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ABSTRACT Physical Unclonable Functions (PUFs) are used for authentication and generation of secure 

cryptographic keys. However, recent research work has shown that PUFs, in general, are vulnerable to 

machine learning modeling attacks. From a subset of Challenge-Response Pairs (CRPs), the remaining CRPs 

can be effectively predicted using different machine learning algorithms. In this work, Artificial Neural 

Networks (ANNs) using swarm intelligence-based modeling attacks are used against different silicon-based 

PUFs to test their resiliency to these attacks. Amongst the swarm intelligence algorithms, the Gravitational 

Search Algorithm (GSA), Cuckoo Search Algorithm (CS), Particle Swarm Optimizer (PSO) and the Grey 

Wolf Optimizer (GWO) are used. The attacks are extensively performed on six different types of PUFs; 

namely, Configurable Ring Oscillator, Inverter Ring Oscillator, XOR-Inverter Ring Oscillator, Arbiter, 

Modified XOR-Inverter Ring Oscillator, and Hybrid Delay Based PUF. From the results, it can be concluded 

that the first four PUFs under study are vulnerable to ANN swarm intelligence-based models, and their 

responses can be predicted with an average accuracy of 71.1% to 88.3 % for the different models.  However, 

for the Hybrid Delay Based PUF and the Modified XOR-Inverter Ring Oscillator PUF, which are especially 

designed to thwart machine learning attacks, the prediction accuracy is much lower and in the range of 9.8 % 

to 14.5 %. 

 

INDEX TERMS Hardware Security, FPGA, PUF, Artificial Neural Network, Swarm Intelligence, GSA, 

CS, PSO, GWO, Machine Learning Attacks.  

I. INTRODUCTION 

In recent years, the use of programmable devices such as 

Field Programmable Gate Arrays (FPGAs) and custom 

designed Application Specific Integrated Circuits (ASICs) 

have increased rapidly. The increased deployment of these 

devices in mission critical computing systems include, but 

are not limited to, communication networks, smart grids, 

defense equipment, and internet of things, has led hackers to 

continually devise new techniques to breach the security of 

these devices. Examples of such attacks include disabling or 

degrading the function of these chips in systems like radars 

and missiles.  Other attempts include implanting malicious 

electronic circuitry in the chips, known as Trojans, to steal 

vital information for cyber-attacks. These tampered chips 

can subsequently act as ‘spy chips’ by collecting confidential 

data for adversaries and hackers. To counter such attacks, 

chip designers have embedded additional layers of security 

in these devices [1,2]. Although researchers have long tried 

to secure hardware-based systems with both software and 

hardware-based approaches, this paper explicitly focuses on 

techniques based on hardware-oriented security and trust 

[3,4]. These approaches mainly involve generation of unique 

hardware-based cryptographic keys in the form of 

Challenge-Response Pairs (CRPs).  In order to generate 

hardware-based unique keys, different structures of physical 

unclonable functions (PUFs) have been proposed in the past 

[5,6]. Essentially, a PUF utilizes manufacturing process 

variation, which is an inherent property of silicon chips, to 

generate unique and unclonable CRPs. Amongst the 

different types of PUFs available, the delay-based PUFs are 

widely studied in CMOS-based silicon devices. The most 

investigated PUFs on silicon-based devices are the Ring 

Oscillator PUF (ROPUF) and the Arbiter PUF (APUF). Most 

of the delay-based PUFs are strong candidates for not only 

ASICs but also for FPGAs [7,8]. The significant advantage 

of using PUFs as security measures is that it does not require 

on-chip memory to generate and store keys; thus, it 

eliminates the use of on-chip memory for the security of the 

hardware-based system. Another very significant feature of 

the PUF is that the keys generated by the PUF are device 

specific. Further, the keys change with the specific location 

and placement of the PUF inside the chip, since they depend  

on the random manufacturing process variations [9,10]. It 

should be noted that the behavior of PUFs rely on the random 
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manufacturing process variations related to several 

components that are used to construct it. These components 

are sometimes linearly interrelated to the number of CRPs. 

Because of these limitations and linearity, an attacker may 

try all challenges and know the corresponding responses 

within an extended period of time [6]. This kind of brute 

force approach, however, generally fails because of the time 

required and because of the fact that the exact location of the 

PUF is unknown. It is further complicated in FPGAs, since 

the location of a PUF mapped onto an FPGA, unlike an 

ASIC, can be frequently changed by the designer by 

changing the bit-stream file. 

PUF produces a device-specific unique response for a 

given challenge. This property of the PUF makes it suitable 

for different applications including, authentication, IP 

protection, random key generation, remote attestation, and 

secured supply chain, etc. Once the CRPs can be predicted 

by an attacker; as a consequence, the whole concept of 

cryptographic primitive for hardware security applications, 

including PUF as an authenticator, is in jeopardy. Though 

PUFs are considered unclonable, researchers have shown 

that they are vulnerable to machine learning-based modeling 

attacks. An attacker can perform different types of attacks, 

including side-channel attacks, cloning, reverse engineering, 

Probably Approximately Correct (PAC) based attacks, and 

eavesdropping for predicting the CRPs [11-15]. Side-

channel based attacks can be performed by monitoring the 

voltage, current, and power values during runtime. If an 

attacker wants to authenticate using PUF CRPs without 

getting any access to the PUF, the attacker would be able to 

do so if the attacker has the responses available for the 

challenges, which can be done by eavesdropping on some of 

the CRPs. Hackers can eavesdrop by using MITM attacks by 

recording the network data packets and extracting the 

information of the CRPs when the system is in operation. 

Thus, after acquiring a set of CRPs, a PUF can be modeled 

using machine learning. Side-channel based attacks can be 

performed by monitoring the voltage, current, and power 

during runtime. PUFs have been successfully attacked using 

machine learning algorithms such as Logistic Regression, 

Probably Approximately Correct learning, Evolutionary 

Strategy, Quick Sorting, etc. [13-15]. In Rührmair et al.’s 

research [13], the authors used quick sorting for modeling 

RO PUFs. In J. Delvaux’s work [14], the authors performed 

modeling attacks on APUF, PolyPUF, OB-PUF, RPUF, 

LHS-PUF, and PUF FSM protocols. The Probably 

Approximately Correct (PAC) learning algorithm has been 

used for predicting ROPUF CRPs in [15]. In their work, the 

number of CRPs required to learn the models is on a scale of 

ten thousand which is high for an attacker to obtain from the 

CRP set.  Fault injection-based modeling attacks on APUFs 

are performed in [16]. In this attack model, an attacker must 

have physical access to the PUF. Logical Approximation and 

Global Approximation attacks are performed on different 

structures of Arbiter PUFs using ANN methods of RMSProp 

and Gradient Descent Optimizer [17]. In this technique, the 

number of CRPs required is also high. Different side 

channel-based modeling attacks have been performed in 

[18,19], which also requires physical access to the PUF 

device. Authors in [20] performed deep learning attacks on a 

Double Arbiter PUF. In their work, the authors performed 

Logistic Regression-based deep learning attacks. The 

number of CRPs required to perform such an attack is very 

high and requires more than a million pairs of CRPs that are 

difficult for an adversary to obtain in order to attack the PUF.  

