
SLA-DRIVEN ML INFERENCE FRAMEWORK FOR CLOUDS WITH
HETEROGENEOUS ACCELERATORS

Junguk Cho 1 Diman Zad Tootaghaj 2 Lianjie Cao 2 Puneet Sharma 2

ABSTRACT
The current design of Serverless computing frameworks assumes that all the requests and underlying compute
hardware are homogeneous. This homogeneity assumption causes two challenges in running ML workloads
like Deep Neural Network (DNN) inference services on these frameworks. Such workloads can have various
request types and might require heterogeneous accelerators. First, existing serverless frameworks are threshold-
based and use simple query per second or CPU utilization as autoscaling rules, thus ignoring heterogeneous
requests and accelerators, resulting in sub-optimal performance. Second, ignoring infrastructure heterogeneity for
workload scheduling and inference request distribution can lead to further performance inefficiencies. To address
these challenges, we propose SLA-aware ML Inference Framework, which is a novel application and hardware-
aware serverless computing framework to manage ML (e.g., DNN) inference applications in a heterogeneous
infrastructure. Our framework designs an intelligent autoscaling strategy by leveraging rich, precise workload-
specific metrics and heterogeneous GPU compute capability. We schedule functions on the suitable GPU
accelerators and proportionally distribute inference requests to the deployed functions based on the autoscaling
decision. In addition, our framework enables efficient shares of GPU accelerators with multiple functions to
increase resource efficiency with minimal overhead. Unlike prior works, we use application-specific SLA metrics
to make scheduling/autoscaling decisions. We implement a prototype of our framework based on the Knative
serverless framework and evaluate its performance with various DNN models.

1 INTRODUCTION

Serverless computing has emerged as a new and compelling
paradigm for the deployment of cloud-native applications
and services due to simple programming abstraction, mini-
mal infrastructure maintenance, and flexible cost manage-
ment with pay-as-you-go billing model. In addition, it pro-
vides new features that make building scalable microser-
vices easier and more cost-effective. Further, the popular-
ity of ML applications, particularly Deep Neural Network
(DNN) inference serving applications on different domains,
have lured programmers to host these models on serverless
platforms (Ishakian et al., 2018; Bhattacharjee et al., 2019b;
Feng et al., 2018; Wang et al., 2019; Bhattacharjee et al.,
2019a). Since the requests are generated by different users
with different computing and memory demands, a heteroge-
neous system with diverse computing power and memory
capacity helps to improve QoS and cost savings (Baldini

1 During this project, some of the contributors have changed
their affiliated institutions. All of the work was done by them dur-
ing their employment at Hewlett Packard Enterprise. 2Hewlett
Packard Labs. Correspondence to: Diman Zad Tootaghaj
<diman.zad-tootaghaj@hpe.com>.

Proceedings of the 5 th MLSys Conference, Santa Clara, CA, USA,
2022. Copyright 2022 by the author(s).

et al., 2017; Yan et al., 2016). Especially in many DNN-
based use cases (e.g., deep learning-based vision applica-
tions), hardware accelerators are required to meet stringent
latency requirements/SLAs. This makes the support for
heterogeneous hardware on serverless platforms essential.

However, the inference services leveraging heterogeneous
hardware (e.g., GPU, FPGA, and TPU) in serverless comput-
ing have not been extensively explored yet. This is mainly
because the current design of serverless computing frame-
work is based on the assumption that all requests and com-
puting hardware are homogeneous. This assumption causes
several problems in heterogeneous environments. First, ex-
isting serverless frameworks do not consider the application
and hardware-specific metrics to make autoscaling decisions.
Most of them mainly use simple query per second (QPS) or
CPU utilization as autoscaling metrics without considering
the heterogeneity of incoming inference requests and hard-
ware accelerators, leading to sub-optimal performance, as
we will see in the evaluation section.

Since autoscaling is a crucial feature of serverless comput-
ing to meet performance requirements and cost in real-world
use cases, it is essential to design an autoscaling approach
that utilizes the resources efficiently and responds quickly
to the dynamic workload changes and hence application

SLA-Driven ML INFERENCE FRAMEWORK FOR CLOUDS WITH HETEROGENEOUS ACCELERATORS

resource requirements. Second, existing serverless frame-
works are designed to place and schedule the functions on
homogeneous infrastructure2. In addition, the incoming
requests can also be heterogeneous with respect to the task
type and the data size within a specific task, e.g., batch sizes
for image inferencing services. Existing serverless frame-
works use simple round robin-based policies for workload
scheduling and request distribution without considering this
heterogeneity.

In this paper, we focus on designing a serverless framework
for such inference services on heterogeneous hardware ac-
celerators and try to answer the following questions: (i) what
are the key metrics to capture inference performance and
how to efficiently collect them, (ii) how to make autoscal-
ing and placement decisions for inference applications on
heterogeneous hardware accelerators, and (iii) how to dis-
tribute heterogeneous inference requests (e.g., with different
batch sizes) to applications with heterogeneous hardware
accelerators. The major contributions are as follows.

(i) We propose SMIF (short for SLA-driven ML inference
framework), a heterogeneity-aware serverless framework
for ML inference services on heterogeneous infrastructure
to address those challenges. The core component of our
framework is the intelligent scheduler that, firstly, leverages
the knowledge of heterogeneous GPUs (e.g., GPU compute
capability, memory, and NVIDIA Multi-Process Service
(MPS) capability) and specific information of ML inference
applications (e.g., inference-specific metrics such as infer-
ence request per second, request execution time, and request
type such as batch size). Secondly, unlike existing serverless
frameworks that assume the homogeneous functions run-
ning on homogeneous infrastructure, our framework takes
function and compute heterogeneity into account. Finally,
our framework manages the homogeneous functions as a
group. When our framework needs to make orchestration
decisions (e.g., autoscaling, workload placement, and in-
coming request distribution), it leverages a global view by
aggregating information from heterogeneous groups.

(ii) Our system allows users to specify the application SLA
(e.g., target latency and inference per second) and specific
application contexts (e.g., application metrics and infer-
ence interface or protocol) in the function description. Fur-
thermore, based on the function description, our frame-
work provides a generic monitoring system to collect both
application-specific metrics exposed by the ML inference
applications (if available) and application-agnostic metrics
from the underlying platform (e.g., Kubernetes and Knative).
The autoscaler component of our framework configures the

2In our framework, each function runs on one container, and
each application with multiple functions runs on one or multi-
ple containers. In the remainder of the paper, we use the terms
“function” and “container” interchangeably

App developer

Gateway

Serverless orchestrator
Scheduler

User interface Control plane Data plane

....Functions Functions

Function builder
Compute cluster

Request &
Response

App clients

Autoscaler
Decision maker
Metric collector

Figure 1. Serverless framework architecture.

target SLA from the application description and classifies
functions into multiple groups based on the assigned hard-
ware types. With the metric information collected from dif-
ferent groups and the application SLA, the autoscaler makes
decisions to scale up/down the application on heterogeneous
hardware and distribute inference requests accordingly.

(iii) In addition, our framework leverages the service mesh
(e.g., Istio (ist, a)) to distribute inference requests based
on the collected metric information and the inference re-
quest type. More specifically, we support two inference
workload routing policies: hardware-aware and inference
request-aware for homogeneous and heterogeneous infer-
ence requests respectively in order to meet computation
fairness unlike inference request fairness with round-robin
routing policy.

(iv) To the best of our knowledge, this paper presents the
first system with a GPU scheduler and device manager that
enable heterogeneous GPU managements and application
placement based on the compute capabilities of the GPU
(e.g., memory and MPS).

(v) We have built a prototype of our framework using Kna-
tive Serving (kna, a) and container orchestration platform
Kubernetes (k8s, a). We create new components and extend
existing components (e.g., traffic manager, GPU scheduler
and device manager, autoscaler) by leveraging the plug-
gable/extensible interfaces in Knative and Kubernetes.

(vi) We evaluate our prototype with TensorRT Inference
Server (TRTIS) (trt, a) as an image recognition application
with various DNN models on heterogeneous GPUs. To the
best of our knowledge, our framework is the first holistic
serverless framework designed for ML inference applica-
tions that leverage heterogeneity of inference requests and
infrastructure.

