTER

RECEIVER

Why MATLAB and Simulink?

Targets

RRRECEIECEIECEIVERVERVER

TTTTRANSRARARARARARARARARA MITMITMITMITMITMITMITMITMITMITMITTMITTMITTMITMIT ERERER

Noise, interference

RF Impairments
Nonlinearity, noise

PA

rontrontront E En En End End

bandand

Algorithms
Modulation, beamforming, synchronization

Ta

Envi
AnteAntenna

Ta

Antennas
Array elements, configuration

Waveforms

entententententententententententent

Measurements
EVM, BER, ACLR

Mixed-signal
Discrete- and continuous-time

• Rapid and flexible algorithm exploration, design, and analysis

• Unified simulation of digital, RF, mixed signal and antenna 

elements

LRLR

12



15

Large Scale Modeling
Manage Design Related Files with Simulink Projects

§ Search, manage, and share related files in a Simulink project

§ Access version control functionality (SVN/GIT support built-in)

§ Peer review of changes and merge using comparison tools

§ Impact Analysis before making changes

16

Development Workflow: Modeling

Requirements

Specification

Architecture 

Specification Model
Implementation

Model

Generated 

HDL Code
ASIC/FPGA

Implementation

System 

requirements

Architecture 

Development

Requirements 

Authoring
Modeling HDL Code Generation

ASIC/FPGA

Implementation

Simulink Requirements System Composer

Implementation

Model

Simulink, Stateflow, Fixed-Point Designer

Ø Add implementation details

Ø Convert to fixed point

Ø Optimize architecture

Ø Generate production quality code

Generated 

HDL Code

13



17

IEC Certification  Kit Artifacts for HDL 

Coder

– Tool Qualification Package (TQP)

– Reference workflow

– Conformance Demonstration 

Template (CDT)

– TÜV Certificate

– TÜV Report

HDL Coder - Certified by TÜV SÜD for ISO26262 for any ASIL

DESIGN

MATLAB Simulink Stateflow

Verilog 

/ VHDL

Re-used IP

HDL 

Coder

te (CDT)

rt

po

te (CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDT)T)T)T)T)T)T)T)T)T)T)T)T)T)T)T)T)T)T)T)T)T)T)T)T)T)T)T)T)T)T)T)T)T)T)T)T)T)T)

rtrtrtrtrtrtrtififififificicicicicicicicatatatatatatatatatatatatatatatatatatatatatatatatatatatatatatatatatatatatateeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

popopopopopopopopopopopopopopopopopopopopopopopopopopopopopopopoportrtrtrtrtrtrtrt
Synthesizable RTL

AXI Interfaces

Synthesis scripts

18

Application Domains for HDL
HDL Supported IP

Signal Processing Communications Vision

14



19

Workflow & Strategies for hardware optimizations

§ Fixed-Point Conversion
– Optimal Fixed-Point will save 

area 

and improve critical path

§ Architectural choices, e.g.
– Resource sharing

– Linear, tree, cascade

– FCSD, LUT, CORDIC, Shift Add ..

§ Pipelining
– Input / Output pipelining

– Distributed pipelining 

HDL Coder

Synthesis,

P+R

Timing Report,
Fit Report (area),

Power Report

Optimize,

Iterate

RTL Design
(.v, .vhd)

Critical Path Estimation,
High-level Resources 

Estimation

Fixed Point

Conversion

Ideal Floating

Point Model

HDL Optimized

20

Data Types: HDL Coder Capabilities

Floating-point 
Algorithm

Target-Aware Mapping

RTL with Floating-point libraries

LogicoreMegafunction

Automatic Fixed-point 

Conversion

Fixed-point Algorithm

Generic 

ASIC/FPGA

RTL

Native Floating Point

Generic ASIC/FPGA 

Half/Single/Double Precision 

Native Floating Point

Data Type Conversion

15



21

Guided and Automated Fixed-Point Quantization

Simulate with 
representative data to 
collect required ranges

Fixed-Point 
Designer proposes 

data types

Choose to apply 
proposed types 
or set your own

Simulate and 
compare 
results

22

Generate Bit & Cycle True, Readable and Traceable Code

Trace between generated RTL to 

model and requirements

16



23

HW Arch Design

Optimize Timing

Adaptive Pipelining

Insert and balance

Automation Control

Generated Model

Target Frequency 
= 200 MHz

Synthesis & 
Implementation

Distributed Pipelining

Balance only

24

Optimize Hardware Resources

Resource Sharing 

Factor=4

Reduce usage of expensive resources
• Gain, Product, Multiply-Add

Inserts oversampled time-multiplexing logic

17



25

Reference Workflow: Modeling

Requirements

Specification

Architecture 

Specification Model
Implementation

Model

Generted HDL 

Code
ASIC/FPGA

Implementation

System 

requirements

Architecture 

Development

Requirements 

Authoring
Modeling HDL Code Generation

ASIC/FPGA

Implementation

Simulink Requirements System Composer Simulink, Stateflow, Fixed-Point Designer HDL Coder Third-party tools

ASIC/FPGA

Implementation

26

IP Core Generation & Integration

Algorithm 
Model

Generic IP
across platforms

HDL
IP Core

Algorithm 
HDL

Simulink/MATLAB
algorithm

AXI Interface

Prototyping the generated IP 

on custom Reference Designs and SoC Boards

Custom Reference Design

HDL
IP core

Processor

Custom Reference Design

HDL
IP core

Processor

ProProProProcProProProcProcProProProcProProProProProcProcProProProcProcProProProProProcProcProProcProcProProProcProProcProProcProProProProcProcProPro

§ Generate HDL IP core with standard interfaces

§ Use Provided Reference Design

§ Define your own Board and Reference Design

§ Integrate IP Core Automatically into Reference Design

– Internal/External IO

– AXI4 / AXI4-Lite

– AXI4-Stream / Video

– AXI4 Master

IP Core Interfaces

18



27

Verification and Validation in the Model-Based Design

Workflow

Requirements

Specification

Architecture 

Specification Model
Implementation

Model

Generated 

HDL Code
ASIC/FPGA

Implementation

Architecture 

Development

Requirements 

Authoring
Modeling HDL Code Generation

ASIC/FPGA

Implementation

Design Verification HDL Code Verification

I. .

II. Verification and validation at the HDL code level (HDL code 

verification): Demonstrate equivalence between the model and 
generated HDL code.

I. Verification and validation at the model level (design verification):

Demonstrate that the model used for production code generation behaves 
as specified in its requirements and absence of unintended functionality

28

V&V Workflow: MIL Unit and Integration Testing, Coverage 
Analysis

Requirements

Specification

Architecture 

Specification Model
Implementation

Model

Generated 

HDL Code
ASIC/FPGA

Implementation

System 

requirements

Architecture 

Development

Requirements 

Authoring
Modeling HDL Code Generation

ASIC/FPGA

Implementation

MIL unit and integration 

testing / model coverage

Requirements 

traceability

Simulink Requirements

Simulink Requirements

Requirements linking

System Composer Simulink, Stateflow, Fixed-Point Designer HDL Coder Third-party tools

Simulation / test authoring / coverage analysis

Simulink Test
Simulink Coverage

19



29

Develop, Manage, and Execute Simulation-based Tests
with Coverage Reporting

Main Model

Test Harness

Component 
under test

Synchronized, simulation test environment

Test Harnesses

Test Sequence Blocks, Pass/Fail Criteria

Te

• Author, execute, manage test cases
• Review, export, report

Test Manager

Test Definitions, Pass/Fail Criteria

Coverage

Analysis and Reporting on model and code

• Revi

30

V&V Workflow: Static Model Analysis

Requirements

Specification

Architecture 

Specification Model
Implementation

Model

Generated 

HDL Code
ASIC/FPGA

Implementation

System 

requirements

Architecture 

Development

Requirements 

Authoring
Modeling HDL Code Generation

ASIC/FPGA

Implementation

MIL unit and integration 

testing / model coverage

Requirements 

traceability

Simulink Requirements

Simulink Requirements

Requirements linking

System Composer Simulink, Stateflow, Fixed-Point Designer HDL Coder Third-party tools

Simulation / test authoring / coverage analysis

Simulink Test
Simulink Coverage

Modeling standards checking, 

Design error detection

Simulink Check
Simulink Design Verifier

20



31

Static Model Analysis I : Modeling Standards, Metrics & HDL 
Compatibility

Model compatibility with 
HDL Code Generation

HDL Code Advisor
Model Metrics

• Analyze complexity, 
size, reusability

• Assess design quality

Standards & 

Guidelines Checks

• Automate compliance 
to ISO26262 

• Customize checks

• Find and fix compliance 
issues while you design 
with Edit Time Checking 

32

•Uncover hard to find 
dead logic and design 
flaws

Design Error 

Detection

Requirements 

Proving

•Prove formally design 
meets requirements

Test 

Generation

•Automate test case 
generation to complete  
coverage

Static Model Analysis II : Formal Verification

21



33

V&V Workflow: Static Model Analysis

Requirements

Specification

Architecture 

Specification Model
Implementation

Model

Generated 

HDL Code
ASIC/FPGA

Implementation

System 

requirements

Architecture 

Development

Requirements 

Authoring
Modeling HDL Code Generation

ASIC/FPGA

Implementation

MIL unit and integration 

testing / model coverage

Requirements 

traceability

Simulink Requirements

Simulink Requirements

Requirements linking

System Composer Simulink, Stateflow, Fixed-Point Designer HDL Coder Third-party tools

Simulation / test authoring / coverage analysis

Simulink Test
Simulink Coverage

Modeling standards checking, 

Design error detection

Simulink Check
Simulink Design Verifier

FIL Testing, FPGA

Model vs. code

HDL Coder
HDL Verifier

HDL Coding 

Standards Checking
Back-to-Back HDL 

Simulation

Prevention of 

unintended functionality

34

Verify and Debug with MATLAB and Simulink

§ Use HDL Verifier to:

– Cosimulate RTL back-to-back with the 
model to debug before FPGA deployment

– Simulate FPGA-in-the-loop with your 
MATLAB/Simulink tests

– Generate SystemVerilog DPI-C 

components for the verification team:
§ Reference models

§ Test sequence items

§ External models

Mentor/Cadence 
Simulator

FPGA-in-the-loop

S
tim

u
lu

s

R
e

sp
o
n
se

RTL 
Design

HDL Cosimulation

SystemVerilog DPI

SystemVerilog 

Test Bench
DUT

Reference

Scoreboard
Test 

sequences
ststststststst 

cececececessssss

rencncncncncncncncncncncncncncncncncncncncncncncncncncncncncncncncncncncncncncncncncnceeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Example

22



35

Model Based Design for FPGA/ASIC
What is your value?

Enable collaboration by integrating workflows 

with Model-Based Design

Shorten development time  and react faster to changing 

requirements with Automatic HDL Code generation

Reduce verification time with HDL/FPGA Co-simulation and
increased reuse with automatic test bench generation

Streamline ISO26262 certification with IEC Certification Kit and a
certified toolchain

36

Deep Learning on FPGA

Radar Signature ClassificationLidar Object Detection

ØDeep Learning is state of the art for many
perception problems for AD

23



37

Why deploying DNNs on FPGA?

Latency

Throughput

Development
effort

Size

Interfaces

Power
consumption

GPU

FPGA

CPU

Worse Better

38

Deep learning networks are too big for FPGAs

Challenges of deploying Deep learning models on FPGAs

§ Large scale matrix computations

– TFLOPS:  230M weights and 724M MACs

§ Complex architecture

– Scale of data movement across the DDR

§ Manual workflows are tedious

Workflow:

§ Exploring multiple networks

§ Exploring the resource and performance tradeoffs

24



39

Prototyping: Design Exploration and Customization

Trained DL 
Network

User logic

Profiler

Prototype

Verify

40

HDL 
Coder

Generate Custom Processor for FPGA/SoC Integration

Prototype

Verify
Trained DL 

Network

User logic

Profiler

Custom 
ProcessorPr

40

Profiler

FPGA/SoC 
Integration

Pre-
processing

Generated 
core

Mem I/F IP

Post-
processing

I/O I/O

External Memory

Reference Design

# of threads, int8/single ..

25



41

MATLAB supports the entire deep learning workflow – from Data to 

Deployment

PREPARE DATA

Iteration and Refinement

CREATE MODEL DEPLOY SYSTEM

42

Pedestrian and Bicyclist Classification Using Deep Learning

Bicycle

Pedestrian

Synthesize 
radar signals

CNN 
classifier

STFT, scaling, 
and 

normalization

One Bicyclist

Two pedestrians

One pedestrian

One pedestrian 
and one bicyclist

Two Bicyclists

26



43

Scene Recognition using Radar on Xilinx ZCU102

43

44

Thanks for your attention
Questions?

Dimitri Hamidi

Senior Application Engineer

MathWorks

dhamidi@mathworks.com

27



28



29



30



31



32



33



34



35



36



37



38



39



40



41



Mirror Replacement System

An FPGA4ADAS Story

Dipl. Ing. (FH) Stefan Schütz

Managing Director Solectrix

R&D Director Automotive

Agenda

Mirror Replacement System

An FPGA4ADAS Story

42



Mirror Replacement System - Overview

Topic: Replacing conventional exterior mirrors with equivalent & suitable Camera Monitor System (CMS)

- aerodynamic advantages - allows new design concepts - enabling further ADAS features

• Challenges: 

• Exterior mirrors are safety relevant vehicle parts for securing the driver’s indirect rear view

• The CMS must meet specific quality criteria to display the rear view sufficiently

• Receive & display more information  and integrate certain comfort/ADAS features

• Solectrix contributions:

• Research since 2012 regarding CMS Core features, i.e. Image Quality and Field of Views

• Series development for a “truck-CMS” with ASIL B criteria since 2015 with SOP 07/2019

• Research and Development now on 2nd generation of CMS Features

Supplier Awards 2019  - category innovation

Mirror Replacement System - Overview

Mirror Replacement System on a truck

43



Mirror Replacement System - Reasons for a CMS

Reasons for a CMS as Mirror Replacement:

• Better fuel economy due to improved aerodynamics - Reduction of CO2 emissions 

• Improvement of aeroacoustics

• Improved vision 

• No glare at direct sunlight or due other high-beam headlights

• Improved night vision – better than the human eye

• Improvement of field of view, blind spot minimized

• Improvement of direct vision – smaller obstructions 

• Integration of smart comfort features and new view options

• Enabling new advanced driver assistance systems

Mirror Replacement System - Lot of things to consider …

Lot of things to consider …

• Optical-electrical-optical transfer function has to be optimized for maximum contrast and true color reproduction, 

especially regarding adequate response to changing lighting conditions

• Perfect resolution has to be shown, which is also relevant for the selection of the sensor and display resolution and size

• Image changes have to be depicted with a minimal time-delay for the whole optical-electrical-optical path

• Different general day and night characteristics & properties has to be considered for the whole imaging path

• Need of Automatic.-Panning, so that the system always shows the entire trailer (because the FOV cannot be changed by moving the head)

