
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3109235, IEEE Access

VOLUME XX, 2017 1

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.Doi Number

Analysis of Swarm Intelligence based ANN
Algorithms for Attacking PUFs

AHMED OUN, (Student Member, IEEE), NOOR AHMAD HAZARI, (Student Member, IEEE),
AND MOHAMMED NIAMAT, (Member, IEEE)
Dept. of Electrical Engineering and Computer Science University of Toledo, Toledo, OH 43606, USA

Corresponding Author: Ahmed Oun (e-mail: Ahmed.Oun@rockets.utoledo.edu)

ABSTRACT Physical Unclonable Functions (PUFs) are used for authentication and generation of secure

cryptographic keys. However, recent research work has shown that PUFs, in general, are vulnerable to

machine learning modeling attacks. From a subset of Challenge-Response Pairs (CRPs), the remaining CRPs

can be effectively predicted using different machine learning algorithms. In this work, Artificial Neural

Networks (ANNs) using swarm intelligence-based modeling attacks are used against different silicon-based

PUFs to test their resiliency to these attacks. Amongst the swarm intelligence algorithms, the Gravitational

Search Algorithm (GSA), Cuckoo Search Algorithm (CS), Particle Swarm Optimizer (PSO) and the Grey

Wolf Optimizer (GWO) are used. The attacks are extensively performed on six different types of PUFs;

namely, Configurable Ring Oscillator, Inverter Ring Oscillator, XOR-Inverter Ring Oscillator, Arbiter,

Modified XOR-Inverter Ring Oscillator, and Hybrid Delay Based PUF. From the results, it can be concluded

that the first four PUFs under study are vulnerable to ANN swarm intelligence-based models, and their

responses can be predicted with an average accuracy of 71.1% to 88.3 % for the different models. However,

for the Hybrid Delay Based PUF and the Modified XOR-Inverter Ring Oscillator PUF, which are especially

designed to thwart machine learning attacks, the prediction accuracy is much lower and in the range of 9.8 %

to 14.5 %.

INDEX TERMS Hardware Security, FPGA, PUF, Artificial Neural Network, Swarm Intelligence, GSA,

CS, PSO, GWO, Machine Learning Attacks.

I. INTRODUCTION

In recent years, the use of programmable devices such as

Field Programmable Gate Arrays (FPGAs) and custom

designed Application Specific Integrated Circuits (ASICs)

have increased rapidly. The increased deployment of these

devices in mission critical computing systems include, but

are not limited to, communication networks, smart grids,

defense equipment, and internet of things, has led hackers to

continually devise new techniques to breach the security of

these devices. Examples of such attacks include disabling or

degrading the function of these chips in systems like radars

and missiles. Other attempts include implanting malicious

electronic circuitry in the chips, known as Trojans, to steal

vital information for cyber-attacks. These tampered chips

can subsequently act as ‘spy chips’ by collecting confidential

data for adversaries and hackers. To counter such attacks,

chip designers have embedded additional layers of security

in these devices [1,2]. Although researchers have long tried

to secure hardware-based systems with both software and

hardware-based approaches, this paper explicitly focuses on

techniques based on hardware-oriented security and trust

[3,4]. These approaches mainly involve generation of unique

hardware-based cryptographic keys in the form of

Challenge-Response Pairs (CRPs). In order to generate

hardware-based unique keys, different structures of physical

unclonable functions (PUFs) have been proposed in the past

[5,6]. Essentially, a PUF utilizes manufacturing process

variation, which is an inherent property of silicon chips, to

generate unique and unclonable CRPs. Amongst the

different types of PUFs available, the delay-based PUFs are

widely studied in CMOS-based silicon devices. The most

investigated PUFs on silicon-based devices are the Ring

Oscillator PUF (ROPUF) and the Arbiter PUF (APUF). Most

of the delay-based PUFs are strong candidates for not only

ASICs but also for FPGAs [7,8]. The significant advantage

of using PUFs as security measures is that it does not require

on-chip memory to generate and store keys; thus, it

eliminates the use of on-chip memory for the security of the

hardware-based system. Another very significant feature of

the PUF is that the keys generated by the PUF are device

specific. Further, the keys change with the specific location

and placement of the PUF inside the chip, since they depend

on the random manufacturing process variations [9,10]. It

should be noted that the behavior of PUFs rely on the random

mailto:Ahmed.Oun@rockets.utoledo.edu

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3109235, IEEE Access

VOLUME XX, 2017

manufacturing process variations related to several

components that are used to construct it. These components

are sometimes linearly interrelated to the number of CRPs.

Because of these limitations and linearity, an attacker may

try all challenges and know the corresponding responses

within an extended period of time [6]. This kind of brute

force approach, however, generally fails because of the time

required and because of the fact that the exact location of the

PUF is unknown. It is further complicated in FPGAs, since

the location of a PUF mapped onto an FPGA, unlike an

ASIC, can be frequently changed by the designer by

changing the bit-stream file.

PUF produces a device-specific unique response for a

given challenge. This property of the PUF makes it suitable

for different applications including, authentication, IP

protection, random key generation, remote attestation, and

secured supply chain, etc. Once the CRPs can be predicted

by an attacker; as a consequence, the whole concept of

cryptographic primitive for hardware security applications,

including PUF as an authenticator, is in jeopardy. Though

PUFs are considered unclonable, researchers have shown

that they are vulnerable to machine learning-based modeling

attacks. An attacker can perform different types of attacks,

including side-channel attacks, cloning, reverse engineering,

Probably Approximately Correct (PAC) based attacks, and

eavesdropping for predicting the CRPs [11-15]. Side-

channel based attacks can be performed by monitoring the

voltage, current, and power values during runtime. If an

attacker wants to authenticate using PUF CRPs without

getting any access to the PUF, the attacker would be able to

do so if the attacker has the responses available for the

challenges, which can be done by eavesdropping on some of

the CRPs. Hackers can eavesdrop by using MITM attacks by

recording the network data packets and extracting the

information of the CRPs when the system is in operation.

Thus, after acquiring a set of CRPs, a PUF can be modeled

using machine learning. Side-channel based attacks can be

performed by monitoring the voltage, current, and power

during runtime. PUFs have been successfully attacked using

machine learning algorithms such as Logistic Regression,

Probably Approximately Correct learning, Evolutionary

Strategy, Quick Sorting, etc. [13-15]. In Rührmair et al.’s

research [13], the authors used quick sorting for modeling

RO PUFs. In J. Delvaux’s work [14], the authors performed

modeling attacks on APUF, PolyPUF, OB-PUF, RPUF,

LHS-PUF, and PUF FSM protocols. The Probably

Approximately Correct (PAC) learning algorithm has been

used for predicting ROPUF CRPs in [15]. In their work, the

number of CRPs required to learn the models is on a scale of

ten thousand which is high for an attacker to obtain from the

CRP set. Fault injection-based modeling attacks on APUFs

are performed in [16]. In this attack model, an attacker must

have physical access to the PUF. Logical Approximation and

Global Approximation attacks are performed on different

structures of Arbiter PUFs using ANN methods of RMSProp

and Gradient Descent Optimizer [17]. In this technique, the

number of CRPs required is also high. Different side

channel-based modeling attacks have been performed in

[18,19], which also requires physical access to the PUF

device. Authors in [20] performed deep learning attacks on a

Double Arbiter PUF. In their work, the authors performed

Logistic Regression-based deep learning attacks. The

number of CRPs required to perform such an attack is very

high and requires more than a million pairs of CRPs that are

difficult for an adversary to obtain in order to attack the PUF.

Genetic Algorithms have also been used to predict CRPs

for the ROPUF [21,22]. In the Genetic Algorithm-based

modeling, CRPs are generated by crossover, mutation, and

then the attacks are performed, which is not consistent for

different models of ROPUFs. Mathematical modeling of

different PUFs including the Arbiter PUF and the Ring

Oscillator PUF has been performed in [23]. In this work, the

authors describe a mathematical model for the ROPUF and

perform Logistic Regression-based modeling attacks on the

Arbiter PUF and the DCMUX PUF. In this approach, the

drawback is that the CRPs depend on the different structures

of the ROPUF. ANN-based modeling attacks on a small set

of CRPs using different optimizations including RMSprop,

Adam, Nadam, etc., have been performed in [24]. However,

the prediction accuracy needs improvement.

