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Abstract: Smartphones as ubiquitous gadgets are rapidly becoming more intelligent and context-
aware as sensing, networking, and processing capabilities advance. These devices provide users
with a comprehensive platform to undertake activities such as socializing, communicating, sending
and receiving e-mails, and storing and accessing personal data at any time and from any location.
Nowadays, smartphones are used to store a multitude of private and sensitive data including bank
account information, personal identifiers, account passwords and credit card information. Many
users remain permanently signed in and, as a result, their mobile devices are vulnerable to security
and privacy risks through assaults by criminals. Passcodes, PINs, pattern locks, facial verification,
and fingerprint scans are all susceptible to various assaults including smudge attacks, side-channel
attacks, and shoulder-surfing attacks. To solve these issues, this research introduces a new continuous
authentication framework called DeepAuthen, which identifies smartphone users based on their
physical activity patterns as measured by the accelerometer, gyroscope, and magnetometer sensors on
their smartphone. We conducted a series of tests on user authentication using several deep learning
classifiers, including our proposed deep learning network termed DeepConvLSTM on the three
benchmark datasets UCI-HAR, WISDM-HARB and HMOG. Results demonstrated that combining
various motion sensor data obtained the highest accuracy and energy efficiency ratio (EER) values
for binary classification. We also conducted a thorough examination of the continuous authentication
outcomes, and the results supported the efficacy of our framework.

Keywords: continuous authentication; activity pattern; mobile sensing; deep learning; smartphone

1. Introduction

Advances in wearable technology are progressing at incredible speeds, generating
considerable interest in both professional and research communities. Smartphones, tablets,
smartwatches, smart shoes, clothing, and other smart wearables are incorporating an
increasing amount of extra processing capability and sensors. These augmented items
serve as facilitators of ubiquitous computing, gathering data that can be utilized to offer
wearers different digital solutions [1]. Numerous modern smart wearables have integrated
accelerometers, gyroscopes, and magnetometers to record body motion [2–4]. Observing
a person’s particular movement patterns may prove to be an effective tool for seamless
authentication [5].

Smartphones have become the custodians of human personal data including medical
data (e.g., heart rate, vaccination, and other medical treatment history), bank account
information and personalized credentials for various applications and services. However,
users have recently begun to express concerns about the confidentiality of their personal
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information as usage of smartphones increases [6,7]. Data privacy and security must be pre-
served [8]. Individuals often save personal identifiable information on their smartphones,
while medical records, personal identification, and financial information could all be stolen.
Therefore, authentication is critical to establish user identification [9,10].

The security of password-based authentication systems is largely dependent on main-
taining the confidentiality of the passwords [11]. The most widely used authentication
methods are still passwords, PINs, or solving a visual puzzle. While these authentication
techniques have several benefits, including high accuracy, they all require the user to
remember a password or a puzzle [12]. Memorizing numerous passwords or puzzles for
various systems or devices (one for each device) creates a substantial burden for individu-
als, while previous research suggested that PINs and passwords may not provide adequate
protection [13,14].

Recently, alternative biometric authentication techniques such as the face [15], voice [16],
or fingerprint recognition [17] have become the norm [18]. These authentication methods
do not require memorable information as they are based on a person’s unique biometric
features. Nevertheless, they are still dependent on ambient circumstances. For example,
facial recognition is hampered by lack of memory and processing capacity, as well as an
unmanaged ambient environment. Inadequate illumination or background noise also
prevent the equipment from achieving adequate facial identification. For continuous au-
thentication, speech is processed during phone conversations. However, the speech-based
authentication continues in the background, with high processing costs and consumption
of battery power. Fingerprint scanning also necessitates costly sensors that the typical user
does not need [19].

To respond to these challenges, motion-based biometrics provides a myriad of po-
tential solutions that may be used to authenticate a person’s identification and, therefore,
provide an additional layer of safety and theft prevention. One available option is to
identify a person’s stride (walking pattern) through a collection of in-built instruments
such as accelerometers [20]. Each person’s stride is unique and contains user-distinctive
characteristics. Inertial sensors integrated into smartphones may be used to handle gait
identification issues in security-related applications [5]. The human gait is passively visible,
inconspicuous, implicit, continuous, and concurrent and can be readily assessed while users
are carrying their phones [21]. While walking, the smartphone can recognize users based
on their stride, allowing use of the phone’s functions without additional authentication.

Continuous authentication (CA) is a significant emerging paradigm, enabling uninter-
rupted real-time verification of a user’s identity, making device access as smooth as possible
for authorized parties while protecting against unwanted access attempts. However, con-
tinuous user authentication is a difficult task because it involves continuously monitoring
a person’s unique data, such as personality and behavioral activity characteristics. To be
seamless, this management must be non-intrusive and require minimal human interaction.
One potential approach is behavior pattern analysis that involves tracking the person’s
physical activity pattern using inertial sensors and sending the data to classifiers trained
to authenticate particular people. This method is based on the established premise that
each individual has a particular activity pattern, which can be used to validate specific
uniqueness. Previous research [22–24] used basic activity patterns such as walking and
climbing and descending stairs as cognitive biometric data for continuous user authen-
tication. Evaluating a vast number of various everyday life activities is a research gap
for various reasons. One significant limitation involves determining particular actions
that generate efficient biometric signatures and could be utilized independently as the
foundation for a biometric system. Our research investigations contributed to the discovery
of novel unique biometric activities.

This study explored continuous authentication by smartphone sensing based on
diverse human activities (static, simple, and complex) to verify individual identities. The
following aspects and contributions were assessed.
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• DeepAuthen was developed as a continuous authentication framework for smart-
phones that leveraged a deep learning model to automate all user authentication
phases through human activity analysis.

• DeepConvLSTM was proposed as a hybrid deep learning model that is able to capture
time dependencies on features extracted by convolutional operations.

• Experimental findings demonstrated that our proposed deep learning model out-
performed existing baseline deep learning approaches on three publicly available
complicated datasets. The lowest energy efficiency ratios (EERs) and highest accura-
cies were achieved with UCI-HAR, WISDM-HARB, and HMOG datasets.