• The CMS has to ensure that no image loss and frozen images occurs

• The state of the CMS must be clearly recognizable and secured/ensured (boot up, operation, safe state)

• The whole image reproduction (color and contrast reproduction) has to be ensured 

to avoid any loss of information's, artifacts, etc. and controlled adaptions to changes in ambient conditions

• Compliance with standards and laws for indirect vision and CMS and end customer acceptance

• High level of integration in vehicle infrastructure and architecture in general

44



Mirror Replacement System - Biggest Challenge

Biggest Challenge: Functional Safety (ISO26262) meets Imaging

• HQ Image reproduction - HDR, Anti-Flicker, 3D noise filter, tone mapping, day & night characteristics

• Variable FOV (Field of View(s) / Visions) with different view generation

• Low latency with defined step function response regarding AEG & AWB (e.g. tunnel scenario)

• Trailer Tracking for automatic panning of the shown view (to show the entire trailer)

• Digital Assistance e.g. with specific overlays to support docking maneuvers or lane changes

Secured and Safeguarded -

To avoid frozen, delayed or 

artifact disturbed images

Functional Safety meets Imaging – Overview

45



Functional Safety meets Imaging – Compliance with standards

Functional Safety meets Imaging – Tailored and exact defined Imaging

46



Functional Safety meets Imaging – Protection at the right place

Detection Rules at the right places for ASIL A / B / (C)

Faults: Delayed – Frozen - Disturbed

• Frozen image stream - stream of frames  with non-increasing framenumbers

• Delayed image stream - consistent but delayed stream of frames with increasing framenumbers

• Disturbed image stream – loss of information within the content, e.g. due to faults when multiple images 

are combined together like stitching or HDR processing

Measures for protection and safeguarding at the right places

• Control & Monitor Timing & frame rates - ensure buffer management

• Control & Monitor Frame Numbers

• Control & Monitor Sensor, HDR Processing and image characteristics in general

Functional Safety meets Imaging – Versatile Platform

Versatile Platform

• Compliance with standards

• Tailored and exact defined Imaging

• Protection at the right place

+ Scalable and versatile solution for integration of smart comfort features & 

enabling of new advanced driver assistance systems

è Scalable and/or versatile SoCs needed like TI, NVIDIA or FPGA based SOCs

47



Versatile Platform

§ Image Processing 
Pipelines

§ FoV Generation
§ Object Detection

§ CAN Communication
§ SW Download
§ Parameter Memory
§ Diagnosis

§ Sensor Configuration
§ Image Processing Control Loops
§ Overlay Generation
§ SW Isolation
§ Video Streaming
§ Object Detection

§ H.264/H.265 Video 
Encoding for Video 
Streaming / Storage

§ Board Monitoring
§ Error Handling
§ SW Test Library
§ Functional Safety

- ASIL-C

§ Overlay Generation
§ (270° Birdview)

Versatile Platform – FPGA based SoC Solution – an example

48



Versatile Platform - Tailored Imaging

Tailored Imaging:

• Adaptive ToneMapping

• Anti-flicker mechanisms for mitigation disturbing image flicker 

• CCT (correlated color temperature) guided AutoWhiteBalance

• Adaptive Luminance & Saturation Control

• Adaptive and optimized noise filters 

• Day / night mode

• Special Views

• …

Versatile Platform – Pattern Recognition/ Object Detection

Intelligent comfort features and object detection

• Trailer Tracking & Automatic Panning

• Lane Detection

• Support for VRU detection

+ more complex object detection based on CNN approaches as an option

49



Outlook: Next Generation & AI Integration

Outlook: Next Generation & AI Integration

§ Powerful, fast, and flexible

§ Wide range of applications

§ Functional safety

§ Image signal processing

§ …

§ Restricted in resources

FPGAs … from an application point of view

50



Outlook: Next Generation & AI Integration

§ Powerful and flexible

§ Wide range of applications (in image processing)

§ Object detection

§ Classification & Segmentation

§ …

§ Large amount of resources required

AI / machine learning … from an algorithmic point of view

Outlook: Next Generation & AI Integration

§ Bringing both worlds together with a specialized AI-Ecosystem

§ Focus on Network selection & Pruning methods

§ With the goal either to optimize a network for implementing AI in an embedded
device or to optimize a network for pure performance

51



Platform for data aggregation and AI integration - sysiko

Outlook: Next Generation & AI Integration

Managing Directors:

Dipl.-Ing. (FH) Lars Helbig

Dipl.-Ing. (FH) Stefan Schütz

Dipl.-Ing. (FH) Jürgen Steinert

Fon:    +49 (0) 911 - 30 91 61 - 0

Fax:     +49 (0) 911 - 30 91 61 - 299

info@solectrix.de

www.solectrix.de

solectrix GmbH

Dieter-Streng-Str. 4

90766 Fürth

Germany

Mana

Dipl

Dipl

sole

Diet

907

Germ

52



© Copyright 2020 Xilinx

Automotive System Architectures –
from ADAS to AD
Advanced Driver Assistance Systems to Autonomous Drive

Ralf Neuhaus : Automotive System Architect EMEA 

September 24, 2020

Workshop :Programmable Processing for 

the Autonomous / Connected Vehicle

Agenda

› SAE Driving Levels: Evolution vs 

Revolution

› Automated Driving System 

Requirements 

› Scaling the Architecture L0 to L4

2

53



SAE Driving Levels:
Evolution vs. Revolution

© Copyright 2020 Xilinx

SAE Driving Levels
Increased System Level Responsibility = Increase in System Complexity

SAE 

Level Name Narrative Definition

Execution of 

Steering and 

Acceleration/

Deceleration

Monitoring

of Driving

Environment

Fallback

Performance

of Dynamic

Driving Task

System

Capability

(Driving

Modes) Examples

0
No 

Automation

the full-time performance by the human driver  of all 

aspects of the dynamic driving task , even when enhanced 

by warning or intervention systems
Human Driver Human Driver Human Driver n/a

Blindspot Detection / 

Surround View

1
Driver 

Assistance

the driving mode -specific execution by a driver assistance 

system of either steering or acceleration/deceleration using 

information about the driving environment and with the 

expectation that the human driver perform all remaining 

aspects of the dynamic driving task

Human Driver 

and system
Human Driver Human Driver

Some 

driving 

modes

Adaptive Cruise 

Control /

Lane Keep Assist /

Parking Assist

2
Partial 

Automation

the driving mode -specific execution by one or more driver 

assistance systems of both steering and acceleration/ 

deceleration using information about the driving 

environment and with the expectation that the human 

driver  perform all remaining aspects of the  dynamic driving 

task

System Human Driver Human Driver

Some 

driving 

modes

Traffic Jam Assist

3
Conditional 

Automation

the driving mode -specific performance by an automated 

driving system  of all aspects of the dynamic driving task 

with the expectation that the human driver  will respond 

appropriately to a request to intervene

System System Human Driver

Some 

driving 

modes

Full Speed Range 

Stop & Go - Highway / 

Self Parking

4
High 

Automation

the driving mode -specific performance by an automated 

driving system  of all aspects of the dynamic driving  task , 

even if a human driver  does not respond appropriately to a 

request to intervene

System System System

Some 

driving 

modes

Automated Driving / 

Valet Parking

5
Full 

Automation

the full-time performance by an automated driving system 

of all aspects of the dynamic driving task  under all roadway 

and environmental conditions that can be managed by a 

human driver

System System System
All Driving 

Modes

Full Autonomous 

Driving / Driver-less 

Vehicle Operation

Human Driver  monitors the driving environment

Automated Driving System  ("system") monitors driving environment

54



© Copyright 2020 Xilinx

4D Imaging

RADAR

Towards Level 4:  PoV Evolution vs. Robotaxi Revolution

Sensors & ADAS 

• Delivering Incremental 

Improvements

Transportation as a Service

• Heading straight to Car 2.0

Business 

& 

Ecosystem 

Implications

System Arch 

& 

Technical 

Implications

Traditional

Vendors

Car 1.1

ADAS Domain 

Controllers

LiDARCamera

Edge sensors

Complex Signal Process + Perception (AI)

Car 1.2

Car 1.3

Car 1.n

Non-traditional

Vendors

Data

Aggregation,

Pre-processing

and Distribution

Device(s)

(DAPD)

Safety

Processor(s)

Compute

Accelerator(s)

High

Performance

Serial

Processor(s)

Mem Mem

Mem Mem

Car 2.0

In-Cabin

Surround View

Centralized Processing Module(s)

Automated Driving System Requirements

55



© Copyright 2020 Xilinx

Cameras Radar LIDAR

Left OSRV

Right OSRV

Rear Surround

Fwd Stereo A

Fwd Stereo B

AD ECU

Front Surround

Vehicle 

Bus

Display(s)

Driver Monitor A

Fwd Wide

Fwd RCCC

RADAR Interface

LIDAR Interface

Camera Interface

Vehicle/Other Interfaces

Automated Driving Case:  Sensing Suite
Wide variety of distributed sensor configurations from L0 to L4

Driver Monitor B

Left Surround

Right Surround

Rear

Long Range

Front

Right

Left

Rear

Front Long Range

Front Rt Short Range

Front Lt Short Range

Rt Side Fwd

Short Range

Lt Side Fwd

Short Range

Rt Side Rear

Short Range

Lt Side Rear 

Short Range

Rear Long Range

Rear Rt Short Range

Rear Lt Short Range

* Ultrasonics not shown

© Copyright 2020 Xilinx

Automated Driving System Functional Diagram
An assortment of different processing functions performed by various 
“engines” located in distributed modules

Sensing

Mapping

Perception

Localizing
Route/Path

Planning
Vehicle Control

Driver Interaction

Motion

Planning

Cameras

Other Sensing ECU

Other Sensors

V2X

Advanced Sense & Detect Engine(s)
Represents distributed elements

Main ADAS/AD Computing Module(s)
Represents centralized Elements

Perception Engine Behavior Planning Engine

Other ECUs

Braking

Steering

Throttle

Suspension

etc

Actuation Modules

Maneuver

Engine 

Some Sense & Detect

Processing may be

done in Main ADAS/AD

Compute Module

Other ECUs

Displays

User Input

Driver Monitor

HMI Modules

Lidar

Radar

56



© Copyright 2020 Xilinx

AD Central Module Processing Element Architecture
4 primary processing element types

› Although sometimes integrated into a single device/package, a centralized AD processing 
module is commonly comprised of a heterogeneous set of processing element types:
» Data Aggregator, Pre-Processor and Distributor

» High Performance Compute Processor(s)

» Computational Accelerators

» Safety Processor(s)

Data Aggregation, 

Pre-processing & 

Distribution 

Device(s) (DAPD)

PHYsSafety Processor(s)

Compute 

Accelerator(s)

High Performance 

Serial Processor(s)

HMI

Vehicle Control & 
Status

Lidar Sensors

Camera Sensors

Radar Sensors

Mem Mem

Mem Mem

PHYs

Centralized Processing Module(s)

© Copyright 2020 Xilinx

Desired AD Platform Architecture Characteristics
What do I want in my platform to address L0 to L4?

Scalability

» Adjustment of BoM costs across low to high complexity systems

Portability

» Migration of designs between device family generations over time

Adaptability (Flexibility)

» Efficient adaptation of algorithms and interfaces across multiple product life cycles

– New sensing technologies drives new algorithmic and interface approaches (e.g. 1 to 8 Mpix)

– High volume “field lessons” require changes in deployed algorithms (e.g. new edge cases)

– Drive for efficiency requires adaptable processing engines (e.g. 32b FP to 8b INT  to binary CNN)

Modularity

» Ability to adjust individual elements of processing performance (e.g. DMIPs vs. TOPs) 

» Partitioning and functional safety advantages
10

57



Scaling the Architecture
L0 to L4

© Copyright 2020 Xilinx

Surround View

Level 0 Example

>> 12

58



© Copyright 2020 Xilinx© Copyright 2020 Xilinx

Level 0 System Example
Surround View

LoRes/LoFps

Surround Cams

CAN / CAN-

FD PHYs

Vehicle Buses 

(status & 

actuators)

PHY

Displays

Quad

SERDES CSI-2

4-lane

CSI-2 4-lane

Display Port

Ethernet Options CAN / 

CAN-

FD/FlexRay

/ LIN PHYs

Non-Volatile

FLASH Device(s)

(bitstreams)

FD PHYs
PHY

CSI-222

-lanelanelanelane

DDR/

LPDDR

eg. ZU+
e.g. SPI

Provides natural-looking 3D hemispheric 360° view of the vehicle’s surrounding 

Virtual flying camera enables super-smooth perspective change at camera frame rates

Equalizes the multi-camera system under changing illumination conditionszes the mumumulti camera

Optional:

Instead use 

ZU+ R5’s in 

lockstep

nding 

Optional:

Instead use 

ZU+ZU+ZU+ZZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZZU+ZU+ZU+ZU+ZZU+ZU+ZU+ZU+ZU+ZU+ZZZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZZZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZZU+ZU+ R5’s 

loclocloclocloclocloclocloclocloclocloclocloclocloclocloclocloclocloclocloclocloclockstep

© Copyright 2020 Xilinx© Copyright 2020 Xilinx

Level 0 System Example
Surround View – PL Cores

LoRes/LoFps

Surround Cams

CAN / CAN-

FD PHYs

Vehicle Buses 

(status & 

actuators)

PHY

Displays

Quad

SERDES

1x CSI-2

4-lane

Display Port

CAN / 

CAN-

FD/FlexRay

/ LIN PHYs

Non-Volatile

FLASH Device(s)

(bitstreams)

SPI

DDR/

LPDDR

MIPI

Ctrlr

Frame

CaptureFrame

CaptureFrame

CaptureFrame

Capture

AXI4 to

DDRC
Camera 

Sync

AXI-Lite

from CPU

Image

Warp

Video Ctrlr

/ Mixer

Calibration

Accelerator

AXI4

DDRC

AXI4

DDRC

eg. ZU+ (or Z7000 

depending

on functions req’d)

I2C

Optional:

Instead use 

ZU+ R5’s in 

lockstep

SPISPISPISPISPISPISPISPISPISPISPISPISPISPISPISPISPI

Optional:

Instead use 

ZU+ZU+ZU+ZZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZZU+ZU+ZU+ZU+ZZU+ZU+ZU+ZU+ZU+ZU+ZZZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZZZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZZU+ZU+Z  R5’s 

loclocloclocloclocloclocloclocloclocloclocloclocloclocloclocloclocloclocloclocloclockstep

59



© Copyright 2020 Xilinx

Surround View, NCAP Fwd Cam, ACC

Level 1 Example

>> 15

© Copyright 2020 Xilinx

Level 1 Multi-Feature System Example
Surround View, NCAP Fwd Cam, ACC

LoRes/LoFps

Surround Cams

CAN / CAN-

FD PHYs

Vehicle Buses 

(status & 

actuators)

PHY

Displays

Quad

SERDES CSI-2

4-lane

CSI-2 4-lane

Display Port

Ethernet Options
CAN / 

CAN-

FD/FlexRay

/ LIN PHYs

Non-Volatile

FLASH Device(s)

(bitstreams)

e.g. HSSL

Radar

CAN-FD

PHYs

Quad

SERDES 1x CSI-2 4-lane

HiRes/HiFps

Fwd/Rwd Cams

eg. ZU+

CSI-22

-lanelanelanelane

eg.eg.eg.