Different metaheuristics algorithms exist in the literature

to solve optimization problems. Metaheuristics algorithms

can be classified into different categories including,

Evolutionary, Physics-based, and Swarm Intelligence-based

Algorithms. The Genetic Algorithm (GA) is the most

popular Evolutionary based algorithm proposed by [25],

which works on an initial random solution and optimizes the

solution based on generations and mutations. Other popular

Evolutionary based algorithms are Genetic Programming

(GP) [26], Evolutionary Strategies (ES) [27], Differential

Evolution (DE) [28] etc. The popular physics-based

algorithms is the Gravitational Search Algorithm (GSA) [29]

which works based on the law of gravity, and the best

solution is reached after the iteration can produce specific

agents that achieve certain fitness. Ultimately, the heavier;

the mass is, the closer the optimum points will be. Other

physics-based algorithms include Big-Bang Big-Crunch

(BBBC) [30], Central Force Optimization (CFO) [31],

Galaxy-based Search Algorithm (GbSA) [32], Gravitational

Local Search (GLSA) [33], Charged System Search (CSS)

[34] etc. Swarm Intelligence (SI) based algorithms are a

subset of the bio-inspired algorithms. SI is a nature-inspired

algorithm produced by a group of animals or birds acting

together, and the algorithm is based on how these animals act

or behave to adapt to the different scenarios occurring in their

surroundings [35]. In Particle Swarm Optimization (PSO)

the particles chase the position of the best particle and reach

their own best position so that the overall best solution of the

swarm is obtained [36]. Other popular swarm intelligence-

based algorithm includes Ant Colony Optimization (ACO)

[37], Cuckoo Search (CS) [38], Grey Wolf Optimizer

(GWO) [39], etc., which are inspired by hunting and

searching behavior.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3109235, IEEE Access

VOLUME XX, 2017

In 2014, Mirjalili et al. introduced the Grey Wolf

Optimizer (GWO), which is a metaheuristic algorithm that

simulates the hierarchical superiority-based hunting

mechanism of Grey wolves for hunting down prey. This

arrangement benefits them to preserve stability and support

each other throughout hunting. Wolves have a strict social

hierarchy consisting of the alpha (α), beta (β), delta (δ), and

omega (ω) wolves [39]. The GWO algorithm takes these

features of Grey Wolf to search optimized solution of a

problem utilizing exploitation and exploration; therefore, in

the searching process, the best solution position can be

comprehensively estimated by three solutions. Thus, the

algorithm can significantly decrease the probability of falling

into the local optimum. The properties of metaheuristics

algorithms have motivated their use to solve different

engineering problems such as embedded systems, electric

power system [40], scheduling Energy Storage Unit

problems [41], communication network and Distributed

Compressed Sensing (DCS) problem [42]. Hence, the

research on the swarm intelligence optimization algorithms

has an academic advantage and practical importance.

In our earlier work [43], we presented an analytical study

of the vulnerability of the Configurable Ring Oscillator PUF

and the XOR-Inverter Ring Oscillator PUF against Feed-

Forward Neural Network (FNN) attacks using the Dragonfly

Algorithm. That limited study showed that both designs are

vulnerable to this type of attack. In this paper, Artificial

Neural Networks are trained using different swarm

intelligence algorithms, namely: GSA, CS, PSO and GWO to

study the vulnerability and resistance of various PUF

structures against machine learning modeling attacks. It is

assumed that an adversary is able to get hold of a subset of

the CRPs and then attempts to predict the remaining set of

CRPs by performing modeling attacks.

The contributions of this paper are listed as follows:

• Use of Artificial Neural Network based modeling

attacks on various PUFs using different Swarm

Intelligence algorithms, namely: The Gravitational

Search Algorithm (GSA), Cuckoo Search

Algorithm (CS), Particle Swarm Optimization and

the Grey Wolf Optimizer. To the best of our

knowledge, these algorithms have not been used in

studying the vulnerability of PUFs to ANN-based

attacks.

• Development of a comparative study and statistical

analysis for the different Swarm Intelligence

optimization attack models' results with respect to

other machine learning attack models. It is found

that the ANN-based Grey Wolf Optimizer approach

produces better accuracy results than the other

methods.

The rest of the paper is organized as follows: Section II

describes current research related to PUFs, and Section III

describes the structure of the Artificial Neural Network.

Section IV presents an introduction to the Gravitational

Search Algorithm (GSA), Cuckoo Search Algorithm (CS),

Particle Swarm Optimization and the Grey Wolf Optimizer

algorithm. Section V describes the proposed method and

approach. In Section VI, experimental and simulation results

are discussed. Section VII provides concluding remarks.

II. RESEARCH BACKGROUND: Different PUF

Structures

A. BASIC SILICON PUFs

Ring Oscillator Physical Unclonable Functions (ROPUFs)

and Arbiter Physical Unclonable Functions (APUFs) are the

two most commonly used silicon-based PUFs [44,45]. The

basic ROPUF design is described first. Fig. 1 shows the

structure of the Ring Oscillator PUF [46]. The design relies

on delay loops, which can be produced using an odd number

of inverters. As can be seen from the figure, the output bit is

generated by the random selection of a pair of ring

oscillators. Because of the process manufacturing variations

inherent in the chip, ROs that are mapped at different

locations of the chip produce different frequencies

(𝑓𝑎 𝑎𝑛𝑑 𝑓𝑏) . These two frequencies (𝑓𝑎 𝑎𝑛𝑑 𝑓𝑏) are

compared. If the frequency of the first RO is greater than the

second, then the output is 1; otherwise it is 0.

FIGURE 1. Ring oscillator PUF circuit

A response bit (𝑟𝑎𝑏) is thus produced by a simple comparison

as shown in equation (1):

𝑟𝑎𝑏 = {
1, 𝑖𝑓 𝑓𝑎 > 𝑓𝑏 ,
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 (1)

 The basic structure of the Arbiter PUF is shown in Fig. 2.

The circuit produces a race among two delay paths with an

arbiter at the end [47]. In APUF, a rising edge signal travels

through two paths simultaneously. Due to process variations,

the signal on one path travels faster than the other and

generates a 1 or a 0 response. The challenge bits consist of K

external bits (C1= b1.b2…..bk) for K number of stages. Thus,

for challenge bits C1, C2, Cn, a response of R1, R2… Rn is

obtained.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3109235, IEEE Access

VOLUME XX, 2017

FIGURE 2. Arbiter PUF

B. CONFIGURABLE RING OSCILLATOR PUF

The Configurable ROPUF design shown in Fig. 3 was

presented in our earlier work [9]. This c-ROPUF design was

implemented on a Spartan 3E FPGA board, which was

divided into eight regions. In each region, sixteen ring

oscillators were placed in forty configurable logic blocks.

The oscillators can be selected based on the challenges

provided to the programmable XOR gates. The responses

were collected using the Agilent 16801A logic analyzer. The

advantage of this design is that it can generate a large number

of CRPs from a small chip area.

FIGURE 3. Configurable ROPUF design

C. INVERTER RING OSCILLATOR PUF

A 5-stage Inverter Ring Oscillator PUF, as shown in Fig. 4,

is used in this study. The PUFs are mapped on Five different

Spartan 3E Xilinx boards. Each PUF consists of 512 Ring

Oscillators.

FIGURE 4. Five stage NOT based Ring Oscillator

D. XOR-INVERTER ROPUF

The XOR-Inverter based Ring Oscillator PUF is shown in

Fig. 5. This design consists of NAND, XOR, and Inverter

gates and has been implemented on ten different Xilinx

FPGA boards in our research lab [24]. The design has been

implemented using hard macros so that the oscillator

provides fixed routing, and the frequencies are not affected

by routing delays. The ROs are enabled for a certain period

of time to generate a response for a fixed challenge. For

different challenges applied through the challenge generator,

the frequencies at the output are collected through the

frequency counter. Each challenge generates a single bit of

response by comparing frequencies between the two

oscillators.

FIGURE 5. XOR-Inverter based ROPUF design

E. MODIFIED XOR-INVERTER ROPUF

This design, shown in Fig. 6, is a modification of the XOR-

Inverter ROPUF introduced in our earlier work for thwarting

machine learning modeling attacks [24]. As shown in the

figure, the new challenges are generated from the challenge

generator which consists of an XOR and a Linear Feedback

Shift Register (LFSR) network. The design has been

modified in a way that the ring oscillators are selected in a

pair with the same routing. The difference between the two

oscillator frequencies should lie within a specific threshold

frequency to avoid bit-flips. If the oscillators do not meet this

criterion, they are moved to another CLB slice.

FIGURE 6. Modified design of XOR-Inverter based ROPUF

F. HYBRID DELAY BASED PUF

The Hybrid Delay based AROPUF (Arbiter-Ring Oscillator

PUF), shown in Fig. 7, was proposed in our earlier work [48].

The hybrid model was also designed to prevent machine

learning based modeling attacks. This design is a

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3109235, IEEE Access

VOLUME XX, 2017

combination of the Arbiter PUF and the Ring Oscillator

PUF. A one-bit response is generated by providing a n-bit

challenge to the APUF. The CRPs are randomized using the

Mersenne Twister Random Number Generator [49]. The

randomized CRPs are paired sequentially to form n-bit

responses. The final output of the architecture is an n-bit

response corresponding to a n-bit challenge.

FIGURE 7. Hybrid Delay based AROPUF design

III. ARTIFICIAL NEURAL NETWORK

An Artificial Neural Network (ANN) is a network structure

of connected artificial neurons that can model complex

relationships between inputs and outputs using

computational and statistical data modeling tools. The neural

networks consist of different layers termed as the input layer,

output layer, and hidden layer. The first layer from where the

network takes the input is known as an input layer, whereas

the last layer of the network is termed as an output layer. The

layers in between are termed as hidden layers. The number

of hidden layers varies depending on the design [50]. The

structure of the neural network is shown in Fig. 8.