The remainder of this paper is arranged as follows: Section 2 reviews the existing
literature on machine learning and deep learning methods for mobile sensing data and
continuous authentication. The DeepAuthen framework for continuous authentication
through mobile sensing is described in Section 3. Section 4 details the experimental design,
while the findings are evaluated discussed in Section 5. Finally, Section 6 summarizes the
study conclusions, including limitations and challenging future works.

2. Related Studies

Various studies have suggested using biometrics for continuous user authentica-
tion [22,25]. In the field of continuous authentication, inertial data are used to determine
the movement, orientation, and position of a device within the surrounding environment.
Methods that use this kind of data for nonintrusive authentication employ characteristics
of user behavior such as gait, touchscreen operations, hand gesturing, keyboard patterns,
speech, or signature movements to generate behavioral characteristics.

Zheng et al. [26] were among the first to gather an extensive continuous authentication
dataset and use a one-class distance-based classifier. They combined inertial data from
the device’s accelerometer and gyroscope with touchscreen, acceleration, pressure, touch
area size, and time frame information between interactions. They developed study profiles
of how each person held their smartphone when entering their PIN number to detect
either the genuine owner or an impostor, with an EER of up to 3.6%. Trojahn et al. [27] also
utilized deep learning techniques using keyboard and handwriting analytics to authenticate
smartphone users based on data collected from repeatedly entering passwords. Researchers
classified these images using models such as the multilayer perceptron (MLP) [28], Bayesian
Net classifiers [29], and Naïve Bayes [30].

Several years later, Neverova et al. [31] utilized large-scale data from Google’s Abacus
project and time-based deep feature extraction. They performed user authentication by
employing recurrent neural networks (RNNs) and convolutional neural networks (CNNs).
The Google Abacus dataset contains information from 1500 people who were observed in
real-world settings. However, it has not been made publicly available. Researchers utilized
a Dense Clockwork RNN model to classify the data. Later, Shen et al. [32] demonstrated
great progress using the HMOG dataset by collecting over 27,000 data samples from ten
participants including extracting wavelet, frequency, and time-domain characteristics to
evaluate several algorithms including Support Vector Machines, Hidden Markov Models,
and K-Nearest Neighbors.

Behavioral biometric research results are listed in Table 1, adapted from Ehatisham-ul-
Haq et al. [33]. Research analyses included gestures, keystrokes, touchscreens, handwriting,
speech, and locomotion. The main drawbacks of gesture-based research are that they
require user interaction throughout the authentication phase. An impostor cannot be
identified after the gadget is unlocked. Conversely, solutions based on keystroke dynamics
have limitations and necessitate more data than other methods since they are influenced
by user behavioral changes (e.g., various moods). Moreover, shifting keyboards may
disturb previously acquired patterns. Touchscreen-based research also has limitations
because interactions vary considerably depending on the direction, and existing user
activity significantly affects interactivity. Techniques that rely on handwriting are hardly
designed to enable continuous authentication because the smartphone is not stable enough
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to identify a change in the pattern with confidence. Background noise of the neighboring
environment also has a detrimental effect on authentication technology relying on speech.
Gait-based recognition is susceptible to variations in walking patterns caused by changing
clothes, as well as the need to maintain the sensors on the body in a proper posture at all
times [33].

Table 1. Comparison table of our study and the related literature in term of accuracy, EER, and human activities considered.

Dataset Work Year Human Activities EER Accuracy

UCI-HAR

Zhang [23] 2019 Walking (Wa) - Wa: 95.38%

Giorgi et al. [24] 2021
Walking (Wa) Wa: 3.1% Wa: 97.4%
Walking Upstairs (WU) WU: 5.7% WU: 94.3%
Walking Downstairs (WD) WD: 6.8% WD: 93.2%

Our work 2021

Walking (Wa) Wa: 0.21% Wa: 99.33%
Walking Upstairs (WU) WU: 0.26% WU: 99.71%
Walking Downstairs (WD) WD: 2.72% WD: 98.67%
Sitting (Si) Si: 5.10% Si: 95.04%
Standing (St) St: 2.86% St: 96.42%
Laying (Ly) Ly: 2.01% Ly: 96.23%

WISDM-HARB

Zhang [23] 2019 Walking (Wa) - Wa: 97.52%

Giorgi et al. [24] 2021

Walking (Wa) Wa: 2.36% Wa: 98.4%
Jogging (Jg) Jg: 2.6% Jg: 97.2%
Stairs (Ws) Ws: 3.4% Ws: 98.3%
Typing (Tp) Tp: 4.9% Tp: 97.2%

Our work 2021

Walking (Wa) Wa: 1.22% Wa: 99.49%
Jogging (Jg) Jg: 1.97% Jg: 99.51%
Stairs (Ws) Ws: 4.41% Ws: 99.84%
Sitting (Si) Si: 0.76% Si: 99.81%
Standing (St) St: 4.55% St: 98.26%
Kicking (Ki) Ki: 3.56% Ki: 98.30%
Dribbling (Db) Db: 2.95% Db: 98.48%
Catch (Ca) Ca: 1.28% Ca: 99.25%
Typing (Tp) Tp: 0.84% Tp: 99.80%
Writing (Wr) Wr: 2.25% Wr: 99.50%
Clapping (Cp) Cp: 0.68% Cp: 99.72%
Teeth (Te) Te: 2.28% Te: 99.28%
Folding (Fd) Fd: 1.43% Fd: 99.47%
Eating Pasta (EP) EP: 0.69% EP: 99.66%
Eating Soup (ESp) ESp: 1.52% ESp: 99.58%
Eating Sandwich (ESa) ESa: 1.94% ESa: 99.55%
Eating Chips (ECp) ECp: 0.83% ECp: 99.80%
Drinking (Dk) Dk: 1.45% Dk: 99.60%

HMOG

Sitova et al. [22] 2015

Reading + Sitting (RS) RW + WW: 13.72% -
Reading + Walking (RW) RS + WS: 19.67% -
Writing + Sitting (WS) - -
Writing + Walking (WW) - -

Giorgi et al. [24] 2021 Reading + Walking (RW) RW: 3.4% RW: 96.9%
Writing + Walking (WW) WW: 8.3% WW: 95%