Genetic Algorithms have also been used to predict CRPs 

for the ROPUF [21,22]. In the Genetic Algorithm-based 

modeling, CRPs are generated by crossover, mutation, and 

then the attacks are performed, which is not consistent for 

different models of ROPUFs. Mathematical modeling of 

different PUFs including the Arbiter PUF and the Ring 

Oscillator PUF has been performed in [23]. In this work, the 

authors describe a mathematical model for the ROPUF and 

perform Logistic Regression-based modeling attacks on the 

Arbiter PUF and the DCMUX PUF. In this approach, the 

drawback is that the CRPs depend on the different structures 

of the ROPUF. ANN-based modeling attacks on a small set 

of CRPs using different optimizations including RMSprop, 

Adam, Nadam, etc., have been performed in [24]. However, 

the prediction accuracy needs improvement.  

Different metaheuristics algorithms exist in the literature 

to solve optimization problems. Metaheuristics algorithms 

can be classified into different categories including, 

Evolutionary, Physics-based, and Swarm Intelligence-based 

Algorithms. The Genetic Algorithm (GA) is the most 

popular Evolutionary based algorithm proposed by [25], 

which works on an initial random solution and optimizes the 

solution based on generations and mutations. Other popular 

Evolutionary based algorithms are Genetic Programming 

(GP) [26], Evolutionary Strategies (ES) [27], Differential 

Evolution (DE) [28] etc. The popular physics-based 

algorithms is the Gravitational Search Algorithm (GSA) [29] 

which works based on the law of gravity, and the best 

solution is reached after the iteration can produce specific 

agents that achieve certain fitness. Ultimately, the heavier; 

the mass is, the closer the optimum points will be. Other 

physics-based algorithms include Big-Bang Big-Crunch 

(BBBC) [30], Central Force Optimization (CFO) [31], 

Galaxy-based Search Algorithm (GbSA) [32], Gravitational 

Local Search (GLSA) [33], Charged System Search (CSS) 

[34] etc. Swarm Intelligence (SI) based algorithms are a 

subset of the bio-inspired algorithms. SI is a nature-inspired 

algorithm produced by a group of animals or birds acting 

together, and the algorithm is based on how these animals act 

or behave to adapt to the different scenarios occurring in their 

surroundings [35]. In Particle Swarm Optimization (PSO) 

the particles chase the position of the best particle and reach 

their own best position so that the overall best solution of the 

swarm is obtained [36]. Other popular swarm intelligence-

based algorithm includes Ant Colony Optimization (ACO) 

[37], Cuckoo Search (CS) [38], Grey Wolf Optimizer 

(GWO) [39], etc., which are inspired by hunting and 

searching behavior. 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3109235, IEEE Access

 

VOLUME XX, 2017  

In 2014, Mirjalili et al. introduced the Grey Wolf 

Optimizer (GWO), which is a metaheuristic algorithm that 

simulates the hierarchical superiority-based hunting 

mechanism of Grey wolves for hunting down prey. This 

arrangement benefits them to preserve stability and support 

each other throughout hunting. Wolves have a strict social 

hierarchy consisting of the alpha (α), beta (β), delta (δ), and 

omega (ω) wolves [39]. The GWO algorithm takes these 

features of Grey Wolf to search optimized solution of a 

problem utilizing exploitation and exploration; therefore, in 

the searching process, the best solution position can be 

comprehensively estimated by three solutions. Thus, the 

algorithm can significantly decrease the probability of falling 

into the local optimum. The properties of metaheuristics 

algorithms have motivated their use to solve different 

engineering problems such as embedded systems, electric 

power system [40], scheduling Energy Storage Unit 

problems [41], communication network and Distributed 

Compressed Sensing (DCS) problem [42]. Hence, the 

research on the swarm intelligence optimization algorithms 

has an academic advantage and practical importance.  

In our earlier work [43], we presented an analytical study 

of the vulnerability of the Configurable Ring Oscillator PUF 

and the XOR-Inverter Ring Oscillator PUF against Feed-

Forward Neural Network (FNN) attacks using the Dragonfly 

Algorithm. That limited study showed that both designs are 

vulnerable to this type of attack. In this paper, Artificial 

Neural Networks are trained using different swarm 

intelligence algorithms, namely: GSA, CS, PSO and GWO to 

study the vulnerability and resistance of various PUF 

structures against machine learning modeling attacks. It is 

assumed that an adversary is able to get hold of a subset of 

the CRPs and then attempts to predict the remaining set of 

CRPs by performing modeling attacks. 

  

The contributions of this paper are listed as follows: 

• Use of Artificial Neural Network based modeling 

attacks on various PUFs using different Swarm 

Intelligence algorithms, namely: The Gravitational 

Search Algorithm (GSA), Cuckoo Search 

Algorithm (CS), Particle Swarm Optimization and 

the Grey Wolf Optimizer. To the best of our 

knowledge, these algorithms have not been used in 

studying the vulnerability of PUFs to ANN-based 

attacks. 

• Development of a comparative study and statistical 

analysis for the different Swarm Intelligence 

optimization attack models' results with respect to 

other machine learning attack models. It is found 

that the ANN-based Grey Wolf Optimizer approach 

produces better accuracy results than the other 

methods. 

 

The rest of the paper is organized as follows: Section II 

describes current research related to PUFs, and Section III 

describes the structure of the Artificial Neural Network. 

Section IV presents an introduction to the Gravitational 

Search Algorithm (GSA), Cuckoo Search Algorithm (CS), 

Particle Swarm Optimization and the Grey Wolf Optimizer 

algorithm. Section V describes the proposed method and 

approach. In Section VI, experimental and simulation results 

are discussed. Section VII provides concluding remarks. 

II. RESEARCH BACKGROUND: Different PUF 

Structures  

A. BASIC SILICON PUFs 

Ring Oscillator Physical Unclonable Functions (ROPUFs) 

and Arbiter Physical Unclonable Functions (APUFs) are the 

two most commonly used silicon-based PUFs [44,45]. The 

basic ROPUF design is described first. Fig. 1 shows the 

structure of the Ring Oscillator PUF [46]. The design relies 

on delay loops, which can be produced using an odd number 

of inverters. As can be seen from the figure, the output bit is 

generated by the random selection of a pair of ring 

oscillators. Because of the process manufacturing variations 

inherent in the chip, ROs that are mapped at different 

locations of the chip produce different frequencies 

(𝑓𝑎 𝑎𝑛𝑑 𝑓𝑏) . These two frequencies (𝑓𝑎 𝑎𝑛𝑑 𝑓𝑏) are 

compared. If the frequency of the first RO is greater than the 

second, then the output is 1; otherwise it is 0.  

 

 

FIGURE 1. Ring oscillator PUF circuit 

 

A response bit (𝑟𝑎𝑏) is thus produced by a simple comparison 

as shown in equation (1): 

 

𝑟𝑎𝑏 = {
1,     𝑖𝑓 𝑓𝑎   >    𝑓𝑏 ,
0,     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

                                                  (1) 

 

   The basic structure of the Arbiter PUF is shown in Fig. 2. 

The circuit produces a race among two delay paths with an 

arbiter at the end [47]. In APUF, a rising edge signal travels 

through two paths simultaneously. Due to process variations, 

the signal on one path travels faster than the other and 

generates a 1 or a 0 response. The challenge bits consist of K 

external bits (C1= b1.b2…..bk) for K number of stages. Thus, 

for challenge bits C1, C2, Cn, a response of R1, R2… Rn is 

obtained. 
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FIGURE 2. Arbiter PUF  

B. CONFIGURABLE RING OSCILLATOR PUF 

The Configurable ROPUF design shown in Fig. 3 was 

presented in our earlier work [9]. This c-ROPUF design was 

implemented on a Spartan 3E FPGA board, which was 

divided into eight regions. In each region, sixteen ring 

oscillators were placed in forty configurable logic blocks. 