FIGURE 8. Artificial Neural Network Structure

The input layer is connected and assigned a weight to the

hidden layers. Similarly, the hidden layer is connected to the

output layers; consequently, the output of any input layer act

as an input of the next layer. For each node, weights are

assigned and adjusted based on the input-output relationship.

The output of a 3-layer feed-forward neural network can be

given by:

𝑌𝑗 = 𝑏𝑗 + ∑𝑤𝑖,𝑗𝑥𝑖

3

𝑖=1

(2)

where, 𝑌𝑗 is the output, 𝑏𝑗 is base, 𝑤𝑖,𝑗 is the weights, and 𝑥𝑖

is the input. The input of a hidden layer is modified by some

nonlinear function, sigmoid, which is the activation function:

𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑧) =

1

1 + 𝑒−𝑧

(3)

The weights are updated and calculated according to the

difference obtained from model output and the actual output

of the training data [51]. This difference is calculated using

loss or cost function, which is minimized until the training

loss is minimum or goes very close to zero.

IV. SWARM INTELLIGENCE

Swarm Intelligence (SI) is a cooperative system based on a

group of agents that achieve a common goal by cooperating

according to their behavior and system organization. The

fundamental concept behind swarm intelligence techniques

is the replication of the behavior of the natural collective

system [52]. Amongst the many available swarm intelligence

algorithms, the Gravitational Search Algorithm (GSA),

Cuckoo Search Algorithm (CS), Particle Swarm

Optimization (PSO), and the Grey Wolf Optimizer (GWO)

algorithms are frequently used. These algorithms, in general,

are simple and computationally efficient. Specifically, these

algorithms have higher viability, robustness, stability, and

search efficiency, and have a fast convergence rate [53].

Moreover, these algorithms are able to optimize a vast search

space with a fixed size population to solve different complex

design optimization problems. For a detailed comparative

analysis of the various swarm intelligence algorithms, the

reader is referred to [54].

A. GRAVITATIONAL SEARCH ALGORITHM

Gravitational Search Algorithm (GSA) is a swarm

optimization technique proposed by Rashedi et al., based on

gravity concepts and different masses' interaction [55]. In

this algorithm, the solutions of different agents' populations

interact with one another via the theory of Newtonian gravity

force and the laws of motion. The solution's performance is

measured by different masses. Due to gravitational force, the

masses are dragged towards each other, which creates a

global movement of all objects approaching the objects with

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3109235, IEEE Access

VOLUME XX, 2017

greater masses. The exploration step occurs when a mass

moves towards a heavier mass, and the exploitation is when

heavier masses move slowly. Accordingly, each mass can

convey information with different masses and see their

situation through the gravitational force. The mass's position

compares to a problem's solution; then, the best solution is

achieved with the heavier agent. The initial population is

generated randomly, and the position of the agents are defined

as:

𝑋𝑖 = (𝑥𝑖
1, … , 𝑥𝑖

𝑑 , … , 𝑥𝑖
𝑛) for 𝑖= 1, 2, …, N (4)

where 𝑥𝑖
𝑑 presents the position of 𝑖𝑡ℎ agent in the 𝑑𝑡ℎ

dimension. The gravitational search algorithm sets the initial

value of the constant 𝐺:

𝐺(𝑡) = 𝐺0𝑒
−∝𝑡/𝑇 (5)

where 𝐺0 and ∝ is initialized at the beginning of the iteration

and T is the total number of iterations. The agents update the

velocity and the position according to these equations:

 𝑣𝑖(𝑡 + 1) = 𝑟𝑎𝑛𝑑𝑖 × 𝑣𝑖(𝑡) + 𝑎𝑖(𝑡) (6)

 𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝑣𝑖(𝑡 + 1) (7)

where, 𝑟𝑎𝑛𝑑𝑖 is a uniform random variable in the interval

[0, 1]. This random number is used to give a randomized

characteristic to the search.

The total force acting on agent 𝑖 at iteration 𝑡, was calculated

as follows:

𝐹𝑖
𝑑(𝑡) = ∑ 𝑟𝑎𝑛𝑑𝑗𝐹𝑖𝑗

𝑑(𝑡)

𝑗∈𝐾𝑏𝑒𝑠𝑡,𝑗≠𝑖

 (8)

where 𝐾𝑏𝑒𝑠𝑡 represents the set of 𝑘 agents with best fitness

and biggest mass.

The pseudo code for the GSA is shown below [55]:

Algorithm 1: Gravitational Search Algorithm

1. Objective function 𝑓(𝑥), 𝑥 = (𝑥1, 𝑥2, …𝑥𝑑,)
𝑇

2. Initialize the population of 𝑛 agents 𝑥𝑖

3. while t < Max of Iterations do

4. Evaluate the fitness for each agent

5. for each searching

6. Update the 𝐺(𝑡), 𝑏𝑒𝑠𝑡(𝑡),𝑤𝑜𝑟𝑠𝑡(𝑡)and 𝑀𝑖(𝑡)

7. end for

8. Calculation of the total force in different directions.

9. Calculation of acceleration and velocity.

10. Updating agents’ position.

11. t=t+1

12. end while

13. Return the best solution

B. CUCKOO SEARCH ALGORITHM

Cuckoo search algorithm (CS) is a nature-inspired

optimization algorithm proposed by Yang in 2009 to solve

optimization problems based on the cuckoo bird's breeding

behavior and search approach of laying its eggs in the best

host nest [38]. The CS algorithm is based on the brood

parasitism of cuckoo birds. The species lay their eggs in

other host bird nests to be brooded by the proxy mother bird

and use the host bird assistance to hatch their eggs. The

hatching probability of similar eggs to the host bird's eggs is

high. In some cases, the other bird recognizes the different

eggs, so they throw the eggs away, destroy them, and even

leave their nests to build another one in a distinct location.

The CS algorithm uses better solutions to substitute not-so-

good solutions in the nests. As a result, it can enhance search

capabilities to improve the relationship between exploration

and exploitation. The CS algorithm is performed through the

following three rules: first: each cuckoo bird chooses a

random nest to lay only one egg; second, the best nests with

a good quality of eggs will carry over for the next population;

third, a host bird can detect a different egg with a probability

of pa ∈ [0, 1] for a constant number of available host nests.

Hence, the host bird may either throw the different eggs or

leave the nest and build a new one. One of the essential CS

features is Lévy flights to generate new candidate solutions

rather than a simple random walk. The following Lévy flight

is performed to generate new solutions 𝑥(𝑡+1) for

the 𝑖𝑡ℎ cuckoo:

𝑥𝑖
(𝑡+1)

= 𝑥𝑖
(𝑡)

+ 𝛼 ⊕ Lévy (λ) (9)

where α > 0 is the step size. The product ⊕ means entry-

wise multiplications. The Lévy step size probability

distribution is represented by:

Lévy ~ 𝑢 = 𝑡−𝜆, (1< λ ≤ 3) (10)

 which has an infinite variance with an infinite mean. The

pseudo-code of CS algorithm is shown below [38]:

Algorithm 2: Cuckoo Search Algorithm

1. Objective function 𝑓(𝑥), 𝑥 = (𝑥1, 𝑥2, …𝑥𝑑,)
𝑇

2. Initialize the population of 𝑛 host nests 𝑥𝑖

3. while t < Max of Iterations do

4. Get a cuckoo randomly by Lévy flights

5. Evaluate its fitness 𝑓𝑖
6. Randomly choose 𝑛 nest 𝑓𝑗

7. If (𝑓𝑖 > 𝑓𝑗)

8. Replace 𝑗 by the new solution

9. End if

10. Abandon a fraction of 𝑝𝑎 of worse nests and

 build new ones at new locations via Lévy flights

11. Keep the best solutions

12. Rank the solutions and find the current best

13. t=t+1

14. end while

15. Return the best solution

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3109235, IEEE Access

VOLUME XX, 2017

C. PARTICALE SWARM OPTIMIZATION

In 1995, Eberhart and Kennedy proposed the Particle Swarm

Optimization (PSO), which mimics the social behavior

and search techniques of a swarm of animals, or a flock of

birds, or a school of fish, when they adapt their environment

to search for their food [36]. The particles communicate and

shares its information to find the optimum path to reach its

food sources. The shortest path followed is the particle's best

position. Based on the current positions of the local and

global positions in the search space, each particle identifies

and updates its position until the global-optimum position is

achieved. Fig. 9 shows how the particle changes its position

within the search space to obtain food [56].

FIGURE 9. Update Particle position and velocity in the search space

Particle movements affect all other individuals within the

group, each one of them has its position and velocity defined

by equation (11), which presents the best position achieved

with respect to all neighbor’s best position.