Our work 2021

Reading + Sitting (RS) RS: 0.47% RS: 99.64%
Reading + Walking (RW) RW: 0.62% RW: 99.62%
Writing + Sitting (WS) WS: 0.01% WS: 99.99%
Writing + Walking (WW) WW: 1.02% WW: 99.34%
Mapping + Sitting (MS) MS: 0.01% MS: 99.99%
Mapping + Walking (MW) MW: 0.73% MW: 99.55%

Various efforts [34–36] have been dedicated to authenticating human activities while
performing a particular task, such as entering a password, making a call, or picking up a
phone from a table. A more straightforward machine learning issue may provide superior
results but lacks continuity. For example, after a user is authorized, the phone does not
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recognize how to categorize different kinds of actions that occur until the same activity
occurs repeatedly. Motion sensors can detect two types of user actions. The first is simple,
while the second is complex. Walking, sitting, sleeping, ascending or descending stairs, or
lying down are all examples of simple activities. By comparison, complex tasks include
driving a vehicle, changing clothing, riding a bike, and exercising. Martin et al. [37]
proposed a technique for detecting real-time intervals of walking, bicycling, driving, or
taking the bus or train using GPS and accelerometer data. They demonstrated that GPS
data achieved 96% accuracy using a random forest (RF) classifier on data processing
with principal component analysis (PCA) and recursive feature elimination (RFE). By
contrast, GPS remains an unfeasible option for practical implementation in CA use scenarios
owing to its significant battery consumption and user authorization to execute and access
data. Anguita et al. [38] used accelerometer and gyroscope data to formulate a support
vector machines (SVM) model. Their model detected patterns of walking at 95% accuracy,
with climbing stairs at 72%, standing at 92%, sitting at 94%, lying down at 100%, and
going downstairs at 79%, while Ronao et al. [39] used comparable characteristics to
investigate human activity identification using deep learning and artificial neural networks
at 95% accuracy.

3. DeepAuthen Framework

This research study proposed DeepAuthen as a continuous authentication architecture
based on deep learning using smartphone sensors. DeepAuthen was presented as a
framework for continuous authentication that gathers data from smartphone sensors
and feeds it to an authentication model to validate smartphone users. We investigated
smartphone users’ unique use and activity patterns recorded by the sensor data used for
continuous authentication.

3.1. Overview of the DeepAuthen Framework

The proposed workflow of the DeepAuthen framework, shown in Figure 1, consisted
primarily of four components as data acquisition, data pre-processing, data generation,
and model training/testing. Data were gathered from three publicly available datasets
(UCI-HAR, WISDM-HARB, and HMOG) that included static, simple, and complex human
activities. The preprocessing phase segment sensor data used sliding window widths to
prepare data samples for the next step. The data generation phase then separated the
sample data into training and test data using a 10-fold cross-validation technique. Then,
we shifted the data samples to a high-dimensional embedding space to satisfy the feature
representation in our proposed DeepConvLSTM model. This process was performed
using convolutional layers and a long short-term memory (LSTM) layer, as explained in
the following.
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Figure 1. The overview of the DeepAuthen framework.
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3.2. Data Acquisition

There are many public datasets available for collecting smartphone sensor data for the
purpose of human activity recognition (HAR). However, these datasets are typically insuf-
ficient for continuous authentication mechanisms because data are collected in controlled
situations using fixed-mounted smartphones or released without subject information. One
exception is the Human Activity Recognition using Smartphone (UCI-HAR) dataset [40],
which is a collection devoted to activity recognition. The dataset has also been utilized for
continuous authentication [24]. Another notable exception is the WISDM-HARB dataset,
which gathers data on activity patterns to investigate activity identification and authentica-
tion using smartphone sensors. The third dataset utilized in this study was a publicly acces-
sible dataset that gathered data specifically for continuous authentication [41], commonly
referred to as the Hand Movement, Orientation, and Grasp (HMOG) dataset, generated by
100 participants throughout 24 periods using inertial and touch sensors. Participants were
required to complete specified tasks throughout these periods. Each of the three datasets
utilized in this study, as shown in Table 2, is described in detail as follows:

3.2.1. UCI-HAR: Human Activity Recognition Using Smartphone Dataset

Various public datasets are available to gather smartphone sensors, but the UCI-HAR
dataset [40] combines smartphone sensing data from 30 volunteers aged 19–48 years. In
everyday life, each participant engaged in six events: walking, walking upstairs, walking
downstairs, sitting, standing, and lying down. Activity data were collected using a smart-
phone worn around the waist. At a fixed rate of 50 Hz, the sensor data consisted of triaxial
linear acceleration and triaxial angular velocity. The data were manually tagged to indicate
the activity and the individual participant.

3.2.2. WISDM-HARB: WISDM Human Activity Recognition and Biometric Dataset

The WISDM-HARB dataset [42] contains details from 51 participants who were re-
quired to complete 18 everyday tasks involving both simple and complex activities. For
this dataset, the accelerometer and gyroscope data were collected at a steady rate of 20 Hz
from smartphones and smartwatches while each participant performed these tasks for
three minutes. The data were manually tagged to indicate the kind of activity and the
individual participant.

This study used data from the WISDM-HARB dataset for smartphones by conducting
an exploratory investigation on the sensor data. We observed that human activity data for
seven individuals did not include all predefined activities and ignored the seven subjects
(1616, 1618, 1637, 1638, 1639, 1640, and 1642). As a result, 44 subjects retained their
smartphone data.

3.2.3. HMOG: Hand Movement, Orientation, and Grasp Dataset

The HMOG has been assembled and released as publicly accessible [41]. The dataset
contains accelerometer, gyroscope, and magnetometer information of tap-based character-
istics such as x-y coordinates, finger-covered area, and pressure gathered from 100 smart-
phone users throughout 24 periods. The data were gathered in a controlled setting during
several periods of smartphone use. Each period consisted of specified activities categorized
as reading, writing, or map-navigation. Furthermore, each activity was conducted when
both sitting and walking. Each experience was repeated four times, yielding a total of
24 experiences for each participant. The dataset contained accelerometer, gyroscope, and
magnetometer sensor data, with frequency operation at 100 Hz. Each individual recorded
six distinct experience patterns. Additionally, sensor information from screen interactions
such as touch, keypress, scroll, pinch, and stroke were recorded, but these were irrelevant
for this study.

