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Abstract: In this paper, a family of high-order linearly implicit exponential integrators conservative
schemes is constructed for solving the multi-dimensional nonlinear fractional Schrödinger equation.
By virtue of the Lawson transformation and the generalized scalar auxiliary variable approach, the
equation is first reformulated to an exponential equivalent system with a modified energy. Then,
we construct a semi-discrete conservative scheme by using the Fourier pseudo-spectral method to
discretize the exponential system in space direction. After that, linearly implicit energy-preserving
schemes which have high accuracy are given by applying the Runge–Kutta method to approximate
the semi-discrete system in temporal direction and using the extrapolation method to the nonlinear
term. As expected, the constructed schemes can preserve the energy exactly and implement efficiently
with a large time step. Numerical examples confirm the constructed schemes have high accuracy,
energy-preserving, and effectiveness in long-time simulation.

Keywords: fractional Schrödinger equation; exponential integrators; high-order; linearly implicit
energy-preserving
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1. Introduction

In this paper, we mainly consider the fractional nonlinear fractional Schrödinger (NLS)
equation in the following form [1,2]

i ∂u(x,t)
∂t = (−L) α

2 u(x, t)− γ|u(x, t)|2u(x, t), x ∈ Ω ⊂ Rd, t ∈ (0, T],

u(x, 0) = u0(x), x ∈ Ω,
(1)

where i is the imaginary unit root, u(x, t) satisfy the periodic boundary, x = [−L, L]d ⊂ Rd

(d = 2 or 3), u0(x) is the smooth initial function, the parameter γ is a dimensionless interac-
tion constant which describes the strength of short-range (or local) nonlinear interactions.
The fractional Laplacian operator (−L) α

2 is defined by

(̂−L) α
2 u(ξ) = |ξ|αû(ξ), (2)

where û(ξ) =
∫

Ω u(x)e−iξxdx denotes the Fourier transform of u(x).
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Based on the conjugacy of (−L) α
2 , the system (1) with periodic boundary has two

invariants [3], that is the Hamiltonian energy

H(u) = ((−L)
α
2 u, u)− γ

2
(|u|2, |u|2) = cosnt. (3)

and the mass

M(u) = (u, u) = cosnt, (4)

where (φ, ψ) =
∫

Ω φψ̄dx, ψ̄ is the conjugate of ψ. By setting u = φ + iψ, system (1) can be
reformulated as an infinite-dimension canonical Hamiltonian system [4]

dz
dt

= S−1 δH
δz

, with z = (φ, ψ)T , S =

(
0 1
−1 0

)
,

where δH/δz is the vector of variational derivatives with respect to z. The equation is first
introduced by the physicist, it is an important model in quantum mechanics and has been
implemented in some scientific engineering fields [5–7]. We all know that it is difficult
obtain exact solution of the fractional NLS equation for the reason that the solution contains
special function. Therefore, different numerical methods were proposed and analyzed for
solving the equation and approximating fractional derivative in recent decades, such as
finite difference methods [8–10], spectral methods [4,11,12], finite element methods [13,14]
and so on.

The prior research substantiated the finding that energy conservation plays a crucial
role in studying the solution properties for conservative system. The method can conserve
some intrinsic properties of the dynamical system, which we called the structure-preserving
algorithm, and scholars have developed structure-preserving schemes for system (1). For
example, Wang et al. developed some conservative finite difference schemes for solving
the fractional NLS-type Equation [15,16], and then some scholars further discussed uncon-
ditional L∞-norm convergence error estimates [17,18]. In Ref. [19], Duo et al. constructed
an efficient Fourier pseudo-spectral scheme which can inherit the mass and energy for
system (1) in two-dimensional case. There are many works related to it, the readers can
find in Refs. [20,21].

Unfortunately, a majority of conservative schemes only achieve second order temporal
accuracy, these schemes can not get satisfactory numerical solutions with a large time step.
Over the past decade, many numerical methods were developed and can be extend to
construct high-order numerical schemes to inherit the energy of the fractional NLS equation,
such as the Hamiltonian Boundary Value Method (HBVM) [22,23], the averaged vector flied
(AVF) method [24,25], and the Runge–Kutta (RK) method [26]. However, these schemes are
fully implicit, one has to use the nonlinear iterative to solve algebraic systems and thus it is
time consuming in numerical modeling. To reduce the computational complexity, explicit
schemes that can preserve a modified energy were constructed to solve the fractional NLS
system based on the energy quadratization method [27,28]. Such schemes are very efficient
but have poor stability in practical computation.