𝑝(𝑡 + 1) = 𝑝(𝑡) + 𝑣(𝑡 + 1) (11)

Here p(𝑡 + 1) denotes the updated location of the particle in

the swarm, 𝑔𝑏𝑒𝑠𝑡 defines the global best, 𝑝(𝑡) represents the

current location of the particle in the swarm, and 𝑣(𝑡 + 1) is

the new velocity of the particle in the swarm based on the

location of the 𝑔𝑏𝑒𝑠𝑡. Based on the current velocity and

position of each particle, its own best position 𝑝𝑏𝑒𝑠𝑡 and the

entire population's best position 𝑔𝑏𝑒𝑠𝑡, the particle’s new

velocity and position can be determined as:

𝑣(𝑡 + 1) = 𝜔 ∗ 𝑣 (𝑡) + 𝑐1 ∗ 𝑟1 ∗ [𝑝
𝑏𝑒𝑠𝑡

(𝑡) − 𝑝(𝑡)] +

 𝑐2 ∗ 𝑟2 ∗ [𝑔
𝑏𝑒𝑠𝑡

(𝑡)– 𝑝(𝑡)] (12)

where 𝑝𝑏𝑒𝑠𝑡 is the best position of the particle, 𝑔𝑏𝑒𝑠𝑡 is the

best position of the swarm, 𝑣(𝑡) is the current velocity, and

 𝑟1, 𝑟2 are random numbers from uniform distribution. Both

𝑐1, 𝑐2 are acceleration coefficients and 𝜔 is the inertia

weight. The pseudo-code of the Particle Swarm

Optimization (PSO) algorithm is shown below [56]:

Algorithm 3: Particle Swarm Optimization Algorithm

1. Initialization Particle’s Position

2. Initialization Particle’s velocity

3. Calculate the fitness values of each particle

4. while t < Max of Iterations do

5. Update the position according to Equation 11

6. Update the velocity according to Equation 12

7. Choose the particle having the best fitness value as the

 g-best

8. Compare P-best of each particle with g-best of swarm

9. t=t+1

10. end while

11. Return g-best particle

D. GREY WOLF OPTIMIZER

In 2014, Mirjalili and others introduced the Grey Wolf

Optimizer (GWO), which is an algorithm that illustrates the

Grey Wolf's hierarchical hunting pattern based on how

wolves obey a strict social hierarchy [39]. This pattern

maintains the stability and assists other wolves during the

hunt. The complete wolf pack must follow the orders of the

wolf with the most durability and fighting ability. Fig.10

shows the classification of the social hierarchy in a grey wolf

pack consisting of the alpha (α), beta (β), delta (δ) and omega

(ω) wolves:

1) ALPHA (α): The leader of the pack, at the top of the

hierarchy, is mostly responsible for making decisions

because it is considered the most qualified wolf among the

pack.

2) BETA (β): The adviser wolf at the second level in the

hierarchy, which helps the alpha in decision-making or other

pack activities. A beta follows the leader's directions to

maintain discipline over the pack.

3) DELTA (δ): Stands at the third level in the hierarchy, Delta

follows the orders of alpha and beta wolves, but dominates

and leads the omegas.

4) OMEGA (ω): The lowest level in the grey wolf social

hierarchy, the omega wolves, always follow the commands

of all the other dominant wolves in the social hierarchy.

FIGURE 10. Grey Wolf Social Hierarchy

The hunting behavior of the GWO algorithm is guided by the

three wolves α, β, and δ, while the ω wolves follow them.

Fig.11 illustrates how the position can be updated in the search

space for the three wolves. Alpha is the closest location in the

search space to prey 𝑋α, which is considered as the first best

wolf, 𝑋𝛽 is the second-best location for beta wolf, and delta is

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3109235, IEEE Access

VOLUME XX, 2017

the third best wolf location 𝑋𝛿 . The rest of the pack, omega

wolves, will update their positions according to alpha, beta,

and delta positions. The locations of wolves are updated as

follows:

�⃗⃗� = |𝐶 . 𝑋𝑃
⃗⃗ ⃗⃗ (𝑡) − 𝑋 (𝑡)| (13)

𝑋 (𝑡 + 1) = 𝑋𝑃
⃗⃗ ⃗⃗ (𝑡) − 𝐴 . �⃗⃗� (14)

𝐴 = 2𝑎 . 𝑟 1 − 𝑎 (15)

𝐶 = 2 . 𝑟 2 (16)

where, 𝑡 represents iteration, 𝐴 and 𝐶 are coefficient vectors,

𝑋𝑃
⃗⃗ ⃗⃗ is the prey position vector, 𝑋 is the wolf positions, 𝑎 is

the linear coefficient, and 𝑟1⃗⃗⃗ and 𝑟2⃗⃗ ⃗ are random vectors

located in the scope [0, 1]. The calculation of distances

between the position of current individual and individual of

alpha, beta, and delta are:

�⃗⃗� 𝛼 = |𝐶 1. 𝑋 𝛼 − 𝑋 | (17)

�⃗⃗� 𝛽 = |𝐶 2. 𝑋 𝛽 − 𝑋 | (18)

�⃗⃗� 𝛿 = |𝐶 3. 𝑋 𝛿 − 𝑋 | (19)

where 𝑋 𝛼, 𝑋 𝛽, 𝑋 𝛿 are the position vectors, 𝐶 1, 𝐶 2, 𝐶 3 are

randomly generated vectors, 𝑋 represents the position vector

of current individual. Therefore, the mathematical models

for grey wolf hunting are calculated by:

𝑋 1 = 𝑋 𝛼 − 𝐴 1 . �⃗⃗� 𝛼 (20)

𝑋 2 = 𝑋 𝛽 − 𝐴 2 . �⃗⃗� 𝛽 (21)

𝑋 3 = 𝑋 𝛿 − 𝐴 3 . �⃗⃗� 𝛿 (22)

𝑋 (𝑡 + 1) =
𝑋 1 + 𝑋 2 + 𝑋 3

3
 (23)

where 𝐴 1, 𝐴 2, 𝐴 3 are randomly generated vectors.

FIGURE 11. Wolves Position surrounding the prey

The pseudo code for the GWO is shown below [39]:

Algorithm 4: Grey Wolf Optimization Algorithm

1. Initialize the population of the Grey Wolves

2. Initialize for a, 𝐀, and 𝐂

3. Calculate the fitness values of each wolf 𝐗𝛂, 𝐗𝛃, and 𝐗𝛅

4. while t < Max of Iterations do

5. for each searching wolf

6. Update position using equation 6

7. end for

8. Update a, 𝐀, and 𝐂

9. Calculate the fitness values of all wolves

10. Update the positions of 𝐗𝛂, 𝐗𝛃, and 𝐗𝛅

11. t=t+1

12. end while

13. Return 𝐗𝛂

V. PROPOSED METHOD

During modeling the vulnerability of PUFs, researchers have

used many techniques such as Fault injection-based

modeling attacks, Genetic Algorithm, Genetic

Programming, and Evolutionary Strategies to model PUF

CRPs. From their results, it has been observed that these

algorithms require a large number of CRPs to model PUF

characteristics; moreover, the attacker may need to have

physical access to the PUFs. The motivation for choosing

swarm intelligence algorithms is that SI algorithms have

fewer parameters than evolutionary methods to adjust, which

makes them flexible, robust, and distributive. SI algorithms

are easy to implement, more reliable for finding solutions to

many complex problems, and converge faster than other

algorithms. Also, SI optimizers maintain a large search space

of candidate information throughout the iterations.

Furthermore, the mathematical model's implementation

mechanism is very well developed to avoid local

optimization and improve performance, making it easier to

combine with practical engineering problems. The Swarm

Optimization algorithms are used to build ANN models to

analyze the vulnerability of the different PUFs described

earlier for modeling attacks. These training algorithms adjust

the weights and biases of the ANN until the highest response

prediction accuracy can be obtained by finding the optimum

set of weights and biases. Based on the objective (loss/error)

function for the SI algorithms, the weights are adjusted in

each iteration in order to minimize the loss/error function

that is used in neural networks to minimize the training error.

The Mean Square Error function (MSE), which is the most

commonly used parameter for the evaluation of the neural

network, is defined in equation (24).