However, specific periods were not finished owing to outlier data and missing data
for some individuals in the HMOG dataset. Büch [43] determined that participant 733162
lacked accelerometer data for periods 9, 10, 11, 12, 13, and 14, while subjects 526319 and
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796581 recorded only 23 periods instead of 24. As a result, we eliminated participants
526319, 796581, and 733162 from our active dataset. Li et al. [44] indicated two patients
with anomalous results in HMOG but provided no additional explanations. These were
presumed to be participants 526319 and 796581. The study by Centeno et al. [45] excluded
ten participants from the HMOG dataset. Seven more subjects with inconsistent data were
eliminated to maintain comparability with their study, while Büch’s logic [43] eliminated
participants 256487, 389015, and 856401 as a result of excessive data compared to the mean,
and participants 219303, 539502, 737973, and 986737 for having insufficient data.

Table 2. Characteristics of the selected datasets used to evaluate deep learning models in this work.

Dataset Sensors No. of
Users

No. of
Activities

Activities

Static Simple Complex

UCI-HAR [40] 2 Acc. 30 6 Standing Walking -
1 Gyro. Sitting Walking Upstairs -

Laying Walking Downstairs -

WISDM-HARB [42] 1 Acc. 51 18 Sitting Walking Kicking
1 Gyro. Standing Jogging Dribbling

Stairs Catch
Typing
Writing

Clapping
Teeth

Folding
Eating Pasta
Eating Soup

Eating Sandwich
Eating Chips

Drinking

HMOG [41] 1 Acc. 100 6 - Reading + Sitting -
1 Gyro. Reading + Walking
1 Mag. Writing + Sitting

Writing + Walking
Mapping + Sitting

Mapping + Walking

3.3. Data Preprocessing

The preprocessing stage involves the preparation of raw sensor readings for subse-
quent steps in the proposed framework of continuous authentication. It comprises cleaning,
transforming, and segmenting raw data. The cleaning step minimizes the noise using
a median filter and a third-order low-pass Butterworth filter with a cutoff frequency of
20 Hz. This rate is adequate for collecting human movement since 95% of its energy is
stored under 15 Hz [40]. Regarding noise filtering, the data are converted into the proper
representations for the following step. In particular, the transformation step employs a
Min-Max normalization method to visualize each data point’s values onto the range [0, 1].
It would support learning algorithms in balancing the impacts of different dimensions. All
sensors’ normalized data are mapped to the exact size of a sliding window for the data
segmentation step. In this study, we formed sensory data sequences with a duration of
2.56 s using a sliding window (128 readings for each sequence in the UCI-HAR dataset,
52 readings for each sequence in the WISDM-HARB dataset, and 256 readings for each
sequence in the HMOG dataset).

In sensor-based HAR, the initial step is to generate data samples from raw sensor data.
This procedure involves segmenting the raw data into identically sized short segments
named temporal windows. Before training a deep learning model, raw time series data
collected from wrist-worn wearable sensors is segmented into temporal segments in this
study. Sliding is a commonly used method that is useful for managing flowing data.
Each time interval is equal to the window size specified by ∆t. The Dt denotes X, Y, and
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Z readings throughout the time interval [t, ∆t]. This study used a data segmentation
technique called an overlapping temporal window (OW), which generates data samples by
applying a fixed-size window to the sensor data stream. The OW technique is the most
often employed in sensor-based HAR and authentication research, with a 50% overlap
rate [23,24]. Nevertheless, this sample generation is considerably unbalanced since Dt and
Dt+1 share a percentage of the sensor data. Figure 2 illustrates an example of sensor data
segmentation using the OW scheme. X, Y, and Z denote the three main components of a
triaxial IMU sensor.

Figure 2. Data segmentation by the OW scheme.

3.4. Proposed Deep Learning Network

This research addresses a deep learning model called DeepConvLSTM for continuous
authentication utilizing data from smartphone sensors. Figure 3 illustrates the proposed
DL network structure for continuous authentication based on activity characteristics. The
proposed CA model comprises two components: the CNN network is responsible for
extracting spatial characteristics from sensory input. Additionally, the LSTM network is
responsible for extracting temporal dependency relations in spatial features.

Figure 3. The DeepConvLSTM architecture for sensor-based continuous authentication proposed in
this work.

Convolutional neural networks (CNNs) are commonly used deep learning models
with significant feature extraction properties. The CNNs can progressively extract spatial
information from the input data in an automated and efficient manner. CNNs are especially
adept at processing two-dimensional image information compared to one-dimensional
data such as physical or business data. The convolutional layers’ inputs are linked to the
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subsequent layers rather than completely connected as in conventional neural network
models. Because both input sets have the same weights for subregions, the CNN’s inputs
generate spatially linked outputs. However, in conventional neural network networks
(NN), each input has a unique weight. Increasing the number of weights raises the input
dimensionality, resulting in a more complicated network. In comparison to NN, CNN uses
weight sharing and downsampling to decrease the weights and the number of connections.
In the proposed model, the first convolutional layer in this study has 64 filters and a kernel
size of three. The second layer has 64 filters and a kernel of size 5, whereas the pool size in
the max-pooling layers has always been set to two. A flattening layer was utilized to link
the convolutional and LSTM layers. The CNN subnetwork’s hyperparameters are listed in
Table 3.

Table 3. Characteristics of the selected datasets used to evaluate deep learning models in this work.

Layer Name Kernel Size Kernel Number Padding Stride

Conv1D1 3 64 2 4
Maxpooling1 2 None 0 1
Conv1D2 5 64 2 1
Maxpooling2 2 None 0 1

While CNNs are rather efficient at extracting features, they are less effective for certain
classification/learning problems, including time-dependent inputs, such as the smartphone
sensing data used in this work. Because the prior situation this kind of data impacts the
network’s forecasts of future situations, the network would have to be aware of both the
present and previous inputs. This issue could be addressed using an RNN model capable
of performing classification on each aspect of a time series. The RNN describes the present
input as of the previous time step and as the outcome of the prior input. The result of the
RNN at time t is influenced by the output of the RNN at time step t − 1.