DDR/

LPDDR

Provides natural-looking 3D hemispheric 360° view of 
the vehicle’s surrounding 
NCAP features include AEB and LDW
Adaptive Cruise Control

Optional:

Instead use 

ZU+ R5’s in 

lockstep

Optional:

Instead use 

ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ R5’s 

loclocloclocloclocloclocloclocloclocloclocloclocloclocloclocloclocloclocloclocloclocloclocloclockstep

60



© Copyright 2020 Xilinx© Copyright 2020 Xilinx

Level 1 Multi-Feature System Example
PL Cores

LoRes/LoFps

Surround Cams

CAN / CAN-

FD PHYs

Vehicle Buses 

(status & 

actuators)

PHY

Displays

Quad

SERDES

CSI-2

4-lane

CSI-2 4-lane

Display Port

Ethernet Options CAN / 

CAN-

FD/FlexRay

/ LIN PHYs

Non-Volatile

FLASH Device(s)

(bitstreams)

HSSL

Radar

CAN-FD

PHYs

Quad

SERDES CSI-2 4-lane

HiRes/HiFps

Fwd/Rwd Cams

© C right 2020 Xili

-2 44--lanelanelanelanelan

DDR/

LPDDR

MIPI

Ctrlr

Frame

CaptureFrame

CaptureFrame

CaptureFrame

Capture

AXI4 to

DDRC

Camera 

Sync

AXI-Lite

from CPU

Image

Warp

Video Ctrlr

/ Mixer

Calibration

Accelerator

AXI4

DDRC

AXI4

DDRC

CAN-FD

Ctrlr(s)

MIPI

Ctrlr

ISP

I2C

Lane Marking 

Detection 

Accelerator

Headlamp 

Detetion

Accelerator

Ped / Vehicle 

Detection 

Accelerator

(e.g. HoG/SVM)

Various Optimized 

Accelerators that work in 

conjunction with 

application SW

Sensor Fusion 

Accelerator for 

ACC

Optional:

Instead use 

ZU+ R5’s in 

lockstep

AI DPU Engine

Multiple 

Classification 

SSD Netowrk

Object Classifier Alternative

(or Diverse Redundancy)

HSSLHSSLHSSLHSSLHSSLHSSLHSSLHSSLHSSLHSSLHSSLHSSLHSSLHSSLHSSLHSSLHSSLHSSLHSSHSSL

Optional:

Instead use 

ZU+ZU+ZU+ZZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZZU+ZU+ZU+ZU+ZZU+ZU+ZU+ZU+ZU+ZU+ZZZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZZZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZZU+ZU+ R5’s 

loclocloclocloclocloclocloclocloclocloclocloclocloclocloclocloclocloclocloclocloclockstep

Object Classifier Alternative

(or Diverse Redundancy)

© Copyright 2020 Xilinx© Copyright 2020 Xilinx

Level 1 Multi-Feature System Example
Surr View, NCAP Fwd Cam, ACC

LoRes/LoFps

Surround Cams

CAN / CAN-

FD PHYs

Vehicle Buses 

(status & 

actuators)

PHY

Displays

Quad

SERDES

CSI-2

4-lane

CSI-2 4-lane

Display Port

Ethernet Options CAN / 

CAN-

FD/FlexRay

/ LIN PHYs

Non-Volatile

FLASH Device(s)

(bitstreams)

HSSL

Radar

CAN-FD

PHYs

Quad

SERDES 1CSI-2 4-lane

HiRes/HiFps

Fwd/Rwd Cams

© C right 2020 Xili

1CSI-2 4444-lanelanelanelane

DDR/

LPDDR

MIPI

Ctrlr

Frame

CaptureFrame

CaptureFrame

CaptureFrame

Capture

AXI4 to

DDRC

Camera 

Sync

AXI-Lite

from CPU

Image

Warp

Video Ctrlr

/ Mixer

Calibration

Accelerator

AXI4

DDRC

AXI4

DDRC

CAN-FD

Ctrlr(s)

MIPI

Ctrlr

ISP

I2C

Lane Marking 

Detection 

Accelerator

Headlamp 

Detetion

Accelerator

Ped / Vehicle 

Detection 

Accelerator

(e.g. HoG/SVM)

Various Optimized 

Accelerators that work in 

cojunction with 

application SW

Sensor Fusion 

Accelerator for 

ACC

Acce

Data Aggregation, Pre-processing & Distribution (DAPD)D)
Compute Accelerator(s)

Note the integration of

both DAPD and Compute

Acceleration into the single

ZU+ Device in this example

Optional:

Instead use 

ZU+ R5’s in 

lockstep

HSSLHSSLHSSLHSSLHSSLHSSLHSSLHSSLHSSLHSSLHSSLHSSLHSSLHSSLHSSLHSSLHSSLHSSLHSSHSSLHSHS

Optional:

Instead use 

ZU+ZU+ZU+ZZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZZU+ZU+ZU+ZU+ZZU+ZU+ZU+ZU+ZU+ZU+ZZZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZZZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZZU+ZU+Z  R5’s 

loclocloclocloclocloclocloclocloclocloclocloclocloclocloclocloclocloclocloclocloclockstep

61



© Copyright 2020 Xilinx

NCAP Fwd Cam, DMS, Highway Pilot, APA

Level 3/3+ Example

>> 19

© Copyright 2020 Xilinx0 Xilinx

Level 3+ System Example
NCAP Fwd Cam, DMS, Highway Pilot, APA

Radar

Lidar

LoRes/LoFps

Surround Cams

CAN/CAN-FD

/Enet PHYs

100Mb/1Gb

PHYs/Switch

CAN / CAN-

FD PHYs

Vehicle Buses 

(status & 

actuators)

PHY

Displays
Other sensors/ECUs 

(eg Maps, GPS, IMU)

PHYs

Quad

SERDES CSI-2

4-lane

Quad

SERDES CSI-2 

4-lane

Quad

SERDES

CSI-2 4-lane

Ultrasonics

2x US ASIC
2x SPI

CSI-2 4-lane

Display Port

Ethernet Options

DRIVER 

MONITORING

HiRes/HiFps

Fwd/Rwd Cams

CAN/CAN-FD

Ethernet

PCIe

Switch
GbE

Switch

CAN / 

CAN-

FD/FlexRay

/ LIN PHYs

HSSL/Other

Non-Volatile

FLASH Device(s)

(bitstreams)

DeBug/Devel

Port(s)

Versal or ZU+

In-Cabin Cams

SERDES
CSI-2 4-lane

© Copyright 2020 X

CSI-2222

4-lanelanelanelanelanelane

CSI-2 2 2 2 

4-lanelanelanelanelanelane

CSICSI--2 2 2 4-lanelanelanelanelanelanelanelanelanelanelanelanelanelanelanelanelanelane

2x SP2x SPx SPx SP SPI

VeVeVerVerVeVerVeVeVeVeVeVerVeVeVeVeVeVeVerVerVerVeVeVeVeVeVerVerVe salsalsalsalsalsalsalsalsalsal or or or or or or or or or or or or or or or or or or or or or or or or or ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+U+U+U+U+U+U+U+U+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+ZU+U+U+U+U+U+U+ZU+ZU+ZU+ZU+U+U+U+U+ZU+U+U+U+ZU+ZU+ZU+ZU+ZU+U+U+ZU+ZU+ZU+U+U+U+U+U+U+U+U+U+

CSI--2 2 2 444-lanelanelanelanelanelanelanelanelanelanelanelanelanelanelanelane

Versal

Optional:

Instead use 

Versal R5’s 

in lockstep

HSSL/Other

Optional:

Instead use 

VerVerVerVerVerVerVerVerVerVerVerVerVerVerVerVerVerVerVerVerVerVerVerVerVerVerVerVerVerVerVerVerVerVerVerVerVerVerVerVerVerVerVerVerVerVerVerVerVerVerVerVerVerVerVerVerVerVerVerVersal R5’

in in in in in in in in in in in in in in in in in in in in in in in in in in in lockstep

Switch

62



© Copyright 2020 Xilinx

Level 4 

AD ECU Summary

>> 21

© Copyright 2020 Xilinx© Copyright 2020 Xilinx

A Modular/Scalable AD ECU Architecture offering Flexibility and Portability

Radar

Lidar

LoRes/LoFps

Surround Cams

CAN/CAN-FD

/Enet PHYs

100Mb/1Gb

PHYs/Switch

CAN / CAN-

FD PHYs

Vehicle Buses 

(status & 

actuators)

PHY

Displays

eMMC

(event recording)

Other sensors/ECUs 

(eg Maps, GPS, IMU)

PHYs

Quad

SERDES CSI-2

4-lane

Quad

SERDES CSI-2 

4-lane

Quad

SERDES CSI-2 4-lane

Ultrasonics

2x US ASIC
2x SPI

CSI-2 4-lane

Display Port

Ethernet Options

H.264/265 multi-stream

to 4KP60 rate

Other 

compressed 

video sink (?)

LoRes/HiFps E-

Mirror Cams

HiRes/HiFps

Fwd/Rwd Cams

CAN/CAN-FD

Ethernet

ASIL-D

MCU

High

Performance

Serial

Processor

PCIe

Switch
GbE

Switch

CAN / 

CAN-

FD/FlexRay

/ LIN PHYs

Non-Volatile

FLASH Device(s)

(bitstreams)

In-Cabin Cams

SERDES
CSI-2 4-lane

DDR4/

LPDDR

COMPUTE

ACCELERATE

ASIL-D

MCU

/ LIN PHYs (

SAFETY

PROCESSOR

High

Performance

Serial

Processor

HIGH

PERFORMANCE

SERIAL

PROCESSOR

LPDDR

DATA AGGREGATION, 

PRE-PROCESSING, AND 

DISTRIBUTION

(DAPD)

63



© Copyright 2020 Xilinx23

Workshop :

Programmable Processing for the 

Autonomous / Connected Vehicle

64



FPGA4ADAS Workshop at Ulm University,

24 September 2020

Xilinx in AI: 
Versal AI-core, AI-Engine Architecture, Design Flow 

Daniele Bagni 

daniele.bagni@xilinx.com

DSP / ML Specialist for EMEA

Agenda 

˃ Introduction

˃The AI Engine

˃ML inference with Vitis AI 

>> 2

65



Introduction

© Copyright 2020 Xilinx

New Device Category: Adaptive Compute Acceleration Platform

Diverse Workloads in

Milliseconds

Future-Proof for 

New Algorithms

ADAPTIVE

Adaptable

Engines

Scalar

Engines 

Intelligent

Engines

COMPUTE ACCELERATION

Enabling Data Scientists, SW Developers, HW Developers
>> 4

PLATFORM

Development Tools 
HW/SW Libraries 
Run-time Stack

SW Programmable 
Silicon Infrastructure

66



© Copyright 2020 Xilinx

Adaptable Engines
2X compute density

Programmable I/O
• Any sensor, any interface

• Extendable peripheral set

Intelligent Engines
• AI Compute

• Diverse DSP workloads

DDR Memory
• 2X bandwidth/pin

• Server-class density

Protocol Engines
• Integrated 600G cores

• 4X encrypted bandwidth

Pr

PCIe & CCIX
• 2X PCIe & DMA bandwidth

• Cache-coherent interface 

to accelerators

Transceivers
• Broad range, 25G →112G

• 58G in mainstream devices

Scalar Engines
• Platform Management 

Controller (PMC)

• Edge Compute

Versal Architecture Overview

>> 5

Network-on-Chip
• Guaranteed Bandwidth

• Enables SW Programmability

© Copyright 2020 Xilinx

Adaptable Engines
2X 2X 2X 2X comcomcompute density

Programmable I/O
Any sensor, any interface

Extendable peripheral set

Inte
• AI 

• Div

DD
• 2X

• Se

ocol Engines
ated 600G cores

encrypted bandwidth

PCIe & CCIX
• 2X PCIe & DMA bandwidth

• Cache-coherent interface 

to accelerators

Transceivers
• Broad range, 25G →112G

• 58G in mainstream devices

Scalar Engines
• Platform Manageagememenmenmenmenmenmenmenmenmenmenmenment t t t 

Controller (PMC)

• Edge Compute

Architecture Overview

Ne
•

•

Ne
•

•

© Copyright 2020 Xilinx

AI

Engine

M
E

M
O

R
Y

AI

Engine

M
E

M
O

R
Y

AI

Engine

M
E

M
O

R
Y

AI Engines
Hardened Compute, Memory & Interconnect

>> 6

Terabytes/sec of interface bandwidth to other engines

˃ Direct, massive throughput to adaptable HW engines

˃ Implement core application with AI for “Whole App Acceleration”

SW programmable for any developer

˃ C programmable, compile in minutes

˃ Library-based design for ML framework developers

Huge performance improvements versus UltraScale+

˃ 8x compute density @ 40% lower power

1GHz+ VLIW / SIMD vector processors

˃ Versatile core for ML and other advanced DSP workloads

Massive array of interconnected cores

˃ Instantiate multiple tiles (10s to 100s) for scalable compute

AI

Engine

M
E

M
O

R
Y

67



© Copyright 2020 Xilinx

Software Programmable:  Any Developer

Compile

Design

4G/5G/Radar 

Library

Frameworks

AI 

Library
Vision 

Library

C/C++
C/C++

AI Engine Compiler

Programming

Abstraction Levels

1

2

3Run

Architecture 

Overlay

Data Flow
w/ Xilinx libraries

Kernel Program
Data Flow w/ user 

defined libraries

>> 7

© Copyright 2020 Xilinx

Xilinx runtime library (XRT)

Vitis target platform

Domain-specific

development 

environments

Vitis core 

development kit

Vitis accelerated 

libraries

Vision & Image

Processing

Math & Linear

Algebra

Vitis AI Vitis Video

Partners 

Genomics,

Data Analytics,

And moreQuantitative 

Finance

Analyzers DebuggersCompilers 

Vitis Unified Software Platform Design Flow

Coming soon…

Edge Deployment On-Premise Deployment Cloud Deployment

68



© Copyright 2020 Xilinx

Vitis Target Platform

˃ Pre-Configured Static Region

PCIe® Interface Logic

DDR memory interface controllers

XDMA logic etc.