2 BACKGROUND

This section describes the background behind serverless
frameworks and ML Inference services and the associated
challenges in this area.

2.1 Serverless Frameworks

Figure 1 shows a generic serverless framework. It consists of
(i) a serverless orchestrator which receives function descrip-
tions from application developers, schedules the functions,

SLA-Driven ML INFERENCE FRAMEWORK FOR CLOUDS WITH HETEROGENEOUS ACCELERATORS

and dynamically scales-up/down the deployed functions
based on the status of workload in functions measured in the
metric collector, (ii) functions which perform application-
specific computation running on a cluster of compute hosts
when they receive requests. When there are no requests for a
certain period of time for a specific function, the autoscaler
scales down the function to zero, which is called zero scale,
and (iii) a gateway is a proxy between functions and ap-
plication clients, which uniformly distributes traffic from
application clients to multiple functions. In addition, the
gateway holds the requests before the function is ready in
case of zero scale, and sends a notification to the autoscaler
to launch new functions for the requests.

Autosclaer is one of the critical components of our serveless
framework, which decides to dynamically scale-up/down
functions based on the current loads of running functions.
Various metrics (e.g., request per second (rps), the number
of in-flight request (called concurrency), CPU utilization,
etc.) with threshold-based autoscaling with sliding windows
algorithm are used to make the auto-scaling decisions. For
example, with concurrency, the autoscaler evaluates the
windows and decides scale-up/down the number of replicas
(i.e., the number of replicas = concurrent requests

specified threshold).

To quickly react to dynamics of requests (e.g., bursty re-
quest), the autoscaler operates on two modes (i.e., stable
and panic modes) based on two long and short sliding win-
dows. In stable mode, the autoscaler calculates the average
concurrency over a long time window (e.g., 60s) to evaluate
stable scale-up/down decisions. However, since the stable
mode is not responsive to handle bursty and sudden requests,
the auto-scaling also operates short time windows (e.g., 6s)
called panic mode. The auto-scaling mode transitions from
stable to panic when the average window reaches two times
more than the specified concurrency threshold from users.

2.2 Deploying ML Inference Services

ML inference services with trained ML models usually run
on ML accelerators (e.g., GPU, FPGA, TPU, etc.) due to
their intensive computation requirements and the require-
ments of inference services (e.g., low latency). So, before
deploying the trained models with inference services on
ML accelerators, the trained ML models are optimized for
specific ML accelerators to achieve high performance based
on their hardware characteristics (e.g., computational capa-
bilities). Manual and automated approaches are currently
used for ML model optimizations. In a manual optimiza-
tion approach, each accelerator vendor provides specific
libraries optimized by human experts who understand the
hardware-specific knowledge well. (e.g., TensorRT (ten),
cuDNN (nvi, a) for NVIDIA GPUs and Intel Math Kernel
Library (MKL) (int) for Intel CPUs). The automated per-
formance optimization (Chen et al., 2018; Liu et al., 2019;

Vasilache et al., 2018) finds optimized low-level implemen-
tations for specific hardware without the human experts in a
vendor-agnostic way. While the two approaches to optimize
the ML model are different, they generate various optimized
models based on accelerators, precision, and batch size from
the same trained model. The optimized models show dif-
ferent performance and resource requirements (e.g., GPU
memory) based on accelerators, precision, and batch size.
We show the detailed analysis in Section 3.

2.3 GPU Sharing Strategies

The NVIDIA Multi-Process Service (MPS) (cud, b) and
Multi-Instance GPU (MIG) (cud, a) are designed to enable
co-operative multi-process CUDA applications to utilize
the latest NVIDIA GPUs. Without MPS, only one process
can use the GPU at a given time (i.e., time multiplexing
among multiple processes), and GPU resources can be un-
derutilized. To address this problem, NVIDIA proposes
GPU sharing features (e.g., MPS and MIG) to enable multi
processes to use the Hyper-Q capability on NVIDIA GPUs.
Hyper-Q can simultaneously process the CUDA kernel of
NVIDIA GPUs on the same GPU. Since GPU compute
capacity is usually underutilized by a single application pro-
cess, MPS can improve resource efficiency. The NVIDIA
Volta GPU architecture introduces several new MPS capabil-
ities (cud, b): 1) Volta MPS clients can submit tasks directly
to the GPU without passing through the MPS server, 2)
Each Volta MPS client owns its own GPU memory address
space instead of sharing GPU memory address space with
other MPS clients, and 3) Volta MPS supports limited exe-
cution resource provisioning for Quality of Service (QoS).
However, existing container platforms (e.g., Kubernetes)
only support exclusive GPU allocation that assigns the en-
tire GPU to one application (kub, b) or a time multiplexing
approach to share GPUs (Dee; Ali) among multiple applica-
tions. This may cause resource inefficiency and performance
interference.

3 MOTIVATION

This section motivates the need for heterogeneity-aware
scheduling of ML inference applications by benchmark-
ing the performance of TensorRT Inference Server (TR-
TIS) (trt, a) with several DNN models (e.g., InceptionV3,
MobileNetV1, MobileNetV2, and ResNetV2) on different
GPUs (e.g., NVIDIA Tesla V100, P100, and K40). This
work focuses on three types of heterogeneity: GPU compute
capability, inference request, and GPU resource allocation.

Heterogeneous GPU Compute Capability
Different GPU architectures provide different computational
capacities and performance for each application. One of
the limitations of current serverless frameworks is the ho-
mogeneity assumption that does not consider each cluster

SLA-Driven ML INFERENCE FRAMEWORK FOR CLOUDS WITH HETEROGENEOUS ACCELERATORS

 0

 500

 1000

 1500

 2000

Inceptionv3

M
obileN

etV
1

M
obileN

etv2

R
esnetV

2

In
fe

re
n
ce

 p
er

 s
ec

o
n
d

v100 k40 p100

Figure 2. DNN inference performance.

Batch Size Throughput (inf/s) Response Time (ms)

1 68.6 168
16 164.267 1,226
64 170.667 4,242
128 183.467 4,598

Table 1. Throughput and response time of different batch sizes.

node’s different computational capacity and hardware fea-
tures. The workload is usually distributed uniformly across
all cluster nodes, while we show that this assumption leads
to performance degradation. This section shows how com-
pute capability differs among different GPU models.

We conduct experiments to measure inference performance,
requests per second, and GPU resource usage (i.e., GPU
memory) of different ML models running on different GPUs
with batch size 1. Figure 2 shows that the inference per-
formance varies significantly when running the same ML
model on different GPUs. Therefore, when deploying ML
inference services as serverless functions on different GPUs,
the GPU heterogeneity needs to be considered to meet the
target SLA (e.g., throughput and latency). For example, if a
less powerful GPU meets the application’s target SLA, the
serverless framework should run functions on that GPU to
save cost.

Heterogeneous Inference Requests
Existing serverless frameworks mainly use simple metrics
such as query per second (QPS) or CPU utilization to make
autoscaling decisions (e.g., scale up/down functions) (aut,
a;c;b). However, not all requests are the same. To under-
stand the impact of the inference requests with different
batch sizes (i.e., number of images in the same request) and
how existing autoscalers react to such heterogeneous infer-
ence requests, we generate multiple consecutive inference
requests in 15 seconds with different batch sizes.

As shown in Table 1, a larger batch size yields higher
throughput (inferences per second) and higher response
time. It is a common practice to “batch” multiple images in
the same inference request to improve the overall throughput
of inference services and reduce the average processing time
of each image (Kochura et al., 2019; Kosaian et al., 2021).
However, the end-to-end response time is also increased
because the server has to complete the inference tasks for all
images in the same batch before sending the response back

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

Inceptionv3

M
obileN

etV
1

M
obileN

etv2

R
esnetV

2

In
fe

re
n

ce
 p

er
 s

ec
o

n
d

No MPS MPS

Figure 3. Shared GPU performance.

to the client. Moreover, since the default Knative autoscaler
cannot differentiate the inference requests with batch sizes,
it fails to scale the functions to process inference requests
with larger batch sizes. Since one of the critical features of
serverless computing platforms is to meet the performance
requirement of each application, the autoscaler needs to
consider application-specific metrics such as batch sizes to
make autoscaling decisions.

