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Abstract: Face recognition, including emotion classification and face attribute classification, has seen
tremendous progress during the last decade owing to the use of deep learning. Large-scale data
collected from numerous users have been the driving force in this growth. However, face images
containing the identities of the owner can potentially cause severe privacy leakage if linked to other
sensitive biometric information. The novel discrete cosine transform (DCT) coefficient cutting method
(DCC) proposed in this study combines DCT and pixelization to protect the privacy of the image.
However, privacy is subjective, and it is not guaranteed that the transformed image will preserve
privacy. To overcome this, a user study was conducted on whether DCC really preserves privacy.
To this end, convolutional neural networks were trained for face recognition and face attribute
classification tasks. Our survey and experiments demonstrate that a face recognition deep learning
model can be trained with images that most people think preserve privacy at a manageable cost in
classification accuracy.

Keywords: face recognition; face attribute classification; privacy-preserving deep learning; convolu-
tional neural network (CNN)

1. Introduction

Face recognition has been one of the well-known topics in computer vision for a
long time. The face is one of the most popular biometrics; as such, face recognition has
become an essential tool in our daily lives [1]. Along with the development of deep
learning, face recognition has achieved a human-like performance. Deep learning uses the
backpropagation algorithm to learn internal parameters and compute the representation
in each layer [2]. Large-scale data collected from numerous users have contributed to the
rapid development of deep learning.

However, face data contains the identities of individuals, which can be readily linked
to other sensitive personal information, such as health data, causing severe privacy leakage.
To make matters worse, deep learning is often trained on images without the approval
of the person observed in the image [3]. For example, face images in large-scale training
datasets, such as social face classification (SFC) [4] and WIDER FACE [5], are collected
from social networking services or search engines without explicit consent, which could
violate privacy. In addition, information more than just the person’s identity can be inferred
from the feature representations of face recognition [6,7]. Therefore, extracting sensitive
information, such as gender, ethnicity, and health status, without consent is considered a
violation of privacy [8]. For this reason, preserving the privacy of face data in deep learning
tasks is indispensable in preventing privacy leakage.

There have been numerous studies to preserve privacy in deep learning. Cryptography-
based deep learning protects privacy-risk information by encrypting sensitive contents
without compromising model accuracy has high computational complexity. Federated
learning [9] is designed to train neural networks locally with each client data. Federated
learning provides an advantage in privacy over centralized models because the aggregate
server only sees trained models. However, cryptographic and federated learning require
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a trusted server; otherwise, the attacker can decrypt the ciphertext or restore the original
data from gradients [10]. Therefore, in this paper, the focus is on image perturbation-based
privacy-preserving methods, which do not require the trust of all parties. Image perturba-
tion methods can be performed during the image distribution phase to transform the image
so that the eye cannot recognize the original image. Image pixelization [11], also called
mosaicing, can be achieved by dividing the image into a rectangular grid and averaging the
pixels within each grid. Blurring [12] removes the image details by convolving the image
with the filter function, such as a Gaussian filter or a bilateral filter.

In this paper, a novel image perturbation method is proposed based on the discrete
cosine transform coefficient cutting methods (DCC). Our approach is based on pixelization
and the discrete cosine transform (DCT) [13]. The DCT expresses a finite sequence of
data points as a sum of cosine functions, transforming the image into a DCT coefficient
matrix. Most DCT coefficients have a value near zero, and only a few have a relatively
large value. The main idea of DCC is that the larger values are more significant in forming
an image; thus, cutting the smaller values to conceal the image detail, in the process
protecting privacy.

Image perturbation-based privacy-preserving methods, including our method, vary
depending on the level of obfuscation. The notion of privacy is subjective, so for the
transformed image, someone may consider the image as having preserved privacy, whereas
another may not. Figure 1 displays two examples of the proposed DCC. There would
be unanimous agreement that Figure 1a is a privacy-preserving transformation; whereas,
opinions with respect to Figure 1b are expected to be more subjective. To overcome this
problem, a survey was conducted to determine whether the privacy of the transformed
image was preserved. To the best of our knowledge, few studies have conducted surveys on
whether transformed images preserve privacy. The original image and DCC-transformed
image were presented to the participants to determine whether the two images were
perceived as having the same identity. The inability to determine whether the two images
are the same means that the privacy of the face image has been preserved.