𝑀𝑒𝑎𝑛_𝑆𝑞𝑢𝑎𝑟𝑒_𝐸𝑟𝑟𝑜𝑟 =
1

𝑛
∑(𝑌𝑒𝑥𝑝 − 𝑌𝑜𝑏𝑠𝑖

)
2

𝑛

𝑖=1

(24)

where the performance of the network is evaluated based on

the difference between the predicted responses (𝑌𝑜𝑏𝑠𝑖
) and the

actual responses (𝑌𝑒𝑥𝑝). The average MSE obtained from all

training samples is based on the best solutions of the previous

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3109235, IEEE Access

VOLUME XX, 2017

iteration. While the current weights and biases of the neural

network are updated, the MSE gradually decreases; therefore,

after enough iterations, the algorithms can achieve the best

solution. For a challenge vector 𝐶 = [𝐶1, 𝐶2, … , 𝐶𝑚] of size

m, Configurable Ring Oscillator, Inverter based Ring

Oscillator, XOR Inverter based ring oscillator, and the Arbiter

PUF will generate a response vector 𝑅 = [𝑟1, 𝑟2, … , 𝑟𝑚]. The

CRPs are fed to the ANN network, where each bit of the

challenge vector represents one neuron, and the response bit is

the outcome of the neural network. For modeling of the PUFs,

it is assumed that if an attacker gets hold of a small set of CRPs

 (𝐶, 𝑟) = [(𝐶1, 𝑟1), (𝐶2, 𝑟2)… , (𝐶𝑚, 𝑟𝑚)], then it can be

modeled by the ANN-based models using swarm

optimization, GSA, CS, PSO and GWO algorithms to predict

the remaining set of CRPs. For modeling the Modified XOR-

Inverter ROPUF and the Hybrid Delay based PUF, the

challenge vector is defined as 𝐶 = [𝐶1, 𝐶2, … , 𝐶𝑚]𝑇, and the

response matrix for the individual PUF is given as:

𝑅 = [

𝑟11 𝑟12

𝑟21 𝑟22

… 𝑟1𝑛

… 𝑟2𝑛

⋮ ⋮
𝑟𝑚1 𝑟𝑚2

… ⋮
… 𝑟𝑚𝑛

] (25)

where both the challenge and response bits are of the same

size. The prediction accuracy for n bit response can be

calculated as:

Prediction accuracy= ∑ 𝑛𝐶𝑟𝑛
𝑟=1 /number of challenges (26)

Algorithm 5 outlines the steps of how the model trains the

Artificial Neural Network based on Swarm Intelligence

Algorithms.

Algorithm 5: Training ANN using SI Algorithms

1. Initialize all the parameters of Swarm Algorithm

2. Constricting of ANN learning structure

3. Initialize the weights and biases of the Neural Network

4. while t < Max of Iterations do

5. Map the Challenges Vector C=[C1,C2,…,Cm] into the

 input layer of ANN

6. Calculate the predicted response R

7. Compare the predicted response R to the actual

 response R

8. Calculate the new global optimum value of weights

 and biases using swarm algorithm

9. Update the weights and biases of the ANN using

 Swarm Intelligence optimizers

10. t=t+1

11. end while

12. Return weights, biases and predicted accuracy

A. Computational Complexity Analysis

The computational complexity of the proposed algorithm

(Algorithm 5) accounts for the execution time of the algorithm

based on its structure. For Algorithm 5, the computational

complexity for each step can be described as follows:

• The computational complexity of initialization the

weights and biases is 𝑂(N × dim) time, where N

represents the population size and dim represents the

dimension of the problem.

• In step 5 (mapping the challenge vector) of the proposed

algorithm , for each iteration, the challenge vector is

mapped into the input layer of ANN with constant

computational complexity of 𝑂(1); the iteration loop

technically runs in 𝑂(Iter), therefore the final time

complexity for mapping is 𝑂(Iter).

• The calculation of predicting the response and comparing

it with the actual response in steps 6 and 7 have a

computational complexity of 𝑂(Iter × L), where L is the

total number of training CRPs.

• For step 8, in each iteration the computational complexity

represents the calculation of the new global optimum

value of weights and biases 𝑂(Iter × N).

• Step 9 represents the updated weights and biases values

with computational complexity of 𝑂(Iter × N × dim).

• Since the total number of iterations is not more than

IterMax, the total time complexity is: 𝑂(IterMax) +

𝑂(IterMax × L) + 𝑂(IterMax × N) +𝑂(IterMax × N × dim) +

𝑂(dim × N).

As seen from the above analysis, the proposed algorithm's

computational complexity depends on the size of population

(N), dimension (dim), and iterations (Iter).

VI. EXPERIMENTAL RESULTS ANALYSIS AND
DISCUSSIONS

To analyze the vulnerability of the various PUFs to ANN-

based attacks using Swarm Intelligence algorithms, a subset of

the randomly chosen CRPs is used as the training set. An

accuracy score evaluates the attack resistance in terms of the

percentage of successful response predictions. The Swarm

Intelligence algorithms used to train the ANN network to

predict PUF CRPs are implemented using Python 3.5 (64 Bit)

frameworks. For training the CRPs, a 2.3 GHz PC with 16 GB

RAM and 2GB Graphics card is used. The response prediction

accuracy is determined by using cross-validation of ten blocks

K-fold method [57]. One of these ten partitions is used as the

test set, while the other nine cumulatively serve as the training

set. The ANN learning network structure used in the

experiment is a 3- Multi-Layer Perceptron (MLP) with 33

nodes in the hidden layer. It is observed that the ANN method

dramatically improves the learning rate for the first four PUFs,

but still fails to learn the last two dual-mode PUFs. Different

parameters and hyperparameters used in ANN for training and

prediction of the CRPs are listed in Table 1. In order to verify

the performance of the proposed method, we chose well-

known ANN-based optimization algorithms (RMSprop,

Adadelta, Adam, and Nadam) for the purpose of comparison

under the same experimental environment and the same

platform for a fair comparison. Furthermore, we used the same

ANN structure in terms of the number of hidden layers, nodes,

and activation functions. The number of individuals that have

been used for all the algorithms is 100, and each run stops

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3109235, IEEE Access

VOLUME XX, 2017

when the maximal number of 1000 iterations is achieved.

Finally, a statistical analysis of the method’s results has been

performed.

TABLE 1. Parameters values used

Parameters Values
Number of training CRPs 10000

Number of k folds 10
Loss Functions MSE

Number of nodes in hidden layer 33
Hidden Layer Activation Function ReLU
Output Layer Activation Function Sigmoid

Learning rate 0.01

A. MACHINE LEARNING ANN-BASED MODELING
ATTACKS

ANN-based models using four well-known optimization

algorithms are used to perform attacks on different PUFs.

These models are RMSprop, Adadelta, Adam, and Nadam

optimizations. The ANN structure in terms of the number of

hidden layers, nodes, and activation functions are shown in

Table 1. Moreover, the training conditions of the network-

based model are given in table 2.

TABLE 2. Initial parameters set in ANN optimizers.

Algorithm Parameter Default

Value

Adam

Alpha (α) 0.001

Beta1 (β1) 0.9

Beta2 (β2) 0.999

Number of iterations 1000

RMSprop

Discounting factor (rho) 0.9

Momentum 0.0

Centered False

Number of iterations 1000

Nadam

Alpha (α) 0.001

Epsilon (ε) 1e-08

amsgrad False

Number of iterations 1000

Adadelta

Discounting factor (rho) 0.9

Epsilon (ε) 1e-08

**kwargs clipvalue

Number of iterations 1000

As shown in Table 3, it is observed that the best accuracy for

response prediction is 85.0 % for the ANN-based modeling

with Adam on the Configurable ROPUF.

TABLE 3. ANN-based prediction accuracy for PUFs

Type of PUF Adadelta RMSprop % Adam % Nadam %

Inverter ROPUF 75.8 77.1 78.3 79.4
Config. ROPUF 83.8 84.4 85.0 84.1

Xor-ROPUF 68.0 69.2 70.3 70.0
Arbiter PUF 69.3 70.1 71.9 72.1
Hybrid PUF 7.5 8.1 8.9 9.7

Modified PUF 9.1 9.7 10.3 10.7

In the case of the Hybrid Delay based PUF and the Modified

XOR-Inverter ROPUF, the two PUFs which are specially

designed to thwart machine learning attacks, it is noted that

the models are unable to predict the responses with higher

prediction accuracy. The best prediction accuracy of 10.7%

is observed for the Nadam optimization. Figs. 12 (a), (b), (c),

(d), (e), (f) show plots of the prediction accuracies versus the

number of iterations for the Inverter ROPUF, Configurable

ROPUF, XOR-Inverter ROPUF, Arbiter PUF, Hybrid Delay

based PUF, and Modified ROPUF, respectively. It can be

concluded from these plots that the prediction accuracy of

the Nadam algorithm is higher than the other algorithms. Fig.

13 shows the loss function of the different ANN-based

optimization algorithms. It is observed from this figure that

the Nadam optimizer converges faster than the other

optimization algorithms.

B. SWARM INTELLIGENCE BASED MODEL ATTACKS

In this section, we describe how the Swarm Intelligence

algorithms are used to train the ANN. The parameters chosen

for SI algorithms to simulate the GSA, CS, PSO and GWO

algorithms are given in Table 4. ANN-based models are

trained for 1000 iterations and the algorithms are tested with

an initial population of individuals in the range of 5-150.

However, no improvement in prediction accuracy is achieved

by increasing the number of individuals to more than 100;

therefore, the number of individuals is kept at 100.