Hardware Config & Lifecycle Management

˃ For Embedded Devices, Includes

Operating System

Runtime Library (XRT)

Runtime Drivers (XRT)

Firmware & Boot loader

>> 9

H
a

rd
w

a
re

 S
h

e
ll

 &
 

C
o

n
fi

g
u

ra
ti

o
n

Runtime 

Library 

& Drivers

Boot 

Loader

Operating System

Static Region

Reconfigurable 

Region

Embedded Software

Use Ready-to-Use Vitis Target Platforms 

OR

Build Your Own using Vivado Design Suite 

Host 

Application

The AI Engine

69



© Copyright 2020 Xilinx

AI

Engine

M
e

m
o

ry

AI

Engine

M
e

m
o

ry

AI

Engine

M
e

m
o

ry

AI

Engine

M
e

m
o

ry

AI

Engine

M
e

m
o

ry

AI

Engine

M
e

m
o

ry

AI

Engine

M
e

m
o

ry

AI

Engine

M
e

m
o

ry

AI

Engine

M
e

m
o

ry

AI Engine

Array

AI Engine: Terminology

>> 11

Versal ACAP

AI Engine

Tile

Interconnect

ISA-based 

Vector Processor

Local 

Memory

AI Vector 

Extensions 

5G Vector 

Extensions 
Data 

Mover

AI

Engine

M
e

m
o

ry

Memory Interface

Scalar Unit

Scalar

Register

File

Scalar ALU

Non-linear 

Functions

Vector 

Register 

File

Fixed-Point 

Vector Unit

Floating-Point 

Vector Unit

Vector Unit

Instruction Fetch 

& Decode Unit

AGU AGU AGU

Load Unit A Load Unit B Store Unit

Stream Interface

AI Engine

Core

ISA-based 

Vector Processor

AI Vector 

Extensions 

5G Vector 

Extensions 

© Copyright 2020 Xilinx

AI Engine Tile
˃ AI Engine core

512b SIMD vector units

‒ Both fixed and floating point

‒ 16KB program memory

32b scalar RISC processor

256-bit load (x2) and store units with individual AGUs

˃ 128KB direct core memory access
32KB local

32KB north, south, east or west

˃ Interconnects
AXI Memory Mapped (AXI-MM) switch

‒ Configuration, control and debug

AXI-Stream crossbar switch

‒ Routing N/S/E & west around the array

˃ Debug/Trace/Profile functionality
Debug using memory-mapped AXI4 i/f

Connect to PMC via JTAG or HSDP

>> 12

M
E

M
 I

/F Data

Memory

(32KB) M
E

M
 I

/F

MEM I/F

MM2S
DMA

MEM 
I/F

S2MM
DMA

AXIS West

A
X

IM
 S

w
it
c
h
 

AXIS   East

S2MM
DMA

MM2S

East

A
X

IS
 N

o
rt

h
A

X
IS

  
 S

o
u
th

Program
Memory
(16KB)

Instruction
Fetch & 
Decode 

Unit

Load & Store
Address 

Generation
Units

32b Scalar
RISC Unit

Fixed Point
512b SIMD
Vector Unit

Floating Point
512b SIMD
Vector Unit

Stall
Handler

Control, 
Debug 
& Trace

Accumulator
Stream FIFO

Scalar 
Register Files

Vector Register Files

Memory Access

AXI Stream

AXI MM

Cascade Stream

70



© Copyright 2020 Xilinx

Multi-Precision Support

>> 13 SPFP: IEEE Single Precision Floating Point

Operand 1 Operand 2 Output
Number of GMACs 

@ 1 GHz

8 real 8 real 48 real 128

16 real 8 real 48 real 64

16 real 16 real 48 real 32

16 real 16 complex 48 complex 16

16 complex 16 real 48 complex 16

16 complex 16 complex 48 complex 8

16 real 32 real 48/80 real 16

16 real 32 complex 48/80 complex 8

16 complex 32 real 48/80 complex 8

16 complex 32 complex 48/80 complex 4

32 real 16 real 48/80 real 16

32 real 16 complex 48/80 complex 8

32 complex 16 real 48/80 complex 8

32 complex 16 complex 48/80 complex 4

32 real 32 real 80 real 8

32 real 32 complex 80 complex 4

32 complex 32 real 80 complex 4

32 complex 32 complex 80 complex 2

32 SPFP 32 SPFP 32 SPFP 8

cfloat is a vector type but is not 

directly supported by the AI 

Engine vector processor.

2 instructions have to be issued 

to perform a mult.

© Copyright 2020 Xilinx

Multiple-levels of Parallelism

˃ 7-way VLIW machine

˃ Instruction-level Parallelism (ILP)

Very long instruction word (VLIW) à 128-bit

Multiple operations issued in one cycle

˃ Data-level Parallelism (DLP)

Vector data path (SIMD)

>> 14

ld ad2,v1 mul v2,v0,v1 st ad3,v2ld ad1,v0

Two loads One storeOne vector

multiplication

scalar ops

scalar mov

Up to 2 moves

VLIW Instruction (7-way VLIW)

71



ML inference with Vitis AI 

What is Vitis AI?

>> 16

Vitis AI 

Development Kit

AI Compiler

DPU

User Application

AI Quantizer

AI Optimizer

Frameworks

AI Profiler

AI Library

Deep Learning 

Processing Unit (DPU)

Vitis AI Models Model Zoo Custom Models

Vitis runtime

CNN-Zynq CNN-Alveo LSTM-Alveo CNN-AIE LSTM-AIE …

72



© Copyright 2020 Xilinx

Vitis AI Deployment

>> 17

Executable

Runtime

Xilinx Docker 
Registry

Embedded (Zynq SoC & MPSoC, Versal ACAP)

Single Server

Scale Out

© Copyright 2020 Xilinx

Vitis AI Model Zoo

˃ Shared Repository of Pre-Trained AI Models

Ready to Deploy, Pre-Optimized Models 

A lot of Models Supporting Broad Range of Applications

Open and Available on GitHub

˃ Leverage Standard Frameworks, Networks, Datasets 

Trained Using TensorFlow and Caffe

˃ Deploy As-is, Re-Train or Further Optimize

Caffe_Xilinx, a custom distribution of Caffe provided to test 

& finetune caffe models

Training code, test code and train eval instructions provided

>> 18

Application Model

Face

Face detection

Landmark Localization

Face recognition

Face attributes recognition

Pedestrian

Pedestrian Detection

Pose Estimation

Person Re-identification

Video Analytics

Object detection

Pedestrian Attributes Recognition

Car Attributes Recognition

Car Logo Detection

Car Logo Recognition

License Plate Detection

License Plate Recognition

ADAS/AD

Object Detection

3D Car Detection

Lane Detection

Traffic Sign Detection

Semantic Segmentation

Drivable Space Detection

73



Vitis AI Development Kit

>> 19

system / non-AI 

pre-processing

algorithm 

pre-processing

DPU running 

NN model

system / non-AI 

post-processing

algorithm 

post-processing

AI Libraries

AI Profiler

© Copyright 2020 Xilinx

Xilinx AI Flow Overview

dataset(s)

Training & 

Eval code

.py

Training & 

Evaluation
Optimizer

(optional)
Quantizer Compiler

TARGET 

DEVICE

Hardware + 

Software 

Integration

Float Float INT8 Compiled network

.elf

ML framework

TensorFlow

PyTorch

Caffe

Vitis-AI/DNNDK Vitis/Vivado

74



© Copyright 2020 Xilinx

Example Using Vitis AI Optimizer

117

57

37
27

23 19 17 15.6 14.6 13.6 12.2 11.6

61.5 63.4 63.5 63.4 62.4 62 61.5 61.1 61 60.8 59.2 60.4

0

20

40

60

80

100

120

140

1 2 3 4 5 6 7 8 9 10 11 12

operations (G) mAP (%)

18

71

103

0

20

40

60

80

100

120

117G 19G 11.6G

F
P

S

OPS

Performance Speedup

2x DPU-4096@ZU9

SSD+VGG @ Surveillance 4 Classes

© Copyright 2020 Xilinx

Vitis AI Quantizer Result

Classification 

Networks

Float 8 bit quantized After quantized finetune

Top1 Top5 Top1 ΔTop1 Top5 ΔTop5 Top1 ΔTop1 Top5 ΔTop5

Inception_v1 66.90% 87.68% 66.54% -0.36% 87.58% -0.10% 66.62% -0.28% 87.58% -0.10% 

Inception_v2 72.78% 91.04% 71.93% -0.85% 90.58% -0.46% 72.40% -0.38% 90.82% -0.23%

Inception_v3 77.01% 93.29% 76.26% -0.75% 92.85% -0.44% 76.56% -0.45% 93.00% -0.29%

Inception_v4 79.74% 94.80% 79.04% -0.70% 94.53% -0.27% 79.42% -0.32% 94.64% -0.16%

ResNet-50 74.76% 92.09% 73.74% -1.02% 91.44% -0.65% 74.59% -0.17% 91.95% -0.14%

VGG16-3fc-float 70.97% 89.85% 70.67% -0.30% 89.72% -0.13% 70.74% -0.23% 89.79% -0.06%

MobileNet_v1 70.61% 89.63% 68.01% -2.60% 88.14% -1.49% 69.71% -0.90% 89.06% -0.57%

Detection Networks Dataset Float mAP 8 bit quantized mAP ΔmAP

SSD_VGG VOC 21 classes 76.47% 76.27% -0.20%

SSD_MobileNet_v2 BDD100k 11 classes 30.80% 29.70% -1.10%

SSDLite_MobileNet_v2 Customer’s data 20.28% 20.12% -0.16%

75



© Copyright 2020 Xilinx

Vitis AI Library

DPU

Samples Pre-compiled models

Vitis AI Runtime

XRT

dpbase

Base libraries

dpmath xnnpp …

Algorithm libraries

classification ssd

yolo

…

segmentation

face

roadline

V
itis

 A
I L

ib
ra

ry

˃ Ease of Use

Quicker mode deployment

Easier AI application development

˃ Performance Optimized

Optimized pre & post processing

˃ Open

Open source

Fully sync with Vitis AI Model Zoo

THANK YOU!

daniele.bagni@xilinx.com

>> 24

https://www.xilinx.com/products/design-tools/vitis/vitis-ai.html

76



Where to find more information

© Copyright 2020 Xilinx

More info about Versal ACAP

˃ https://www.xilinx.com/products/silicon-devices/acap/versal.html

˃ https://www.xilinx.com/products/silicon-devices/acap/versal-ai-core.html

˃ https://www.xilinx.com/products/silicon-devices/acap/versal-ai-core.html#productTable

˃ https://www.xilinx.com/support/documentation/white_papers/wp505-versal-acap.pdf

˃ https://www.xilinx.com/support/documentation/white_papers/wp506-ai-engine.pdf

˃ https://www.xilinx.com/support/documentation/white_papers/EW2020-Deep-Learning-Inference-AICore.pdf

˃ https://www.xilinx.com/support/documentation/white_papers/ACAP%20Paper.pdf

˃ https://www.xilinx.com/products/silicon-devices/acap/versal-ai-core.html#getStarted

>> 26

77



© Copyright 2020 Xilinx

More info about Vitis design flow

˃ https://www.xilinx.com/products/design-tools/vitis/vitis-platform.html

˃ https://developer.xilinx.com/

˃ https://www.xilinx.com/html_docs/xilinx2020_1/vitis_doc/index.html

>> 27

© Copyright 2020 Xilinx

More info about Vitis AI tools and Libraries

˃ Getting Started from Vitis AI Github

˃ Vitis AI Model Zoo

˃ Vitis AI Optimizer Lounge* 

˃ Vitis AI DPU TRD

˃ Vitis AI Library 

˃ Vitis AI Tutorial

˃ Vitis AI Forum

* Approval required

>> 28

78



© Copyright 2020 Xilinx

Further old (but still good) references

˃ https://www.xilinx.com/publications/events/developer-forum/2018-frankfurt/xilinx-machine-learning-strategies-with-deephi-tech.pdf

˃ https://www.xilinx.com/publications/events/developer-forum/2018-frankfurt/machine-learning-for-embedded-deep-dive.pdf

˃ https://github.com/Xilinx/graffitist

>> 29

About me

79



© Copyright 2020 Xilinx

http://www.xilinx.com/publications/archives/xcell/Xcell86.pdf

230000 downloads in the first 2 weeks!

© Copyright 2020 Xilinx

http://www.xilinx.com/publications/archives/xcell-software/xcell-software1.pdf

80



© Copyright 2020 Xilinx

http://www.sciencedirect.com/science/article/pii/S1077314210000925

© Copyright 2020 Xilinx

https://www.xilinx.com/support/documentation/application_notes/xapp1163.pdf

81



© Copyright 2020 Xilinx

https://www.xilinx.com/support/documentation/application_notes/xapp1170-zynq-hls.pdf

© Copyright 2020 Xilinx

https://www.xilinx.com/support/documentation/application_notes/xapp1300-lucas-kanade-optical-flow.pdf

82



© Copyright 2020 Xilinx

My Vitis AI tutorials on Deep Learning for Computer Vision

˃ Quantization and Pruning of AlexNet CNN trained in Caffe with Cats-vs-Dogs 

dataset

https://github.com/Xilinx/Vitis-AI-Tutorials/tree/VAI-Caffe-ML-CATSvsDOGS

˃ Deep Learning with Custom GoogleNet and ResNet in Keras and Xilinx Vitis AI

https://github.com/Xilinx/Vitis-AI-Tutorials/tree/Keras-GoogleNet-ResNet

˃ FCN8 and UNET Semantic Segmentation with Keras and Xilinx Vitis AI

https://github.com/Xilinx/Vitis-AI-Tutorials/tree/VAI-KERAS-FCN8-SEMSEG

© Copyright 2020 Xilinx

83



Porting a Gesture Recognition Neural Network
composed of CNN and LSTM 

to a FPGA-SoC 

ROBERT BRIEGEL

24.09.2020 FPGA4ADAS 2020 - ROBERT BRIEGEL 1

Agenda
1. Goals

2. SiComAs Algortihm

3. Approach

4. Realization

5. Results

6. Further Improvements

24.09.2020 FPGA4ADAS 2020 - ROBERT BRIEGEL 2

84



Goals 
Porting the Neural Network SiComAs
to a FPGA-SoC platform

Ø Retention of the architecture of the NN and 
achieved accuracy

Ø Maximizing throughput

24.09.2020 FPGA4ADAS 2020 - ROBERT BRIEGEL 3

What‘s the SiComAs?