In the past years, the exponential integrators method was used to construct structure-
preserving schemes for conservative (dissipation) Equations [29–31]. The proposed schemes
can approximate linear part of the system, and provide satisfactory stability and high accu-
racy for highly oscillatory systems. Recently, scholars developed conservative exponential
integrators scheme for the NLS equation based on the scalar auxiliary variable (SAV) ap-
proach [32,33]. The energy-preserving algorithms mentioned above are either fully-implicit
or linearly-implicit so that nonlinear or linear solvers are required to obtain the conserva-
tive solutions. Over all, developing high order and efficiency conservative exponential
integrators schemes for solving Equation (1) is still be considered.

The generalized scalar auxiliary variable (GSAV) approach is build upon the SAV
approach [34–37], and has been used to construct efficient energy stable methods for
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solving some gradient flow models [38,39]. The auxiliary variables of the newly method
not just limited to the square root function and can be solved more efficiently than the
traditional SAV approach. The method is also extended to construct linearly implicit high-
order conservative schemes for Hamiltonian partial differential Equations [40], the resulted
scheme needs very small time step and it is still a computationally expensive procedure
in long time numerical simulation. Whether the GSAV approach and the exponential
integrators can be extended to construct efficient conservative schemes that conserve the
energy of the fractional NLS equation has not been studied. With this aim in mind, the paper
presents a new method for constructing a high-order linearly implicit conservative scheme
for system (1) by combing the GSAV method and the RK method. Unlike the traditional
GSAV schemes, such a reformation allows the approximation of entire nonlinear terms
by extrapolation and retains the energy conservation, whereas the auxiliary variable in
GSAV schemes has to be discretized implicitly. The proposed linearly-implicit schemes
with high accuracy in the time direction can be solved efficiently, inherit modified energy
of the system, and have better stability results than the non-exponential scheme in the
practical numerical simulation.

The outline of this article is organized as follows. In Section 2, we derive an equivalent
exponential system with a modified energy for the fractional NLS equation based on the
idea of the Lawson transformation and GSAV method. In Section 3, a class of linearly-
implicit high-order exponential integrators schemes are constructed, and the conservation
property and fast solver of the developed schemes are discussed. In Section 4, Some
numerical examples are given to confirm the theoretical results. We draw some conclusions
in Section 5.

2. The GSAV Approach for the NLS Equation

According to the basic idea of the GSAV method, we define an auxiliary variable
as follows

r(t) = G(u) := G
( ∫

Ω
|u|4dx

)
, (5)

where the function G is invertible, and Formula (3) can be rewritten as

H(u) =
(
(−L)

α
2 u, u

)
− γ

2
G−1{G(u)}, (6)

Then the nonlinear functional can be transformed into the following equivalent formulation

|u|2u =
r
r
|u|2u =

|u|2u
G(u) r. (7)

By taking the derivative of (5) with respect to t, we obtain

dr
dt

= 4G ′(u)Re
(
|u|2u, ut

)
, (8)

where Re(•) denotes the real part of •, and we can deduce the following equality

(G−1)
′{G(u)} = (G−1)

′
(r) =

1
G ′(u)

. (9)

Then, system (1) can be reformulated as

ut = i
(
(−L)

α
2 u + γ

|u|2u
G(u) r

)
, (10)
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d
dt
G−1(r) =

(
G−1)′(r)rt = 4Re

( |u|2u
G(u) r, ut

)
, (11)

with the consistent initial condition u0 = u(x, 0), r0 = G(u0). Noting that
(
(−L) α

2 u, u
)
∈ R,

we can prove system (10) and (11) conserve the mass and the modified energy, namely

Theorem 1. The continuous system (10) and (11) can preserve the mass and the modified energy,
namely

d
dt
M(t) = 0,

d
dt
H(t) = 0, (12)

where the the mass functionalM(t) and the modified energy functionalH(t) are given by

M(t) =
(
u, u
)
, (13)

H(t) =
(
(−L)

α
2 u, u

)
− γ

2
G−1{G(u)}. (14)

Proof. Based on the definition of the mass functional, we can derive

d
dt
M(t) =

d
dt
(u, u) = 2Re(u, ut)

= 2Im
(
(−L)

α
2 u + γ

|u|2u
G(u) r, u

)
= 0, (15)

where Im(•) are the imaginary parts of •.
Similarly, noting that

(
(−L) α

2 u, u
)
∈ R, we can deduce

d
dt
H(t) = 2Re(ut, (−L)

α
2 u)− γ

2
d
dt
G−1{G(u)}

= 2Re
(
(−L)

α
2 u− γ

|u|2u
G(u) r, ut

)
= 2Im

(
(−L)

α
2 u− γ

|u|2u
G(u) r, (−L)

α
2 u− γ

|u|2u
G(u) r

)
= 0, (16)

The proof is completed.