The oscillators can be selected based on the challenges 

provided to the programmable XOR gates. The responses 

were collected using the Agilent 16801A logic analyzer. The 

advantage of this design is that it can generate a large number 

of CRPs from a small chip area. 

 

 

FIGURE 3. Configurable ROPUF design 

C. INVERTER RING OSCILLATOR PUF 

A 5-stage Inverter Ring Oscillator PUF, as shown in Fig. 4, 

is used in this study. The PUFs are mapped on Five different 

Spartan 3E Xilinx boards. Each PUF consists of 512 Ring 

Oscillators. 

 

FIGURE 4. Five stage NOT based Ring Oscillator 

D. XOR-INVERTER ROPUF 

The XOR-Inverter based Ring Oscillator PUF is shown in 

Fig. 5. This design consists of NAND, XOR, and Inverter 

gates and has been implemented on ten different Xilinx 

FPGA boards in our research lab [24]. The design has been 

implemented using hard macros so that the oscillator 

provides fixed routing, and the frequencies are not affected 

by routing delays. The ROs are enabled for a certain period 

of time to generate a response for a fixed challenge. For 

different challenges applied through the challenge generator, 

the frequencies at the output are collected through the 

frequency counter. Each challenge generates a single bit of 

response by comparing frequencies between the two 

oscillators. 

 

FIGURE 5. XOR-Inverter based ROPUF design 

E. MODIFIED XOR-INVERTER ROPUF 

This design, shown in Fig. 6, is a modification of the XOR-

Inverter ROPUF introduced in our earlier work for thwarting 

machine learning modeling attacks [24]. As shown in the 

figure, the new challenges are generated from the challenge 

generator which consists of an XOR and a Linear Feedback 

Shift Register (LFSR) network. The design has been 

modified in a way that the ring oscillators are selected in a 

pair with the same routing. The difference between the two 

oscillator frequencies should lie within a specific threshold 

frequency to avoid bit-flips. If the oscillators do not meet this 

criterion, they are moved to another CLB slice. 

 

 
FIGURE 6. Modified design of XOR-Inverter based ROPUF 

F. HYBRID DELAY BASED PUF  

The Hybrid Delay based AROPUF (Arbiter-Ring Oscillator 

PUF), shown in Fig. 7, was proposed in our earlier work [48]. 

The hybrid model was also designed to prevent machine 

learning based modeling attacks. This design is a 
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combination of the Arbiter PUF and the Ring Oscillator 

PUF.  A one-bit response is generated by providing a n-bit 

challenge to the APUF. The CRPs are randomized using the 

Mersenne Twister Random Number Generator [49]. The 

randomized CRPs are paired sequentially to form n-bit 

responses. The final output of the architecture is an n-bit 

response corresponding to a n-bit challenge.  

 

 
FIGURE 7. Hybrid Delay based AROPUF design 

 

III. ARTIFICIAL NEURAL NETWORK  

An Artificial Neural Network (ANN) is a network structure 

of connected artificial neurons that can model complex 

relationships between inputs and outputs using 

computational and statistical data modeling tools. The neural 

networks consist of different layers termed as the input layer, 

output layer, and hidden layer. The first layer from where the 

network takes the input is known as an input layer, whereas 

the last layer of the network is termed as an output layer. The 

layers in between are termed as hidden layers. The number 

of hidden layers varies depending on the design [50]. The 

structure of the neural network is shown in Fig. 8. 

 

 

FIGURE 8. Artificial Neural Network Structure 

The input layer is connected and assigned a weight to the 

hidden layers. Similarly, the hidden layer is connected to the 

output layers; consequently, the output of any input layer act 

as an input of the next layer. For each node, weights are 

assigned and adjusted based on the input-output relationship. 

The output of a 3-layer feed-forward neural network can be 

given by: 

 

𝑌𝑗 = 𝑏𝑗 + ∑𝑤𝑖,𝑗𝑥𝑖

3

𝑖=1

 

 

       

(2) 

where, 𝑌𝑗 is the output, 𝑏𝑗  is base, 𝑤𝑖,𝑗 is the weights, and  𝑥𝑖 

is the input. The input of a hidden layer is modified by some 

nonlinear function, sigmoid, which is the activation function: 

 

 
𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑧) =

1

1 + 𝑒−𝑧
 

(3) 

 

The weights are updated and calculated according to the 

difference obtained from model output and the actual output 

of the training data [51]. This difference is calculated using 

loss or cost function, which is minimized until the training 

loss is minimum or goes very close to zero. 

 
IV. SWARM INTELLIGENCE 

Swarm Intelligence (SI) is a cooperative system based on a 

group of agents that achieve a common goal by cooperating 

according to their behavior and system organization. The 

fundamental concept behind swarm intelligence techniques 

is the replication of the behavior of the natural collective 

system [52]. Amongst the many available swarm intelligence 

algorithms, the Gravitational Search Algorithm (GSA), 

Cuckoo Search Algorithm (CS), Particle Swarm 

Optimization (PSO), and the Grey Wolf Optimizer (GWO) 

algorithms are frequently used. These algorithms, in general,  

are simple and computationally efficient. Specifically, these 

algorithms have higher viability, robustness, stability, and 

search efficiency, and have a fast convergence rate [53]. 

Moreover, these algorithms are able to optimize a vast search 

space with a fixed size population to solve different complex 

design optimization problems. For a detailed comparative 

analysis of the various swarm intelligence algorithms, the 

reader is referred to [54].  

A. GRAVITATIONAL SEARCH ALGORITHM  

Gravitational Search Algorithm (GSA) is a swarm 

optimization technique proposed by Rashedi et al., based on 

gravity concepts and different masses' interaction [55]. In 

this algorithm, the solutions of different agents' populations 

interact with one another via the theory of Newtonian gravity 

force and the laws of motion. The solution's performance is 

measured by different masses. Due to gravitational force, the 

masses are dragged towards each other, which creates a 

global movement of all objects approaching the objects with 
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greater masses. The exploration step occurs when a mass 

moves towards a heavier mass, and the exploitation is when 

heavier masses move slowly. Accordingly, each mass can 

convey information with different masses and see their 

situation through the gravitational force. The mass's position 

compares to a problem's solution; then, the best solution is 

achieved with the heavier agent. The initial population is 

generated randomly, and the position of the agents are defined 

as:  

 

𝑋𝑖 = (𝑥𝑖
1, … , 𝑥𝑖

𝑑 , … , 𝑥𝑖
𝑛)  for 𝑖= 1, 2, …, N                       (4) 

 

where 𝑥𝑖
𝑑 presents the position of 𝑖𝑡ℎ agent in the 𝑑𝑡ℎ 

dimension. The gravitational search algorithm sets the initial 

value of the constant 𝐺:  

 

𝐺(𝑡) = 𝐺0𝑒
−∝𝑡/𝑇                                                               (5) 

 

where 𝐺0 and ∝ is initialized at the beginning of the iteration 

and T is the total number of iterations. The agents update the 

velocity and the position according to these equations: 

 

 𝑣𝑖(𝑡 + 1) = 𝑟𝑎𝑛𝑑𝑖 × 𝑣𝑖(𝑡) + 𝑎𝑖(𝑡)                                (6) 

 

 𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝑣𝑖(𝑡 + 1)                                       (7)                                                  

 

where, 𝑟𝑎𝑛𝑑𝑖   is a uniform random variable in the interval 

[0, 1]. This random number is used to give a randomized 

characteristic to the search. 