24.09.2020 FPGA4ADAS 2020 - ROBERT BRIEGEL 4

Ø Sign Communication Assistant
developed by EDAG in Lindau

Ø Takes video as input and recognizes gestures

Ø Developed to further improve Human-Vehicle    
interface while not excluding the hearing impaired

85



Sign Commmunication
Assistant

24.09.2020 FPGA4ADAS 2020 - ROBERT BRIEGEL 5A4ADAS 2020 - ROBERT BRIEGELADAS 2020 ROBERT BRIEGEL

Approach
Framework

24.09.2020 FPGA4ADAS 2020 - ROBERT BRIEGEL 6

Xilinx DeepNeuralNetworkDevelopmentKit (Now part of VITIS-AI)               

•Allows porting of CNNs

•LSTM cells are not (yet) supported, therefore must 
be computed in other ways

•Tensorflow Interface

• Inference using a co-processor in programmable
logic (DPU)

86



Approach
Hardware and Top-Level Architecture

11.12.2019 FPGA4ADAS 2020 - ROBERT BRIEGEL 7

Xilinx ZCU104 Zynq Ultrascale+

MPSoC Evaluation Kit1

1https://www.xilinx.com/products/boards-and-kits/zcu104.html

Realization
Splitting into subnets

24.09.2020 FPGA4ADAS 2020 - ROBERT BRIEGEL 8

DNNDK

87



Realization
Preparing the CNN

24.09.2020 FPGA4ADAS 2020 - ROBERT BRIEGEL 9

Realization
Changing the layer sequence

24.09.2020 FPGA4ADAS 2020 - ROBERT BRIEGEL 10

•Re-training of the network led to a loss of classification accuracy 
of 2.15% (absolute)

88



Realization
Preparing the LSTM

24.09.2020 FPGA4ADAS 2020 - ROBERT BRIEGEL 11

Realization
Preprocessing

• Implemented in C++ 
using the OpenCV library

• Loads videos from the SD card
and performs pre-processing:
ØMotion Fusion

ØResize

ØRGBàSW

ØFixed video length: 35 Frames

24.09.2020 FPGA4ADAS 2020 - ROBERT BRIEGEL 12

Petalinux OS

DPU Treiber

DPU Applikation

(CNN)

Vorverarbeitung

Python Interpreter

Python Applikation 

(LSTM+FC)

PS

Images.jpg

89



Realization
DPU Application

• Implemented in C++ using
the DPU driver provided by Xilinx

• Initializes the DPU IP core,
controls the data flow and
triggers the inference of the
individual frames

•Multithreading ensures full 
utilization of the DPU IP core

24.09.2020 FPGA4ADAS 2020 - ROBERT BRIEGEL 13

Petalinux OS

DPU Treiber

DPU Applikation

(CNN)

Vorverarbeitung

Python Interpreter

Python Applikation 

(LSTM+FC)

PS

DPU

compiled_

CNN.elf

DNNDK

Realization
Python Application

• Implemented using Python and
the Tensorflow Lite Interpreter

• performs inference of the LSTM cell
and the final classification layer

24.09.2020 FPGA4ADAS 2020 - ROBERT BRIEGEL 14

Petalinux OS

DPU Treiber

DPU Applikation

(CNN)

Vorverarbeitung

Python Interpreter

Python Applikation 

(LSTM+FC)

PS

LSTM

.tflite

90



Results
In Summary

• Top 1 classification accuracy was 
measured at 89.86 %
(compared to 92.00% originally)

• Inference time CNN: Ø 22.90 milliseconds
(35 Frames, 4 Threads)

• Inference time LSTM: Ø 263.69 milliseconds

24.09.2020 FPGA4ADAS 2020 - ROBERT BRIEGEL 15

Further Improvements
…yet to be made

24.09.2020 FPGA4ADAS 2020 - ROBERT BRIEGEL 16

91



2020 4
th Workshop on Programmable Processing for the Autonomous / Connected Vehicle

HAPPi-Net: Hardware-aware Performant Perception of Neural

Networks - Designing Lightweight CNNs on Embedded Platforms

Alexander Frickenstein∗1, Manoj-Rohit Vemparala∗1, Nael Fasfous∗2, Lukas Frickenstein∗1, Walter Stechele2

Abstract— In the field of autonomous driving and other
robotic applications, embedded hardware (HW) platforms are
either resource or power constrained limiting the computational
complexity, the memory utilization and/or the memory band-
width. This circumstance hinders modern convolutional neural
networks (CNNs) being deployed on such systems, however, em-
phasizes the role of CNN optimization. Individual approaches
for CNN optimization are discussed in the context of a complete
HW-CNN co-design process. In this work, we demonstrate one
top-down approach leveraging a filter-wise pruning technique,
namely the autoencoder-based low rank filter sharing (ALF)
technique, to be used on various parallelized algorithms and
hardware accelerators. In the context of a meet-in-the-middle
design approach, we present a binary drivable area detection
neural network (binary DAD-Net) which is accelerated by
the run-time reconfigurable processing element OrthrusPE, for
embedded friendly applications. Based on the aforementioned
co-design processes, it becomes clear that different optimization
techniques leverage their efficacy later in the design process or
depend on consecutive optimizations.

I. INTRODUCTION

The automobile has formed the basis for private transporta-

tion for over 100 years. It has made a significant contribution

to the comfort and freedom of people. In the past few years,

increased traffic volumes have led to undesirable outcomes,

namely traffic jams and environmental pollution. With the

electrification and automation of cars, private transportation

can be made more productive and relaxing for people and

their environment. Here, neural networks are the key tech-

nology for autonomous vehicles. More broadly, in the field

of computer vision, tasks such as image classification or

semantic segmentation form the fundamental complexity of

most applications. This has made neural network algorithms

the de facto standard for solving many tasks in the field.

Only the storage requirements, the computing complexity

and the energy demand pose great challenges for electric au-

tonomous cars. Optimization methods offer a good solution

to this. Since the optimization has a significant impact on the

deployment process, a detailed consideration of the methods

used and their interaction with the respective design phase

*Authors contributed equally
1BMW Group, Autonomous Driving, Munich, Germany,
<Firstname>.<Lastname>@bmw.de
2Technical University of Munich, Munich, Germany,
<Firstname>.<Lastname>@tum.de

is crucial. An understanding of the optimization methods in

the deployment process is beneficial in two ways. Firstly,

more efficient applications are achieved that either allow the

use of less expensive control devices and/or provide space for

additional features. Secondly, it simplifies the design process

in a data driven development by better separation of design

steps (CNN design, optimization, hardware implementation),

forming understandable dependencies between stakeholders

and a clearer assignment of expert knowledge. Since a uni-

directional, deep-dive deployment approach can be complex

and lead to many inefficiencies in the design, we illustrate

alternative approaches of two design methodologies.

II. RELATED WORK

Mitigating the challenges of deploying deep and wide,

high-performance neural networks on the resource con-

strained environment of edge devices is a focal point of

enabling CNNs for embedded applications. Thus, both in-

dustry and academia focus to reduce redundancies arising

from training deeper and wider network architectures [1].

A. Neural Network Compression

Quantization and pruning render compression techniques

that can potentially be exploited to reduce the aforemen-

tioned redundancies, resulting in efficient CNNs for deploy-

ment on embedded hardware.

Pruning, aims to reduce the parameter or feature redun-

dancy in a neural network. The removal of network parame-

ters has a direct impact on the network’s memory footprint,

as well as the total number of computations necessary. For

the latter, the inference platform needs to be compatible with

the pruning granularity applied to the network. A common

example of mismatched pruning and inference hardware is

using element-wise pruning on a general matrix multipli-

cation (GEMM) accelerator. Removing individual elements

from a kernel makes it sparse, however, the GEMM operation

is inherently rigid and cannot trivially accommodate sparsity

in its execution. GEMM flattens the convolution’s strided

operation into replicated inputs and kernels to reshape the

problem at hand and execute it on fast matrix-matrix or

matrix-vector multipliers.

92



We can classify pruning techniques into two general

domains, namely rule-based and learning-based compres-

sion. As implied, rule-based compression techniques rely on

having static or pseudo-static rules, which enforce/impose

the compression of a given CNN accordingly. Hand-crafted

pruning represents a further subgroup of rule-based compres-

sion, where heuristics are utilized to determine the saliency

of neurons. An example of this is where Han et al. [2] utilize

the magnitude of weights to determine their saliency, result-

ing in element-wise pruning and leading to irregular com-

pute structures (irregular pruning). The resulting inefficient

memory accesses render irregular pruning as impractical for

general purpose computing platforms. To overcome these

limitations, introducing regularity in the pruning process

becomes an essential criterion for performing accelerator-

aware compression. The design process for matching the

target hardware to the software/model is simplified such

that designing complex hardware, e.g. the Efficient Inference

Engine (EIE) [3] or the Sparse-CNN (SCNN) accelerator [4],

becomes unnecessary. Due to the compelling characteris-

tics of regular pruning, Frickenstein et al. [5] proposed

a structured, kernel-wise magnitude pruning method along

with a scalable and sparse algorithm. He et al. [6] utilize

a geometric mean heuristic to prune redundant filter in a

CNN, resulting in a hardware inference friendly network.

However, removing filters directly impacts the input channels

of subsequent layers, potentially resulting in a more signifi-

cant task-related accuracy degradation. Despite the tempting

simplicity of rule-based compression techniques, they overly

generalize the problem and struggle to find a one-size-fits-all

rule considering the varying nature of CNNs with respect to

complexity, structure and target task.

To address the shortcomings of rule-based compression,

recent works in literature [7], [8] have adopted learning-

based compression techniques. Both works utilize a rein-

forcement learning (RL) agent that is capable of learning

the criteria of the pruning process, which is formalized as

an optimization problem and a corresponding cost function.

Further, Huang et al. [7] define the environment for an

RL-agent as a CNN, where both an accuracy term and

an efficiency term are utilized to formulate the training

policy for the agent. This non-differentiable policy is used

to maximize the contrary objectives and the agent tries to

find a balanced trade-off. The fact that an agent needs to be

trained individually for each layer and the increasing search

complexity for layers with multiple channels results in a slow

and greedy process of the model exploration. He et al. [8] cut

down the exploration time by utilizing a RL-agent that prunes

without fine-tuning at intermediate stages. Additionally, layer

characteristics such as size, stride and operations (OPs) serve

as further inputs to the agent. However, the formulation

of the cost function of such techniques is non-trivial and

is dependent on expert knowledge and trial-and-error. The

design space of the environment of the agent renders an

additional configuration parameter, making it difficult to test

many configurations of the underlying problem. Each of such

combinations of neural network and target task combination

results in a new and unique problem, requiring a unique

solution.

The pruning scheme presented by Guo et al. [9] incor-

porates pruning in the training flow by introducing learn-

able parameters, which can be recovered if necessary, to

dynamically prune the underlying CNN, resulting in irregular

sparsity. Cardinality constraints are incorporated by Zhang et

al. [10] into the training objective to obtain different pruning

regularities. Bagherinezhad et al. [11] proposed Lookup-

based CNNs to learn a dictionary of shared filters at training

time. The lookup dictionary is then utilized during inference

to perform the convolution on the input, resulting in low

computational complexity. When considering the similarities

for filter-sharing and weight-sharing, the weight-sharing ap-

proach presented by Bagherinezhad is arguably closest to

the technique presented in ALF framework [12]. However,

the methodology and the training procedure fundamentally

differ.

Differently, Neural Architectural Search (NAS) techniques

demonstrated the capability to successfully optimize CNN

models at design-time. Synergies emerged between CNN

design and the target hardware platform by combining

NAS with Hardware-in-the-Loop (HIL) testing. MNAS-Net,

proposed by Tan et al. [13], comprises NAS with a RL-

agent for mobile devices. Cai et al. [14] focus on deriving

specialized, hardware-specific CNN architectures from over-

parameterized models with their proposed ProxylessNAS.

Quantization, including its most drastic form, binarization,

aims to reduce the representation redundancy of model

parameters by constraining the range of possible values and

mapping them to a discrete domain of quantized represen-

tations [15], [16], [17]. It is worth mentioning, that both

quantization and binarization are orthogonal to pruning and

can be applied in combination with e.g. our ALF method.

Binarization of a CNN constrains its weights and activa-

tions to {−1, 1}. Along with the compelling benefits of com-

putational efficiency and reduction in memory requirements,

binarization leads to a degradation in accuracy compared to

the full-precision counterpart. To tackle the degradation in

accuracy, Rastegari et al. [18] introduced XNOR-Net, where

they estimate real-valued weights and activations by intro-

ducing a scaling factor and corresponding binary weights

and activations. With the introduction of CompactBNN,

Tang et al. [19] observed that binarizing activations is more

challenging compared to the binarization of weights and thus,

focused on improving the approximation of activations. They

further improved the training by proposing a ReLU activation

function with trainable parameters. In ABC-Net [20], Lin

et al. approximate full-precision weights and activations by

a linear combination of binary representations with corre-

sponding shifting and scaling factors. They highlighted the

appealing characteristic of BinaryNets with multiple weight

and activation bases against equivalent fixed-point quantized

CNNs with regard to embedded systems. Considering 45nm

CMOS technology, a MAC operation consumes > 8× more

power than a bit-wise operation [21].

The previous mentioned publications focused on improv-

93



ing binary neural networks for image classifications, however

another set of work studied binary object detection models

such as the work from Hanyu et al. [22]. Further, Zhuang et

al. [23] propose GroupNet with multiple binary bases, where

they extend the approximation towards the structural level.

GroupNet’s structural complexity allows it to extend the

effectiveness of BNNs to challenging semantic segmentation

tasks. In the scope of GroupNet, Zhuang et al. introduce the

Binary Parallel Atrous Convolution (BPAC) module, con-

sisting of multiple dilated convolutions with various dilation

rates, up to 16. This results in irregular memory accesses

and a higher power-consumption of the memory controller,

as pointed out in [5].

B. Efficient Hardware Processing

Several accelerators have been developed with processing

elements designed to exploit performance boosts due to

variable quantization levels [24], [25], [26], [27]. Other

accelerators were designed to solely execute BNNs [28],

[29], [30]. With the popularity of quantization as a compres-

sion technique, commercial hardware providers also offer

support for low-bitwidth operations on their compute plat-

forms [31], [32], [33], [34]. NVIDIA’s Turing architecture

employs Tensor Cores which can operate at FP16 precision,

while offering higher throughput at lower INT8 and INT4

precision modes [32]. Intel provides Vector Neural Network

Instruction (VNNI) libraries which pack more low-precision

operations in a single processor instruction. Intel’s Arria 10

FPGAs provide support for efficiently utilizing their DSPs’

native bitwidth to execute parallel low-precision operations,

effectively transforming them into vectorized processing

elements [35]. Similarly, the Xilinx DSP48 blocks can be

utilized to perform up to 48 parallel binary operations [17].

The Xilinx Versal platform [34] provides AI-Engine cores

which can perform 32, 16 and 8 bit operations, at higher

degrees of vectorization respectively. Coupled with the DSP

engines and the programmable logic block, a wide variety

of quantization levels can be supported on a single compute

platform.

Bit Fusion [24], UNPU [25], Stripes [26] and Loom [27]

are all based on ASIC designs. UNPU, Stripes and Loom

offer single bit operations while the Bitbricks structure used

in Bit Fusion allows the execution of operations at fixed

quantization levels, making the smallest possible precision

bounded by the size of a single Bitbrick. UNPU, Stripes

and Loom are capable of performing both binary and fixed-

point operations, however, with a non-negligible overhead,

due to the support of variable quantization levels. Further

ASIC-based works, BRein [29] and YodaNN [28], were

developed precisely to accelerate BNNs. However, they do

not implement the binary bases required for accurate binary

nets, nor do they support the shifting and scaling of the

intermediate maps.

FINN [30] is a popular framework for accelerating BNNs

on FPGAs. The framework is geared towards BNNs similar

to the ones proposed in [36]. FINN compiles HLS code

from a BNN description to create a bit file that exactly

suits that network. The first and last layers are not binarized

in their CNV network, making the fixed-precision hardware

utilized for those layers only useful for those two parts of

the network. In our proposed solution, every instantiated DSP

can be used for any part of the entire network, due to the

dual modes of the PE that can be reconfigured at run-time.