Furthermore, based on the Lawson transformation method [41], by setting u =
exp(−i(−L) α

2 t)v, and multiplying both sides of (10) by the operator exp(i(−L) α
2 t), we

can derive

vt = iγ exp
(
i(−L)

α
2 t
) | exp

(
i(−L) α

2 t
)
v|2 exp

(
i(−L) α

2 t
)
v

G
(

exp(i(−L) α
2 t)v

) r.

Similar discussion, we have

d
dt
G−1(r)= 4Re

( | exp
(
i(−L) α

2 t
)
v|2 exp(i(−L) α

2 t)v

G
(

exp
(
i(−L) α

2 t
)
v)
) r,−i exp(i(−L)

α
2 t)((−L)

α
2 )v + exp(i(−L)

α
2 t)vt

)
= 4Re

( | exp
(
i(−L) α

2 t
)
v|2 exp(i(−L) α

2 t)v

G
(

exp
(
i(−L) α

2 t
)
v)
) r,−i exp(i(−L)

α
2 t)((−L)

α
2 )v
)

,
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where Re
(

exp(i(−L) α
2 t)vt,

(
| exp(i(−L)

α
2 t)v|2 exp(i(−L)

α
2 t)v

G
(

exp(i(−L)
α
2 t)v
) r

)
= 0 is used. The derivation

above means that system (10) and (11) is equivalent to

vt = iγ exp
(
i(−L)

α
2 t
) | exp

(
i(−L) α

2 t
)
v|2 exp

(
i(−L) α

2 t
)
v

G
(

exp(i(−L) α
2 t)v

) r, (17)

d
dt
G−1(r) = 4Re

( | exp
(
i(−L) α

2 t
)
v|2 exp(i(−L) α

2 t)v

G
(

exp
(
i(−L) α

2 t
)
v)
) r,−i exp(i(−L)

α
2 t)((−L)

α
2 )v
)

, (18)

and we can prove system (17) and (18) also preserve the modified energy.

Remark 1. By taking the different function G(x), we can derive various SAV approaches [38].
Without losing generality, we set G(x) = tanh( x

C ) or exp( x
C ) (C > 0) to construct numerical

schemes. If G(x) =
√

x + C, the newly developed GSAV approach is equivalent to the SAV
approach [36,37,42].

3. Construction of the Energy-Preserving Schemes

In this section, we will present a detailed construction of linearly implicit exponen-
tial integrators conservative schemes for system (17) and (18) in two-dimensional case.
Similarly, it can be extended to three-dimensional case.

3.1. Fourier Pseudo-Spectral Approximation of Spatial Derivatives

Under the homogeneous Dirichlet boundary condition, the fractional Laplacian opera-
tor is equivalent to the Riesz derivatives, the spatial discretization of operators can be used
by finite difference methods [16,18]. The paper considers the fractional NLS problem with
periodic boundary conditions. Therefore, the Fourier-pseudo spectral method with high
order accuracy and fast calculation is employed for the spatial discretization to approximate
the fractional Laplacian operator.

For positive even integers N = Nx = Ny and N, the step sizes in space are defined
by h = hx = hy := 2L

N , and the time step τ := T
N . Then, we set Ωh = {(xi, yj)| xi =

−L + ihx, yj = −L + jhy, 0 ≤ i, j ≤ N − 1}. For u = {un
i,j|u(xi, yj, tn) ∈ Ωτ

h}, we define

u = (u0,0, · · · , uNx−1,0, u0,1, · · · , uNx−1,1, · · · , u0,Ny−1, · · · , uNx−1,Ny−1)
T .

The discrete inner product and L∞-norm are given as

〈u, v〉h = h2
N−1

∑
i=0

N−1

∑
j=0

ui,jv̄i,j, ‖u‖ = 〈u, u〉
1
2
h , ‖u‖∞ = sup

(xi ,yj)∈Ωh

|ui,j|.