We get similar results for utilization-based autoscaler. Since
performing ML inference (especially for DNN models)
mainly runs on accelerators (e.g., GPUs), the CPU utiliza-
tion cannot correctly capture the accurate status of ML infer-
ence applications. Thus, the default autoscaler fails to scale
up due to low CPU utilization even though more replicas
are expected to achieve the target SLA.

GPU Sharing and Allocation
With NVIDIA MPS and MIG technologies, a GPU acceler-
ator can be separated and shared by multiple ML inference
applications at the same time without introducing perfor-
mance interference. Figure 3 shows the throughput of the 8
ML inference applications sharing the same NVIDIA Tesla
V100 GPU. We compare the performance of different DNN
models with and without MPS enabled. With MPS enabled,
the inference applications of all ML models show signif-
icantly better performance because the resource isolation
of MPS can efficiently prevent performance interference
among the applications sharing the same V100 GPU. This
technology is also used in other research work for ML model
training and hyperparameter tunning (Yu et al., 2021). With
GPU sharing technologies (e.g., NVIDIA MPS and MIG),
we can achieve more fine-grained GPU resource allocation
to achieve better GPU resource efficiency for cloud/infras-
tructure providers and lower operation costs for service
operators. However, existing container orchestration plat-
forms and serverless frameworks (k8s, d; nuc; blu) are only
able to assign dedicated GPU(s) to one container or func-
tion. Ideally, the serverless framework should be able to
automatically 1) identify whether GPU sharing technologies
are available on each cluster node and 2) allocate the appro-
priate amount of GPU resources based on the GPU compute
capability and the target SLA to an ML inference appli-
cation. This work focuses on enabling fine-grained GPU
resource allocation through NVIDIA MPS for serverless

SLA-Driven ML INFERENCE FRAMEWORK FOR CLOUDS WITH HETEROGENEOUS ACCELERATORS

App developer

Gateway

Serverless
orchestrator

User interface Control plane Data plane

Function builder
Request &
Response

App clients

Autoscaler
Decision maker
Metric collector

Traffic manager

Scheduler
GPU scheduler

Compute cluster

GPU device manager

....
Queue proxy &
metric handler

AI/ML inference &
app-secific metrics

Functions

Queue proxy &
metric handler

AI/ML inference &
app-secific metrics

Functions

Figure 4. SLA-driven ML Inference Framework Architecture

applications.

4 FRAMEWORK DESIGN
4.1 Design Goals
We identify several key goals to design a heterogeneity-
aware serverless platform for DNN inference service. First,
the platform should offer a better abstraction for policy in
Serverless to express the user’s Service-Level Agreement
(SLA). For example, required latency or inference per sec-
ond is more intuitive than query per second and request per
second for DNN inference service. Second, the platform
should support various application-specific and agnostic
metrics to make better orchestration decisions. Finally, the
platform should orchestrate autoscaling and traffic man-
agement for the application to meet target SLA with the
collected metrics and target SLA. Notably, the framework
should leverage heterogeneous application requests (e.g.,
different batch sizes) and hardware capabilities (e.g., com-
putation power, memory, sharing efficiency, etc.) to make
intelligent workload distribution and deployment.

4.2 Architecture Overview & Workflow

Figure 4 shows an overview of the proposed serverless plat-
form. Our framework has the same essential components
described in a generic serverless framework. It introduces
new components depicted in color to enable application and
hardware-aware DNN inference services on heterogeneous
clouds. Specifically, it has GPU scheduler and GPU device
manager to schedule inference applications and manage
the heterogeneous GPU devices. GPU device manager is
deployed in every GPU server and is responsible for report-
ing the GPU information to the GPU scheduler and health
check of GPU devices and specific GPU configurations (e.g.,
MPS). GPU scheduler stores the GPU information (e.g.,
GPU models, GPU memory, MPS capability, computation
capability) and leverages the information while schedul-
ing inference applications. While scheduling the inference
application, the queue-proxy is deployed with every func-
tion and configured to collect application-specific/agnostic
metrics. Autoscaler collects various and rich metric infor-

mation from the queue-proxy and makes the decision for
scale-up/down and workload distribution in autoscaler. Fi-
nally, Traffic manager configures the gateway for workload
distribution based on hardware capabilities and inference
requests.

Using the new components in our framework, the follow-
ing describes a step-by-step procedure for deploying and
managing inference applications. (i) Submit application:
application developers submits the description of inference
application with required SLA (e.g., target latency or infer-
ence per second) to Function builder. The Function builder
converts the description to the platform-specific function
description. (ii) Schedule the application: All scheduling
requests in our framework are first forwarded to a default
scheduler, and only scheduling requests for applications
(e.g., inference application) requiring GPU are further for-
warded to the GPU scheduler. Since the inference applica-
tion requires GPU resources, GPU scheduler receives the
function description and schedules the inference application
on GPU. When the inference application is scheduled, one
queue-proxy server is injected with the inference applica-
tion. (iii) Configure autosclaer and traffic manager: the
autoscaler and traffic manager get notification of launch-
ing inference application with its descriptions (e.g., target
SLA and application-specific metrics). The autoscaler starts
scraping metrics from the queue proxy server and makes
scale-up/down decisions based on the collected metrics. The
traffic manager configures the gateway to forward applica-
tion requests to the inference application. (iv) a Serving
inference requests: The deployed application is ready and
starts serving the inference request, and the metric handler
in a queue proxy collects application-specific metrics and
application-agnostic metrics and exposes them to autoscaler.
Queue-proxy scrapes the application-specific information
provided by inference application if available, and the avail-
ability of application-specific information is based on the
function description.

After the initial deployment, our framework manages the
inference application to meet the required SLA. Specifically,
the autoscaler makes scaling-up/down decisions and traffic
distributions to functions based on collected metrics and the
required SLA. The autoscaler sends requested information,
such as application-specific and SLA metrics, to the sched-
uler and traffic manager if needed, and then the steps (ii) to
(iv) are repeated.

4.3 Application-specific/agnostic metrics

Our framework collects application-specific/agnostic met-
rics since precise and rich metrics of deployed applications
are important for autoscaling decisions. The queue proxy is
responsible for forwarding the traffic and collecting metrics
that are exposed to the autoscaler.

SLA-Driven ML INFERENCE FRAMEWORK FOR CLOUDS WITH HETEROGENEOUS ACCELERATORS

Since recent application developers advocate including logic
to expose application-specific metrics via monitoring soft-
ware (e.g., prometheus (pro)) for better observability and
analysis (clo, a), application-specific metric information is
collected in queue-proxy. For example, popular inference
serving frameworks (e.g., TRTIS (trt, a), tensorflow serv-
ing (tfs, a)) support common metrics (e.g., request count,
inference execution count, inference execution time, queue
time, etc) (tri; tfs, c).

When the application exposes its specific metrics, the
application-specific metrics information is provided by ap-
plication developers in their application specification, and
it is automatically set up in the queue-proxy. Then, the
queue proxy collects its metrics through the local network
interface. These application-specific metrics are precise and
explicit since they capture the status of the application. For
example, since many inference applications support various
batch sizes in one inference request to get high throughput,
shown in Figure 2, simply counting the number of inference
requests does not capture a specific workload.

If the application does not expose its metrics, queue-proxy
collects application-agnostic metrics. Since the queue-proxy
is a layer seven proxy (e.g., supporting HTTP and GRPC), it
can collect various application-agnostic information. It can
collect the number of requests and the number of concurrent
requests by counting inference requests (e.g., HTTP, GRPC
request). Further, it can measure histogram of inference
execution time by observing the time between sending a
request to an application to receiving its corresponding re-
sponse from the application and histogram content-length
field in HTTP header, which indirectly exposes the number
of images in one inference request (i.e., batch size).

4.4 Autoscaler

One of the core components of our framework is the Au-
toscaler which consists of a metric collector and decision-
maker for scaling up/down functions based on the collected
metrics and the target SLA of the application. The target
SLA is set up in autoscaler when the application description
is submitted. The critical design decision of autoscaler is to
consider the same application running on the same GPUs
(homogeneous autoscaling) and running on different GPUs
(heterogeneous autoscaling).