Figure 1. Overview of our DCC. (a) Face image is highly obfuscated by DCC (a = b = 4, r = 32).
(b) Face image is weakly obfuscated by DCC (a = b = 4, r = 512).

Then, face recognition and face attribute classification tasks were conducted. The neu-
ral network was trained with DCC-transformed images and tested on the original images.
The accuracy dropped by 3–12% depending on the task when trained by the DCC image of
(a = b = 4, r = 64) image, which for most survey participants protected privacy.

Our main contributions are as follows:

1. A privacy-preserving image perturbation method was proposed based on pixelization
and discrete cosine transform, that is, DCC.

2. A survey was conducted on whether the proposed method really preserved privacy.
3. A neural network was trained on face recognition tasks with face attribute classification

on obfuscated images, achieving satisfactory accuracy, making it suitable for real-
world applications.
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2. Related Works
2.1. Convolutional Neural Network

Deep learning processes language, images, audio, and video data mainly using convo-
lutional neural networks (CNNs) [2]. CNN automatically extracts features that distinguish
objects from one another, inspired by the classical notion of neurons communicating with
other cells via synapses. CNNs have applicability in many domains, such as speech recog-
nition [14], object detection [15], and face recognition [16], and with the development of a
large number of datasets recently in new learning algorithms and architecture.

The architecture of CNN includes several bundles of convolution layers and pooling
layers, as well as a few fully connected layers. A convolution layer extracts features via the
product between each element of the kernel and the input. The output of convolution, called
feature maps, is passed through a nonlinear activation function, such as a sigmoid or tanh
function, which is a mathematical representation of a biological neuron behavior. A pooling
layer downsamples the output to decrease the number of learning parameters. The outputs
of the feature maps of the final layer are typically flattened to a one-dimensional array and
connected to fully connected layers. The last activation function of the fully connected
layer depends on the task of the CNN. In the classification task, of interest is the score of
the class probabilities, where each score ranges between 0 and 1, and all scores sum to 1.
The training minimizes the loss function through gradient descent and the backpropagation
algorithm. The purpose of training is to minimize the difference between the output of the
networks and the given ground truth labels.

AlexNet [17] won the challenge in the ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) competition in 2012 by correctly classifying ImageNet datasets [18].
The author used the ReLU activation layer [19] to accelerate learning time to improve the
network performance. VGGNet [20] uses 3 × 3 convolution filters, which push the depth to
16–19 layers, thereby improving the accuracy of the classification of ImageNet. ResNet [21]
introduced the skip connection, allowing training with 152 layers while having a lower
complexity than VGGNet. As a result, ResNet attained a 3.57% error rate on ImageNet,
which is overwhelmingly greater than the human level.

2.2. Face Recognition Deep Learning Needs Privacy Preservation

Human faces are often used as training material for deep learning. Initially, faces
from images or videos are detected, and their location is determined. After reasonable
annotations on the detected face, a deep learning model is trained for face recognition or
face analysis.

Face recognition involves identifying or verifying a human in an image. DeepFace [4]
trained a network including more than 120 million parameters on four million facial
images, with more than 4000 unique identities. An accuracy of 97.35% was attained on the
labeled faces in the wild (LFW) dataset [22], overpowering human-level performance in
face verification tasks. FaceNet [23] used 100 to 200 million faces with 8 million different
identities and achieved an accuracy of 99.63% on face verification tasks using a CNN
trained to directly optimize the embedding itself.

Face analysis recognizes valuable information, such as emotion, gender, and age,
in images and is utilized for face attribute classification, age estimation, or face mask
detection. DTAGN [24] boosts facial expression recognition performance by combining two
deep networks: one extracts appearance-related features, and the other extracts geometric
features. In [25], a real-time monitoring architecture was proposed to identify face masks
using MobileNet V2. In [26], a multitask CNN-based architecture was presented to conduct
face analysis tasks concurrently.

Despite the usefulness of face recognition and face analysis, some privacy violation
issues have been raised. In [27], it is argued that biometric data can be used to identify a
person easily, so in certain cases, malicious leakage can lead to criminality, such as identity
theft or tracking of individuals. Therefore, a privacy-preserving mechanism is essential
when using biometric data, such as face images.
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2.3. Privacy-Preserving Deep Learning

Previous studies have been conducted to preserve privacy in the field of deep learning.
In [28], a secure face verification system was proposed based on a CNN representation with
the Paillier algorithm, saving all the feature representations in ciphertext so that the client
would know only the verification result, ensuring privacy. In [29], a novel system was
suggested that utilizes additive homomorphic encryption to protect the gradient. However,
cryptographic-based methodologies incur a high computational cost.