In practical computation, the Laplace operator (−L) α
2 can be approximated by Fourier-

pseudo spectral method, namely [4]

(−L)
α
2 u(xi, yj) =

N/2

∑
k1=−N/2

N/2

∑
k2=−N/2

[(µxk1)
2 + (µyk2)

2]ûk1,k2 eik1µ1(xi−a)eik2µy(yj−a)

=
N/2

∑
k2=−N/2

( N/2

∑
k1=−N/2

(µxk1)
2ûk1,k2 eik1µx(xi−a)

)
eik2µy(yj−a)

+
N/2

∑
k1=−N/2

( N/2

∑
k1=−N/2

(µyk2)
2ûk1,k2 eik2µy(yj−a)

)
eik1µx(xi−a)

= (FH
NΛ1FN u)i,j + (uFH

NΛ2FN )i,j = (Dx
2 u)i,j + (uDy

2)i,j

=
((

IN ⊗ Dx
2 + Dy

2 ⊗ IN
)
u
)

i,j
,

(19)
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where µx = µy = π
L , FN is Fourier transform in discrete scene, and the corresponding

transform elements (F )i,j =
1√
N

e−i 2π
N ij, FH

N is the conjugate transpose matrix of FN , and

Λ1 = diag(λDx
2 ,0, λDx

2 ,1, · · · , λDx
2 ,N−1), λDx

2 ,j =

{
(iµx)

2, 0 ≤ i ≤ N/2,(
(i−N )µx

)2, N/2 < i < N ,

Λ2 = diag(λDy
2 ,0, λDy

2 ,1, · · · , λDy
2 ,N−1), λDy

2 ,j =

{
(jµy)

2, 0 ≤ j ≤ N/2,(
(j−N )µy

)2, N/2 < j < N ,

and the spectral differentiation matrix can be expressed as

((−L)
α
2 )u = Du =

(
IN ⊗ Dx

2 + Dy
2 ⊗ IN

)
u

=
(
FH
N INFN ⊗FH

NΛ1FN +FH
NΛ2FN ⊗FH

N INFN
)
u

=

(
(FN ⊗FN )H(IN ⊗Λ1)(FN ⊗FN ) + (FN ⊗FN )H(Λ2 ⊗ IN )(FN ⊗FN )

)
u

=

(
(FN ⊗FN )H(IN ⊗Λ1 + Λ2 ⊗ IN )

α
2 (FN ⊗FN )

)
u.

(20)

By setting Λ = IN ⊗Λ1 + Λ2 ⊗ IN , we can get

eΛ = eΛ2 ⊗ eΛ1 , and eD = (FN ⊗FN )HeΛ(FN ⊗FN ),

therefore, it implies that the exponential factor can be implemented by using the FFT technique.
Then, the Fourier pseudo-spectral method is applied to system (17) and (18) in space

can derive

vt = iγ exp
(
− iDt

) | exp
(
− iDt

)
v|2 exp

(
− iDt

)
v

G
(

exp(−iDt)v
) r, (21)

d
dt
G−1(r) = 4Re

( | exp
(
− iDt

)
v|2 exp(−iDt)v

G
(

exp
(
− iDt

)
v)
) r,−i exp(−iDt)Dv

)
. (22)

Noting that u = exp(iDt)v, we can derive a conservation property as follows.

Theorem 2. System (21) and (22) can inherit the mass and modified energy in semi-discrete scene,
namely

d
dt

M(t) = 0,
d
dt
E(t) = 0, (23)

where the the semi-discrete mass functional M(t) and modified energy functional E(t) are given by

M(t) =
(
u, u

)
, (24)

E(t) =
(
(−L)

α
2 u, u

)
− γ

2
G−1{G(u)}. (25)

Proof. The proof is similar to Theorem 1, we omit it.

3.2. Fully Discrete Energy-Preserving Schemes

In this subsection, we construct fully discrete schemes by using the symplectic RK
method to approximate system (21) and (22) in time.
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First, we define tn = nτ, n = 0, 1, · · · , N. Let aij, bi and ci =
m
∑

i=1
aij be real numbers.

For one-step interval [tn, tn+1], the m-stage RK method for system (21) and (22), and further
apply the extrapolation technique to the nonlinear term, we can derive the following fully
discrete scheme

uin = exp(−iDciτ)un + τ
m

∑
j=1

aij exp
(
iD(cj − ci)τ

)
k j, ki = −iγ

|ūin|2ūin

G
(
ūin
) ri, (26)

rin = G
(
G−1(rn) + τ

m

∑
j=1

aijlj

)
, li = 4Re

(
− iDuin,

|ūin|2ūin

G
(
ūin
) rin

)
, (27)

where ūin is an extrapolation approximation to u(tn + ciτ) (i = 1, 2, · · · , m) and can reach
order of O(τm+1) [43,44]. Then un+1, rn+1 can be updated by

un+1 = exp(−iDτ)un + τ
m

∑
i=1

bi exp
(
− iD(1− ci)τ

)
ki, (28)

rn+1 = G
(
G−1(rn) + τ

m

∑
i=1

bili
)

. (29)