The total force acting on agent 𝑖 at iteration 𝑡, was calculated 

as follows: 

 

𝐹𝑖
𝑑(𝑡) = ∑ 𝑟𝑎𝑛𝑑𝑗𝐹𝑖𝑗

𝑑(𝑡)

𝑗∈𝐾𝑏𝑒𝑠𝑡,𝑗≠𝑖

                                         (8)    

 

where 𝐾𝑏𝑒𝑠𝑡 represents the set of 𝑘 agents with best fitness 

and biggest mass. 

 

The pseudo code for the GSA is shown below [55]: 

 
Algorithm 1: Gravitational Search Algorithm 

1. Objective function  𝑓(𝑥), 𝑥 = (𝑥1, 𝑥2, …𝑥𝑑,)
𝑇 

2. Initialize the population of  𝑛  agents 𝑥𝑖   

3. while t < Max of Iterations do 

4.        Evaluate the fitness for each agent 

5.        for each searching  

6.              Update the 𝐺(𝑡), 𝑏𝑒𝑠𝑡(𝑡),𝑤𝑜𝑟𝑠𝑡(𝑡)and 𝑀𝑖(𝑡) 

7.       end for  

8.       Calculation of the total force in different directions. 

9.       Calculation of acceleration and velocity. 

10.        Updating agents’ position. 

11.        t=t+1 

12. end while 

13. Return the best solution 

B. CUCKOO SEARCH ALGORITHM  

Cuckoo search algorithm (CS) is a nature-inspired 

optimization algorithm proposed by Yang in 2009 to solve 

optimization problems based on the cuckoo bird's breeding 

behavior and search approach of laying its eggs in the best 

host nest [38]. The CS algorithm is based on the brood 

parasitism of cuckoo birds. The species lay their eggs in 

other host bird nests to be brooded by the proxy mother bird 

and use the host bird assistance to hatch their eggs. The 

hatching probability of similar eggs to the host bird's eggs is 

high. In some cases, the other bird recognizes the different 

eggs, so they throw the eggs away, destroy them, and even 

leave their nests to build another one in a distinct location. 

The CS algorithm uses better solutions to substitute not-so-

good solutions in the nests. As a result, it can enhance search 

capabilities to improve the relationship between exploration 

and exploitation. The CS algorithm is performed through the 

following three rules: first: each cuckoo bird chooses a 

random nest to lay only one egg; second, the best nests with 

a good quality of eggs will carry over for the next population; 

third, a host bird can detect a different egg with a probability 

of pa ∈ [0, 1] for a constant number of available host nests. 

Hence, the host bird may either throw the different eggs or 

leave the nest and build a new one. One of the essential CS 

features is Lévy flights to generate new candidate solutions 

rather than a simple random walk. The following Lévy flight 

is performed to generate new solutions 𝑥(𝑡+1) for 

the 𝑖𝑡ℎ cuckoo: 

 

𝑥𝑖
(𝑡+1)

= 𝑥𝑖
(𝑡)

+  𝛼 ⊕  Lévy (λ)                                    (9) 

 

where α > 0 is the step size. The product ⊕ means entry-

wise multiplications. The Lévy step size probability 

distribution is represented by: 

 

Lévy ~ 𝑢 =   𝑡−𝜆, (1< λ ≤ 3)                                         (10) 

 which has an infinite variance with an infinite mean. The 

pseudo-code of CS algorithm is shown below [38]: 

 
Algorithm 2: Cuckoo Search Algorithm 

1. Objective function  𝑓(𝑥), 𝑥 = (𝑥1, 𝑥2, …𝑥𝑑,)
𝑇 

2. Initialize the population of 𝑛 host nests 𝑥𝑖   

3. while t < Max of Iterations do 

4.         Get a cuckoo randomly by Lévy flights 

5.         Evaluate its fitness 𝑓𝑖 
6.         Randomly choose 𝑛 nest 𝑓𝑗  

7.         If (𝑓𝑖 > 𝑓𝑗)  

8.               Replace 𝑗 by the new solution 

9.          End if 

10.         Abandon a fraction of  𝑝𝑎 of worse nests and 

        build new ones at new locations via Lévy flights 

11.         Keep the best solutions 

12.         Rank the solutions and find the current best 

13.         t=t+1  

14. end while 

15. Return the best solution 
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C. PARTICALE SWARM OPTIMIZATION  

In 1995, Eberhart and Kennedy proposed the Particle Swarm 

Optimization (PSO), which mimics the social behavior 

and search techniques of a swarm of animals, or a flock of  

birds, or a school of fish, when they adapt their environment 

to search for their food [36]. The particles communicate and 

shares its information to find the optimum path to reach its 

food sources. The shortest path followed is the particle's best 

position. Based on the current positions of the local and 

global positions in the search space, each particle identifies 

and updates its position until the global-optimum position is 

achieved. Fig. 9 shows how the particle changes its position 

within the search space to obtain food [56]. 

 

 
FIGURE 9. Update Particle position and velocity in the search space 

 

Particle movements affect all other individuals within the 

group, each one of them has its position and velocity defined 

by equation (11), which presents the best position achieved 

with respect to all neighbor’s best position.  

 

𝑝(𝑡 + 1) = 𝑝(𝑡) + 𝑣(𝑡 + 1)                     (11) 

Here p(𝑡 + 1) denotes the updated location of the particle in 

the swarm, 𝑔𝑏𝑒𝑠𝑡 defines the global best, 𝑝(𝑡) represents the 

current location of the particle in the swarm, and 𝑣(𝑡 + 1) is 

the new velocity of the particle in the swarm based on the 

location of the 𝑔𝑏𝑒𝑠𝑡. Based on the current velocity and 

position of each particle, its own best position 𝑝𝑏𝑒𝑠𝑡 and the 

entire population's best position 𝑔𝑏𝑒𝑠𝑡, the particle’s new 

velocity and position can be determined as: 

 

𝑣(𝑡 + 1) = 𝜔 ∗ 𝑣 (𝑡) + 𝑐1 ∗ 𝑟1 ∗ [𝑝
𝑏𝑒𝑠𝑡

(𝑡) − 𝑝(𝑡)] +

                        𝑐2 ∗ 𝑟2 ∗ [𝑔
𝑏𝑒𝑠𝑡

(𝑡)– 𝑝(𝑡)]               (12)                                  

where 𝑝𝑏𝑒𝑠𝑡 is the best position of the particle, 𝑔𝑏𝑒𝑠𝑡 is the 

best position of the swarm, 𝑣(𝑡) is the current velocity, and 

 𝑟1, 𝑟2 are random numbers from uniform distribution. Both 

𝑐1, 𝑐2 are acceleration coefficients and 𝜔 is the inertia 

weight. The pseudo-code of the Particle Swarm 

Optimization (PSO) algorithm is shown below [56]: 

Algorithm 3: Particle Swarm Optimization Algorithm  

1. Initialization Particle’s Position  

2. Initialization Particle’s velocity  

3. Calculate the fitness values of each particle 

4. while t < Max of Iterations do 

5.       Update the position according to Equation 11 

6.      Update the velocity according to Equation 12 

7.      Choose the particle having the best fitness value as the  

     g-best 

8.        Compare P-best of each particle with g-best of swarm    

9.   t=t+1 

10.  end while 

11. Return g-best particle 

D. GREY WOLF OPTIMIZER  

In 2014, Mirjalili and others introduced the Grey Wolf 

Optimizer (GWO), which is an algorithm that illustrates the 

Grey Wolf's hierarchical hunting pattern based on how 

wolves obey a strict social hierarchy [39]. This pattern 

maintains the stability and assists other wolves during the 

hunt. The complete wolf pack must follow the orders of the 

wolf with the most durability and fighting ability. Fig.10 

shows the classification of the social hierarchy in a grey wolf 

pack consisting of the alpha (α), beta (β), delta (δ) and omega 

(ω) wolves: 

1) ALPHA (α): The leader of the pack, at the top of the 

hierarchy, is mostly responsible for making decisions 

because it is considered the most qualified wolf among the 

pack. 