In [30], a new deep learning algorithm was developed to train a centralized CNN
with differential privacy [31], which resulted in decreased accuracy. However, such a
centralized CNN needs an honest server because all of the data are stored on the central
server. Federated learning has been known to protect privacy, as the central server can
only see the local training results while data remain local. Recent studies [10,32] have
reconstructed the victim’s private data by assuming a malicious server in the federated
learning environment. Therefore, federated learning requires a trustworthy server.

Pix [33] extends differential privacy to image data using image pixelization methods;
it was demonstrated that Pix can prevent re-identification attacks. PEEP [3] perturbs
eigenfaces by utilizing differential privacy to recognize faces. The third-party server only
sees the controlled information and consequently preserves privacy. Image perturbation
methods, such as Pix and PEEP, do not need to be trusted by third parties because the
transformation can be applied at the image distribution stage.

3. Methods

This section outlines the entire process of our DCT coefficient cutting method (DCC):
Step 1 depicts a formal discrete cosine transform (DCT) and pixelization, Step 2 provides
the details of the coefficient cutting method, and Step 3 describes inverse-DCT and presents
the results of DCC applied to facial images.

3.1. (Step 1) Discrete Cosine Transform (DCT)

The discrete cosine transform (DCT) was first proposed by Ahmed [13] in 1972.
DCT transforms a signal or image from the spatial domain to the frequency domain
and vice versa for inverse-DCT. One-dimensional DCT (1D-DCT) is used in signal pro-
cessing [34], and two-dimensional DCT (2D-DCT) is used in image processing [35]. In this
study, 2D-DCT was used to transform images. For convenience, 2D-DCT is referred to as
DCT in the remainder of this paper. DCT can be applied to both gray and color images.
For the color image, DCT is performed in each RGB channel. Let V be the frequency
domain, and X be the spatial domain (image). The DCT of an M × N matrix X is defined as:

Vpq = αpαq

M−1

∑
m=0

N−1

∑
N=0

cos
π(2m + 1)p

2M
cos

π(2n + 1)q
2N

{
0 ≤ p ≤ M− 1
0 ≤ q ≤ N − 1

(1)

αp =


1√
M,

if p = 0√
2
M , if 1 ≤ p ≤ M− 1

αq =


1√
N,

if q = 0√
2
N , if 1 ≤ q ≤ N − 1

(2)

DCT transforms the image of Figure 2a to the frequency domain generating the DCT
coefficient matrix of Figure 2b. In the image resulting from the transformation, the white
pixels are concentrated at the top left. The whiter the pixel, the larger the DCT coefficient,
and the blacker the pixel, the smaller the DCT coefficient. Note that the DCT coefficient
values are absolute values. The larger DCT values associated with the lower frequencies
represent an essential part of the original image in the transformation back to the spatial
domain. This is because the human eye tends to sense the low-frequency components in
the picture better. In summary, the most visually important information is concentrated
in only a few coefficients of the DCT at the top left. In this study, the image is split into
a × b blocks. As shown in Figure 3b, the DCT is performed blockwise, so it works like a
pixelization method.
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Figure 2. (a) Sample 32 × 32 image from CIFAR-10 [36]. DCT transforms the image pixel to the
frequency domain. (b) 32 × 32 DCT coefficient matrix. White pixels represent the maximum DCT
coefficient values, and black pixels represent the minimum DCT coefficient values close to zero.

Figure 3. Three steps of the DCC process with a sample image from CelebA [37]. (a) Step 1 (DCT): The
original image is divided into several blocks, and each block is transformed from the spatial domain
to the frequency domain by DCT and displayed as the DCT coefficient matrix. (b) Step 2 (CUT): The
DCT coefficient matrix is filtered by coefficient cutting methods, such that only a few high-frequency
coefficients in the DCC coefficient matrix remain. (c) Step 3 (IDCT): The DCC coefficient matrix
is transformed from the frequency domain to the spatial domain by I-DCT per block. (d) Then,
the privacy-preserved image is created.