Furthermore, FINN is not compatible with multiple binary

bases, but rather simpler BNNs suited for problems such

as MNIST, CIFAR-10 or SVHN. Other FPGA-based BNN

accelerators [37], [38], [39] also execute binary operations

purely on LUTs and utilize DSPs for fixed-point operations,

where they are supported.

The authors of Double MAC [40] extract more func-

tionality from FPGA hard blocks. They precondition the

signals going into DSP blocks such that two multiplications

can be obtained with some post-processing. This leverages

quantization, since the two results obtained at the output are

calculated from operands that are smaller than the maxi-

mum possible precision that the DSP can offer. Their work

virtually turns DSPs into SIMD multipliers. Similarly, our

proposed solution turns DSPs into SIMD binary Hadamard

product processing units. Our solution is orthogonal to Dou-

ble MAC, making it possible to include Double MAC as a

third mode in OrthrusPE.

Efficient exploitation of hard blocks on FPGAs can play

a key role in lowering the efficiency gap between ASIC and

FPGA implementations [41]. This is evident in the recent

trend of FPGA manufacturers adding more hard blocks

to their chips aimed at accelerating deep neural network

applications [34].

C. Semantic Segmentation

One of the first prominent semantic segmentation mod-

els proposed was the Fully Convolutional Network (FCN),

which was successfully adopted by Shelhamer et al. [42].

An important aspect of FCN are the skip connections which

capture the intermediate features from the high level feature

maps during the up-sampling stage through 1 × 1 convolu-

tions. This method paved the way to more structured models

such as UNet [43]. This structured up-sampling provides

higher accuracy than single ×8 up-sampling present in FCN.

However, this increases the computational complexity due to

additional up-sampling layers.

DeepLab, proposed in [44], utilizes dilated convolution

instead of down-sampling the feature maps, maintaining

a sufficient receptive field. The pooling or strided convo-

lution is avoided for the last set of feature maps. This

would increase the computational costs as the convolution

is performed on larger feature maps. The encoder network

is downsampled by a factor of 8/16 instead of 32. The

down-sampled feature maps are then passed to a spatial

pyramid pooling module, which consists of parallel dilated

convolution with different rates followed by concatenation

and point-wise convolution. This module produces better

segmentation results by extracting multi-scale information.

Multi-class semantic segmentation has a negative effect on

the precision of the drivable area detection algorithm and

94



their vast number of MAC operations making the application

impractical for embedded systems.

III. DESIGN PROCESS OF EFFICIENT DEEP NEURAL

NETWORKS

To meet the ever-increasing challenges of automated driv-

ing, such as quality of service or security requirements,

modern CNN architectures are becoming larger and deeper.

In this context, the interest in model compression, i.e. the

process of deploying a lightweight CNN, is gaining more

importance. A lightweight model is the optimal variant

from the designer’s point of view, i.e. with the lowest

memory requirements, the best performance, the lowest

energy consumption or a trade-off from different criteria.

The deployment process varies for different optimization

methods and hardware accelerators. On the one hand, the

optimization methods have different dependencies in the

algorithmic or hardware implementation. On the other hand,

different hardware accelerators require different program-

ming mechanisms. The design process can be formulated

as a top-down or bottom-up approach. In the case of a two-

sided deployment, i.e. a concurrent top-down and bottom-

up work, a meet-in-the-middle approach can emerge. Based

on the abstraction (architectural, algorithmic and hardware)

and separation of dependencies, the effectiveness of different

optimization methods can be seen later in the development

process or depend on other optimization measures, see Fig. 1.

CNN model

Dataset

Validation
Test

Training

ML-Task

Algorithmic

Hardware

Architectural

Optimization
   

Pruning

regularirregular N-bitbinarization

Quantization

Pre-trained model

Implementation
Burden

Level

Bottom-Up

Meet-in-the-Middle

Top-Down

Learning
Weights

Deep
Compression

EIE

ALF BinaryDAD

OrthrusPE

Fig. 1. Design process of hardware-aware performant perception of neural
networks.

In the following we introduce two design processes: First,

a simple top-down approach that enables lightweight models

by means of structured pruning, which in turn can be applied

to a variety of hardware accelerators using parallel libraries

such as GEMM. Second, a meet-in-the-middle approach

where binarization of the neural network has very good

task related properties and a specially designed processing

element favors its execution on an FPGA.

A. Top-Down Application of Structured Pruned CNNs

In this section we present a learning-based filter-wise

pruning method, i.e. the autoencoder-based low rank filter

sharing (ALF) technique [12]. By means of the method,

a simple top-down design process is leveraged. In detail,

ALF makes use of the inherent structure of CNNs, maintains

it throughout the compression, and results in an easy to

implement representation. A conversion into a matrix form

by using standard linear algebra libraries (e.g. BLAS) makes

the model applicable to various off-the-shelf hardware accel-

erators. Furthermore, it can be observed that no algorithmic

adjustments nor custom hardware are necessary.
The ALF approach is based on the publication [12] and

provides the following contributions:

• Approximation of weight filters of convolutional layers

using ALF-blocks, consisting of sparse autoencoders.

• A two player training scheme allows the model to learn

the desired task while slimming the CNN.
The goal of the proposed filter-sharing technique is to replace

the standard convolution with a more efficient alternative,

namely the autoencoder-based low rank filter sharing-block.
Without loss of generality, Al−1 ∈ R

Hi×Wi×Ci is con-

sidered as an input feature map to a convolutional layer

l ∈ [1, L] of an L-layer CNN, where Hi and Wi indicate the

height and width of the input, and Ci is the number of input

channels. The weights W l ∈ R
K×K×Ci×Co are the trainable

parameters of the layer l, where K and Co are the kernel

dimensions and the number of output channels respectively.
In detail, the task is to approximate the filter bank W in a

convolutional layer during training by a low-rank version

Wcode ∈ R
K×K×Ci×Ccode , where Ccode < Co. The low-

rank version of the weights Wcode is utilized later in the

deployment stage for an embedded-friendly application.
In contrast to previous structured pruning approaches [11],

[5], [6], this method does not intend to alter the structure of

the model in a way which results in a changed dimensionality

of the output feature maps Al ∈ R
Ho×Wo×Co , where Ho

and Wo indicate the height and width of the output. This

is done by introducing an additional expansion layer [45].

The advantages are twofold. First, each layer can be trained

individually without affecting the other layers. Second, it

simplifies the end-to-end training and allows comparison of

the learned features.
The expansion layer is comprised of point-wise convo-

lutions with weights Wexp ∈ R
1×1×Ccode×Co , for mapping

the intermediate feature maps after an ALF-block Ãl ∈
R

Ho×Wo×Ccode , to the output feature map Al, as expressed in

Eq. 1.

Al = σ(Ãl ∗Wexp) = σ(σinter(A
l−1 ∗Wcode) ∗Wexp) (1)

As the point-wise convolution introduces a certain overhead

with regard to operations and weights, it is necessary to

analyze the resource demands of the ALF-block compared

to the standard convolution and ensure Ccode < Ccode,max,

where Ccode,max denotes the number of filters which have to

be removed to attain an efficiency improvement, see Eq. 2.

CiCoK
2

Ccode(CiK2 + Co)
→ Ccode,max = ⌊

CiCoK
2

CiK2 + Co

⌋ (2)

As stated before, the autoencoder is required to identify

correlations in the original weights W and to derive a com-

pressed representation Wcode from them. The autoencoder is

95



only required in the training stage and is discarded in the

deployment stage.
According to the design of an autoencoder, Eq. 3 gives the

complete expression for calculating the compressed weights

Wcode. The encoder performs a matrix multiplication between

the input W and the encoder filters Wenc ∈ R
K×K×Co×Ccode .

Mprune zeroizes elements of W̃code and σae refers to a non-

linear activation function, i.e. tanh().

Wcode = σae(W̃code⊙Mprune) = σae((W ·Wenc)⊙Mprune) (3)

Eq. 4 provides the corresponding formula for the recon-

structed filters Wrec of the decoding stage. The symbol ·
stands for a matrix multiplication and ⊙ for a Hadamard

product respectively. The pruning mask Mprune acts as a gate,

allowing only the most salient filters to appear as non-zero

values in Wcode, in the same manner as sparse autoencoders.

The decoder must, therefore, learn to compensate for the

zeroized filters to recover a close approximate of the input

filter bank.

Wrec = σae(Wcode ·Wdec) (4)

In order to dynamically select the most salient filters,

an additional trainable parameter, denoted mask M ∈
R

1×1×1×Co , is introduced with its individual elements mi ∈
M . By exploiting the sparsity-inducing property of L1

regularization, individual values in the mask M are driven

towards zero during training. Since the optimizer usually

reaches values close to zero, but not exactly zero, clipping

is performed to zero out values that are below a certain

threshold t. Further, the clipping function Mprune = (M, t) =
I{|mi| >t}mi allows the model to recover a channel when

required.
Unlike other pruning approaches which require a pre-

trained CNN and incorporate heuristics to determine the

saliency of the weights, ALF dynamically prunes a given

CNN during task-specific training. With minimal accuracy

degradation, we reduce the number of training parameters of

ResNet-20 by 3.9× and operations by 2.6× on CIFAR-10

dataset [46]. In summary, no pre-trained CNN is required for

ALF-based pruning simplifying the compression. Addition-

ally, as entire filters are removed, various parallel algorithms

and hardware accelerators can be used in a subsequent

deployment.

B. Meet-in-the-Middle Deployment of Binary Drivable Area

Detection

The meet-in-the-middle design approach promotes the

productivity of ML-engineers and HW-designers by allowing

the expertise of both to meet at an optimal, tightly-coupled

deployment. Deployment targets and constraints are allowed

to flow in both directions of the design (top-down and

bottom-up), leading to a better exchange in information

among the expert groups. In this section, we show an

example of this design methodology through binary DAD-

Net [47] and OrthrusPE [17]. Binary DAD-Net provides ef-

ficient binary operations which tackle the two class, drivable

area detection problem in an efficient and effective manner.

However, to maintain high accuracy, it requires some fixed-

point operations, e.g. scale and shift operation. OrthrusPE

provides an effective, high-throughput, low-power and low-

utilization processing element, which can perform binary

and fixed-point operations through run-time reconfigurability,

fulfilling the requirements of binary DAD-Net. From the

perspective of the HW-designer, binary DAD-Net inherently

provides a lightweight CNN that can efficiently be deployed

on FPGAs. Conversely, from the perspective of the ML-

engineer, OrthrusPE offers the freedom of designing CNNs

which have multiple types of operations (binary and fixed-

point).
Top-Down: The binary DAD-Net approach provides the

following contributions:

• A fully binarized drivable area detection neural network

which has binary weights and activations in all parts of

the model, i.e. encoder, bottleneck and decoder.

• The proposed binary model performs similar to the full-

precision network gaining 14.3× computational effi-

ciency and 15.8× memory saving for Cityscapes dataset

[48] on the DAD task.

• The performance of binary DAD-Net is increased when

pre-trained on automatic annotations.
The proposed drivable area detector is inspired by

autoencoder-based networks with skip connections,

i.e. DeepLabV3 [44]. As the name implies, binary DAD-Net

has binary representations in all three parts of the model:

the encoder, bottleneck (latent space) and decoder. Binary

DAD-Net adopts the binarization scheme of Rastegari

et al. [18]. As backbone (encoder) the 18 layered CNN

ResNet18 is chosen, where the first convolutional layer

is not binarized due to very few trainable parameters and

computations compared to the remaining binary DAD-Net’s

layers. This aspect is one of many where the emphasis is

on a processing element that is reconfigurable at run-time.
Furthermore, quantizing input image leads to high in-

formation loss leading to severe accuracy degradation. For

the remaining layers, the sign-function binarizes the real-

valued activations Hl−1 ≈ sign(Al−1). In the inference-

stage the weights are considered to B ≈ sign(W ) ∈
{−1,+1}. Scale factors α and β, introduced in [18], find

better estimations for W ≈ αB and A ≈ βH , see Eq. 5.

The convolution between Bl and H l−1 can be computed

using xnor-popcount operation.

Al = Conv(W l
S , f

l−1

S
) ≈ αβConv(Bl, H l−1) (5)

A typical binary convolution block consists of 1) binarization

of the activations and weights, 2) binary convolution, 3)

Batch Normalization and 4) non-linear activations such as

ReLU. The residual block, introduced by He et al. [49],

can be easily binarized learning more complex features by

adding consecutive binary convolutional layers with Batch

Normalization and non-linear activation function along with

fused shortcut connections. The shortcut connections in

binary residual blocks favor the BNNs by overcoming the

gradient saturation problem. Inspired by DeepLabv3 [50],

we use dilated convolutions in the bottleneck to increase the

96



receptive field of the respective convolutions to increase the

receptive field of a convolutional layer, dilated convolution

introduces zeros to the weights of the respective layer. Our

observation for dilated convolution fits previous investiga-

tions for vanilla binary convolution layer [18], [19], [20].

The central part of the DeepLab [50] inspired binary DAD-

Net is the bottleneck. In detail, the bottleneck consists of two

consecutive binary residual blocks and a binary atrous spatial

pyramid pooling (ASPP)-block. The dilation rate d = 2 is

used for the last residual block. For the parallel convolutions

in ASPP block, four different dilation rates {1,8,12,18} are

assigned. Different to previous residual blocks, the dilated

residual blocks do not downsample the feature maps. Thus,

the feature resolution of the binary bottleneck is efficiently

increased. Upsampling by a factor of 16 instead of 32 is

required.

The decoder of binary DAD-Net is binarized for the task of

drivable area detection. Employing only binary convolutions

enlarges the output of the bottleneck to the size of the

original input image I generating pixel-wise predictions for

the task of drivable area detection. The binary decoder also

consists of bilinear upsampling and a binary score layer.

In detail, after the binary dilated convolution, described

in the previous section, linear combination (binary 1 × 1
convolution) of the ASPP feature maps and the encoder

skip connection (after the first residual block) is computed.

Next, the feature maps are fused in two consecutive binary

refinement blocks. The binary refinement blocks consist of

3 × 3 kernels, which is similar to the binary convolutional

layer, described above. Instead of transpose convolutions,

bilinear up-sampling enlarges the feature maps to the size

of the input I . This is important as the binary transpose

convolution would introduce additional operations and would

lead to an accuracy degradation.

We introduce normalized compute complexity (NCC), al-

lowing an implementation-wise comparison, by determining

optimal utilization of fixed-point and binary operations in one

compute unit. The reference implementation of OrthrusPE

using DSP-48 block is used to compute NCC. In particular,

OrthrusPE enables of perform two 16-bit fixed-point multi-

plications or 48 XNOR operations at once. Binary DAD-Net

achieves 96.23% mean intersection over union (mIOU) using

0.9MB of training parameters on the CityScapes dataset.