2) BETA (β): The adviser wolf at the second level in the 

hierarchy, which helps the alpha in decision-making or other 

pack activities. A beta follows the leader's directions to 

maintain discipline over the pack. 

3) DELTA (δ): Stands at the third level in the hierarchy, Delta 

follows the orders of alpha and beta wolves, but dominates 

and leads the omegas. 

4) OMEGA (ω): The lowest level in the grey wolf social 

hierarchy, the omega wolves, always follow the commands 

of all the other dominant wolves in the social hierarchy. 

 

 

FIGURE 10. Grey Wolf Social Hierarchy 

 

The hunting behavior of the GWO algorithm is guided by the 

three wolves α, β, and δ, while the ω wolves follow them. 

Fig.11 illustrates how the position can be updated in the search 

space for the three wolves. Alpha is the closest location in the 

search space to prey 𝑋α, which is considered as the first best 

wolf,  𝑋𝛽 is the second-best location for beta wolf, and delta is 
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the third best wolf location 𝑋𝛿 . The rest of the pack, omega 

wolves, will update their positions according to alpha, beta, 

and delta positions. The locations of wolves are updated as 

follows: 

 

�⃗⃗� = |𝐶 .  𝑋𝑃
⃗⃗ ⃗⃗  (𝑡) −  𝑋 (𝑡)|                                             (13)  

𝑋 (𝑡 + 1) = 𝑋𝑃
⃗⃗ ⃗⃗  (𝑡) − 𝐴  . �⃗⃗�                                             (14) 

𝐴 = 2𝑎  . 𝑟 1 − 𝑎                                                              (15) 

 

𝐶 = 2 .  𝑟 2                                                                     (16) 

 

where, 𝑡 represents iteration, 𝐴  and 𝐶  are coefficient vectors, 

𝑋𝑃
⃗⃗ ⃗⃗    is the prey position vector, 𝑋  is the wolf positions, 𝑎   is 

the linear coefficient, and 𝑟1⃗⃗⃗   and 𝑟2⃗⃗  ⃗ are random vectors 

located in the scope [0, 1]. The calculation of distances 

between the position of current individual and individual of 

alpha, beta, and delta are: 

 

�⃗⃗� 𝛼 = |𝐶 1.  𝑋 𝛼 − 𝑋 |                                                       (17) 

   

�⃗⃗� 𝛽 = |𝐶 2.  𝑋 𝛽 − 𝑋 |                                                       (18) 

 

�⃗⃗� 𝛿 = |𝐶 3.  𝑋 𝛿 − 𝑋 |                                                       (19) 

 

where  𝑋 𝛼, 𝑋 𝛽, 𝑋 𝛿  are the position vectors, 𝐶 1, 𝐶 2, 𝐶 3 are 

randomly generated vectors, 𝑋  represents the position vector 

of current individual. Therefore, the mathematical models 

for grey wolf hunting are calculated by: 

 

𝑋 1 = 𝑋 𝛼 − 𝐴 1 . �⃗⃗� 𝛼                                                        (20) 

 

𝑋 2 = 𝑋 𝛽 − 𝐴 2 . �⃗⃗� 𝛽                                                        (21) 

 

𝑋 3 = 𝑋 𝛿 − 𝐴 3 . �⃗⃗� 𝛿                                                        (22) 

 

𝑋 (𝑡 + 1) =
𝑋 1 + 𝑋 2 + 𝑋 3

3
                                                 (23) 

 

where 𝐴 1, 𝐴 2, 𝐴 3 are randomly generated vectors. 

 

 

FIGURE 11. Wolves Position surrounding the prey 

The pseudo code for the GWO is shown below [39]: 

 
Algorithm 4: Grey Wolf Optimization Algorithm  

1. Initialize the population of the Grey Wolves 

2. Initialize for a, 𝐀, and 𝐂 

3. Calculate the fitness values of each wolf 𝐗𝛂, 𝐗𝛃, and 𝐗𝛅 

4. while t < Max of Iterations do 

5.        for each searching wolf  

6.                   Update position using equation 6 

7.       end for  

8.      Update a, 𝐀, and 𝐂 

9.      Calculate the fitness values of all wolves 

10.      Update the positions of 𝐗𝛂, 𝐗𝛃, and 𝐗𝛅 

11.      t=t+1 

12. end while 

13. Return 𝐗𝛂 

 
V. PROPOSED METHOD 

During modeling the vulnerability of PUFs, researchers have 

used many techniques such as Fault injection-based 

modeling attacks, Genetic Algorithm, Genetic 

Programming, and Evolutionary Strategies to model PUF 

CRPs. From their results, it has been observed that these 

algorithms require a large number of CRPs to model PUF 

characteristics; moreover, the attacker may need to have 

physical access to the PUFs. The motivation for choosing 

swarm intelligence algorithms is that SI algorithms have 

fewer parameters than evolutionary methods to adjust, which 

makes them flexible, robust, and distributive. SI algorithms 

are easy to implement, more reliable for finding solutions to 

many complex problems, and converge faster than other 

algorithms. Also, SI optimizers maintain a large search space 

of candidate information throughout the iterations. 

Furthermore, the mathematical model's implementation 

mechanism is very well developed to avoid local 

optimization and improve performance, making it easier to 

combine with practical engineering problems. The Swarm 

Optimization algorithms are used to build ANN models to 

analyze the vulnerability of the different PUFs described 

earlier for modeling attacks. These training algorithms adjust 

the weights and biases of the ANN until the highest response 

prediction accuracy can be obtained by finding the optimum 

set of weights and biases. Based on the objective (loss/error) 

function for the SI algorithms, the weights are adjusted in 

each iteration in order to minimize the loss/error function 

that is used in neural networks to minimize the training error. 

The Mean Square Error function (MSE), which is the most 

commonly used parameter for the evaluation of the neural 

network, is defined in equation (24). 