The autoscaler manages the homogeneous application as
a group. This decision provides multiple advantages with
respect to metric collections, traffic distributions, and scal-
ing decisions. While prior serverless frameworks use CPU
utilization or query per second as a metric to scale up/down
the number of pods (ope; k8s, a), our framework is SLA-
driven and uses application-specific metrics to make such
decisions.

4.4.1 Metric collector

Metric collector in the autoscaler scrapes metrics from only
one of the queue-proxies deployed with the application in
each group simultaneously. Since the inference requests
are forwarded to multiple functions belonging to the same
group in a uniform distribution fashion, the metric collector
can estimate overall load by multiplying the metric from
only one application in one group to the number of functions
on the same accelerator. This approach helps to reduce the
overhead of collecting metrics in autoscaler. In addition,
the metric collector has a global view of load by scraping
metrics from each group simultaneously.

4.4.2 Provision the inference applications

In our framework, we have three scaling decisions and work-
load distribution decisions.

• Homogeneous scale-up/down: scale-up/down the applica-
tion on the same hardware.

• Heterogeneous scale-up/down : scale-up/down the appli-
cation on the different hardware. It enables the application
to gracefully scale down to zero using low-end GPUs or
limiting available CUDA thread allocation with MPS.

• Workload distribution: the ratio of the inference request
distribution to heterogeneous groups when the applications
are deployed in heterogeneous GPUs.

The critical question here is how to make homogeneous or
heterogeneous scale-up/down decisions. The decision is
based on various application-specific/agnostic metrics (e.g.,
absolute inference execution time, queueing delay, etc.).

Workload distribution: An application can get deployed
in heterogeneous GPUs based on the availability of GPUs
when the GPUs can meet the SLA of the application. Since
the workload distribution is initially uniform, each GPU ap-
proximately receives the same workload, but the execution
time is different according to GPU computation power. The
autoscaler can recognize relatively sluggish groups since
the metric collector scrapes histogram of the execution time
of inference requests and queueing delay in each group.
Based on the information, autoscaler dynamically adjusts
the workload distribution ratio and sends the information to
the traffic manager.

4.5 Traffic manager

The traffic manager is responsible for managing inference
workload distribution by controlling the gateway in our
framework. It supports two inference workload routing
policies: hardware-aware and inference request-aware rout-
ing. The hardware-aware routing policy is based on the
information from the service rate monitoring module that
periodically specifies each application’s service rate on each

SLA-Driven ML INFERENCE FRAMEWORK FOR CLOUDS WITH HETEROGENEOUS ACCELERATORS

node. It adjusts the workload distribution ratio on hetero-
geneous groups. The traffic manager updates traffic weight
rules for each group in the gateway if the inference request
is homogeneous (i.e., the batch size is uniform).

When the inference request is heterogeneous (i.e., each in-
ference request has a different batch size. In other words,
one inference request has a different number of images to be
inferred), the heterogeneous inference request is distributed
to different GPUs based on their computation capabilities.
In this case, the traffic manager updates the gateway to apply
inference request-aware routing policy. Basically, inference
request-aware routing policy decides the destination of func-
tions based on a specific field (e.g., batch size) in inference
request if available or content-length field which approxi-
mately estimates batch size in request header (e.g., HTTP or
GRPC header). As batching request has performance advan-
tage (i.e., increase throughput), popular inference serving
frameworks (e.g., triton (trt, a), tensorflow serving (tfs, a))
support the batch requests with specific header field (trt, b;
tfs, b). Since the batch size is an application-specific request
header field, the application developers should provide this
information when submitting the application description.
The traffic manager notifies this header information and
configures it to gateway using StringMatch capability (ist,
b) based on GPU computation capability. Assuming D/D/1
queues, we use the following equilibrium property to dis-
tribute the traffic on different nodes:

µ1

λ1
=

µ2

λ2
= ... =

µN

λN
(1)

Where, µi is the service rate of node i in the cluster, and λi is
the arrival rate of the job that should be distributed to node i
in the cluster. Intuitively, this equilibrium property says that
if the service rate of a job on node i is X times the service
rate of the job on node j, then we need to distribute X times
more requests to node i than node j. We currently rely on
the developer’s input or content-length fields in the inference
request header for inference request-aware routing policy.
Since there are extensive efforts for standardizing inference
request (e.g., Predict Protocol in KFServing (kfs, b) and
CloudEvents (clo, b)), the request-aware routing policy in
our framework can be applied to all inference applications
following the generic request standard.

4.6 GPU Scheduler and Device manager

We introduce two components to manage GPU resources
and assign them to inference applications.

4.6.1 GPU Device manager

GPU device manager in our framework is deployed in
every GPU node and responsible for reporting GPU
hardware specifications (e.g., GPU models, GPU mem-
ory, MPS capability, computation capability) to our
GPU scheduler, health check of GPU and NVIDIA

Annotations Description
latency Target latency

user-metrics Enable user-specific metrics
initialDesiredScale The number of initial functions

volume-mounts Persistent volume name
gpu-model GPU model (e.g., k40, v100)
dnn-model DNN model name (inceptionv3)

dnn-quantization DNN quantization (fp32, fp16)
infer-batch-size Inference batch size
gpu-mem-limit GPU Memory

mps-on MPS enabler
gpu-core-percentage GPU core percentage

gpu-count The number of GPUs

Table 2. Used Annotations.

MPS daemon management if GPU supports MPS. In
addition, at runtime, it inserts GPU-related environ-
ment variables (e.g., CUDA VISIBLE DEVICES or
CUDA MPS ACTIVE THREAD PERCENTAGE) for the
application before deploying the application container on
the GPU node.

4.6.2 GPU-aware Scheduler

Our GPU scheduler takes care of the placement of infer-
ence applications submitted from users or autoscaler on
GPUs. GPU scheduler gets notifications of detailed GPU
information from GPU device manager whenever new GPU
servers are added or removed and maintains the heteroge-
neous GPUs. It continuously keeps track of available GPU
resources (e.g., GPU memory, thread percentage on GPU)
and GPU capability (e.g., MPS) while assigning and re-
leasing the GPU resource to and from the application. The
scheduler in our framework does not allow GPU memory
overcommitment since applications using GPU can easily
crash when they do not have enough GPU memory.

Our GPU scheduler takes a best-fit scheduling policy that
looks at the number of logical GPUs requested by the appli-
cation and assigns the physical GPU with the smallest free
partition that meets the requirements.

5 IMPLEMENTATION

We implemented the SMIF architecture using KNative Serv-
ing (kna, a) which are built on service mesh (e.g., Istio (ist,
a)) and container orchestration platform Kubernetes (k8s, a).
Since Knative Serving is built on Istio and Kubernetes, it al-
ready provides critical components (e.g., autoscaler, metric
collector, queue-proxy), and programming APIs to develop
and deploy serverless applications. Especially we leverage
well-defined pluggable/extensible interfaces or frameworks
for our extensions (e.g., traffic manager, GPU scheduler and
device manager, autoscaler) in Kubernetes, which allows us
to replace or extend them relatively quickly.

SLA-Driven ML INFERENCE FRAMEWORK FOR CLOUDS WITH HETEROGENEOUS ACCELERATORS

5.1 System Implementation

Job description: We enable several parameters explained in
Table 2 to specify the job description. These parameters are
used in several components (e.g., target latency in autoscaler,
GPU model information in GPU scheduler, DNN model
information in webhook, etc.).

Application metric collection: In KNative serving, one
queue-proxy container is injected as a sidecar container
when the serverless application starts. This queue-proxy col-
lects various metrics and exposes them to the autoscaler us-
ing Prometheus server (pro). We extend the queue-proxy to
collect application-specific metrics (e.g., inference request
count, inference execution count, inference request duration,
inference computation duration, and inference queue dura-
tion) offered by the prometheus metric server in the applica-
tion and application-agnostic metrics (e.g., HTTP request
count, concurrent request count, and latency histogram, etc).
The application-agnostic metrics are collected whenever an
HTTP request event happens, and the application-specific
metrics are collected every second. With the configuration
of queue-proxy of the application, queue-proxy decides to
collect the application-specific metrics if the application has
a Prometheus server.