Theorem 3. The fully-discrete system (26)–(29) can preserve a modified energy if the coefficients
of the RK method satisfy aijbi + ajibj = bibj, namely

En = En+1, with En = 〈Dun, un〉h −
γ

2
G−1(rn), 0 ≤ n ≤ N − 1.

Proof. According to (28), we have

En+1 − En = 〈Dun+1, un+1〉h − 〈Dun, un〉h −
γ

2
(
G−1(rn+1)− G−1(rn)

)
. (30)

From (26)–(28), we derive

〈Dun+1, un+1〉h − 〈Dun, un〉h

=
〈

exp(−iDτ)Dun + τ
s

∑
i=1

bi exp
(
iD(ci − 1)τ

)
Dki, exp(−iDτ)un

+ τ
m

∑
i=1

bi exp
(
iD(ci − 1)τ

)
ki
〉

h − 〈Dun, un〉h

=
〈
Dun, un〉

h + τ
m

∑
i=1

bi
〈
Dun, exp(iDciτ)ki

〉
h + τ

m

∑
i=1

bi
〈

exp(iDciτ)ki,Dun〉
h

+ τ2
m

∑
i,j=1

bibj
〈

exp(iDciτ)ki, exp(iDcjτ)k j
〉

h − 〈Dun, un〉h

= 2τRe
m

∑
i=1

bi
〈

exp(iDciτ)Dki, un〉
h + τ2

m

∑
i,j=1

(biaij + bjaji)
〈

exp(iDciτ)Dki, exp(icjτ)k j
〉

h

= 2τRe
m

∑
i=1

bi
〈

exp(iDciτ)Dki, exp(iDciτ)uin − τ
m

∑
j=1

aij exp
(
iDcjτ

)
k j
〉

h

+ τ2
m

∑
i,j=1

biaij
〈

exp(iDciτ)Dki, exp(iDcjτ)k j
〉

h + τ2
m

∑
i,j=1

bjaji
〈

exp(iDciτ)ki, exp(iDcjτ)Dk j
〉

h

= 2τRe
m

∑
i=1

bi
〈
Dki, uin

〉
h.
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Then, we can obtain from (26)–(28) that

γ

2
[
G−1(rn+1)− G−1(rn)

]
=

γ

2
[
G−1

{
G
(
G−1(rn) + τ

m

∑
i=1

bili
)}
− G−1(rn)

]
=

γτ

2

m

∑
i=1

bili

= 2τ
m

∑
i=1

biRe
〈
− iDuin, γ

|ūin|2ūin

G
(
ūin
) ri

〉
h

= 2τRe
m

∑
i=1

bi
〈
− iDuin, iki

〉
h

= −2τRe
m

∑
i=1

bi
〈
Duin, ki

〉
h,

where ki = −iγ |ūin |2ūin

G
(

ūin

) ri, li = 4Re
(
− iDun

i , |ūin |2ūin

G
(

ūin

) ri

)
were used, and we can derive

(Dun+1, un+1)− (Dun, un)− γ

2
[
G−1(rn+1)− G−1(rn)

]
= 0. (31)

The proof is completed.

Remark 2. Theorem 2 shows the semi-discrete scheme can preserve the mass, but the developed
fully-discrete scheme (26)–(29) can not conserve the mass for the reason that the nonlinear terms of
system (21) and (22) are explicitly discretized.

Remark 3. According to Remark 1, G(x) can be taken different function, therefor we can obtain a
class of energy-preserving schemes in practical numerical simulation.

• The tanh SAV scheme: In this scheme, we select G(x) = tanh( x
C ), where C is a posi-

tive constant to make r = tanh
( ∫

Ω |u(x, t)|4dx
)

not too close to ±1 numerically since

tanh−1(r = ±1)→ ∞. Thus, we set

r = tanh
(∫

Ω u(x, t)|4dx
C

)
,

and prove that the corresponding scheme can preserve the following discrete energy

En = 〈Dun, un〉h +
γC
2

tanh−1(rn).

• The exponential SAV scheme: The exponential function is a special function that can keep the range
constant positive. Thus, we define an exponential scalar auxiliary variable

r = exp
(∫

Ω |u(x, t)|4dx
C

)
.