𝑀𝑒𝑎𝑛_𝑆𝑞𝑢𝑎𝑟𝑒_𝐸𝑟𝑟𝑜𝑟 =
1

𝑛
∑(𝑌𝑒𝑥𝑝 − 𝑌𝑜𝑏𝑠𝑖

)
2

𝑛

𝑖=1

 
  

(24) 

where the performance of the network is evaluated based on 

the difference between the predicted responses (𝑌𝑜𝑏𝑠𝑖
) and the 

actual responses (𝑌𝑒𝑥𝑝). The average MSE obtained from all 

training samples is based on the best solutions of the previous 
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iteration. While the current weights and biases of the neural 

network are updated, the MSE gradually decreases; therefore, 

after enough iterations, the algorithms can achieve the best 

solution.   For a challenge vector 𝐶 = [𝐶1, 𝐶2, … , 𝐶𝑚] of size 

m, Configurable Ring Oscillator, Inverter based Ring 

Oscillator, XOR Inverter based ring oscillator, and the Arbiter 

PUF will generate a response vector 𝑅 = [𝑟1, 𝑟2, … , 𝑟𝑚]. The 

CRPs are fed to the ANN network, where each bit of the 

challenge vector represents one neuron, and the response bit is 

the outcome of the neural network. For modeling  of the PUFs, 

it is assumed that if an attacker gets hold of a small set of CRPs 

 (𝐶, 𝑟) = [(𝐶1, 𝑟1), (𝐶2, 𝑟2)… , (𝐶𝑚, 𝑟𝑚)], then it can be 

modeled  by the ANN-based models using swarm 

optimization, GSA, CS, PSO and GWO algorithms to predict 

the remaining set of CRPs. For modeling the Modified XOR-

Inverter ROPUF and the Hybrid Delay based PUF, the 

challenge vector is defined as 𝐶 = [𝐶1, 𝐶2, … , 𝐶𝑚]𝑇, and the 

response matrix for the individual PUF is given as: 

 

 

𝑅 = [

𝑟11 𝑟12

𝑟21 𝑟22

… 𝑟1𝑛

… 𝑟2𝑛

⋮ ⋮
𝑟𝑚1 𝑟𝑚2

… ⋮
… 𝑟𝑚𝑛

]                                  (25) 

 

 

where both the challenge and response bits are of the same 

size. The prediction accuracy for n bit response can be 

calculated as: 

 

Prediction accuracy= ∑ 𝑛𝐶𝑟𝑛
𝑟=1 /number of challenges             (26) 

 

Algorithm 5 outlines the steps of how the model trains the 

Artificial Neural Network based on Swarm Intelligence 

Algorithms. 

 
Algorithm 5: Training ANN using SI Algorithms 

1. Initialize all the parameters of Swarm Algorithm 

2. Constricting of ANN learning structure  

3. Initialize the weights and biases of the Neural Network 

4. while t < Max of Iterations do 

5.      Map the Challenges Vector C=[C1,C2,…,Cm] into the 

        input layer of ANN 

6.      Calculate the predicted response R       

7.      Compare the predicted response R to the actual 

         response R    

8.      Calculate the new global optimum value of weights  

         and biases using swarm algorithm 

9.      Update the weights and biases of the ANN using 

         Swarm Intelligence optimizers 

10.      t=t+1 

11. end while 

12. Return weights, biases and predicted accuracy 

A. Computational Complexity Analysis  

The computational complexity of the proposed algorithm 

(Algorithm 5) accounts for the execution time of the algorithm 

based on its structure. For Algorithm 5, the computational 

complexity for each step can be described as follows: 

• The computational complexity of initialization the 

weights and biases is 𝑂(N × dim) time, where N 

represents the population size and dim represents the 

dimension of the problem. 

• In step 5 (mapping the challenge vector) of the proposed 

algorithm , for each iteration, the challenge vector is 

mapped into the input layer of ANN with constant 

computational complexity of 𝑂(1); the iteration loop 

technically runs in 𝑂(Iter), therefore the final time 

complexity for mapping is 𝑂(Iter). 

• The calculation of predicting the response and comparing 

it with the actual response in steps 6 and 7 have a 

computational complexity of 𝑂(Iter × L), where L is the 

total number of training CRPs. 

• For step 8, in each iteration the computational complexity 

represents the calculation of the new global optimum 

value of weights and biases 𝑂(Iter × N).  

•  Step 9 represents the updated weights and biases values 

with computational complexity of 𝑂(Iter × N × dim). 

• Since the total number of iterations is not more than 

IterMax, the total time complexity is: 𝑂(IterMax) + 

𝑂(IterMax × L) + 𝑂(IterMax × N) +𝑂(IterMax × N × dim) + 

𝑂(dim × N). 

As seen from the above analysis, the proposed algorithm's 

computational complexity depends on the size of population 

(N), dimension (dim), and iterations (Iter). 

VI. EXPERIMENTAL RESULTS ANALYSIS AND 
DISCUSSIONS  

To analyze the vulnerability of the various PUFs to ANN- 

based attacks using Swarm Intelligence algorithms, a subset of 

the randomly chosen CRPs is used as the training set. An 

accuracy score evaluates the attack resistance in terms of the 

percentage of successful response predictions. The Swarm 

Intelligence algorithms used to train the ANN network to 

predict PUF CRPs are implemented using Python 3.5 (64 Bit) 

frameworks. For training the CRPs, a 2.3 GHz PC with 16 GB 

RAM and 2GB Graphics card is used. The response prediction 

accuracy is determined by using cross-validation of ten blocks 

K-fold method [57]. One of these ten partitions is used as the 

test set, while the other nine cumulatively serve as the training 

set. The ANN learning network structure used in the 

experiment is a 3- Multi-Layer Perceptron (MLP) with 33 

nodes in the hidden layer. It is observed that the ANN method 

dramatically improves the learning rate for the first four PUFs, 

but still fails to learn the last two dual-mode PUFs. Different 

parameters and hyperparameters used in ANN for training and 

prediction of the CRPs are listed in Table 1. In order to verify 

the performance of the proposed method, we chose well-

known ANN-based optimization algorithms (RMSprop, 

Adadelta, Adam, and Nadam) for the purpose of comparison 

under the same experimental environment and the same 

platform for a fair comparison. Furthermore, we used the same 

ANN structure in terms of the number of hidden layers, nodes, 

and activation functions. The number of individuals that have 

been used for all the algorithms is 100, and each run stops 
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when the maximal number of 1000 iterations is achieved. 

Finally, a statistical analysis of the method’s results has been 

performed. 

TABLE 1. Parameters values used  

Parameters Values 
Number of training CRPs 10000 

Number of k folds 10 
Loss Functions MSE 

Number of nodes in hidden layer 33 
Hidden Layer Activation Function ReLU 
Output Layer Activation Function Sigmoid 

Learning rate 0.01 

A. MACHINE LEARNING ANN-BASED MODELING 
ATTACKS 

ANN-based models using four well-known optimization 

algorithms are used to perform attacks on different PUFs. 

These models are RMSprop, Adadelta, Adam, and Nadam 

optimizations. The ANN structure in terms of the number of 

hidden layers, nodes, and activation functions are shown in 

Table 1. Moreover, the training conditions of the network-

based model are given in table 2.  

TABLE 2. Initial parameters set in ANN optimizers. 

Algorithm Parameter Default  

Value 

 
 

Adam 

 

Alpha (α) 0.001 

Beta1 (β1) 0.9 

Beta2 (β2) 0.999 

Number of iterations 1000 

 
 

RMSprop 

 

Discounting factor (rho) 0.9 

Momentum 0.0 

Centered False 

Number of iterations 1000 

 
 

Nadam 

 

Alpha (α) 0.001 

Epsilon (ε) 1e-08 

amsgrad False 

Number of iterations 1000 

 
 

Adadelta 

 

Discounting factor (rho) 0.9 

Epsilon (ε) 1e-08 

**kwargs clipvalue 

Number of iterations 1000 

 

As shown in Table 3, it is observed that the best accuracy for 

response prediction is 85.0 % for the ANN-based modeling 

with Adam on the Configurable ROPUF. 