Autoscaler: We implement our autoscaler by refactoring
autoscaler in Knative Serving. Our autoscaler collects the
application-specific and agnostic metrics exposed by the
queue-proxy every second. Based on these metrics, our
autoscaler leverages application-specific information and
application-agnostic latency histogram by comparing la-
tency specified by users to make the decision to scale-
up/down the application instead of Query Per Second (QPS),
Request Per Second (RPS) in Knative Serving, The au-
toscaler updates its scaling decision to GPU scheduler. The
autoscaling decisions are written as annotations in the job
description, used in our GPU scheduler.

GPU scheduler: We implement GPU scheduler by using
scheduler extender (k8s, e), which is Kubernetes scheduler
plugin interface. Based on the decision in our autoscaler,
the GPU scheduler decides GPU nodes to deploy the appli-
cation in case of scale-up events. We also developed MPS
capability to provide GPU sharing for the GPUs that provide
MPS capability (V100 and T4 in our testbed).

GPU device manager: We implement GPU device manager
using device plugin framework (k8s, c) in Kubernetes and
deploy it as Kubernetes DaemonSet (k8s, b). Thus, it is de-
ployed in every GPU node gets GPU hardware specifications
(e.g., GPU models, GPU memory, MPS capability, compu-
tation capability) by using NVIDIA Management Library
(NVML) (nvi, b) and reports them to our GPU scheduler.
The GPU device manager monitors the health of GPUs and
failure events from GPU and various OS signal events (e.g.,

SIGINT, SIGTERM, etc.). When failure happens, it reports
the events to our GPU scheduler. For supporting MPS, we
leverage NVIDIA MPS daemon docker container (cud, c)
and if an inference application is scheduled on the MPS-
enabled GPU, hostIPC and hostPath fields in the application
description are added to enable the application to talk to the
MPS daemon running on the MPS daemon docker.

Traffic manager: To configure inference request routing
in Gateway which is envoy proxy (env), we leverage Istio
VirtualService (ist, c). VirtualService is an abstraction to
express routing rules with match and route specifications
(e.g., different traffic routing ratios to various applications
and HTTP header matching-based routing). These routing
rules are applied to Gateway. Our Traffic manager con-
trols the Gateway by leveraging VirtualService. It supports
proportional traffic distribution based on the computation
capability of GPUs when the applications are deployed in
different GPU models. It expresses the ratio with Route (kna,
b) resource in KNative, which is a higher abstraction of Vir-
tualService. In addition to proportional traffic distribution,
the Traffic manager enables inference request-aware routing
based on HTTP headers (e.g., batch size or content-length in
HTTP headers) with StringMatch (ist, b). Based on the GPU
computation capability, it forwards inference requests with
larger batch size or large content length to the application
running on high-end GPU.

Webhook: Since KNative serving supports limited Kuber-
netes capability (e.g., volumes, GPU resource expression),
to fully utilize this capability in our framework, we imple-
ment mutating admission webhook (Kubernetes documen-
tation) Kubernetes plugin, which allows modification of
job description before scheduling the application. In our
implementation, webhook modifies the job description to
support volumes, GPU resource expression based on defined
parameters shown in Table 2.

Model repository: Since the size of the trained DNN model
is large and the inference server requires a specific trained
DNN model according to the GPU model, its quantization
type (e.g., fp32, fp16, int8) and batch size, we cannot put
them into a docker container. Instead, we leverage Network
File System (NFS) to store various DNN model files stored
according to the GPU model, its quantization type, and batch
size in the NFS. The required DNN model is loaded from
the NFS when an inference application starts. We leverage
volumes and persistent volumes capability in Kubernetes.
Thus, the inference application does not need to be modified
or specify how DNN model should be loaded.

Conatiner registry: We set up a local registry in our testbed
to pull container images of inference applications to avoid
unpredictable delays (e.g., network delay).

Workload generator: We deploy TensorRT Inference Server

SLA-Driven ML INFERENCE FRAMEWORK FOR CLOUDS WITH HETEROGENEOUS ACCELERATORS

 50

 100

 150

 200

 250

 300

1 2 4 8 16 32 64 128
256

512T
h
ro

u
g
h
p
u
t

(i
n
fe

re
n
ce

/s
ec

)

Batch size

Kubernetes scheduler
SMIF

Figure 5. Throughput as we increase the batch size of inference
application on the Kubernetes scheduler and SMIF.

(TRTIS) (trt, a) on our framework to serve various ImageNet
inference requests. Since we do not require application
modifications, we can easily deploy the original TRTIS on
our implementation.

6 EVALUATION

To validate our proposed framework, we have implemented
its prototype based on the Kubernetes container orchestrator
platform (k8s, a) and service mesh (ist, a). We evaluate
our implementation on a heterogeneous cluster consisting
of two GPUs (V100 and T4) with MPS capability on the
AWS cluster. We use m5.large for the master node and a
p3.2xlarge for the V100 worker GPU and a g4dn.2xlarge
for the T4 worker GPU in the cluster. We compare the per-
formance with respect to the default Kubernetes scheduler
for two scenarios: (i) workload-aware heterogeneity and (ii)
hardware-aware heterogeneity. We used TRTIS to serve var-
ious ImageNet DNN inference requests and used perf client
(per) as an inference request generator to send inference
requests to TRTIS.

6.1 Workload-aware heterogeneity

While batch processing improves the average performance
of each inference image, current serverless platforms are
not application-aware and process a request with one image
the same as a request with a batch size of 512. Figure 5,
shows the throughput of the inference application as we
increase the batch size for the performance comparison
with baseline (Kubernetes scheduler). While the baseline
uniformly distributes the traffic across different nodes and
does not increase the number of replicas for larger batch
sizes, our implementation gets application specific metrics
and distributes the load according to the batch sizes and
scales up the number of containers when the batch size is
larger.

6.2 Hardware-aware heterogeneity

In this set of experiments, we evaluate the performance of
our workload distributor, that is, application and hardware-

 80

 100

 120

 140

 160

 180

 200

100:0 90:10 80:20 70:30 65:35 60:40 50:50 40:60 30:70 20:80 10:90 0:100

 T
h
ro

u
g
h
p
u
t
(i
n
fe

re
n
c
e
/s

e
c
)

Traffic distribution ratio (v100:t4)

 60

 80

 100

 120

 140

 160

 180

 200

 1 2 3 4 5 6 7 8

 T
h
ro

u
g
h
p
u
t
(i
n
fe

re
n
c
e
/s

e
c
)

Request concurrency

Kubernetes scheduler

SMIF

a. Traffic Distribution. b. Comparison.

Figure 6. (a) Throughput of SMIF for different traffic distribution
ratios, and (b) Comparison of SMIF with respect to the default
Kubernetes scheduler.

aware, with respect to the Kubernetes baseline workload
distributor. Figure 6-a shows the experimental results for
different traffic distribution ratios on a three-node cluster
consisting of a T4 and a V100 worker node. We run the
trtis inference application on the two accelerators (V100,
T4) that provide MPS capability. The default Kubernetes
scheduler distributes the traffic uniformly on the two GPU
nodes (50:50). However, our implementation has a moni-
toring module that continuously monitors the service rate
of each node and schedules the traffic according to each
node’s service rate. In this example, the monitoring mod-
ule observes that the optimal workload distribution ratio
between the V100 and T4 GPU is when x/y = 1.85, where
x is the percentage of the requests sent to the V100 GPU
and y is the percentage of the requests sent to T4 GPU.
Therefore, the optimal scheduler is when x = 65, y = 35
as shown in Figure 6. As shown, in our implementation,
throughput improves from 130.5 to 180 inference/sec (38%
improvement).

In the next set of experiments, we compare our imple-
mentation with the default Kubernetes scheduler. We run
the TRTIS inference application with the resenet-v2-152
model, run it on the default Kubernetes scheduler that is not
hardware-aware, and compare the throughput with our im-
plementation. Figure 6-b shows the comparison between the
two cases as we increase the number of concurrent requests.
As shown the performance gap between our approach and
the baseline increases as we increase the concurrency level.