RNN networks could technically be used to train for time series data of any length. In
reality, RNN networks struggle from gradient disappearance when dealing with multiple
time series, making it impossible to learn long-range relationships. To resolve this concern,
we use a long- and short-term memory storage unit as the RNN network’s storage unit, the
LSTM network. The LSTM architecture is shown in Figure 4.

Figure 4. The structure of LSTM network.

Employing complex systems termed gates, LSTM effectively eliminates or adds in-
formation to cellular states. The gate is a technique for deliberately allowing information
to flow through. It is composed of a layer of sigmoid neural networks and a pointwise
multiplication function. Three gates safeguard and regulate the state of an LSTM cell: a
forget gate, an input gate, and an output gate, as shown in Figure 5.

In this work, we denote an LSTM layer’s input set as X = {x0, x1, x2, . . . , xt, xt+1, . . . },
its output set as Y = {y0, y1, y2, . . . , yt, yt+1, . . . }, and its hidden layers as H = {h0, h1, h2, . . . ,
ht, ht+1, . . . }. Moreover, U, W, and V represent the layer’s weight metrics. U indicates
weight metrics between the input and hidden layers, W represents weight metrics between
the hidden and hidden layers, and V denotes weight metrics between the hidden and
output layers, respectively. The LSTM network’s computational method is as follows: the
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input data are converted into the hidden layer using a matrix transformation, coupled with
the information from the hidden layer in the final step. Then, as shown in Figure 5, the
result of the hidden layer is passed through an activation function to determine the final
value of the output layer.

Figure 5. The LSTM unit.

The hidden layer’s and output layer’s outputs could be specifically defined:

hi =

{
tanh(Uxi + bh

i ) while i = 0
tanh(Uxi + Whi−1 + bh

i ) while i = 1, 2, 3, . . .
(1)

yi = tanh(Vhi + by
i ) while i = 0, 1, . . . (2)

As shown in Figure 5, the LSTM’s input gate (i) forget gate (f ), output gate (o), and
memory cell (c) are all intended to regulate what information should be forgotten, recalled,
and updated. Gating is a technique that allows for the controlled transmission of data. It is
comprised of two functions: a sigmoid and an element-wise multiplication. The output
value must fall inside the range [0, 1] for multiplication to occur, allowing or preventing
information flow. It is regarded best practice to calibrate these gates to 1 or near to 1 to
avoid impairing training in the starting. Each parameter may be specified as follows in the
LSTM unit at time t.

The forget gate ft is involved for eliminating irrelevant past information; the recurrent
input ht−1 ∈ Rm (m is the size of the hidden state) and current input xt ∈ Rn (n is the length
of the input) are inputs to a sigmoid function σ(x) = (1 + e−x)−1, the output ft is a value
between 0 and 1 multiplied by the cell state (ct−1), if ft equals 1, the LSTM retains this new
information; alternatively, if ft equals 0, the LSTM discards this additional information
entirely:

ft = σ(U f xt + W f ht−1 + b f ) (3)

The input gate it is a sigmoid function, and the output is the value that is used to
modify the LSTM cell:

it = σ(Uixt + Wiht−1 + bi) (4)

The state gate gt generates a vector of variable length. These values are added to and
perform a status update:

gt = tanh(Ugxt + Wght−1 + bg) (5)

The output gate ot indicates the data from the cell state that should be produced
instantaneously in combination with previously stored information:

ot = σ(Uoxt + Woht−1 + bo) (6)



Sensors 2021, 21, 7519 11 of 21

The update state Ct entails forgetting what should be remembered and adding what
should be added:

ct = ft
⊗ ct−1

⊕ it
⊗ gt (7)

The LSTM’s hidden output ht combines both short and long periods.

ht = ot
⊗ tanh(ct) (8)

where ⊗ denotes element-wise multiplication and ⊕ denotes element-wise addition, W f ,
Wi, Wg, Wo ∈ Rm×m, where m denotes the weighted matrices of the recurrent input ht−1,
U f , Ui, Ug, Uo ∈ Rn×n, where n denotes the weighted matrices of the current input xt, bi,
b f , bc, bo ∈ Rm.

The LSTM cell’s information processing is given in Equations (3)–(7). To beginning,
there is a requirement to forget previous knowledge, which is accomplished through the
forget gate. The next stage is to use an input gate to decide what additional information
needs to be stored in memory. This allows for the updating of the previous cell state, ct−1,
to the new cell state, ct. Finally, it determines which information should be sent through an
output gate to the layer above.

In the proposed model, three dense layers with drop out were linked following the
LSTM layer. The first dense layer has 128 neurons with a 0.25 dropout, followed by a layer
of 64 neurons with a 0.25 dropout, and finally, the output layer contains two neurons. The
activation function for each layer in the model is a rectified linear unit (ReLU).

The setup that performed optimally throughout the training procedure was 50 epochs
with a batch size of 32. The categorical cross entropy with Adam optimizer was used as the
loss function [46].

3.5. Performance Metrics

To evaluate an authentication scheme, the metrics are defined based on error rates
required. False acceptance error (FAR) and false rejection rate (FRR) are the two primary
kinds of errors. They are rising sensitivity results in an increase in FRR and a reduction
in FAR. The sensitivity points at which FRR and FAR are equal error rate (EER). The
following formulas illustrate some of the metrics that are used to determine authentication
failures [14]. Additionally, classification measures such as accuracy and confusion matrices
were utilized to assess the classification efficiency of the researched approaches [47].

Authentication Performance Metrics

The confusion matrix is used to quantify a classifier’s efficiency. In Table 4, we provide
a confusion matrix with two potential predicted classifications: “Genuine” and “Imposter”.

• TA stands for True Acceptance, the number of patterns that belong to a real user and
are appropriately categorized as “Genuine”.

• TR stands for True Reject, the number of patterns that do not belong to the real user
and are appropriately categorized as “Imposter”.

• FA stands for False Acceptance, the number of patterns categorized as “Real” that do
not belong to the genuine user.