TABLE 3. ANN-based prediction accuracy for PUFs 

Type of PUF Adadelta  RMSprop % Adam % Nadam % 

Inverter ROPUF 75.8 77.1 78.3 79.4 
Config. ROPUF 83.8 84.4 85.0 84.1 

Xor-ROPUF 68.0 69.2 70.3 70.0 
Arbiter PUF 69.3 70.1 71.9 72.1 
Hybrid PUF 7.5 8.1 8.9 9.7 

Modified PUF 9.1 9.7 10.3 10.7 

In the case of the Hybrid Delay based PUF and the Modified 

XOR-Inverter ROPUF, the two PUFs which are specially 

designed to thwart machine learning attacks, it is noted that 

the models are unable to predict the responses with higher

prediction accuracy. The best prediction accuracy of 10.7% 

is observed for the Nadam optimization. Figs. 12 (a), (b), (c), 

(d), (e), (f) show plots of the prediction accuracies versus the 

number of iterations for the Inverter ROPUF, Configurable 

ROPUF, XOR-Inverter ROPUF, Arbiter PUF, Hybrid Delay 

based PUF, and Modified ROPUF, respectively. It can be 

concluded from these plots that the prediction accuracy of 

the Nadam algorithm is higher than the other algorithms. Fig. 

13 shows the loss function of the different ANN-based 

optimization algorithms. It is observed from this figure that 

the Nadam optimizer converges faster than the other 

optimization algorithms. 

B. SWARM INTELLIGENCE BASED MODEL ATTACKS 

In this section, we describe how the Swarm Intelligence 

algorithms are used to train the ANN. The parameters chosen 

for SI algorithms to simulate the GSA, CS, PSO and GWO 

algorithms are given in Table 4. ANN-based models are 

trained for 1000 iterations and the algorithms are tested with 

an initial population of individuals in the range of 5-150. 

However, no improvement in prediction accuracy is achieved 

by increasing the number of individuals to more than 100; 

therefore, the number of individuals is kept at 100. 

TABLE 4. Initial parameters set in swarm algorithms 

Algorithm Parameter Default  

Value 

 

 

CS 

Detection probability (𝑝𝑎) 0.25 

Step length control  0.01 

Number of iterations 1000 

Number of bird nests 100 

Dimension 595 

 
 

 

GSA 

Initial gravitational constant (𝐺0) 100 

Constant values initialization (α) 20 

Number of iterations 1000 

Population Size 100 

Dimension 595 

 

 
 

PSO 

Cognitive influence (C1) 2 

Social influence (C2) 2 

Inertia weight (𝜔) [0.2, 0.9] 

Number of iterations 1000 

Number of particles  100 

Dimension  595 

 
 

 

GWO 

Decreases linearly (𝑎 ) [2, 0] 

Vector contains random values (𝐴 )   [-2𝑎 , 2𝑎 ] 

Vector contains random values (𝐶 )   [0, 2] 

Number of iterations 1000 

Number of wolves  100 

Dimension 595 
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                                   (a): Inverter ROPUF                                                                 (b): Configurable ROPUF 

 

 
                        
                           (c): Xor-Inverter ROPUF                             (d): Arbiter PUF 
 

 

 
               

  (e): Hybrid Delay Based PUF                                                   (f): Modified Xor-Inverter ROPUF 
 

 

FIGURE 12. ANN-based prediction accuracy vs number of Iteration for different PUFs 
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FIGURE 13. Loss function vs number of Iteration for different ANN optimizers. 

 

Table 5 lists experimental results for the accuracy, standard 

deviation, and runtime for four different PUFs using the GSA, 

CS, PSO and GWO Swarm Intelligence algorithms. From the 

table, it is evident that the PUF structures are vulnerable to 

Swarm Intelligence-based model attacks with prediction  

accuracies ranging from 71.1% - 88.3%. In contrast, for the 

machine learning ANN-based models, the prediction 

accuracies range from 68.0% to 85.0 %. Also, it is found from 

Table 3 and Table 5 that the prediction accuracies are much 

better for each of the listed PUFs when the GSA, CS, PSO and 

GWO based modeling attacks are used. Figs. 14 (a), (b), (c), 

(d), (e), (f) show plots of the prediction accuracies versus the 

number of iterations for the different PUF designs. It can be 

concluded from these plots that the prediction accuracy of the 

GWO algorithm is higher than the other algorithms. Also, the 

plots show that the GWO converges fast. For the two PUFs 

that were especially designed to thwart machine learning-

based attacks, namely: the Hybrid Delay based PUF and the 

Modified XOR-Inverter ROPUF, it is found that the prediction 

accuracies using the Swarm Intelligence algorithms are in the 

range of 9.8% to 14.5%, as shown in Table 5. Although in the 

low range, the prediction accuracies are better than those 

obtained from Machine Learning ANN-based attacks which 

range from 7.5% -10.7%. Here, also, it is observed that the 

performance of the GWO model is better than the others in 

terms of prediction accuracies. Fig. 15 shows the loss function 

of the different swarm-based algorithms. It is observed from 

the figure that the GWO converges faster than the other 

algorithms. 

   
 

TABLE 5. Swarm-based prediction accuracy, standard deviation, and runtime for PUFs 

Type of PUF 
GSA CS PSO GWO 

Accuracy 
% 

STD 
Time 
(Sec) 

Accuracy 
 % 

STD 
Time 
(Sec) 

Accuracy 
% 

STD 
Time 
(Sec) 

Accuracy 
 % 

STD 
Time 
(Sec) 

Inverter ROPUF 78.6 2.15 292.8 79.9 0.98 340.2 80.1 2.45 354.9 81.9 1.97 243.7 

Configurable ROPUF 85.3 3.37 521.8 85.2 2.61 530.1 86.5 3.75 585.3 88.3 4.10 452.2 

Xor-Inverter ROPUF 71.5 1.50 489.5 72.0 1.80 497.3 73.5 1.33 545.1 75.0 1.87 446.3 

Arbiter PUF 71.1 1.13 470.9 73.3 1.22 517.6 74.2 0.85 532.1 76.1 0.97 429.1 

Hybrid Delay PUF 9.8 1.57 513.2 10.1 1.71 550.3 11.2 0.67 567.6 13.3 0.55 490.3 

Modified ROPUF 11.3 1.43 501.3 11.5 0.97 530.1 12.4 0.53 545.3 14.5 0.71 440.9 
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(a): Inverter ROPUF                                                                   (b): Configurable ROPUF 

 

      
        

(c): Arbiter PUF                                (d): Xor-Inverter ROPUF 

 

  
               

      (e): Hybrid Delay Based PUF                                                 (f): Modified Xor-Inverter ROPUF 

 

 

FIGURE 14. Swarm-based prediction accuracy vs number of Iteration for different PUFs 
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FIGURE 15. Loss function vs number of Iteration for different swarm algorithms 

 

C. COMPARATIVE ANALYSIS AMONG DIFFERENT 
ALGORITHMS  
The prediction accuracies are much better for each of the listed 

PUFs when swarm-based modeling attacks are used. Table 6 

summarizes the prediction accuracies for the six different 

types of PUFs under study. It is observed from this table that 

the prediction accuracies, when the Swarm Intelligence 

models (GSA, CS, PSO & GWO) are used, are much better 

than the other algorithms for each of the listed PUFs. For 

easy comparison, the results in Table 6 are also shown in the 

chart of Fig. 16. It is clear from this figure that the GSA, CS, 

PSO and GWO optimizations in ANN give better prediction  

 

 

accuracy results than Adadelta, RMSprop, Adam, and 

Nadam optimization algorithms. The Swarm Intelligence-

based model attacks have prediction accuracies ranging from 

71.1% - 88.3%. In contrast, for the machine learning ANN-

based models, the prediction accuracies range from 68.0% to 

85.0 %. The prediction accuracies for the modified PUFs 

(Hybrid and Modified Inverter) are less because these PUFs 

have been especially designed to thwart machine learning 

attacks. It is found that the prediction accuracies using the 

Swarm Intelligence algorithms are in the range of 9.8% to 

14.5%, while the results obtained from Machine Learning 

ANN-based attacks with range from 7.5% -10.7%. 