By incorporating the automatic annotations of drivable area

using Train Data Generator [51], we increase the mIOU to

96.60%. Moreover, binary DAD-Net shows its superior per-

formance w.r.t. an embedded implementation, by drastically

reducing the NCC (20.4×) compared to the full precision

implementation of DeepLabv3 [44].

Bottom-Up: The OrthrusPE design provides the following

contributions:

• A flexible computation unit for accelerating a wide

range of BNNs.

• Execution of SIMD-based binary Hadamard product on

FPGA hard blocks.

• A run-time reconfigurable processing element which dy-

namically supports binary and fixed-point computations.

OrthrusPE is a run-time reconfigurable processing element

(PE) which can satisfy all the functions required by accurate

BNNs, while capitalizing on resource reuse. Accurate BNNs

cannot be achieved without fixed-point operations and re-

liance on DSP blocks. Instead of separating binary and fixed-

point computations to two types of hardware resources, Or-

thrusPE improves the efficiency of the computation by exe-

cuting both on FPGA hard blocks. OrthrusPE and OrthrusPE-

DS (Dual-Static) were evaluated across multiple target ac-

celerator frequencies. Both solutions achieved improved re-

source utilization and power efficiency compared to typical

BNN accelerator processing elements. OrthrusPE presents a

well-suited processing element to compute the operations of

binary DAD-Net, which involve binary Hadamard products,

as well as fixed-point operations in the form of scaling

factors, necessary for the XNOR-Net binarization in binary

DAD-Net. Accurate BNNs solve many of the computation

and memory challenges for deep neural network workloads

on edge devices. Efficiently executing their mixed-precision

computations can further exploit the advantages they offer at

the hardware level.

IV. CONCLUSION

Knowledge of the design process for the deployment

of CNNs on embedded ECUs, such as in robotics or au-

tonomous driving, helps to establish lightweight applications.

We show the design process by means of two prominent

optimization methods, namely pruning and quantization. In

the first methodology, channel-wise pruning is conducted

to a CNN allowing it to be deployed with minimal imple-

mentation overhead on various hardware accelerators (pre-

venting lock-ins). Here, structured learning-based pruning

outperforms irregular handcrafted pruning in terms of appli-

cability of the compressed model and facilitates the design

process. Taking the autoencoder-based low rank filter-sharing

technique into consideration, CNNs are compressed. Its’

compressed variants can easily be deployed with of-the-

shelf algorithms and hardware accelerators. In the second

method, we show the use of a novel binary drivable area

detection neural network together with a run-time recon-

figurable processing element. In the design phase of the

binary neural network we evaluate different local and struc-

tural binarization methods. A thorough selection of methods

and composition of the CNN architecture brings the BNN

close to the accuracy of its full-precision counterpart. For a

concurrent bottom-up design, the BNN’s requirements from

the top-down design are made accessible. This allows the

targeted conception of a reconfigurable processing element.

All in all, the meet-in-the-middle design shows very fruitful

results, where synergies between HW and lightweight CNN

are made. In summary, we show that a successful deployment

requires data scientists to prepare the training data, ML

experts to design the CNN, programmers to develop high-

performance algorithms and hardware specialists to provide

the target accelerator. The specific expertise of the individual

participants makes it necessary to abstract the process of

optimizing CNNs.

97



REFERENCES

[1] A. Frickenstein, C. Unger, and W. Stechele. Resource-Aware Opti-
mization of DNNs for Embedded Applications. In CRV, 2019.

[2] Song Han, Jeff Pool, John Tran, et al. Learning both weights and
connections for efficient neural networks. In NeurIPS, 2015.

[3] S. Han, X. Liu, H. Mao, et al. EIE: Efficient inference engine on
compressed deep neural network. In ISCA, 2016.

[4] A. Parashar, M. Rhu, A. Mukkara, A. Puglielli, R. Venkatesan,
B. Khailany, J. Emer, S. W. Keckler, and W. J. Dally. Scnn: An
accelerator for compressed-sparse convolutional neural networks. In
2017 ACM/IEEE 44th Annual International Symposium on Computer

Architecture (ISCA), pages 27–40, 2017.
[5] Alexander Frickenstein, Manoj Rohit Vemparala, Christian Unger,

et al. DSC: Dense-sparse convolution for vectorized inference of cnns.
In CVPR-W, 2019.

[6] Yang He, Ping Liu, Ziwei Wang, et al. Filter pruning via geometric
median for deep convolutional neural networks acceleration. In CVPR,
2019.

[7] Q. Huang, K. Zhou, S. You, et al. Learning to prune filters in
convolutional neural networks. In WACV, 2018.

[8] Yihui He, Ji Lin, Zhijian Liu, et al. AMC: Automl for model
compression and acceleration on mobile devices. In ECCV, 2018.

[9] Yiwen Guo, Anbang Yao, and Yurong Chen. Dynamic network surgery
for efficient DNNs. In NeurIPS, 2016.

[10] Tianyun Zhang, Shaokai Ye, Kaiqi Zhang, et al. Structadmm: A
systematic, high-efficiency framework of structured weight pruning
for dnns. 2018.

[11] Hessam Bagherinezhad, Mohammad Rastegari, and Ali Farhadi.
LCNN: Lookup-based convolutional neural network. In CVPR, 2017.

[12] Alexander Frickenstein, Manoj-Rohit Vemparala, Nael Fasfous, Laura
Hauenschild, Naveen-Shankar Nagaraja, Christian Unger, and Walter
Stechele. ALF: Autoencoder-based low-rank filter-sharing for efficient
convolutional neural networks. In 2020 57th ACM/IEEE Design

Automation Conference (DAC), June 2020.
[13] Mingxing Tan, Bo Chen, Ruoming Pang, et al. MnasNet: Platform-

aware neural architecture search for mobile. arXiv:1807.11626.
[14] Han Cai, Ligeng Zhu, and Song Han. ProxylessNAS: Direct neural

architecture search on target task and hardware. In ICLR, 2019.
[15] Sebastian Vogel, Mengyu Liang, Andre Guntoro, et al. Efficient

hardware acceleration of CNNs using logarithmic data representation
with arbitrary log-base. In ICCAD, 2018.

[16] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, et al. Binarized
Neural Networks. In NeurIPS. 2016.

[17] Nael Fasfous, Manoj-Rohit Vemparala, Alexander Frickenstein, et al.
Orthruspe: Runtime reconfigurable processing elements for binary
neural networks. In DATE, 2020.

[18] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, et al. Xnor.
[19] Wei N. Tang, Gang Hua, and Liang Wang. How to train a compact

binary neural network with high accuracy? In AAAI Conference on

Artificial Intelligence (AAAI), 2017.
[20] Xiaofan Lin, Cong Zhao, and Wei Pan. Towards accurate binary

convolutional neural network. In I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors,
Advances in Neural Information Processing Systems (NeurISP), pages
345–353. Curran Associates, Inc., 2017.

[21] Song Han, Jeff Pool, John Tran, and William J. Dally. Learning both
weights and connections for efficient neural networks. In Advances

in Neural Information Processing Systems (NeurISP), NIPS’15, pages
1135–1143, Cambridge, MA, USA, 2015. MIT Press.

[22] Siyang Sun, Yingjie Yin, Xingang Wang, De Xu, Wenqi Wu, and
Qingyi Gu. Fast object detection based on binary deep convolution
neural networks. CAAI Trans. Intell. Technol., 3:191–197, 2018.

[23] B. Zhuang, C. Shen, M. Tan, L. Liu, and I. Reid. Structured
binary neural networks for accurate image classification and semantic
segmentation. In IEEE/CVF Conference on Computer Vision and

Pattern Recognition (CVPR), pages 413–422, June 2019.
[24] H. Sharma et al. Bit fusion: Bit-level dynamically composable

architecture for accelerating deep neural networks. In ISCA, 2018.
[25] J. Lee et al. Unpu: An energy-efficient deep neural network accelerator

with fully variable weight bit precision. IEEE J. Solid-State Circuits,
Jan. 2019.

[26] P. Judd et al. Stripes: Bit-serial deep neural network computing. In
MICRO, Oct. 2016.

[27] S. Sharify et al. Loom: Exploiting weight and activation precisions to
accelerate convolutional neural networks. In DAC, 2018.

[28] R. Andri et al. Yodann: An architecture for ultralow power binary-
weight cnn acceleration. IEEE TCAD, Jan. 2018.

[29] K. Ando et al. Brein memory: A single-chip binary/ternary reconfig-
urable in-memory deep neural network accelerator achieving 1.4 tops
at 0.6 w. IEEE J. of Solid-State Circuits, Apr. 2018.

[30] Y. Umuroglu et al. Finn: A framework for fast, scalable binarized
neural network inference. In FPGA, 2017.

[31] Intel Corp. Lower Numerical Precision Deep Learning Inference and

Training White Paper, 1 2018.
[32] Nvidia Corp. Nvidia Turing GPU Architecture White Paper, 2018.
[33] Apple Inc. Reducing the Size of Your Core ML App, accessed April

11, 2020.
[34] Xilinx, Inc. Versal: The First Adaptive Compute Acceleration Platform

(ACAP), 10 2018. v1.0.
[35] Philip Colangelo, Nasibeh Nasiri, Asit Mishra, Eriko Nurvitadhi,

Martin Margala, and Kevin Nealis. Exploration of low numeric
precision deep learning inference using intel fpgas, 2018.

[36] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv,
and Yoshua Bengio. Binarized neural networks. In D. D. Lee,
M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, editors,
Advances in Neural Information Processing Systems (NeurISP), pages
4107–4115. Curran Associates, Inc., 2016.

[37] R. Zhao et al. Accelerating binarized convolutional neural networks
with software-programmable fpgas. In FPGA, 2017.

[38] L. Yang, Z He, and D. Fan. A fully onchip binarized convolutional
neural network fpga impelmentation with accurate inference. In
ISLPED, 2018.

[39] S. Liang et al. Fp-bnn: Binarized neural network on fpga. Neurocom-

puting, 275, 2018.
[40] D. Nguyen, D. Kim, and J. Lee. Double mac: Doubling the perfor-

mance of convolutional neural networks on modern fpgas. In DATE,
Mar. 2017.

[41] E. Nurvitadhi et al. Accelerating binarized neural networks: Compar-
ison of fpga, cpu, gpu, and asic. In FPT, Dec. 2016.

[42] Evan Shelhamer, Jonathan Long, and Trevor Darrell. Fully convolu-
tional networks for semantic segmentation. IEEE Trans. Pattern Anal.

Mach. Intell., 39(4):640–651, April 2017.
[43] O. Ronneberger, P.Fischer, and T. Brox. U-net: Convolutional networks

for biomedical image segmentation. In Medical Image Computing

and Computer-Assisted Intervention (MICCAI), volume 9351 of LNCS,
pages 234–241. Springer, 2015.

[44] Liang-Chieh Chen, Yukun Zhu, George Papandreou, et al. Encoder-
decoder with atrous separable convolution for semantic image seg-
mentation. In ECCV, 2018.

[45] Forrest N. Iandola, Song Han, Matthew W. Moskewicz, et al.
SqueezeNet: AlexNet-level accuracy with 50× fewer parameters and
<0.5MB model size. arXiv:1602.07360, 2016.

[46] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-10 (canadian
institute for advanced research).

[47] Alexander Frickenstein, Manoj-Rohit Vemparala, Jakob Mayr, et al.
Binary DAD-Net: Binarized driveable area detection network for
autonomous driving. In ICRA, 2020.

[48] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld,
Markus Enzweiler, Rodrigo Benenson, Uwe Franke, Stefan Roth,
and Bernt Schiele. The cityscapes dataset for semantic urban scene
understanding. In IEEE/CVF Conference on Computer Vision and

Pattern Recognition (CVPR), 2016.
[49] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for

image recognition. In IEEE/CVF Conference on Computer Vision and

Pattern Recognition (CVPR), pages 770–778, June 2016.
[50] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian Schroff,

and Hartwig Adam. Encoder-decoder with atrous separable convolu-
tion for semantic image segmentation. In Vittorio Ferrari, Martial
Hebert, Cristian Sminchisescu, and Yair Weiss, editors, Computer

Vision – ECCV 2018, pages 833–851, Cham, 2018. Springer Inter-
national Publishing.

[51] Jakob Mayr, Christian Unger, and Federico Tombari. Self-Supervised
Learning of the Drivable Area for Autonomous Vehicles. In 2018

IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), pages 362–369. IEEE, 01.10.2018 - 05.10.2018.

98



© Copyright 2020 Xilinx

Ralf Neuhaus : Automotive System Architect EMEA 

Security in Automotive

Workshop : Programmable 

Processing for the Autonomous / 

Connected Vehicle

© Copyright 2020 Xilinx

Agenda

˃Automotive Trends & Security Standards

˃Secure Boot for Automotive Applications

˃Security Features for Automotive Applications

˃Safety and Security

˃Summary

>> 2

99



© Copyright 2020 Xilinx

Security is important!

>> 3

www.heise.de/news  from 22.Sep. 2020

Danger for cars: "Everything that is 

networked will also be attacked".

© Copyright 2020 Xilinx
© Copyright 2020 Xilinx

Potential attack surfaces of a connected car  

>> 4

Each feature enhancement  brings 

another potential attack surface  !!!

OBD II

Bluetooth

USB

Ethernet 

DSRC & Cellular-V2X

Remote Key

Passive Keyless Entry

TPMS

ECU’s 

- IVI

- ADAS

- Gateway

- Steering, 

- Engine, 

- Lighting

- Vehicle Access

Wallbox
Via Powerline 
communication 

Smart

phone

Via Remote 
APP

Cloud services /

OTA 

*IT consulting company Capgemini

Forecast * : 

the number of networked 

vehicles in Europe  could be 

increased to over 110 million 

by 2023

100



© Copyright 2020 Xilinx

Trends in Automotive 

˃ Moving towards Hardware Root of Trust 

˃ Growing desire for every network connected device to support OTA

˃ Products that will have some unique and evolving security requirements

Vehicle Gateways and many ECUs

‒ Needs for authentication and/or encryption on CAN and Ethernet messaging between ECUs

§ Enhanced  AUTOSAR + crypto extensions e.g. with HSM 

Domain Controllers

‒ Hypervisors or several secure operating systems may be used to provide another layer of security 

§ Need for additional protection our XMPU and XPPU 

Event Recorders

‒ Secure storage on encrypted video as a method to protect user data

§ Need for high bandwidth AES accelerator

C-V2X

‒ Large number of key exchanges

§ Need for  HSM low latency and high throughput

>> 5

© Copyright 2020 Xilinx

Industry Focus

>> 6

Project Timeline Origin

EVITA 2008-2011 EU

PRECIOSA 2008-2010 EU

SeVeCOM 2006-2010 EU

DRIVE-C2X 2011-2014 EU

PRESERVE 2011-2014 EU

OVERSEE 2010-2012 EU

EURO-MILS 2012-2015 EU

SESAMO 2012-2015 EU

SHIELDS 2008-2010 EU

CVIS 2006-2010 EU

TECOM 2008-2011 EU

SEPIA 2010-2013 EU

NoW 2004-2008 Germany

ARAMiS 2011-2014 Germany

HEAVENS 2013-2016 Sweden

Source: SAE J3061: Cybersecurity Guidebook for Cyber-Physical Vehicle Systems; Appendix H; Jan 2016

˃ Lack of an industry standard creates challenges

˃ Xilinx’s primary focus is on

Auto-ISAC

ISO21434

HSM Architecture (e.g. EVITA)

˃ Others?