• FR stands for False Reject, the number of patterns belonging to the actual user that
were incorrectly categorized as “Imposter”.

Table 4. Confusion matrix.

Actual Class

Genuine Imposter

Predicted Class
Genuine TA FA

Imposter FR TR
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The false acceptance rate (FAR), false reject rate (FRR), accuracy, and equal error rate
(ERR) are calculated as follows using the confusion matrix:

FAR denotes the conditional chance that a pattern is categorized as “Genuine” if it
does not already belong to it. The FAR is calculated using the following formula:

FAR =
FA

FA + TR
(9)

FRR denotes the conditional likelihood of a pattern not being classed as “Genuine” if
it does belong to it. The FRR is calculated using the following formula:

FRR =
FR

FR + TA
(10)

Accuracy is defined as the likelihood of classifying a pattern correctly. Accuracy is
defined as:

Accuracy =
TA + TR

TA + TR + FA + FR
(11)

Equal error rate (EER) is the error rate obtained by adjusting the system’s detection
threshold to equalize FAR and FRR. The EER is calculated using the following formula:

EER =
FAR + FRR

2
(12)

where |FAR + FRR| is the smallest value.

4. Experimental Design and Evaluation of the Findings

This section discusses the experiments performed to determine the optimal effective
deep learning models for continuous user authentication and the outcomes of all the
studies. Our experiments were conducted on three benchmark datasets for continuous
authentication using smartphone sensing data as UCI-HAR, WISDM-HARB, and HMOG.
Three authentication metrics as EER, accuracy and confusion matrix were used to evaluate
the deep learning models.

4.1. Experiment Setup

To emphasize the authentication performance of our proposed model, we compared
the baseline deep learning algorithm results for continuous authentication performances
of the proposed DeepConvLSTM model against a CNN model and an LSTM model.
Tables 5–7 detail the hyperparameters for each model.

Table 5. The summary of hyperparameters for the CNN network used in this work.

Stage Hyperparameters Values

Architecture

Convolution
Kernel Size 3

Stride 1
Filters 64

Dropout 0.25
Maxpooling 2
Flatten -

Training

Loss Function Crossentropy
Optimizer Adam
Batch Size 64
Number of Epoches 200
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Table 6. The summary of hyperparameters for the LSTM network used in this work.

Stage Hyperparameters Values

Architecture LSTM Unit 128
Dropout 0.25
Dense 128

Training Loss Function Crossentropy
Optimizer Adam
Batch Size 64
Number of Epoches 200

Table 7. The summary of hyperparameters for the DeepConvLSTM network used in this work.

Stage Hyperparameters Values

Architecture

Convolution
Kernel Size 3

Stride 1
Filters 64

Dropout 0.25
Maxpooling 2

Convolution
Kernel Size 5

Stride 1
Filters 64

Dropout 0.25
Maxpooling 2
Flatten -

LSTM Unit 128
Dropout 0.25
Dense 128

Training

Loss Function Cross-entropy
Optimizer Adam
Batch Size 64
Number of Epoches 200

4.2. Configuration of the Environment

This study used the Google Colab Pro+ platform [48]. The Tesla V100-SXM2-16GB
graphics processor module was utilized to speed deep learning model training. The
DeepConvLSTM and other baseline deep learning models were implemented in Python
library with Tensorflow backend (version 3.9.1) [49] and CUDA (version 8.0.6) [50]. These
investigations focused on the following Python libraries:

• When reading, manipulating, and interpreting sensor data, Numpy and Pandas were
utilized for data management.

• For plotting and displaying the outcomes of data discovery and model assessment,
Matplotlib and Seaborn were utilized.

• Scikit-learn (Sklearn) was used in experiments as a library for sampling and data generation.
• Deep learning models were implemented and trained using TensorFlow, Keras, and

TensorBoard.

4.3. Experimental Results

This study evaluated the proposed DeepAuthen framework against basic deep learn-
ing algorithms using three public datasets, namely UCI-HAR, WISDM-HARB, and HMOG.
The following subsections provide the experimental observations of these deep learning
methods trained on mobile sensing data on various datasets.
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4.3.1. UCI-HAR Dataset

The UCI-HAR dataset was used to gather smartphone sensor data from 30 volunteer
individuals. They engaged in six activities (Wa, WU, WD, Si, St, and Ly), as stated in
Table 1. As indicated in Table 8, the assessed outcomes of the deep learning models were
quantified using authentication performance parameters (accuracy and EER).

Table 8. Average metrics on classifier evaluation of deep learning models using UCI-HAR dataset.

Activity

Authentication Performance Metrics

CNN LSTM DeepConvLSTM
Accuracy EER Accuracy EER Accuracy EER

Walking 99.64% (±1.495%) 0.18% (±0.945%) 95.03% (±9.089%) 5.77% (±16.319%) 99.33% (±1.614%) 0.21% (±1.122%)
Walking Upstairs 98.06% (±3.547%) 1.77% (±3.798%) 98.51% (±1.513%) 10.90% (±18.576%) 99.71% (±1.103%) 0.26% (±1.381%)
Walking Downstairs 92.94% (±11.927%) 10.18% (±16.124%) 98.60% (±3.132%) 14.10% (±20.189%) 98.67% (±3.273%) 2.72% (±6.424%)
Sitting 96.50% (±5.359%) 2.42% (±5.729%) 80.60% (±18.519%) 15.07% (±23.740%) 95.04% (±7.160%) 5.10% (±8.307%)
Standing 96.30% (±5.193%) 1.99% (±4.138%) 75.74% (±18.921%) 11.62% (±23.066%) 96.42% (±4.789%) 2.86% (±6.516%)
Laying 98.43% (±3.066%) 1.37% (±3.839%) 79.03% (±17.076%) 12.86% (±22.946%) 96.23% (±5.387%) 2.01% (±4.672%)

Table 8 shows that the proposed DeepConvLSTM model surpasses current baseline
deep learning models in average accuracy and EER through all activity patterns. Through
using the UCI-HAR dataset, we analyzed our findings, which are shown in Figure 6.
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Figure 6. The comparative results using the UCI-HAR dataset.