 

TABLE 6. Prediction accuracy comparison for different algorithms 

Type of 

PUF 

Adadelta 

% 

RMSprop 

% 

Adam 

% 

Nadam 

% 

GSA 

% 

CS 

% 

PSO 

% 

GWO 

% 

Inverter 

ROPUF 
75.8 77.1 78.3 79.4 78.6 79.9 80.1 81.9 

Configurable 

ROPUF 
83.8 84.4 85.0 84.1 85.3 85.2 86.5 88.3 

Xor-Inverter 

ROPUF 
68.0 69.2 70.3 70.0 71.5 72.0 73.5 75.0 

Arbiter PUF  69.3 70.1 71.9 72.1 71.1 73.3 74.2 76.1 

Hybrid Based 
PUF 

7.5 8.1 8.9 9.7 9.8 10.1 11.2 13.3 

Modified 
ROPUF 

9.1 9.7 10.3 10.7 11.3 11.5 12.4 14.5 
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FIGURE 16. Prediction accuracies for different types of PUFs using different optimization models 

 

D. Statistical analysis of the results 

This subsection explains the statistical analysis of the various 

algorithm results, where multiple comparison procedures 

have been employed. In order to apply statistical analysis, a 

null hypothesis is defined, which implies that all the 

algorithms have the same performance without a significant 

difference; therefore, a denial of this hypothesis suggests the 

existence of differences between these algorithms. If the 

hypothesis is rejected, a significance value α is applied to 

decide the rejection level. The p-values are used to describe 

the significance of the hypothesis test. If the p-value is more 

significant than α, then there is not enough evidence to reject 

the null hypothesis. Otherwise, the hypothesis is rejected, 

which indicates that the algorithms have different 

performances. The Nonparametric Friedman test is used to 

compute p-values to define significant differences between 

the algorithms' prediction accuracy [58]. Then, a significance 

value α=0.05 is chosen. In computing the Friedman Value 

𝑭𝒇, the test ranks the algorithms according to the highest 

prediction accuracy (Rank 1), the second highest (Rank 2), 

down to the lowest ranking. The Friedman test computes 𝑭𝒇 

Value as: 

 

𝐹𝑓 = 12𝑛

𝑘(𝑘+1)
[∑𝑅2 − 𝑘(𝑘+1)2

4
]                           (27) 

 

where, R is the ranks, n is the number of PUF datasets, k is 

the number of algorithms, and the statistic is distributed 

according to 𝐹𝑓  with k − 1 degrees of freedom [59,60]. 

Table 7 shows the obtained average rankings of the 

algorithms by  the Friedman Test based on prediction 

accuracy.  

 

GWO has the best performance in prediction accuracy 

among all algorithms; therefore, it has a rank of 1 and will be 

used as the control algorithm. The result obtained from the 

Friedman test, including its corresponding associated p-

value, is shown in Table 8. From the table, it is observed that 

the p-value is lower than the level of significance (0.05); 

therefore, there are significant performance differences 

between the algorithms, which implies that the null 

hypothesis is rejected. Considering the differences between 

the algorithms, we need a post-hoc procedure to identify 

these differences and then find out the p-value in order to 

determine the hypothesis rejection degree. Holm's procedure 

has been used to determine whether the control algorithm 

presents statistical differences concerning the remaining 

algorithms [61]. 

 

TABLE 7. Average rankings of the algorithms by Friedman Test 

Algorithm Ranking 
GWO 1 
PSO 2 
CS 3.25 

GSA 4.25 
Nadam 4.75 

RMSprop 5.75 
Adadelta 7 

TABLE 8. Results of the Friedman Tests 

Friedman Value p-value 

21.99937 0.00121 
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Holm’s procedure compares the control algorithm, GWO, 

with the other remaining algorithms, which consider a 

multiple comparison procedure. The test statistic, z value, is 

used to find the corresponding probability from the table of 

the normal distribution: 

 

     Z =
R𝑖−R𝑗

√
k(𝑘+1)

6𝑁 

                                            (28)  

 

where, Ri and Rj are the average rankings by the Friedman 

test of the algorithms compared [62]. These unadjusted p 

values are used to compute p-Holm sequentially and test the 

hypotheses ordered by their significance level of confidence 

α. Table 9 shows that when the highest prediction accuracy 

algorithm (GWO) is used as a control algorithm, it performs 

better than Adadelta, RMSprop, Nadam and GSA with α = 

0.05, and GWO outperforms all the algorithms with α = 0.10 

except PSO. 

TABLE 9. Adjusted p-values. GWO is the Control Algorithm 

Algorithm Z 
Unadjusted 

p-value p-Holm 

Adadelta 4.242641 0.000022 0.000132 

RMSprop 3.358757 0.000392 0.001960 

Nadam 2.651650 0.004006 0.016024 

GSA 2.298097 0.010781 0.032343 

CS 1.64521 0.049964 0.099928 

PSO 0.707107 0.239752 0.239752 

 
 
VII. CONCLUSION 

Various Machine Learning based attack models have been 

used recently to breach the security of PUFs. In this work, 

we study six different types of PUFs to ascertain their 

resiliency to such attacks. We especially focus on swarm 

intelligence-based algorithms to further study the 

vulnerability of these PUFs to learning attacks. To the best 

of our knowledge, swarm-based algorithms have not been 

investigated earlier to test the security of PUFs. In this paper, 

Artificial Neural Network modeling attacks on different 

types of PUFs using the Gravitational Search Algorithm 

(GSA), Cuckoo Search Algorithm (CS), Particle Swarm and 

Grey Wolf Optimization are presented. From the results, it is 

observed that the swarm intelligence algorithms produce 

better response prediction accuracy results (71.1% - 88.3%) 

when compared to other well-known Machine Learning 

ANN-based algorithms (68.0% - 85.0%). Amongst the SI 

algorithms, the GWO algorithm performs better in predicting 

the CRPs than the rest. It is observed that the Configurable 

ROPUF is the most vulnerable and its response can be 

predicted with an accuracy of 88.3% when the GWO is used. 

For the Modified XOR-Inverter ROPUF, which has been 

especially designed to thwart machine learning attacks, it is 

found that the Grey Wolf Optimizer can predict the response 

with 14.5% accuracy. Although swarm intelligence 

algorithms used in this paper require considerable 

computational time, the prediction accuracy of the proposed 

method is better than ANN-based models. For future work, 

the proposed method can be used to improve the 

performance metrics of PUFs and for developing 

countermeasures against modeling attacks.  
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