6.3 GPU Sharing Capability

Kubernetes supports experimental AMD and NVIDIA GPU
management (k8s, d). However, they do not allow sharing
one GPU with multiple applications. Deepomatic (Dee)
enables sharing one GPU with multiple applications on Ku-
bernetes without any performance isolation. However, none
of these approaches consider GPU heterogeneity in terms
of computation capability or leverage the heterogeneity for
workload distribution.

To evaluate our system, we compared our system against ex-

SLA-Driven ML INFERENCE FRAMEWORK FOR CLOUDS WITH HETEROGENEOUS ACCELERATORS

 0

 50

 100

 150

 200

 250

 300

 350

2 4 10

In
fe

re
n

ce
 p

er
 s

ec
o

n
d

Number of replicas

NVIDIA (Exclusive)
Deepomatic (Time Sharing)

SMIF (spatial-sharing)

Figure 7. Throughput comparison between SMIF, Nvidia exclu-
sive and Deepomatic frameworks.

perimental NVIDIA GPU management (k8s, d) and Deepo-
matic (Dee) which support exclusive and time-multiplexing
GPU assignment respectively on Kubernetes. For the work-
loads, we deploy TRTIS to serve ImageNet DNN inference
requests as Kubernetes Deployment and change replica (i.e.,
2, 4, and 10) field to evaluate GPU sharing impact except
for NVIDIA GPU management since it only allows exclu-
sive GPU assignment to one Pod. For the inference request
generator, we used perf client tool (per) with 100 concur-
rent requests for 15 seconds. Figure 7 shows throughput
(i.e., inference per second). As shown, there is 1.65× and
1.73× improvement compared to Deepomatic and Nvidia
exclusive respectively when the number of replicas is ten
since it enables spatial sharing approach by using logical
GPU abstractions with GPU scheduler and device manager.
While time-multiplexing also leverages parallelism with
multiple replicas, it shows similar performance with exclu-
sive assignment case due to its GPU resource contention.

7 RELATED WORK

This section describes serverless computing frameworks,
DNN inference systems, and GPU sharing efforts.

Serverless frameworks for DNN applications: In
(Ishakian et al., 2018), the authors evaluate the performance
of serving deep learning models on a serverless framework.
In particular, they use the MxNet deep learning framework
on AWS Lambda and show that while warm serverless func-
tion executions are within an acceptable latency range, cold
start latency can cause SLA violations. A cluster-level cen-
tralized and core-granular scheduler for serverless func-
tions is introduced in (Kaffes et al., 2019). In (Suresh &
Gandhi, 2019) a function-level scheduler is proposed to
minimize provider resource costs while meeting customer
performance requirements. The proposed approach dynam-
ically regulates the CPU shares of colocated functions at
run time to mitigate resource contention. Kubeflow (kub, a)
makes deployments of machine learning (ML) workflows on
Kubernetes simple, portable and scalable. KFserving (kfs,
a) is a Serverless Inferencing framework on Kubernetes on

top of Knative and Kubeflow. While both frameworks make
deployments of ML applications simple, they do not have
fine-grained GPU management (e.g., sharing GPUs for mul-
tiple containers) and traffic management. In addition, since
KFServing relies on KNative functionality, it only supports
QPS-based autoscaling. Existing container management
and serverless frameworks (k8s, d; nuc; blu) also do not
allow GPU sharing for multiple containers and functions.
Barista (Bhattacharjee et al., 2019b) proposes a serverless
system for machine learning workload. Spock (Gunasekaran
et al., 2019) leverages serverless functions in combination
with VM-based hosting to provide SLO guarantee at a given
cost budget. The authors use cost predictions for serverless
functions to make cost-aware decisions between the VM
hosting and serverless functions.

DNN inference system: Yadwadkar et al. (Yadwadkar
et al., 2019) propose a managed and model-less inference
serving that addresses several challenges, including the het-
erogeneity for both hardware and models, designing user
interfaces, and building SLO-driven systems. In (Romero
et al., 2019) the authors propose INFaaS, which is a model-
less inference-as-a-service system that allows users to define
inference tasks and performance/accuracy requirements for
queries, leaving it to the system to determine the model-
variant, hardware, and scaling configuration.

GPU sharing for ML Inference: Recent works (Jain et al.,
2018; Romero et al., 2019; Jain et al., 2019) have shown that
sharing GPU resources for inference help to improve GPU
utilization. There exists a large body of work to reduce deep
learning inference latency (Crankshaw et al., 2017; Dakkak
et al., 2019). Clipper proposes to combine multiple concur-
rent DL requests into batches to better utilize the GPU with
higher latency costs (Crankshaw et al., 2017). Trims show
that model loading is the primary source of cold start latency
and propose to move the bottleneck of deep learning model
inference to compute to mitigate the problem (Dakkak et al.,
2019). However, all of these techniques suffer from their
inability to model heterogeneity in the hardware architecture
and applications’ resource requirements. Various CPU/GPU
sharing and virtualization techniques have been proposed to
improve system throughput, and utilization by parallel shar-
ing of CPU and GPU or time-sharing (Sengupta et al., 2013;
Yeh et al., 2017). However, these models do not consider
heterogeneous GPU/CPU models.

8 CONCLUSION

This paper proposes a novel application and hardware-aware
Serverless computing framework. We design an intelligent
traffic manager and autoscaling strategy that leverage the
cluster’s application-specific metric and heterogeneous com-
pute capability to meet user defined application SLAs. Our
experimental results from our prototype deployment show

SLA-Driven ML INFERENCE FRAMEWORK FOR CLOUDS WITH HETEROGENEOUS ACCELERATORS

that our traffic distributor module can improve throughput by
38% compared to the default Kubernetes traffic distributor.
Also, our proposed logical GPU abstractions enable spatial
sharing of GPUs with GPU scheduler and device manager.
Experimental results show 1.65× and 1.73× throughput im-
provement compared to Deepomatic and Nvidia exclusive,
respectively.

ACKNOWLEDGEMENT

We thank the anonymous reviewers for their feedback on
earlier drafts of this paper. We wish to thank Eric Wu
in Hewlett Packard Labs for his support in setting up the
testbed.

REFERENCES

Alibaba., GPU Sharing Device Plugin
in Kubernetes. https://github.
com/AliyunContainerService/
gpushare-device-plugin.

Deepomatic., Support for shared GPUs
by declaring GPUs multiple times.
https://github.com/Deepomatic/
shared-gpu-nvidia-k8s-device-plugin.

Autoscaling in Knative Serving. https://github.
com/knative/serving/blob/master/docs/
scaling/DEVELOPMENT.md, a.

kubeless. https://github.com/kubeless/
kubeless/blob/master/docs/autoscaling.
md, b.

Auto-scaling in OPENFAAS. https://
docs.openfaas.com/architecture/
autoscaling/, c.

Enabling a Cloud-Like Experience for On-Premises GPU
Infrastructure. https://www.bluedata.com/blog/2019.

Observability and Analysis - Monitoring (62)
in CNCF Cloud Native Interactive Landscape.
https://landscape.cncf.io/category=
observability-and-analysis&format=
card-mode&grouping=category, a.

cloudevents: A specification for describing event data in a
common way. "https://cloudevents.io/", b.

NVIDIA Multi-Instance GPU. https://www.
nvidia.com/en-us/technologies/
multi-instance-gpu/, a.

NVIDIA CUDA Multi-Process Service. https://docs.
nvidia.com/deploy/mps/index.html, b.

MULTI-PROCESS SERVICE (experimental). https:
//github.com/NVIDIA/nvidia-docker/
wiki/MPS-(EXPERIMENTAL), c.

Envoy. https://www.envoyproxy.io/.

Intel Math Kernel Library. https://software.
intel.com/en-us/mkl.

Istio. https://istio.io/, a.

StringMatch with Virtual Service. https:
//istio.io/latest/docs/reference/
config/networking/virtual-service/
#StringMatch, b.

Virtual Service. https://istio.io/latest/
docs/reference/config/networking/
virtual-service/, c.

Kubernetes. https://kubernetes.io/, a.

DaemonSet. https://kubernetes.io/docs/
concepts/workloads/controllers/
daemonset/, b.