Then, we derive the following discrete energy conservation law

En = 〈Dun, un〉h +
γC
2

ln(rn).
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3.3. Fast Solvers for the Proposed Schemes

In particular, for i, j = 1, 2, · · · , m, if the coefficients of an m-stage RK method satisfy

aijbi + ajibj = bibj, (32)

the RK method is symplectic, and we called the formula (32) is the RK symplecticity
conditions. Without losing generality, we choose the 2m-4th and 2m-6th symplectic RK
method, which are displayed by the following Butcher tabular [45]

Then, taking m = 2 as an example, we propose a fast solver for the third order
linearly implicit exponential integrators energy-preserving (LI-EI3) scheme. By setting

α∗i = i |ūin |2ūin

G
(

ūin

) rin, (i = 1, 2), and rewrite

l1 = −4Re
〈
Dun1, α∗1

〉
h
, l2 = −4Re

〈
Dun2, α∗2

〉
h
, (33)

and the extrapolation technique for the nonlinear terms can be expressed as [43,44]

ūn1 = (2
√

3− 4)un−1 + (7
√

3− 11)u(n−1)1 + (6− 5
√

3)u(n−1)2 + (10− 4
√

3)un,

ūn2 = (−2
√

3− 4)un−1 + (6 + 5
√

3)u(n−1)1 − (7
√

3 + 11)u(n−1)2 + (10 + 4
√

3)un.

Then, we can derive

k1 = γα∗1rn − 4γτa11α∗1 Re〈Dun1, α∗1〉h − 4γτa12α∗1 Re〈Dun2, α∗2〉h, (34)

k2 = γα∗2rn − 4γτa21α∗2 Re〈Dun1, α∗1〉h − 4γτa22α∗2 Re〈Dun2, γ∗2〉h. (35)

Based on the equality of (28), (34) and (35), we have

un1 = αn
1 −

(
4γτ2a2

11α∗1 + 4γτ2a12a21 exp(iD(c1 − c2)τ)α
∗
2

)
Re〈Dun1, α∗1〉h

−
(

4γτ2a11a12α∗1 + 4γτ2a12a22 exp(iD(c1 − c2)τ)α
∗
2

)
Re〈Dun2, α∗2〉h, (36)

un2 = αn
2 −

(
4γτ2a21a11 exp(iD(c2 − c1)τ)α

∗
1 + 4γτ2a22a21α∗2

)
Re〈Dun1, α∗1〉h

−
(

4γτ2a21a12 exp(iD(c2 − c1)τ)α
∗
1 + 4γτ2a2

22α∗2

)
Re〈Dun2, α∗2〉h, (37)

where

αn
1 = exp(iDc1τ)un + τγa11α∗1rn + τγa12 exp(iD(c1 − c2)τ)α

∗
2rn, (38)

αn
2 = exp(iDc2τ)un + τγa21 exp(iD(c2 − c1)τ)α

∗
1rn + τγa22α∗2rn. (39)

Multiplying both sides of (38) and (39) with D and computing discrete inner product with
α∗1 and α∗2 , respectively, we can deduce

A11 Re〈Dun1, α∗1〉h +A12 Re〈Dun2, α∗2〉h = Re〈Dαn
1 , α∗1〉h, (40)

A21 Re〈Dun1, α∗1〉h +A22 Re〈Dun2, α∗2〉h = Re〈Dαn
2 , α∗2〉h, (41)

with

A11 = 1 + Re
〈

4γτ2A2
11Dα∗1 + 4γτ2a12A21 exp(iD(c1 − c2)τ)Dα∗2 , α∗1

〉
h
, (42)
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A12 = Re
〈

4γτ2A11a12Dα∗1 + 4γτ2a12a22 exp(iD(c1 − c2)τ)Dα∗2 , α∗1

〉
h
, (43)

A21 = Re
〈

4γτ2A21A11 exp(iD(c2 − c1)τ)Dα∗1 + 4γτ2a22A21Dα∗2 , α∗2

〉
h
, (44)

A22 = 1 + Re
〈

4γτ2A21a12 exp(iD(c2 − c1)τ)Dα∗1 + 4γτ2a2
22Dα∗2 , α∗2

〉
h
. (45)

We can solve
[
Re
〈
Dun1, α∗1

〉
h, Re〈Dun2, α∗2〉h

]T based on the linear system (40) and (41),
and li, ki and uni, i = 1, 2 can be updated from (33)–(37), respectively. Subsequently, we can
compute un+1 and rn+1 by using (28).

For m = 3, the extrapolation technique for the nonlinear terms can be expressed as
follows [43,44]

ūn1 = (6
√

15− 26)un−1 +
33− 5

√
15

3
u(n−1)1 +

16
√

15− 72
3

u(n−1)2 +
120− 29

√
15

3
u(n−1)3,

ūn2 = −17un−1 +
35 + 5

√
15

2
u(n−2)1 − 17u(n−1)2 +

35− 5
√

15
2

u(n−1)3,

ūn3 = (−26− 6
√

15)un−1 +
120 + 29

√
15

3
u(n−1)1 −

72 + 16
√

15
3

u(n−1)2 +
33 + 5

√
15

3
u(n−1)3.