3.2. (Step 2) Coefficient Cutting (CUT)

As described in Section 3.1, during the formation of an image, significant information
is concentrated at a few low frequencies. The main idea of coefficient cutting is that even if
most of the high frequency is omitted, the main features of the image remain intact while
the sensitive information is concealed. The largest DCT coefficient for each block was
selected and stored in the DCC coefficient matrix, as shown in Figure 4b to maintain at least
one DCT coefficient for each block. Except for the selected a × b DCT coefficients, the top
(r − a × b) DCT coefficients were selected for the whole image, not each block, and stored
in the DCC coefficient matrix, as shown in Figure 4c. Then, the remaining coefficients
were discarded. The value r is the number of remaining DCT coefficients, which control
privacy intensity, and cannot be less than a× b. The larger the r value, the lower the privacy
intensity. The coefficient cutting methods filter the DCT coefficient matrix V in Figure 4a,
and the DCC Coefficient matrix V* of Figure 4c is produced as a result.
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Figure 4. Example of coefficient cutting for a = b = 2, m = n = 8, r = 12. (a) DCT coefficient matrix after
step 1. (b) Select the largest DCT coefficient for each block. (c) Select the remaining top (r − a × b)
coefficients. Then, generate the DCC coefficient matrix.

3.3. (Step 3) Inverse Discrete Cosine Transform (I-DCT)

In Section 3.2, the DCT coefficients are cut to produce the DCC coefficient matrix
V*, which is still in the frequency domain. The inverse discrete cosine transform (I-DCT)
changes the frequency domain into the spatial domain. I-DCT is defined as follows: Note
that αp and αq are the same as in Equation (2).

Xmn =
M−1

∑
p=0

N−1

∑
q=0

αpαqVpq cos
π(2m + 1)p

2M
cos

π(2n + 1)q
2N

{
0 ≤ m ≤ M− 1
0 ≤ n ≤ N − 1

(3)

I-DCT transforms the DCC Coefficients V∗ to the privacy image X∗ of Figure 3d. If the
cutting phase is excluded, I-DCT transforms the DCT coefficients V to the original image X.
Algorithm 1 shows the steps for transforming the DCC images. Figure 5 displays a DCC
example with a = b = 4. As observed in the figure, DCC hides the personal identity of
the person in the image. Figure 5b is equivalent to image pixelization with r = a× b = 16,
such that privacy is more strongly maintained. As r increases, the image becomes more
comprehensible. Figure 5b is expressed by a DCT coefficient of only 0.04%, and in Figure 5g
is expressed by a DCT coefficient of 1.32% within an image size of 178 × 218.

Figure 5. (a) Original image (b–g) DCC result of a sample image with a = b = 4 and different r values.
As r increases, the image becomes clearer and it is easier to distinguish who he is.



Electronics 2022, 11, 25 7 of 12

However, the extent of cutting to apply to the DCT coefficient cannot be determined
from the perspective of preserving privacy. Does the image in Figure 5b preserve privacy?
The answer to that question is affirmative. However, does the image in Figure 5g pre-
serve privacy? The response is more ambivalent. Therefore, a survey was conducted to
understand people’s perception of privacy, as discussed in Section 4.

Algorithm 1 Discrete Cosine Transform Coefficient Cutting Methods

Input: Image, number of blocks a× b, number of remaining coefficients r
Divide an image into a× b blocks . Step 1
for all blocks do

DCT to the image block
Store largest DCT coefficient value to DCC . Step 2

end for
if r > a× b then

Store top (r− a× b) DCT coefficient values to DCC
end if
for all blocks do

I-DCT to the DCC . Step 3
end for
Combine each blocks
return Privacy-Preserved Image

4. User Study

This section summarizes the results of the study on people’s thoughts towards privacy.
As discussed earlier, the notion of privacy is subjective. For example, in the modified image,
someone may think that the image still contains sensitive private content, but someone
else may think that the image has successfully eliminated private content. The proper
degree of DCT coefficient pruning required to protect privacy is vague, so a user study was
conducted to explore this issue. For convenience, it is assumed that a = b = 4 for the rest
of the paper, without any further reference to this notation.