TABLE 4. Initial parameters set in swarm algorithms

Algorithm Parameter Default

Value

CS

Detection probability (𝑝𝑎) 0.25

Step length control 0.01

Number of iterations 1000

Number of bird nests 100

Dimension 595

GSA

Initial gravitational constant (𝐺0) 100

Constant values initialization (α) 20

Number of iterations 1000

Population Size 100

Dimension 595

PSO

Cognitive influence (C1) 2

Social influence (C2) 2

Inertia weight (𝜔) [0.2, 0.9]

Number of iterations 1000

Number of particles 100

Dimension 595

GWO

Decreases linearly (𝑎) [2, 0]

Vector contains random values (𝐴) [-2𝑎 , 2𝑎]

Vector contains random values (𝐶) [0, 2]

Number of iterations 1000

Number of wolves 100

Dimension 595

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3109235, IEEE Access

VOLUME XX, 2017

 (a): Inverter ROPUF (b): Configurable ROPUF

 (c): Xor-Inverter ROPUF (d): Arbiter PUF

 (e): Hybrid Delay Based PUF (f): Modified Xor-Inverter ROPUF

FIGURE 12. ANN-based prediction accuracy vs number of Iteration for different PUFs

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3109235, IEEE Access

VOLUME XX, 2017

FIGURE 13. Loss function vs number of Iteration for different ANN optimizers.

Table 5 lists experimental results for the accuracy, standard

deviation, and runtime for four different PUFs using the GSA,

CS, PSO and GWO Swarm Intelligence algorithms. From the

table, it is evident that the PUF structures are vulnerable to

Swarm Intelligence-based model attacks with prediction

accuracies ranging from 71.1% - 88.3%. In contrast, for the

machine learning ANN-based models, the prediction

accuracies range from 68.0% to 85.0 %. Also, it is found from

Table 3 and Table 5 that the prediction accuracies are much

better for each of the listed PUFs when the GSA, CS, PSO and

GWO based modeling attacks are used. Figs. 14 (a), (b), (c),

(d), (e), (f) show plots of the prediction accuracies versus the

number of iterations for the different PUF designs. It can be

concluded from these plots that the prediction accuracy of the

GWO algorithm is higher than the other algorithms. Also, the

plots show that the GWO converges fast. For the two PUFs

that were especially designed to thwart machine learning-

based attacks, namely: the Hybrid Delay based PUF and the

Modified XOR-Inverter ROPUF, it is found that the prediction

accuracies using the Swarm Intelligence algorithms are in the

range of 9.8% to 14.5%, as shown in Table 5. Although in the

low range, the prediction accuracies are better than those

obtained from Machine Learning ANN-based attacks which

range from 7.5% -10.7%. Here, also, it is observed that the

performance of the GWO model is better than the others in

terms of prediction accuracies. Fig. 15 shows the loss function

of the different swarm-based algorithms. It is observed from

the figure that the GWO converges faster than the other

algorithms.

TABLE 5. Swarm-based prediction accuracy, standard deviation, and runtime for PUFs

Type of PUF
GSA CS PSO GWO

Accuracy
%

STD
Time
(Sec)

Accuracy
 %

STD
Time
(Sec)

Accuracy
%

STD
Time
(Sec)

Accuracy
 %

STD
Time
(Sec)

Inverter ROPUF 78.6 2.15 292.8 79.9 0.98 340.2 80.1 2.45 354.9 81.9 1.97 243.7

Configurable ROPUF 85.3 3.37 521.8 85.2 2.61 530.1 86.5 3.75 585.3 88.3 4.10 452.2

Xor-Inverter ROPUF 71.5 1.50 489.5 72.0 1.80 497.3 73.5 1.33 545.1 75.0 1.87 446.3

Arbiter PUF 71.1 1.13 470.9 73.3 1.22 517.6 74.2 0.85 532.1 76.1 0.97 429.1

Hybrid Delay PUF 9.8 1.57 513.2 10.1 1.71 550.3 11.2 0.67 567.6 13.3 0.55 490.3

Modified ROPUF 11.3 1.43 501.3 11.5 0.97 530.1 12.4 0.53 545.3 14.5 0.71 440.9

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3109235, IEEE Access

VOLUME XX, 2017

(a): Inverter ROPUF (b): Configurable ROPUF

(c): Arbiter PUF (d): Xor-Inverter ROPUF

 (e): Hybrid Delay Based PUF (f): Modified Xor-Inverter ROPUF

FIGURE 14. Swarm-based prediction accuracy vs number of Iteration for different PUFs

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3109235, IEEE Access

VOLUME XX, 2017

FIGURE 15. Loss function vs number of Iteration for different swarm algorithms

C. COMPARATIVE ANALYSIS AMONG DIFFERENT
ALGORITHMS
The prediction accuracies are much better for each of the listed

PUFs when swarm-based modeling attacks are used. Table 6

summarizes the prediction accuracies for the six different

types of PUFs under study. It is observed from this table that

the prediction accuracies, when the Swarm Intelligence

models (GSA, CS, PSO & GWO) are used, are much better

than the other algorithms for each of the listed PUFs. For

easy comparison, the results in Table 6 are also shown in the

chart of Fig. 16. It is clear from this figure that the GSA, CS,

PSO and GWO optimizations in ANN give better prediction

accuracy results than Adadelta, RMSprop, Adam, and

Nadam optimization algorithms. The Swarm Intelligence-

based model attacks have prediction accuracies ranging from

71.1% - 88.3%. In contrast, for the machine learning ANN-

based models, the prediction accuracies range from 68.0% to

85.0 %. The prediction accuracies for the modified PUFs

(Hybrid and Modified Inverter) are less because these PUFs

have been especially designed to thwart machine learning

attacks. It is found that the prediction accuracies using the

Swarm Intelligence algorithms are in the range of 9.8% to

14.5%, while the results obtained from Machine Learning

ANN-based attacks with range from 7.5% -10.7%.

TABLE 6. Prediction accuracy comparison for different algorithms

Type of

PUF

Adadelta

%

RMSprop

%

Adam

%

Nadam

%

GSA

%

CS

%

PSO

%

GWO

%

Inverter

ROPUF
75.8 77.1 78.3 79.4 78.6 79.9 80.1 81.9

Configurable

ROPUF
83.8 84.4 85.0 84.1 85.3 85.2 86.5 88.3

Xor-Inverter

ROPUF
68.0 69.2 70.3 70.0 71.5 72.0 73.5 75.0

Arbiter PUF 69.3 70.1 71.9 72.1 71.1 73.3 74.2 76.1

Hybrid Based
PUF

7.5 8.1 8.9 9.7 9.8 10.1 11.2 13.3

Modified
ROPUF

9.1 9.7 10.3 10.7 11.3 11.5 12.4 14.5

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3109235, IEEE Access

VOLUME XX, 2017

FIGURE 16. Prediction accuracies for different types of PUFs using different optimization models

D. Statistical analysis of the results

This subsection explains the statistical analysis of the various

algorithm results, where multiple comparison procedures

have been employed. In order to apply statistical analysis, a

null hypothesis is defined, which implies that all the

algorithms have the same performance without a significant

difference; therefore, a denial of this hypothesis suggests the

existence of differences between these algorithms. If the

hypothesis is rejected, a significance value α is applied to

decide the rejection level. The p-values are used to describe

the significance of the hypothesis test. If the p-value is more

significant than α, then there is not enough evidence to reject

the null hypothesis. Otherwise, the hypothesis is rejected,

which indicates that the algorithms have different

performances. The Nonparametric Friedman test is used to

compute p-values to define significant differences between

the algorithms' prediction accuracy [58]. Then, a significance

value α=0.05 is chosen. In computing the Friedman Value

𝑭𝒇, the test ranks the algorithms according to the highest

prediction accuracy (Rank 1), the second highest (Rank 2),

down to the lowest ranking. The Friedman test computes 𝑭𝒇

Value as:

𝐹𝑓 = 12𝑛

𝑘(𝑘+1)
[∑𝑅2 − 𝑘(𝑘+1)2

4
] (27)

where, R is the ranks, n is the number of PUF datasets, k is

the number of algorithms, and the statistic is distributed

according to 𝐹𝑓 with k − 1 degrees of freedom [59,60].

Table 7 shows the obtained average rankings of the

algorithms by the Friedman Test based on prediction

accuracy.

GWO has the best performance in prediction accuracy

among all algorithms; therefore, it has a rank of 1 and will be

used as the control algorithm. The result obtained from the

Friedman test, including its corresponding associated p-

value, is shown in Table 8. From the table, it is observed that

the p-value is lower than the level of significance (0.05);

therefore, there are significant performance differences

between the algorithms, which implies that the null

hypothesis is rejected. Considering the differences between

the algorithms, we need a post-hoc procedure to identify

these differences and then find out the p-value in order to

determine the hypothesis rejection degree. Holm's procedure

has been used to determine whether the control algorithm

presents statistical differences concerning the remaining

algorithms [61].