Device Plugins. https://kubernetes.io/
docs/concepts/extend-kubernetes/
compute-storage-net/device-plugins/, c.

Schedule GPUs. https://kubernetes.io/docs/
tasks/manage-gpus/scheduling-gpus/, d.

Scheduler extender. https://github.com/
kubernetes/community/blob/master/
contributors/design-proposals/
scheduling/scheduler_extender.md, e.

KFServing. Serverless Inferencing on Kubernetes. https:
//github.com/kubeflow/kfserving, a.

KFServing. Predict Protocol - Version 2. https:
//github.com/kubeflow/kfserving/tree/
master/docs/predict-api/v2, b.

Knative Serving. https://github.com/knative/
serving, a.

Route in Knative. https://
knative.dev/docs/serving/spec/
knative-api-specification-1.0/#route,
b.

Kubeflow. The Machine Learning Toolkit for Kubernetes.
"https://www.kubeflow.org/", a.

Kubernetes., Schedule GPUs. https://
kubernetes.io/docs/tasks/manage-gpus/
scheduling-gpus/, b.

https://github.com/AliyunContainerService/gpushare-device-plugin
https://github.com/AliyunContainerService/gpushare-device-plugin
https://github.com/AliyunContainerService/gpushare-device-plugin
https://github.com/Deepomatic/shared-gpu-nvidia-k8s-device-plugin
https://github.com/Deepomatic/shared-gpu-nvidia-k8s-device-plugin
https://github.com/knative/serving/blob/master/docs/scaling/DEVELOPMENT.md
https://github.com/knative/serving/blob/master/docs/scaling/DEVELOPMENT.md
https://github.com/knative/serving/blob/master/docs/scaling/DEVELOPMENT.md
https://github.com/kubeless/kubeless/blob/master/docs/autoscaling.md
https://github.com/kubeless/kubeless/blob/master/docs/autoscaling.md
https://github.com/kubeless/kubeless/blob/master/docs/autoscaling.md
https://docs.openfaas.com/architecture/autoscaling/
https://docs.openfaas.com/architecture/autoscaling/
https://docs.openfaas.com/architecture/autoscaling/
https://www.bluedata.com/blog/2019/06/enabling-a-cloud-like-experience-for-on-premises-gpu-infrastructure/
https://landscape.cncf.io/category=observability-and-analysis&format=card-mode&grouping=category
https://landscape.cncf.io/category=observability-and-analysis&format=card-mode&grouping=category
https://landscape.cncf.io/category=observability-and-analysis&format=card-mode&grouping=category
"https://cloudevents.io/"
https://www.nvidia.com/en-us/technologies/multi-instance-gpu/
https://www.nvidia.com/en-us/technologies/multi-instance-gpu/
https://www.nvidia.com/en-us/technologies/multi-instance-gpu/
https://docs.nvidia.com/deploy/mps/index.html
https://docs.nvidia.com/deploy/mps/index.html
https://github.com/NVIDIA/nvidia-docker/wiki/MPS-(EXPERIMENTAL)
https://github.com/NVIDIA/nvidia-docker/wiki/MPS-(EXPERIMENTAL)
https://github.com/NVIDIA/nvidia-docker/wiki/MPS-(EXPERIMENTAL)
https://www.envoyproxy.io/
https://software.intel.com/en-us/mkl
https://software.intel.com/en-us/mkl
https://istio.io/
https://istio.io/latest/docs/reference/config/networking/virtual-service/#StringMatch
https://istio.io/latest/docs/reference/config/networking/virtual-service/#StringMatch
https://istio.io/latest/docs/reference/config/networking/virtual-service/#StringMatch
https://istio.io/latest/docs/reference/config/networking/virtual-service/#StringMatch
https://istio.io/latest/docs/reference/config/networking/virtual-service/
https://istio.io/latest/docs/reference/config/networking/virtual-service/
https://istio.io/latest/docs/reference/config/networking/virtual-service/
https://kubernetes.io/
https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/
https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/
https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/
https://kubernetes.io/docs/concepts/extend-kubernetes/compute-storage-net/device-plugins/
https://kubernetes.io/docs/concepts/extend-kubernetes/compute-storage-net/device-plugins/
https://kubernetes.io/docs/concepts/extend-kubernetes/compute-storage-net/device-plugins/
https://kubernetes.io/docs/tasks/manage-gpus/scheduling-gpus/
https://kubernetes.io/docs/tasks/manage-gpus/scheduling-gpus/
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/scheduling/scheduler_extender.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/scheduling/scheduler_extender.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/scheduling/scheduler_extender.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/scheduling/scheduler_extender.md
https://github.com/kubeflow/kfserving
https://github.com/kubeflow/kfserving
https://github.com/kubeflow/kfserving/tree/master/docs/predict-api/v2
https://github.com/kubeflow/kfserving/tree/master/docs/predict-api/v2
https://github.com/kubeflow/kfserving/tree/master/docs/predict-api/v2
https://github.com/knative/serving
https://github.com/knative/serving
https://knative.dev/docs/serving/spec/knative-api-specification-1.0/#route
https://knative.dev/docs/serving/spec/knative-api-specification-1.0/#route
https://knative.dev/docs/serving/spec/knative-api-specification-1.0/#route
"https://www.kubeflow.org/"
https://kubernetes.io/docs/tasks/manage-gpus/scheduling-gpus/
https://kubernetes.io/docs/tasks/manage-gpus/scheduling-gpus/
https://kubernetes.io/docs/tasks/manage-gpus/scheduling-gpus/

SLA-Driven ML INFERENCE FRAMEWORK FOR CLOUDS WITH HETEROGENEOUS ACCELERATORS

nuclio: Automate the Data Science Pipeline with Serverless
Functions. https://nuclio.io/.

NVIDIA cuDNN. https://developer.nvidia.
com/cudnn, a.

NVIDIA Management Library (NVML).
https://developer.nvidia.com/
nvidia-management-library-nvml, b.

OPENFAAS. https://www.openfaas.com/.

NVIDIA triton inference server tool. https:
//docs.nvidia.com/deeplearning/
triton-inference-server/
master-user-guide/docs/perf_client.
html.

prometheus. https://prometheus.io/.

NVIDIA TensorRT. https://developer.nvidia.
com/tensorrt.

Export server metrics in TensorFlow Serving.
https://github.com/tensorflow/
serving/issues/462, a.

Batch size in TensorFlow Serving. https:
//www.tensorflow.org/tfx/serving/
performance, b.

Serving Models. https://www.tensorflow.org/
tfx/guide/serving, c.

NVIDIA TensorRT Inference Server. https:
//docs.nvidia.com/deeplearning/
triton-inference-server/
master-user-guide/docs/metrics.html.

NVIDIA TensorRT Inference Server. https:
//docs.nvidia.com/deeplearning/sdk/
tensorrt-inference-server-guide/docs/,
a.

Client Examples in Triton. https://
docs.nvidia.com/deeplearning/
triton-inference-server/
master-user-guide/docs/client_example.
html#section-simple-examples, b.

Baldini, I., Castro, P., Chang, K., Cheng, P., Fink, S.,
Ishakian, V., Mitchell, N., Muthusamy, V., Rabbah, R.,
Slominski, A., et al. Serverless computing: Current trends
and open problems. In Research Advances in Cloud Com-
puting, pp. 1–20. Springer, 2017.

Bhattacharjee, A., Barve, Y., Khare, S., Bao, S., Gokhale,
A., and Damiano, T. Stratum: A serverless framework
for the lifecycle management of machine learning-based

data analytics tasks. In 2019 {USENIX} Conference on
Operational Machine Learning (OpML 19), pp. 59–61,
2019a.

Bhattacharjee, A., Chhokra, A. D., Kang, Z., Sun, H.,
Gokhale, A., and Karsai, G. Barista: Efficient and scal-
able serverless serving system for deep learning predic-
tion services. arXiv preprint arXiv:1904.01576, 2019b.

Chen, T., Moreau, T., Jiang, Z., Zheng, L., Yan, E., Shen,
H., Cowan, M., Wang, L., Hu, Y., Ceze, L., et al. {TVM}:
An automated end-to-end optimizing compiler for deep
learning. In 13th {USENIX} Symposium on Operating
Systems Design and Implementation ({OSDI} 18), pp.
578–594, 2018.