4.3.2. WISDM-HARB Dataset

The WISDM-HARB dataset was utilized as the second dataset in this study. This dataset
contains mobile sensor data from 44 people on 18 physical activities. Table 9 summarizes the
authentication performance for this dataset.

The proposed DeepConvLSTM model outperforms current baseline deep learning
models in terms of average accuracy and EER for all activity patterns, as demonstrated in
Table 9. Figure 7 shows the comparison findings using the WISDM-HARB dataset.

Table 9. Average metrics on classifier evaluation of deep learning models using WISDM-HARB dataset.

Activity

Authentication Performance Metrics

CNN LSTM DeepConvLSTM
Accuracy EER Accuracy EER Accuracy EER

Walking 96.28% (±4.049%) 7.88% (±9.653%) 96.42% (±5.853%) 5.88% (±9.032%) 99.49% (±1.721%) 1.22% (±3.611%)
Jogging 94.07% (±5.040%) 11.88% (±9.673%) 97.40% (±4.204%) 6.43% (±8.804%) 99.51% (±0.972%) 1.97% (±4.566%)
Stairs 96.32% (±4.480%) 8.82% (±9.797%) 97.03% (±3.799%) 6.39% (±6.667%) 98.84% (±1.343%) 4.41% (±5.172%)
Sitting 98.84% (±2.122%) 3.05% (±4.342%) 98.56% (±3.645%) 3.07% (±6.550%) 99.81% (±0.529%) 0.76% (±2.244%)
Standing 96.94% (±4.430%) 7.41% (±9.416%) 94.52% (±7.681%) 9.36% (±11.936%) 98.26% (±2.128%) 4.55% (±5.672%)
Kicking 95.47% (±5.943%) 9.70% (±12.377%) 94.82% (±7.567%) 8.08% (±10.576%) 98.30% (±4.081%) 3.56% (±8.397%)
Dribbling 97.27% (±4.190%) 6.70% (±10.039%) 95.98% (±4.861%) 7.19% (±8.618%) 98.48% (±2.287%) 2.95% (±3.899%)
Catch 96.67% (±4.863%) 8.02% (±10.829%) 94.48% (±7.139%) 8.45% (±11.730) 99.25% (±1.926%) 1.28% (±3.890%)
Typing 98.49%(±2.422%) 4.27% (±5.543%) 99.10% (±1.091%) 3.08% (±3.537%) 99.80% (±0.607%) 0.84% (±2.467%)
Writing 99.29% (±1.015%) 2.51% (±3.478%) 98.58% (±3.294%) 3.23% (±4.186%) 99.50% (±0.708%) 2.25% (±3.181%)
Clapping 98.74% (±2.806%) 2.99% (±5.510%) 98.42% (±3.548%) 2.89% (±5.300%) 99.72% (±0.723%) 0.68% (±1.714%)
Teeth 98.53% (±2.647%) 4.40% (±7.186%) 98.29% (±3.854%) 3.36% (±6.279%) 99.28% (±1.380%) 2.28% (±4.724%)
Folding 97.54% (±4.717%) 6.06% (±9.638%) 95.66% (±7.941%) 6.60% (±11.333%) 99.47% (±0.922%) 1.43% (±2.887%)
Pasta 99.49% (±1.104%) 1.43% (±2.846%) 98.73% (±2.589%) 2.29% (±3.595%) 99.66% (±1.172%) 0.69% (±1.789%)
Soup 99.29% (±1.319%) 2.56% (±4.640%) 98.79% (±2.815%) 2.91% (±6.893%) 99.58% (±1.113%) 1.52% (±4.489%)
Sandwich 99.42% (±0.837%) 1.98% (±2.630%) 97.45% (±4.477%) 5.40% (±5.831%) 99.55% (±0.900%) 1.94% (±3.882%)
Chips 99.40% (±1.124%) 1.84% (±3.329%) 99.13% (±1.800%) 2.52% (±4.715%) 99.80% (±0.530%) 0.83% (±2.254%)
Drinking 99.59% (±0.678%) 1.53% (±2.525%) 98.76% (±2.278%) 2.66% (±4.115%) 99.60% (±1.004%) 1.45% (±3.155%)



Sensors 2021, 21, 7519 15 of 21

70

80

90

100

Wa Jg Ws Si St Ki Db Ca Tp Wr Cp Te Fd EP ESp ESa ECp Dk Avg.

A
cc

ur
ac

y 
(%

)
CNN LSTM DeepConvLSTM

0

5

10

15

Wa Jg Ws Si St Ki Db Ca Tp Wr Cp Te Fd EP ESp ESa ECp Dk Avg.

EE
R 

(%
)

CNN LSTM DeepConvLSTM

Figure 7. The comparative results using the WISDM-HARB dataset.

4.3.3. HMOG Dataset

The HMOG dataset was utilized as the third dataset for assessing the DeepAuthen
framework. This dataset comprises sensor data from 100 individuals’ smartphones relating
to six different activities. Table 10 presents the experimental outcomes.

Table 10. Average metrics on classifier evaluation of deep learning models using HMOG dataset.

Activity

Authentication Performance Metrics

CNN LSTM DeepConvLSTM
Accuracy EER Accuracy EER Accuracy EER

Read Sit 99.91% (±0.626%) 0.14% (±0.952%) 99.45% (±3.140%) 0.80% (±4.487%) 99.64% (±3.134%) 0.47% (±3.976%)
Read Walk 99.60% (±1.207%) 0.60% (±1.812%) 99.51% (±1.731%) 0.75% (±2.674%) 99.62% (±1.300%) 0.62% (±2.049%)
Write Sit 99.98% (±0.088%) 0.03% (±0.156%) 99.84% (±0.877%) 0.30% (±1.627%) 99.99% (±0.048%) 0.01% (±0.058%)
Write Walk 98.97% (±1.823%) 1.55% (±2.785%) 99.09% (±1.861%) 1.33% (±2.858%) 99.34% (±1.147%) 1.02% (±1.754%)
Map Sit 99.99% (±0.058%) 0.02% (±0.113%) 98.77% (±7.073%) 1.37% (±7.342%) 99.99% (±0.030%) 0.01% (±0.060%)
Map Walk 99.48% (±0.956%) 0.77% (±1.438%) 99.08% (±4.253%) 1.24% (±4.730%) 99.55% (±0.874%) 0.73% (±1.425%)

The introduced DeepConvLSTM model surpasses current baseline deep learning
models in terms of average accuracy and EER for all interactions, as shown by Table 10.
Figure 8 illustrates the comparison findings using the HMOG dataset.
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Figure 8. The comparative results using the HMOG dataset.