Similarly argument, we can derive a fast solver for the fourth order linearly implicit
exponential integrators energy-preserving (LI-EI4) scheme. For simplicity, we omit it.

4. Numerical Experiments

In this section, we implement our simulations by using Matlab R2018a software on a
computer which composed of Intel(R) Core(TM) i7-9750H, 2.6 GHz CPU machine with 16
GB RAM and display some numerical experiments to verify the conservation property and
efficiency of the constructed schemes in this section. For simplicity, the relative modified
energy error can be defined by

REn = |E
n − E0

E0 |,

where En represents the energy at t = nτ. The convergence rate of the proposed schemes
can be obtained by the formula

Rate = ln(error1/error2)/ln(τ1/τ2),

where τi is the time step, errori, (i = 1, 2) represents the L∞-norm errors at τi, and we use
the ‘*’ to represent that the convergence order cannot be obtained. In addition, we also
compare the proposed schemes with existing scheme in computing efficiency, accuracy and
conservation. Thus, we define

• LI-EI-i (i = 3 or 4): The paper constructs third and fourth order energy-preserving schemes
by using the Runge-Kutta methods shown in Table 1.

• LI-4: A fourth order linearly implicit conservative RK method is based on the GSAV
approach [40].

• LI-EI-2: A second order linearly-implicit exponential time differencing conservative
scheme is developed in Ref. [33].

• FI-EI-4: A fourth order fully-implicit conservative exponential time differencing
method is presented in Ref. [32].
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Table 1. Coefficients of RK methods of order 4 (left) and 6 (right).

1
2 −

√
3

6
1
4

1
4 −

√
3

6

1
2 +

√
3

6
1
4 +

√
3

6
1
4

1
2

1
2

1
2 −

√
15

10
5
36

2
9 −

√
15

15
5

36 −
√

15
30

1
2

5
36 +

√
15

24
2
9

5
36 −

√
15

24

1
2 +

√
15

10
5

36 +
√

15
30

2
9 +

√
15

15
5

36

5
18

4
9

5
18

4.1. Two Dimension Case

Example 1. we first study Equation (1) with

u(x, y, t) = exp
(
i(c1x + c2y− νt)

)
, ν = (c1

2 + c2
2)

α
2 − γ,

where (x, y) ∈ Ω = (−π, π)× (−π, π), c1 = c2 = 1 are the wave numbers. Without loss of
generality, we take G(x) = exp(x), α = 1.8, γ = −0.05.

In practical calculation, we take h = π
8 such that the spatial discretization errors are negligible

to test the temporal discretization errors of the proposed energy-preserving methods. The discrete
L∞-norm errors and the corresponding convergence orders at T = 1 are displayed in Table 2.
Numerical results indicate that the LI-EI-2 scheme only has second order accuracy in time. The
proposed LI-EI-3 scheme has third order accuracy in time, and the LI-EI-4 scheme, the LI-4 scheme
and the FI-EI-4 scheme has fourth order accuracy in time. We should note that ‘NaN’ represents the
LI-4 scheme can not be implemented with τ = 1

50 , but the LI-EI-4 scheme can run, which implies
the proposed exponential integrators schemes can be implemented with a large time step, and the
step ratio is smaller than in the non-exponential scheme, and the stability result is better than the
LI-4 scheme.

Table 2. Temporal accuracy of different schemes with α = 1.8, β = −0.05, h = π/8.

Scheme τ = 1
50 τ = 1

100 τ = 1
200 τ = 1

400

LI-EI-2 [33] ‖e‖∞ 5.7897 × 10−5 1.4276 × 10−5 3.5439 × 10−6 8.8282 × 10−7

Rate * 2.0198 2.0101 2.0051
LI-EI-3 ‖e‖∞ 1.1578 × 10−4 1.3051 × 10−5 1.6205 × 10−6 2.04488 × 10−7

Rate * 3.1492 3.0096 2.9863
LI-EI-4 ‖e‖∞ 9.0072 × 10−7 7.1453 × 10−8 4.9858 × 10−9 3.2867 × 10−10

Rate * 3.6560 3.8411 3.9231
LI-4 [40] ‖e‖∞ NaN 3.2550 × 10−9 2.0345 × 10−10 1.2529 × 10−11

Rate * * 3.9999 4.0213
FI-EI-4 [32] ‖e‖∞ 8.2450 × 10−7 5.1562 × 10−8 3.2231 × 10−9 2.0145 × 10−10

Rate * 3.9991 3.9997 3.9999

Then, we compare five schemes in computational costs. The CPU time of five scheme using
the different time step with T = 50 is shown in Figure 1. We note that the FI-EI-4 scheme is
fully-implici and needs nonlinear iterations to solve the equations, therefor, it consumes the most
CPU time. The proposed schemes and the LI-EI-2 scheme are linearly implicit schemes and can be
solved efficiently, they enjoy the same computational advantages as the non exponential LI-4 scheme.
In summary, it is preferable to develop efficient exponential integrator schemes which have better
numerical stability and conserve discrete energy for the fractional NLS equation.
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Figure 1. CPU time with different time steps till T = 50.