Crankshaw, D., Wang, X., Zhou, G., Franklin, M. J., Gon-
zalez, J. E., and Stoica, I. Clipper: A low-latency online
prediction serving system. In 14th {USENIX} Sympo-
sium on Networked Systems Design and Implementation
({NSDI} 17), pp. 613–627, 2017.

Dakkak, A., Li, C., De Gonzalo, S. G., Xiong, J., and Hwu,
W.-m. Trims: Transparent and isolated model sharing
for low latency deep learning inference in function-as-
a-service. In 12th International Conference on Cloud
Computing (CLOUD), pp. 372–382. IEEE, 2019.

Feng, L., Kudva, P., Da Silva, D., and Hu, J. Exploring
serverless computing for neural network training. In 2018
IEEE 11th International Conference on Cloud Computing
(CLOUD), pp. 334–341. IEEE, 2018.

Gunasekaran, J., Thinakaran, P., Kandemir, M. T., Ur-
gaonkar, B., Kesidis, G., and Das, C. R. Spock: Exploit-
ing serverless functions for slo and cost aware resource
procurement in public cloud, 2019.

Ishakian, V., Muthusamy, V., and Slominski, A. Serving
deep learning models in a serverless platform. In 2018
IEEE International Conference on Cloud Engineering
(IC2E), pp. 257–262. IEEE, 2018.

Jain, P., Mo, X., Jain, A., Subbaraj, H., Durrani, R. S.,
Tumanov, A., Gonzalez, J., and Stoica, I. Dynamic
space-time scheduling for gpu inference. arXiv preprint
arXiv:1901.00041, 2018.

Jain, P., Mo, X., Jain, A., Tumanov, A., Gonzalez, J. E., and
Stoica, I. The ooo vliw jit compiler for gpu inference.
arXiv preprint arXiv:1901.10008, 2019.

Kaffes, K., Yadwadkar, N. J., and Kozyrakis, C. Centralized
core-granular scheduling for serverless functions. In Pro-
ceedings of the ACM Symposium on Cloud Computing,
pp. 158–164, 2019.

https://nuclio.io/
https://developer.nvidia.com/cudnn
https://developer.nvidia.com/cudnn
https://developer.nvidia.com/nvidia-management-library-nvml
https://developer.nvidia.com/nvidia-management-library-nvml
https://www.openfaas.com/
https://docs.nvidia.com/deeplearning/triton-inference-server/master-user-guide/docs/perf_client.html
https://docs.nvidia.com/deeplearning/triton-inference-server/master-user-guide/docs/perf_client.html
https://docs.nvidia.com/deeplearning/triton-inference-server/master-user-guide/docs/perf_client.html
https://docs.nvidia.com/deeplearning/triton-inference-server/master-user-guide/docs/perf_client.html
https://docs.nvidia.com/deeplearning/triton-inference-server/master-user-guide/docs/perf_client.html
https://prometheus.io/
https://developer.nvidia.com/tensorrt
https://developer.nvidia.com/tensorrt
https://github.com/tensorflow/serving/issues/462
https://github.com/tensorflow/serving/issues/462
https://www.tensorflow.org/tfx/serving/performance
https://www.tensorflow.org/tfx/serving/performance
https://www.tensorflow.org/tfx/serving/performance
https://www.tensorflow.org/tfx/guide/serving
https://www.tensorflow.org/tfx/guide/serving
https://docs.nvidia.com/deeplearning/triton-inference-server/master-user-guide/docs/metrics.html
https://docs.nvidia.com/deeplearning/triton-inference-server/master-user-guide/docs/metrics.html
https://docs.nvidia.com/deeplearning/triton-inference-server/master-user-guide/docs/metrics.html
https://docs.nvidia.com/deeplearning/triton-inference-server/master-user-guide/docs/metrics.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-inference-server-guide/docs/
https://docs.nvidia.com/deeplearning/sdk/tensorrt-inference-server-guide/docs/
https://docs.nvidia.com/deeplearning/sdk/tensorrt-inference-server-guide/docs/
https://docs.nvidia.com/deeplearning/triton-inference-server/master-user-guide/docs/client_example.html#section-simple-examples
https://docs.nvidia.com/deeplearning/triton-inference-server/master-user-guide/docs/client_example.html#section-simple-examples
https://docs.nvidia.com/deeplearning/triton-inference-server/master-user-guide/docs/client_example.html#section-simple-examples
https://docs.nvidia.com/deeplearning/triton-inference-server/master-user-guide/docs/client_example.html#section-simple-examples
https://docs.nvidia.com/deeplearning/triton-inference-server/master-user-guide/docs/client_example.html#section-simple-examples

SLA-Driven ML INFERENCE FRAMEWORK FOR CLOUDS WITH HETEROGENEOUS ACCELERATORS

Kochura, Y., Gordienko, Y., Taran, V., Gordienko, N.,
Rokovyi, A., Alienin, O., and Stirenko, S. Batch size in-
fluence on performance of graphic and tensor processing
units during training and inference phases. In Interna-
tional Conference on Computer Science, Engineering and
Education Applications, pp. 658–668. Springer, 2019.

Kosaian, J., Phanishayee, A., Philipose, M., Dey, D., and
Vinayak, R. Boosting the throughput and accelerator
utilization of specialized cnn inference beyond increas-
ing batch size. In International Conference on Machine
Learning, pp. 5731–5741. PMLR, 2021.

Kubernetes documentation. Dynamic Admis-
sion Control. https://kubernetes.io/
docs/reference/access-authn-authz/
extensible-admission-controllers/.

Liu, Y., Wang, Y., Yu, R., Li, M., Sharma, V., and
Wang, Y. Optimizing {CNN} model inference on
cpus. In 2019 {USENIX} Annual Technical Conference
({USENIX}{ATC} 19), pp. 1025–1040, 2019.

Romero, F., Li, Q., Yadwadkar, N. J., and Kozyrakis, C.
Infaas: Managed & model-less inference serving. arXiv
preprint arXiv:1905.13348, 2019.

Sengupta, D., Belapure, R., and Schwan, K. Multi-tenancy
on gpgpu-based servers. In Proceedings of the 7th in-
ternational workshop on Virtualization technologies in
distributed computing, pp. 3–10, 2013.

Suresh, A. and Gandhi, A. Fnsched: An efficient scheduler
for serverless functions. In Proceedings of the 5th Inter-

national Workshop on Serverless Computing, pp. 19–24,
2019.

Vasilache, N., Zinenko, O., Theodoridis, T., Goyal, P., De-
Vito, Z., Moses, W. S., Verdoolaege, S., Adams, A., and
Cohen, A. Tensor comprehensions: Framework-agnostic
high-performance machine learning abstractions. arXiv
preprint arXiv:1802.04730, 2018.

Wang, H., Niu, D., and Li, B. Distributed machine learn-
ing with a serverless architecture. In IEEE INFOCOM
2019-IEEE Conference on Computer Communications,
pp. 1288–1296. IEEE, 2019.

Yadwadkar, N. J., Romero, F., Li, Q., and Kozyrakis, C. A
case for managed and model-less inference serving. In
Proceedings of the Workshop on Hot Topics in Operating
Systems, pp. 184–191, 2019.

Yan, M., Castro, P., Cheng, P., and Ishakian, V. Building a
chatbot with serverless computing. In Proceedings of the
1st International Workshop on Mashups of Things and
APIs, pp. 1–4, 2016.

Yeh, T. T., Sabne, A., Sakdhnagool, P., Eigenmann, R.,
and Rogers, T. G. Pagoda: Fine-grained gpu resource
virtualization for narrow tasks. ACM SIGPLAN Notices,
52(8):221–234, 2017.

Yu, P., Liu, J., and Chowdhury, M. Fluid: Resource-aware
hyperparameter tuning engine. Proceedings of Machine
Learning and Systems, 3, 2021.

https://kubernetes.io/docs/reference/access-authn-authz/extensible-admission-controllers/
https://kubernetes.io/docs/reference/access-authn-authz/extensible-admission-controllers/
https://kubernetes.io/docs/reference/access-authn-authz/extensible-admission-controllers/