5. Discussion of the Experimental Results

We analyze the research observations mentioned in Section 4 throughout this section.

5.1. The Effects of Different Activity Types

Using the experimental data, we investigated the impact of different sensory inputs
on authentication efficiency by evaluating continuous user authentication across the vari-
ous activities. The WISDM-HARB dataset was chosen to examine the impact of activity
categories since this contained three distinct kinds of activities: static, simple, and complex.
The EER results in Table 9 show that all the investigated deep neural networks achieved
the highest average EER when used with mobile sensing data of complex activities, as
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shown in Figure 9. Notably, the proposed DeepConvLSTM worked well with an average
EER of 1.667% on complex mobile sensing data.
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Figure 9. Comparison of different types of human activities on continuous authentication from
(a) CNN, (b) LSTM, and (c) DeepConvLSTM.

5.2. The Effect of Gait-Based Activity on Continuous Authentication

The findings in Tables 8 and 9 describe the performance of each classifier when applied
to various gait-related tasks. Results from the two datasets UCI-HAR and WISDM-HARB
included gait-related activities and indicated that optimal performance occurred when the
subject moved forward in a straight line without changing direction. Consequently, the
individual’s forward walking pattern was more easily identifiable than other gait-based
walking patterns, as shown in Figure 10.
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Figure 10. Comparison of gait-based activities of different DL classifiers on the UCI-HAR dataset.

Comparison with Previous Studies

For continuous authentication, the proposed DeepConvLSTM model was compared
against current state-of-the-art models trained on the same datasets. Reference [23] devel-
oped an LSTM-based deep learning model to assess gait-based authentication, with smart-
phone sensors using the UCI-HAR and WISDM-HARB datasets. Furthermore, ref. [24]
offered an LSTM autoencoder model for continuous authentication using gait analysis.
These earlier studies used RNN-based deep learning models that functioned well when
applied with sequencing data. Figure 11a,b compares the findings.
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Figure 11. Comparison with previous works on (a) UCI-HAR dataset and (b) WISDM-HARB dataset.

The comparison results presented in Figure 11 showed that the proposed DeepCon-
vLSTM surpassed two previous studies for continuous authentication using gait-based
activity data. The model improved accuracy from 1.9% to 5.47% using the UCI-HAR
dataset and from 0.54% to 2.60% using the WISDM-HARB dataset. Furthermore, when
compared to the HMOG dataset, the DeepConvLSTM was superior in terms of accuracy
and EER [24], with results shown in Figure 12.
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Figure 12. Comparison with previous works on HMOG dataset.

The DeepConvLSTM model achieved superior results due to the benefits of deep
architecture based on the integration of convolutional and LSTM recurrent layers toward
sensor-based authentication. Specifically, when complex activity patterns such as going
upstairs, downstairs, and typing were used, the proposed DeepConvLSTM surpassed by
factors of 2.6–5.47%.
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6. Conclusions and Future Works

This section summarizes our research findings on deep learning algorithms for con-
tinuous authentication based on activity patterns identified by mobile sensing. We also
discuss two significant constraints that will be addressed in a future study.

6.1. Conclusions

Modern smartphones have become indispensable in the activities of daily living. Our
smartphones contain data to accomplish many sensitive operations such as mobile banking,
communication, and storing personal pictures. As a result, demand has increased for safe
authentication techniques that protect critical information from unauthorized access. This
article proposed DeepAuthen as a framework for continuous authentication for smartphone
users by leveraging mobile sensing data. This methodology allowed hybrid CNNs to
accomplish a variety of user activity patterns by utilizing sensor data from smartphones.
DeepAuthen is a simple and effective way to manage and analyze sensor data, enabling
user validation without the need to engage with their devices. We conducted a series of
experiments to assess DeepAuthen on the three publicly available benchmark datasets
UCI-HAR, WISDM-HARB, and HMOG. Each dataset included smartphone sensing data
from 30 individuals. We demonstrated that DeepAuthen could accurately authenticate
users using a variety of sensors. DeepAuthen provided new state-of-the-art findings in
terms of EER for continuous authentication for smartphones by utilizing sensor data.

6.2. Limitation and Future Works

Continuous authentication observes human activity behavior continuously. Mul-
timodal sensors are critical for continuous authentication using behavioral biometrics.
Sensors and continuous data processing are required for all operations from data collecting
through to authentication and permission [51]. The implementation and use of a sufficient
number of sensors improved the identification accuracy of a given action but increased the
computing cost and energy consumption. Battery consumption is a practical limitation of
smartphones that use a variety of proximity, light, gyroscope, barometer, accelerometer,
and digital compass sensors, which are a significant drain on battery capacity. Sensory
data collection requires more energy [52]. Several studies analyzed the power usage of
smartphones in-depth [53,54]. In general, power management can be accomplished by
turning off sensors when they are not in operation. However, continuous authentication ne-
cessitates continuous supervision and processing, and sensory power must be maintained
during active sessions.

This study also addressed potential future limitations. The first issue is enhancing con-
sumer usage of real-time authentication. This involves reducing the training time required
for models. The second aspect is how to increase the efficiency of deep learning authentica-
tion models by modifying their hyperparameters. Wearable devices and the Internet of
Things (IoT) are now pervasive in daily life. It is possible to trace user activities and enable
implicit identification using raw data collected from different mobility sensors attached to
either human bodies or things. Future research will examine the most effective and optimal
approaches for utilizing raw data to design a lightweight authentication framework for
individual identity verification. A critical area of future research will be to verify a method
in an IoT setting where a system continually monitors or authenticates individuals as they
go about their daily lives, thereby improving the accuracy and usefulness of behavior
biometrics techniques.
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