As shown in Figure 6, the survey consists of questions with regard to two images.
A celebrity of cultural background similar to that of the participants is considered for the
images. Each question refers to two celebrity images of the same or different identities.
The image size is 178 × 218 pixels, and the face is at the center. The first image is the
original facial image without any manipulation. The second image was mutated into a
DCC-applied image. Each question consisting of sub-questions was on the same first image
and a second image with different privacy-preservation levels. The question asked whether
the two images were of the “same person”, “different person”, or “cannot judge”. The
first sub-question was on the DCC (r = 16) image. The r of DCC was doubled for the
next sub-question, which means that the privacy level was lowered. Figure 6a corresponds
to the third sub-question, and Figure 6b to the seventh sub-question, which is the lowest
privacy level in our survey. The survey respondent could see the next sub-question after
answering the current question to prevent cheating. To judge the predictability of the
answer, the privacy level of the images was gradually weakened. The main idea of the
survey is that failure to determine whether the pair of images are identical implies that the
privacy of the face image has been preserved.

There were 69 users in the study, including four pairs of celebrities, and each question
consisted of seven sub-questions with respect to DCC transformed images of varying r.
Therefore, a total of 28 questions were asked. Figure 7 shows that over 96% of people could
not judge the identities in the DCC images ranging from r = 16 to r = 64. This result means
that if r is 64 or less, the privacy of the face image is almost preserved. The participants
started to correctly identify from r = 128 onwards. The number of correct answers exceeded
the number of undecided answers for r = 256. All participants in the experiment expressed
an opinion for r = 1024, and most of the participants (97%) answered correctly. This result
means that for r greater than 1024, the privacy of the face image is hardly preserved.
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Figure 6. The composition of a user study. The image on the left of each sub-question is the original
image. (a) The image on the right of the third sub-question is transformed by DCC (r = 64). (b) The
image on the right of the seventh sub-question is transformed by DCC (r = 1024).

With pixelization, DCC (r = 16) preserved privacy the most strongly as the infor-
mation on the block is compressed into one number. In other words, the pixelated image
had only 16 pixels. However, pixelated images are inappropriate for deep learning tasks
because of the lack of pixel information. In Section 5, the results are presented on a deep
learning experiment conducted to classify face attributes and to evaluate whether face
attributes can be recognized by our method.

Figure 7. Survey Results. Most people could not judge until DCC (r = 64).

5. Experiment and Results

In this section, two experiments are discussed: face recognition and face attribute
classification. As illustrated in Figure 8, the VGG network was modified and the following
CNN structures were constructed: 2conv(3 × 3, 64) − maxpool(3 × 3) − 2conv(3 × 3,
128) − maxpool(3 × 3) − 2conv(3 × 3, 256) − maxpool(3 × 3) − 2conv(3 × 3, 512) −
maxpool(3 × 3) − flatten() − 2dense(1024) − softmax. The total number of parameters of
the CNN is approximately 7.8 M. Batch normalization and ReLu were employed after each
convolutional layer. The softmax layer varied depending on the number of classes to predict;
an SGD optimizer was used with a learning rate of 0.001, decay of 0.001, and momentum
of 0.9; 50 epochs were trained for face recognition and face attribute classification for each
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DCC method. As shown in Figure 9, r began at 16 and doubled for the next step. The results
were evaluated for accuracy on validation data.

Figure 8. Convolutional Neural Network Architecture.

Figure 9. Sample image of the training set and variation of DCC with r.

5.1. Face Recognition

The LFW dataset [22], named “Labeled Faces in the Wild”, was used for the face
recognition task. The dataset consists of 13,233 black and white images of 5749 individuals,
of which only 1140 were used, limiting the minimum number of faces per person to 100,
similar to the methods used in [3]. The 1140 images comprised 236 of “Colin Powell”, 121
of “Donald Rumsfeld”, 530 of “George W Bush”, 109 of “Gerhard Schroeder”, and 144 of
“Tony Blair”. Training data and test data were divided to preserve the ratio of samples for
each class to prevent imbalance. We used 75% of the input dataset for training and 25%
for testing. The class “George W Bush” is overwhelming compared to other classes, so a
data augmentation was performed with horizontal flip on all classes except that class. Note
that the data augmentation was performed only on the training data. The total number of
datasets was 1592 after the augmentation. In addition, five-fold validation was performed
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to overcome the shortcomings resulting from a lack of data. The image to be used as input
to the CNN was resized to 178 × 218.

Table 1 shows the results of face recognition. The accuracy was evaluated using
precision, recall, and F1 score. According to the table, the F1 score was approximately 92%
when training was performed on the origin data. The F1 score decreased by 49% when
the CNN was trained using DCC (r = 16). Considering that there are five classes, which
means that the initial accuracy is 20%, CNN was rarely learned. However, in DCC (r = 64),
the F1 score was approximately 82%, which is 10% lower than that of the original one,
while maintaining privacy. For r = 256 or more, the F1 score was almost the same as that
of the original. In conclusion, DCC (r = 64) is sufficient for face recognition with privacy
protection at the expense of a slight loss in performance.