TABLE 7. Average rankings of the algorithms by Friedman Test

Algorithm Ranking
GWO 1
PSO 2
CS 3.25

GSA 4.25
Nadam 4.75

RMSprop 5.75
Adadelta 7

TABLE 8. Results of the Friedman Tests

Friedman Value p-value

21.99937 0.00121

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3109235, IEEE Access

VOLUME XX, 2017

Holm’s procedure compares the control algorithm, GWO,

with the other remaining algorithms, which consider a

multiple comparison procedure. The test statistic, z value, is

used to find the corresponding probability from the table of

the normal distribution:

 Z =
R𝑖−R𝑗

√
k(𝑘+1)

6𝑁

 (28)

where, Ri and Rj are the average rankings by the Friedman

test of the algorithms compared [62]. These unadjusted p

values are used to compute p-Holm sequentially and test the

hypotheses ordered by their significance level of confidence

α. Table 9 shows that when the highest prediction accuracy

algorithm (GWO) is used as a control algorithm, it performs

better than Adadelta, RMSprop, Nadam and GSA with α =

0.05, and GWO outperforms all the algorithms with α = 0.10

except PSO.

TABLE 9. Adjusted p-values. GWO is the Control Algorithm

Algorithm Z
Unadjusted

p-value p-Holm

Adadelta 4.242641 0.000022 0.000132

RMSprop 3.358757 0.000392 0.001960

Nadam 2.651650 0.004006 0.016024

GSA 2.298097 0.010781 0.032343

CS 1.64521 0.049964 0.099928

PSO 0.707107 0.239752 0.239752

VII. CONCLUSION

Various Machine Learning based attack models have been

used recently to breach the security of PUFs. In this work,

we study six different types of PUFs to ascertain their

resiliency to such attacks. We especially focus on swarm

intelligence-based algorithms to further study the

vulnerability of these PUFs to learning attacks. To the best

of our knowledge, swarm-based algorithms have not been

investigated earlier to test the security of PUFs. In this paper,

Artificial Neural Network modeling attacks on different

types of PUFs using the Gravitational Search Algorithm

(GSA), Cuckoo Search Algorithm (CS), Particle Swarm and

Grey Wolf Optimization are presented. From the results, it is

observed that the swarm intelligence algorithms produce

better response prediction accuracy results (71.1% - 88.3%)

when compared to other well-known Machine Learning

ANN-based algorithms (68.0% - 85.0%). Amongst the SI

algorithms, the GWO algorithm performs better in predicting

the CRPs than the rest. It is observed that the Configurable

ROPUF is the most vulnerable and its response can be

predicted with an accuracy of 88.3% when the GWO is used.

For the Modified XOR-Inverter ROPUF, which has been

especially designed to thwart machine learning attacks, it is

found that the Grey Wolf Optimizer can predict the response

with 14.5% accuracy. Although swarm intelligence

algorithms used in this paper require considerable

computational time, the prediction accuracy of the proposed

method is better than ANN-based models. For future work,

the proposed method can be used to improve the

performance metrics of PUFs and for developing

countermeasures against modeling attacks.

REFERENCES
[1] U. Guin, K. Huang, D. DiMase, J. M. Carulli, M. Tehranipoor, and Y.

Makris, "Counterfeit Integrated Circuits: A Rising Threat in the
Global Semiconductor Supply Chain", Proceedings of the IEEE, vol.
102, no. 8, pp. 1207-1228, Aug 2014

[2] S. Bhunia, M. S. Hsiao, M. Banga, and S. Narasimhan, "Hardware
Trojan attacks: Threat analysis and countermeasures", Proc. IEEE,
vol. 102, no. 8, pp. 1229-1247, Aug. 2014

[3] Tehranipoor, Mohmmad, Hassan Salmani, and Xuehui Zhang.
"Integrated circuit authentication." Switzerland: Springer, Cham.
doi 10 (2014): 978-3.

[4] F .Koushanfar, “Hardware Metering: A Survey In: Introduction to
Hardware Security and Trust,” pp. 103-122. Springer, 2012.

[5] G. Suh and S. Devadas, “Physical Unclonable Functions for Device
Authentication and Secret Key Generation,” in DAC, pp. 9-14, 2007.

[6] C. Herder, M. D. Yu, F. Koushanfar and S. Devadas, "Physical
Unclonable Functions and Applications: A Tutorial," in Proc. Of
IEEE, vol. 102, no. 8, pp. 1126-1141, Aug. 2014A.

[7] S. Gören et al., "Partial bitstream protection for low-cost FPGAs with
physical unclonable function obfuscation and dynamic partial self
reconfiguration", Elsevier Computers & Electrical Engineering, vol.
39, no. 2, pp. 386-397, Feb. 2013.

[8] N. A. Hazari, F. Alsulami and M. Niamat, "FPGA IP Obfuscation
Using Ring Oscillator Physical Unclonable Function," NAECON
2018 - IEEE National Aerospace and Electronics Conference, Dayton,
OH, 2018, pp. 105-108.

[9] F. Amsaad, T. Hoque, and M. Niamat, “Analyzing the Performance of
a Configurable ROPUF controlled by Programmable XOR Gates,”in
Midwest Symposium on Circuits and Systems, pp. 1-4, 2015.

[10] M. Choudhury, N. Pundir, M. Niamat and M. Mustapa, "Analysis of a
novel stage configurable ROPUF design," 2017 IEEE 60th
International Midwest Symposium on Circuits and Systems
(MWSCAS), Boston, MA, 2017, pp. 942-945.

[11] Sölter, Jan. Cryptanalysis of electrical PUFs via machine learning
algorithms. Diss. MSc thesis, Technische Universität München, 2009.

[12] U. Rhrmair, F. Sehnke, J. Slter, G. Dror, S. Devadas, and J.
Schmidhuber, “Modeling attacks on physical unclonable functions,”
in Proceedings of the 17th ACM conference on Computer and
communications security, 2010, pp. 237-249.

[13] U. Rührmair et al., "PUF Modeling Attacks on Simulated and Silicon
Data," in IEEE Transactions on Information Forensics and Security,
vol. 8, no. 11, pp. 1876-1891, Nov. 2013.

[14] J. Delvaux, "Machine-Learning Attacks on PolyPUFs, OB-PUFs,
RPUFs, LHS-PUFs, and PUF–FSMs," in IEEE Transactions on
Information Forensics and Security, vol. 14, no. 8, pp. 2043-2058,
Aug. 2019.

[15] F. Ganji, S. Tajik and J.-P. Seifert, "PAC Learning of Arbiter PUFs"
in Security Proofs for Embedded Systems-PROOFS, Springer, 2014.

[16] J. Delvaux and I. Verbauwhede, "Fault Injection Modeling Attacks on
65 nm Arbiter and RO Sum PUFs via Environmental Changes,"
in IEEE Transactions on Circuits and Systems I: Regular Papers, vol.
61, no. 6, pp. 1701-1713, June 2014.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3109235, IEEE Access

VOLUME XX, 2017

[17] J. Shi, Y. Lu and J. Zhang, "Approximation Attacks on Strong PUFs,"
in IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems.

[18] J. Delvaux and I. Verbauwhede, "Side channel modeling attacks on
65nm arbiter PUFs exploiting CMOS device noise," 2013 IEEE
International Symposium on Hardware-Oriented Security and Trust
(HOST), Austin, TX, 2013, pp. 137-142.

[19] X. Xu and W. Burleson, "Hybrid side-channel/machine-learning
attacks on PUFs: A new threat?," 2014 Design, Automation & Test in
Europe Conference & Exhibition (DATE), Dresden, 2014, pp. 1-6.

[20] M. Khalafalla and C. Gebotys, "PUFs Deep Attacks: Enhanced
modeling attacks using deep learning techniques to break the security
of double arbiter PUFs," 2019 Design, Automation & Test in Europe
Conference & Exhibition (DATE), Florence, Italy, 2019, pp. 204-209.

[21] Q. Guo, J. Ye, Y. Gong, Y. Hu and X. Li, "Efficient Attack on Non-
linear Current Mirror PUF with Genetic Algorithm," 2016 IEEE 25th
Asian Test Symposium (ATS), Hiroshima, 2016, pp. 49-54.

[22] I. Saha, R. R. Jeldi and R. S. Chakraborty, "Model building attacks on
Physically Unclonable Functions using genetic programming," 2013
IEEE International Symposium on Hardware-Oriented Security and
Trust (HOST), Austin, TX, 2013, pp. 41-44.

[23] Xu, Yunhao, et al. "Mathematical Modeling Analysis of Strong
Physical Unclonable Functions." IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems (2020).

[24] N. A. Hazari, A. Oun and M. Niamat, "Analysis and Machine Learning
Vulnerability Assessment of XOR-Inverter based Ring Oscillator PUF
Design," 2019 IEEE 62nd International Midwest Symposium on
Circuits and Systems, Dallas, TX, USA, 2019, pp. 590-593.

[25] Holland, John H. "Genetic algorithms." Scientific american 267.1
(1992): 66-73.

[26] Koza, John R., and John R. Koza. Genetic programming: on the
programming of computers by means of natural selection. Vol. 1. MIT
press, 1992.

[27] Hansen, Nikolaus, Sibylle D. Müller, and Petros Koumoutsakos.
"Reducing the time complexity of the derandomized evolution
strategy with covariance matrix adaptation (CMA-ES)." Evolutionary
computation 11.1 (2003): 1-18.