Last but not least, we plot the modified energy deviation in a long time simulation, correspond-
ing to all five schemes. As is shown in Figure 2, the proposed schemes also can conserve the modified
energy exactly.

0 5 10 15 20 25 30 35 40 45 50

t

10-16

10-15

10-14

10-13

10-12

R
E

LI-EI-2 LI-EI-3 LI-EI-4 LI-4 FI-EI-4

Figure 2. The relative modified energy errors with T = 50, α = 1.8, τ = 0.01.

4.2. Three Dimension Case

Example 2. Considering the plane wave solution of the three dimension fractional NLS Equation (1)
with Ω = (−π, π)× (−π, π)× (−π, π). The exact solution of the system is given by

u(x, y, z, t) = exp
(
i(θ1x + θ2y + θ3z−ωt)

)
, with ω = (θ2

1 + θ2
2 + θ2

3)
α
2 − β,

where θ1 , θ2 and θ3 are the wave numbers. We set G(x) = tanh( x
100 ) and take β = 2, θ1 = θ2 =

θ3 = 1, and fix the Fourier node 16 to demonstrate theoretical analysis results.
First, we test the accuracy of the proposed schemes in time, the mesh size is taken as h = 2π

16 so
that the spatial error is negligible. The errors and convergence rates in L∞-norm are presented in
Table 3, the results indicate that the LI-EI-3 scheme and LI-EI-4 scheme have third and fourth order
convergence rates in time, respectively. In addition, numerical results also demonstrate that the
parameter α affects the numerical solution error, namely, the error of numerical solution increases
with the increase of α. Then, we study the conservation properties of two schemes at a large time
T = 20. The relative modified energy errors are shown in Figure 3, which demonstrates the newly
developed schemes can preserve the energy exactly.
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Table 3. Temporal accuracy of the proposed schemes for different γ with h = 2π/16.

α Scheme τ = 1
100 τ = 1

200 τ = 1
400 τ = 1

800

1.3

LI-EI-3 ‖e‖∞ 5.2663 × 10−7 6.5894 × 10−8 8.2372 × 10−9 1.0295 × 10−9

Rate * 2.9985 2.9999 3.0001
LI-EI-4 ‖e‖∞ 1.0439 × 10−8 7.1192 × 10−10 4.6417 × 10−11 2.9909 × 10−12

Rate * 3.8742 3.9389 3.9559

1.7

LI-EI-3 ‖e‖∞
3.26618 × 10−4

4.0989 × 10−5 5.1349 × 10−6 6.4260 × 10−7

Rate * 2.9942 2.9968 2.9983
LI-EI-4 ‖e‖∞ 6.5017 × 10−7 4.6648 × 10−8 3.1119 × 10−9 2.0090 × 10−10

Rate * 3.8009 3.9059 3.9532

2

LI-EI-3 ‖e‖∞ 5.2780e-03 6.5852 × 10−4 8.2299 × 10−5 1.0289 × 10−5

Rate * 3.0027 3.0002 2.9997
LI-EI-4 ‖e‖∞ 1.1272 × 10−5 6.6838 × 10−7 4.0734 × 10−8 2.5485 × 10−9

Rate * 4.0759 4.0363 3.9985

0 2 4 6 8 10 12 14 16 18 20

t

10-16

10-15

10-14

10-13

10-12

R
E

γ=1 γ=5 γ=10

LI-EI-3 scheme

0 2 4 6 8 10 12 14 16 18 20

t

10-16

10-15

10-14

10-13

10-12

R
E

γ=1 γ=5 γ=10

LI-EI-4 scheme

Figure 3. The relative modified energy errors of the proposed schemes for different α with τ = 0.01.

5. Conclusions

This paper presents a class of novel exponential integrators Runge–Kutta schemes for
solving the nonlinear Schrödinger equation. The energy conservation property and high
efficiency of the proposed schemes are supported by theoretical analysis and numerical
results. Similar conservative schemes are also constructed to solve others Hamiltonian
partial differential equations.
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