101



© Copyright 2020 Xilinx

Automotive Groups & Standards

>> 7

˃ Auto-ISAC (Information Sharing & Analysis Center)

˃ ISO21434 Road vehicles – Cybersecurity engineering

Requirements around development process

‒ Cybersecurity management

‒ Risk management & assessment

‒ Product development

‒ Verification & validation

‒ Operations & maintenance

Latest https://www.sae.org/standards/content/iso/sae21434.d1/ (from 202002)

˃ SAE J3101 – Requirements for Hardware-Protected Security for Ground Vehicle Applications

Requirement for security implemented in hardware

Latest https://www.sae.org/standards/content/j3101_202002/

˃ SAE J3061 – Cybersecurity Guidebook for Cyber-Physical Vehicle Systems

© Copyright 2020 Xilinx

ISO21434 Details

>> 8

˃ Process for OEMs, Tier 1 and Tier 2 Suppliers

˃ Contains requirements around 

Cybersecurity Management

Project Dependent Cybersecurity Management

Risk Assessment

Concept Phase

Development Phase

Production, Operations, Maintenance and Decomissioning

Management Systems

Distributed activities (i.e. between OEM and Suppliers or between Suppliers)

OEM Tier 1 Tier 2DIA DIA

*DIA – Development Interface Agreement

102



© Copyright 2020 Xilinx

Agenda

˃Automotive Trends & Security Standards

˃Secure Boot for Automotive Applications

˃Security Features for Automotive Applications

˃Safety and Security

˃Summary

>> 9

© Copyright 2020 Xilinx

Security through Product/System Lifecycle

Digital Signatures, User Passwords, Tokens, Biometrics 

Role-based Accounts, etc.

Hypervisors, Microkernels, TrustZone, Isolation 

Design Flow Protections, Security Monitor, etc.

Asymmetric/Symmetric Authentication, 

AES Crypto, DPA Protections, etc.

Security Critical Redundancy, JTAG 

Protections, Environmental Monitors, 

Tamper Detection/Penalties, etc.

World Class Best Practices, 

Authorized Suppliers, Blind 

Buys, Anti-counterfeit, etc.

Xilinx 
Responsibility

Customer 
Responsibility

Shared

103



© Copyright 2020 Xilinx

Two Secure Boot Modes in ZU+

HW Root of Trust Encrypt-Only

Asymmetric Authentication Yes w/ RSA-4096 No

Confidentiality Optional w/ AES-GCM 

(256 bit key)

Required w/ AES-GCM1

(256 bit key)

Symmetric Authentication Optional w/AES-GCM 

(256 bit key)

Required w/ AES-GCM1

(256 bit key)

Boot Time4 Longer Shorter

Differential Power Analysis (DPA) 

Protection

Yes No2

Physical Unclonable Function (PUF) 

Support for Black Key Storage 

Yes3 No

Key Revocation/Anti-Replay Yes No

RMA Support No Yes

>> 11

1. ALL partitions must be encrypted
2. DPA Protection requires RSA and AES
3. 128bit entropy PUF (SCD#4687) is supported in XA devices

4. See Boot Time Estimator 
(https://www.xilinx.com/support/answers/67475.html)

© Copyright 2020 Xilinx

Secure Boot and Operation Protections  (ZU+)

>> 12

Attack Device Countermeasure

Side Channel Built-In Differential Power Analysis Countermeasures

and/or Protocol (Authentication and Key Rolling)

Fault Injection PMC Triple Redundant Processors and ECC on PMC Memories; 

Temporal and Physical Redundancy in HW and ROM Code

SHA Integrity Checks on Immutable ROM Code

Physical PMC Triple Redundant Processors and ECC on PMC Memories; 

Temporal and Physical Redundancy in HW and ROM Code;

SHA Integrity Checks on Immutable ROM Code

Environmental ECC on PMC Memories; 

SHA Integrity Checks on Immutable ROM Code

Test / Debug By Design (disabled upon power up and fault tolerant);

JTAG Monitoring; 

Permanent disable capability

General Immutable ROM Code;

PMC clocked by internal, uninterruptable clock source;

Pre-boot: sensitive info is the device key – protected via PUF (eFUSE)

104



© Copyright 2020 Xilinx

Agenda

˃Automotive Trends & Security Standards

˃Secure Boot for Automotive Applications

˃Security Features for Automotive Applications

˃Safety and Security

˃Summary

>> 13

© Copyright 2020 Xilinx

PROMSoC PROMSoC

Simplified Per-Device Unique Keying

˃ Enabled by open source Bootgen running on A53/A72

Facilitates unique keying architectures that require unique boot images per device

>> 14

• Prebuilt boot image

• PUF KEK is unique per device

• One boot image encryption key

• Single signature across devices

• Boot image encrypted & signed “on-the-fly”

• PUF KEK is unique per device

• Supports unique encryption keys per device

• Unique signature per device

*See XSWG2019 Provisioning / Secure Provisioning Service presentation

PROM PROMSoC PROMSoC PROMSoC

Traditional Provisioning Advanced Provisioning

https://github.com/Xilinx/bootgen

105



© Copyright 2020 Xilinx

ZU+ Fielded System Test/Debug 

˃ What test capability do you have for a fielded system?

Enabling Secure Boot protects test interfaces

JTAG is automatically protected w/Secure Boot Enabled

‒ You do not have to program the JTAG Disable eFUSE to 
protect the device

>> 16
References from ZU+ TRM v1.8 (UG1085)

© Copyright 2020 Xilinx

ZU+ Fielded System Test/Debug 

˃ What test capability do you have for a fielded system?

Enabling Secure Boot protects test interfaces

JTAG is automatically protected w/Secure Boot Enabled

‒ You do not have to program the JTAG Disable eFUSE to 
protect the device

˃ Test Capabilities

Boundary Scan/Connectivity testing when secure boot fails

‒ Automatically enabled if you do not program SEC_LK eFUSE

>> 17

PS RESET

(PORB = 0)

PS in Boot

Failed Secure Boot

Secure Lockdown

Disable

Reboot Fuse

Blown?

(SEC_LK)

AES or RSA

eFuse Blown?

Enable BSCAN

Device Held in Reset

no

yes

SOFT RESET

PS in Boot

References from ZU+ TRM v1.8 (UG1085)

106



© Copyright 2020 Xilinx

ZU+ Fielded System Test/Debug 

˃ What test capability do you have for a fielded system?

Enabling Secure Boot protects test interfaces

JTAG is automatically protected w/Secure Boot Enabled

‒ You do not have to program the JTAG Disable eFUSE to 
protect the device

˃ Test Capabilities

Boundary Scan/Connectivity testing when secure boot fails

‒ Automatically enabled if you do not program SEC_LK eFUSE

Full test capability via JTAG when secure boot passes

‒ Load an FSBL that enables JTAG

>> 18

PS RESET

(PORB = 0)

PS in Boot

Successful

Secure Boot

JTAG Enabled

Authenticated

SW enables

JTAG?

JTAG not

Enabled

yes

no

References from ZU+ TRM v1.8 (UG1085)

© Copyright 2020 Xilinx

ZU+ Fielded System Test/Debug 

˃ What test capability do you have for a fielded system?

Enabling Secure Boot protects test interfaces

JTAG is automatically protected w/Secure Boot Enabled

‒ You do not have to program the JTAG Disable eFUSE to 
protect the device

˃ Test Capabilities

Boundary Scan/Connectivity testing when secure boot fails

‒ Automatically enabled if you do not program SEC_LK eFUSE

Full test capability via JTAG when secure boot passes

‒ Load an FSBL that enables JTAG

˃ What is not covered?

Failure during boot / boot logic; Status available via JTAG

‒ PS TAP Controller

‒ JTAG Error Status 

Do NOT program the JTAG Disable eFUSE

>> 19
References from ZU+ TRM v1.8 (UG1085)

107



© Copyright 2020 Xilinx

ZU+ Fielded System Test/Debug 

˃ What test capability do you have for a fielded system?

Enabling Secure Boot protects test interfaces

JTAG is automatically protected w/Secure Boot Enabled

‒ You do not have to program the JTAG Disable eFUSE to 
protect the device

˃ Test Capabilities

Boundary Scan/Connectivity testing when secure boot fails

‒ Automatically enabled if you do not program SEC_LK eFUSE

Full test capability via JTAG when secure boot passes

‒ Load an FSBL that enables JTAG

˃ What is not covered?

Failure during boot / boot logic; Status available via JTAG

‒ PS TAP Controller

‒ JTAG Error Status 

Do NOT program the JTAG Disable eFUSE

>> 20
References from ZU+ TRM v1.8 (UG1085)

© Copyright 2020 Xilinx

How to do an RMA in ZU+ and  Versal

˃ Encrypt Only boot mode

Step 1 – Provision device for Encrypt Only boot mode

‒ Provision ENC_ONLY eFUSE and AES eFUSE key

Step 2 – Deploy system

Step 3 – When device fails, encrypt Xilinx RMA boot loader with your symmetric key

‒ Xilinx boot loader opens test interfaces

Step 4 – Return device and encrypted boot load to Xilinx using approved process

˃ HWRoT boot mode is NOT supported

˃ Encrypt Only boot mode support

˃ HWRoT boot mode support

>> 21

fi
e

ld
fa

c
to

ry

ZU+ 

Versal

108



© Copyright 2020 Xilinx

EVITA HSM Architecture

˃ Security Requirements

SR.1 Integrity/Authenticity of e-Safety related events

SR.2 Integrity/Authenticity of ECU/firmware installation/configuration

SR.3 Secure execution environment

SR.4 Vehicular Access Control

SR.5 Trusted In-Vehicle ECU Platform.  Integrity/Authenticity of operated software

SR.6 Secure in-vehicle data storage

SR.7 Confidentiality of in-vehicle and external communications

SR.8 Privacy

FR.9 Interference of security functionality

‒ Layman’s definition – security cannot negatively impact system availability
>> 24

© Copyright 2020 Xilinx

Pre-Engineered Solution

˃ Silex Insight HSM eSecure IP

Secure operations in the PL

‒ Keys/Secure Processing isolated from PS 

Host FW executes on RPU or APU

‒ Interface with AUTOSAR API

Flexible: Tradeoff features, logic and 
performance

See XSWG2019 ZU+ Hardware Security 
Module (HSM) IP Solution presentation

>> 25

text

Microblaze

OCM
256KB

MIO

Low 

Power 

Switch

Core 

Switch
CCI

DDRC

Cortex-R5

32KB I/D

128KB TCM

Cortex-R5

32KB I/D

128KB TCM

Microblaze

128KB RAM

Microblaze

200MHz

AES-GCM SHA-3/384

RSA PUF

RPU

PMU

CSU

Cortex-A53

32KB I/D

SCU

1MB L2ACP

APU

Low Power Domain

PL

X

Cortex-A53

32KB I/D

Cortex-A53

32KB I/DCortex-A53

32KB I/D

HASH

RSA

AES

ECC

RNG

XPPU

XMPUVmem

XPPU*

32kB I/D
64KB RAM

Quantum 
Resistance

Host FW

Host FW

109



© Copyright 2020 Xilinx

Automotive Security Enhancements in next gen products

>> 26

RMA Support 

in all Secure 

Boot Modes

Full PUF 

Support

RMA using a 

3rd Primary 

Public Key

Additional 

Volatile 

User Keys

Additional 

Non-Volatile 

User Keys

Authenticated 

Debug via 

JTAG

HSM “Out of 

the Box” IP

XA 

AES Masking

© Copyright 2020 Xilinx

Agenda

˃Automotive Trends & Security Standards

˃Secure Boot for Automotive Applications

˃Security Features for Automotive Applications

˃Safety and Security

˃Summary

>> 27

110



© Copyright 2020 Xilinx

Safety Collateral

>> 28

Software

IPs & 

Methodologies

SoC & FPGA

Certified 

Development Tools

Reference Design & 

Ecosystem Partners

Certification Authorities

© Copyright 2020 Xilinx

ZU+ Automotive Developments

˃ CSU Usage in FuSa application

Previous version of ZU+ Safety Manual (UG1226) 
prevented use of hardened crypto accelerators in CSU

Not good for safety applications requiring security !!!

>> 29

[SMA_NSRM_003] The following modules contained in the LPD can be 

used to initialize, service, and support the application but shall 

never be used during the time when the application is actively 

performing the safety mission:

1) AXI Trace Monitor (ATM)

2) AXI Performance Monitor (APM)

3) Real Time Clock (RTC)

4) JTAG

5) ARM debug access port (ARM DAP)

6) Crypto Interface Block (CIB)

111



© Copyright 2020 Xilinx

ZU+ Automotive Developments

˃ CSU Usage in FuSa application

Previous version of ZU+ Safety Manual (UG1226) prevented use of hardened crypto 
accelerators in CSU

New version of ZU+ Safety Manual defines assumptions of use for using hardened crypto 
accelerators in CSU

Much better for security applications!!!

>> 30

[SMA_CSU_001] The CSU shall be clocked by the SysOsc clock.

[SMA_CSU_002] The CSU Crypto Interface Block (CIB) contains RSA,

SHA3, AES-GCM, PUF, PCAP, and CSU DMA functions. When using these 

CIB functions, all safety-related communication dependent on these

blocks, shall use end-to-end protection measures. 

© Copyright 2020 Xilinx

Safety Collateral

>> 31

Xilinx Functional Safety Working Group (FSWG)

2020 Virtual Event

Registration to be opened starting 1st of October

˃ Functional Safety Lounge (link)

The Functional Safety Lounge is home to much of Xilinx Functional Safety Collateral

Contact your FAE for access details

˃ Xilinx Functional Safety Working Group (FSWG)

FSWG is for safety what XSWG is for security

Two day working group

2020 will be its 4th year

112



© Copyright 2020 Xilinx

Agenda

˃Automotive Trends & Security Standards

˃Secure Boot for Automotive Applications

˃Security Features for Automotive Applications

˃Safety and Security

˃Summary

>> 32

© Copyright 2020 Xilinx

Summary

˃ ZU+ security can address the cybersecurity Automotive needs today

Multiple Secure Boot modes

Support for secure external non-volatile memory

Run-time security through hardened accelerators and tamper monitoring

˃ Versal security continues automotive security with additional enhancements

˃ Hardware Security Module (HSM) IP provides canned Security Solution

˃ Safety requires security!!

Xilinx’s security solutions complement our functional safety solutions

>> 33

Information on older families can be found in prior year’s XSWG presentations

113



© Copyright 2020 Xilinx

THANK YOU 

Workshop : Programmable Processing for the Autonomous / Connected Vehicle

114