Table 1. Face Recognition Performance.

Origin r = 16 r = 32 r = 64 r = 128 r = 256 r = 512 r = 1024

Precision 0.9254 0.5398 0.6963 0.8368 0.8870 0.9172 0.9279 0.9222
(−0.3856) (−0.2291) (−0.0886) (−0.0385) (−0.0082) (0.0025) (−0.0033)

Recall 0.9254 0.4877 0.6360 0.8316 0.8825 0.9140 0.9254 0.9219
(−0.4377) (−0.2895) (−0.0939) (−0.0430) (−0.0114) (-) (−0.0035)

F1 Score 0.9236 0.4298 0.5840 0.8215 0.8759 0.9122 0.9237 0.9203
(−0.4939) (−0.3396) (−0.1021) (−0.0477) (−0.0115) (-) (−0.0033)

5.2. Face Attribute Classification

We used the Large-scale CelebFaces Attributes (CelebA) dataset [37] for face attribute
classification. The CelebA dataset consists of more than 200 K celebrity images, each with
40 attribute annotations, such as wearing eyeglasses, an oval face, and wearing a hat or
mustache. For each attribute, the value 1 represents having that attribute, and−1 represents
not having that attribute.

Four attributes were selected for the experiment: male, brown hair, heavy makeup,
and smiling. For each attribute, 10,000 images were extracted, of which 5000 had the
attribute, and the remaining 5000 did not; 8000 were used for the training set, and 2000 for
the test set, divided by the same ratio. The input size of the image was 178 × 218, which
is the same as that of the CelebA dataset. Image transformation proceeded in the same
way as in the face recognition experiment. The above training procedure was repeated
five times with different extraction seeds, which means that the extracted datasets had
different configurations. The mean of the accuracy was then calculated and compared with
the results.

Table 2 displays the results of the face attribute classification. The accuracy was
different for each attribute; that is, male classification had 96% accuracy, and brown hair
had 80% accuracy. The number of classes was two, positive or negative, which means
that the initial accuracy was 50%. In DCC (r = 16), the smiling classification accuracy
was 57%, and the male classification was 78%. However, in DCC (r = 64), the reduction
in the brown hair classification accuracy was 4%, and the smiling classification was 12%,
indicating that it could tolerate a decrease in the accuracy while rigorously maintaining
privacy. In conclusion, similar to face recognition, DCC (r = 64) is sufficient to classify face
attributes while protecting privacy, although there is a slight loss of accuracy. If the deep
learning service provider requests more accuracy, then DCC (r = 128) can be used with
weakened privacy preservation and with a reduction in accuracy of 3–4%.
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Table 2. Face Attribute Classification Accuracy

Attribute Origin r = 16 r = 32 r = 64 r = 128 r = 256 r = 512 r = 1024

Male 0.9605 0.7776 0.8519 0.8972 0.9308 0.9494 0.9538 0.9574
(−0.1829) (−0.1086) (−0.0633) (−0.0297) (−0.0111) (−0.0067) (−0.0031)

Brown Hair 0.8053 0.6655 0.7294 0.7639 0.7743 0.7833 0.7903 0.7990
(−0.1398) (−0.0759) (−0.0414) (−0.0310) (−0.0220) (−0.0150) (−0.0063)

Heavy Makeup 0.9021 0.7294 0.7901 0.8308 0.8661 0.8886 0.8897 0.8986
(−0.1727) (−0.1120) (−0.0713) (−0.0360) (−0.0135) (−0.0124) (−0.0035)

Smiling 0.9035 0.5747 0.7010 0.7875 0.8584 0.8818 0.8911 0.9063
(−0.3288) (−0.2025) (−0.1160) (−0.0451) (−0.0217) (−0.0124) (0.0028)

6. Conclusions

In this paper, a novel image perturbation mechanism called DCC was proposed
to preserve the privacy of face images by combining the discrete cosine transform and
pixelization. In addition, a survey was conducted to determine whether the proposed
method was able to effectively preserve privacy. Subsequently, the neural networks were
trained on DCC-transformed images and tested on the original images. Deep learning
results indicated that the DCC can recognize the face and classify face attributes effectively
while maintaining privacy.
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