[28] Storn, Rainer, and Kenneth Price. "Differential evolution–a simple and
efficient heuristic for global optimization over continuous
spaces." Journal of global optimization 11.4 (1997): 341-359

[29] Rashedi, Esmat, Hossein Nezamabadi-Pour, and Saeid Saryazdi.
"GSA: a gravitational search algorithm." Information sciences 179.13
(2009): 2232-2248.

[30] Erol, Osman K., and Ibrahim Eksin. "A new optimization method: big
bang–big crunch." Advances in Engineering Software 37.2 (2006):
106-111.

[31] Formato, R. A. "Central force optimization: a new metaheuristic with
applications in applied electromagnetics. Prog Electromagn Res 77:
425–491." (2007).

[32] Shah-Hosseini, Hamed. "Principal components analysis by the galaxy-
based search algorithm: a novel metaheuristic for continuous
optimisation." International Journal of Computational Science and
Engineering 6.1-2 (2011): 132-140.

[33] Webster, Barry, and Philip J. Bernhard. A local search optimization
algorithm based on natural principles of gravitation. 2003.

[34] Kaveh, A., and Siamak Talatahari. "A novel heuristic optimization
method: charged system search." Acta mechanica 213.3 (2010): 267-
289.

[35] S. Selvaraj and E. Choi. “Survey of Swarm Intelligence Algorithms,”
In Proceedings of the 3rd International Conference on Software
Engineering and Information Management (ICSIM ’20). Association
for Computing Machinery, New York, NY, USA, 69–73, 2020

[36] Kennedy, James, and Russell Eberhart. "Particle swarm optimization."
In Proceedings of ICNN'95-International Conference on Neural
Networks, vol. 4, pp. 1942-1948. IEEE, 1995.

[37] Dorigo, Marco, Mauro Birattari, and Thomas Stutzle. "Ant colony
optimization." IEEE computational intelligence magazine 1.4 (2006):
28-39.

[38] Yang, Xin-She, and Suash Deb. "Cuckoo search via Lévy
flights." 2009 World congress on nature & biologically inspired
computing (NaBIC). IEEE, 2009.

[39] Mirjalili, Seyedali, Seyed Mohammad Mirjalili, and Andrew Lewis.
"Grey wolf optimizer." Advances in engineering software 69 (2014):
46-61.

[40] A. Kumar and S. Chakarverty, “Design optimization for reliable
embedded system using Cuckoo search,” in Proceedings of the 3rd
International Conference on Electronics Computer Technology
(ICECT ’11), pp. 264–268, April 2011.

[41] Abdulgader, Musbah, Srivathsan Lakshminarayanan, and Devinder
Kaur. "Efficient energy management for smart homes with grey wolf
optimizer." 2017 IEEE International Conference on Electro
Information Technology (EIT). IEEE, 2017.

[42] Liu, Haiqiang, et al. "An intelligent grey wolf optimizer algorithm for
distributed compressed sensing." Computational intelligence and
neuroscience 2018 (2018).

[43] Oun, Ahmed, and Mohammed Niamat. "Defense Mechanism
Vulnerability Analysis of Ring Oscillator PUFs Against Neural
Network Modeling Attacks using the Dragonfly Algorithm." 2020
IEEE International Conference on Electro Information Technology
(EIT). IEEE, 2020.

[44] B. Gassend, D. Clarke, M. Van Dijk, and S. Devadas,“Silicon
Physical Random Functions,”in Proc. of the 9th ACM Conf. on
Comp. and Communications Security, 2002, pp. 148-160.

[45] Abhrani Maiti and Patrick Schaumont, “Improving the quality of a
Physical Unclonable Function using configurable Ring Oscillator,” in
International Conference on Field Programmable Logic and
Applications on, pages 703-707, 2009.

[46] Md. Tauhidur Rahman, Domenic Forte, Jim Fahrny, and Mohammad
Tehranipoor, “ARO-PUF: An Aging-Resistant Ring Oscillator PUF
Design,” in Proceedings of the conference on Design, Automation &
Test in Europe on, pages 1-6, 2014.

[47] Lim, Daihyun, et al. "Extracting secret keys from integrated
circuits." IEEE Transactions on Very Large Scale Integration (VLSI)
Systems 13.10 (2005): 1200-1205.

[48] Pundir, Nitin, Fathi Amsaad, Muhtadi Choudhury, and Mohammed
Niamat. "Novel technique to improve strength of weak arbiter PUF."
In 2017 IEEE 60th International Midwest Symposium on Circuits and
Systems (MWSCAS), pp. 1532-1535. IEEE, 2017.

[49] M. Matsumoto and T. Nishimura, “Mersenne Twister: a 623-
dimensionally equidistributed uniform pseudo-random number
generator,” ACM Transactions on Modeling and Computer
Simulation, 1998-8 (1): 330.

[50] M. I. Velazco and C. Lyra, “Optimization with neural networks trained
by evolutionary algorithms,” in Neural Networks, 2002. IJCNN’02.
Proceedings of the 2002 International Joint Conference on, vol. 2, pp.
1516–1521, IEEE, 2002.

[51] A. West and D. Saad, “Adaptive back-propagation in on-line learning
of multilayer networks,” Adv. Neural Inf. Process. Syst., vol. 8, pp.
323-329, 1996.

[52] Yang, Xin-She, and Mehmet Karamanoglu. "Swarm intelligence and
bio-inspired computation: an overview." Swarm intelligence and bio-
inspired computation. Elsevier, 2013. 3-23

[53] Črepinšek, Matej, Shih-Hsi Liu, and Marjan Mernik. "Exploration and
exploitation in evolutionary algorithms: A survey." ACM computing
surveys (CSUR) 45.3 (2013): 1-33.

[54] Ab Wahab, Mohd Nadhir, Samia Nefti-Meziani, and Adham Atyabi.
"A comprehensive review of swarm optimization algorithms." PloS
one 10.5 (2015): e0122827.

[55] Rashedi, Esmat, Hossein Nezamabadi-Pour, and Saeid Saryazdi.
"GSA: a gravitational search algorithm." Information sciences 179.13
(2009): 2232-2248.

[56] Shi, Yuhui. "Particle swarm optimization: developments, applications
and resources." Proceedings of the 2001 congress on evolutionary
computation (IEEE Cat. No. 01TH8546). Vol. 1. IEEE, 2001.

[57] Kohavi, Ron. "A study of cross-validation and bootstrap for accuracy
estimation and model selection." Ijc ai. Vol. 14. No. 2. 1995.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3109235, IEEE Access

VOLUME XX, 2017

[58] Friedman, Milton. "The use of ranks to avoid the assumption of
normality implicit in the analysis of variance." Journal of the american
statistical association 32.200 (1937): 675-701.

[59] D.J. Sheskin, Handbook of Parametric and Nonparametric Statistical
Procedures, 4th ed., Chapman & Hall/CRC, 2006.

[60] Derrac, Joaquín, et al. "A practical tutorial on the use of nonparametric
statistical tests as a methodology for comparing evolutionary and
swarm intelligence algorithms." Swarm and Evolutionary
Computation 1.1 (2011): 3-18.

[61] S. Holm, A simple sequentially rejective multiple test procedure,
Scandinavian Journal of Statistics 6 (1979) 65–70.

[62] W. Daniel, Applied Nonparametric Statistics, 2nd ed., Duxbury
Thomson Learning, 2000.

Ahmed Oun received the M.S. degree in
Electrical Engineering from University of

Bridgeport, Bridgeport, CT, in December 2012.

He is currently pursuing the Ph.D. degree in the
Electrical Engineering and Computer Science

Department at University of Toledo, Toledo,

OH. He is working in Hardware Oriented
Security Lab at the University of Toledo also he

served as Project Manager with General Electric

International Inc. GEII before he decided to pursue his Ph.D. His research
interests include Hardware Oriented Security and Trust, Testing of Digital

VLSI, Field Programmable Gate Arrays, Machine Learning Algorithms,

Optimization Techniques, Neural Networks, and their applications.

Noor Ahmad Hazari received the B.Sc. degree

in Electrical and Electronics Engineering from

Khulna University of Engineering and
Technology (KUET), Khulna, Bangladesh. He is

pursuing his PhD degree in Electrical

Engineering at The University of Toledo, Toledo,
OH, USA. He is working in Hardware Oriented

Security Lab at the University of Toledo. His

research interests include Hardware Security,
FPGA design security, PUFs, Machine Learning, and Blockchain

Technology for Hardware Security.

Mohammed Y. Niamat received the

bachelor’s degree in electrical engineering from

the Aligarh Muslim University, Aligarh, India,
the master’s degree in electrical engineering

from the University of Saskatchewan,

Saskatchewan, Canada, and the Ph.D. degree
from the University of Toledo, OH, USA, in

1989. During 1996–1997, he was a Visiting

Associate Professor at the Center for Reliable
Computing, Stanford University. He has

supervised more than 50 graduate students

including Noor Ahmad Hazari and Ahmed Oun. He is currently the focus
Group Leader for the High-Performance Computing Research Group of

Electrical Engineering and Computer Science department at the University

of Toledo.

