
Research Article
Improved Cloud Auditing Protocol and Its Application for
Pandemic Data Management

Xu An Wang ,1,2 Zhengge Yi ,1 Xiaoyuan Yang,1 Jindan Zhang,3 Yun Xie,4

Manman Zhang,4 and Guixin Wu 5

1Engineering University of PAP, Xi’an, China
2State Key Laboratory of Public Big Data, Guizhou University, Guiyang, China
3Xianyang Vocational Technical College, Xianyang, China
4Nanjing University of Posts and Telecommunications, Nanjing, China
5Chongqing University Cancer Hospital, Chongqing, China

Correspondence should be addressed to Xu An Wang; 1261510059@qq.com and Guixin Wu; wuguixin123456@126.com

Received 11 May 2021; Revised 23 November 2021; Accepted 13 January 2022; Published 26 February 2022

Academic Editor: Ximeng Liu

Copyright © 2022 Xu AnWang et al. /is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Data integrity verificationmechanisms play an important role in cloud environments. Recently, a lightweight identity-based cloud
storage audit scheme has been proposed; this paper points out security vulnerabilities of their OffTagGen algorithm. /at is, the
attackers such as malicious cloud servers can forge the tags, which can destroy data integrity. By improving the construction of
OffTagGen algorithm, an improved security cloud auditing protocol is proposed in this work to better protect user’s privacy. /e
analysis shows that the new protocol is effective and resistant to attacks.

1. Introduction

In the last two years, the COVID-19 pandemic has become a
major disaster in the world. As COVID-19 has a certain
fatality rate and spreads very fast, prevention and control of
this virus have become a top priority worldwide. However,
compared to the prevention and control regarding SARS in
2003, information related technique is being widely used in
all aspects regarding prevention and control of this COVID-
19 pandemic. Hence, extensive collection, processing, and
investigation of personal data has become an important part
of the anti-pandemic work. Given the huge amount of data
collected, it is necessary to store these data in the cloud to
reduce the storage burden.

As a new storage paradigm, cloud storage collects dif-
ferent storage devices to provide users with massive data
storage. Hospitals and patients can easily access data by
connecting to the cloud anytime, anywhere, and through any
networked device whenever needed.

/e infrastructures supporting cloud storage are dis-
tributed and virtual. /is brings some threats to users’ data
security, such as network virus propagation, unauthorized
access, denial of service attacks, information leakage, data
loss, as well as network infrastructure that could damage
data integrity during data transmission, etc. For pandemic
prevention and control, it is clear that the loss of data, such
as the patient’s recent whereabouts, will certainly cause
enormous trouble and could even lead to further virus
spread andmay even favour the situation of successive waves
of the new coronavirus.

Due to the threat of internal or external attacks, data
stored in the cloud are easily damaged. In addition, the cloud
service provider (CSP) may not notify the user of this event
in consideration of its own reputation. /e user has a
mechanism to detect data corruption only after accessing the
data [1–3]. /erefore, in order to improve the reputation of
cloud storage and let users know the integrity of the hosted
data in a timely manner, a mechanism is needed to verify the

Hindawi
Wireless Communications and Mobile Computing
Volume 2022, Article ID 5127499, 10 pages
https://doi.org/10.1155/2022/5127499

mailto:1261510059@qq.com
mailto:wuguixin123456@126.com
https://orcid.org/0000-0003-2070-4913
https://orcid.org/0000-0003-2464-9042
https://orcid.org/0000-0002-6949-8236
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/5127499

data integrity in the cloud. Hence, an integrity verification
mechanism is very important in the cloud environment.

1.1. Related Works. Traditional methods need to download
the entire data from the cloud when verifying data integrity,
which brings unacceptable communication and computing
costs and greatly consumes users’ resources. In order to
satisfy the user’s remote checking of data integrity, the cloud
data remote integrity check solution should need not to
download the complete data in the cloud storage environ-
ment. /us, the following solutions have been proposed.

Ateniese et al. [4] first proposed a provable data pos-
session (PDP) scheme, an effective technology to audit the
cloud storage. In the PDP protocol, data are encoded as
blocks, and the user processes the block data to generate a
verifiable authenticator, and then it outsources the data
blocks and authenticators to the cloud. A public verifier with
sufficient resources is also called a third-party auditor (TPA)
and is trusted by users to check the data integrity. TPA
creates a challenge to the server by randomly selecting a
small group of block indexes. /e server returns a proof that
proves the integrity of the challenged blocks. TPA can ef-
fectively verify the proof without downloading data block.
PDP has laid the foundation for the design of cloud storage
audit schemes. In recent years, many researchers have
conducted extensive and in-depth explorations around PDP
[5–7].

In order to obtain better efficiency and performance,
several improved PDP protocols have been proposed [8, 9].
/e previously proposed schemes mostly use traditional
public key cryptography, so a trusted certificate authority
(CA) is required to issue a certificate to bind certain user
identities and their public keys. Heavy certificate manage-
ment, including certificate generation, distribution, and
revocation, requires a lot of computing and storage re-
sources. As the number of users increases, certificate
management becomes extremely difficult. In addition, the
verifier must retrieve the certificate from the CA and then
check the validity of the public key certificate, which also
brings heavy calculation and communication costs to the
verifier. /erefore, the certificate-based PDP protocol is very
inefficient when used in actual situations.

In order to overcome this problem, researchers con-
sidered applying identity-based cryptography to the PDP
protocol and therefore proposed many ID-PDP solutions.
Wang et al. [10] first introduced the concept of identity-
based PDP (ID-PDP), which uses user names or emails
instead of public keys. /en, ID-PDP is further extended to
the multicloud storage environment [11] to check the in-
tegrity of remote data. In order to improve performance,
Wang et al. [12] added a proxy server to the remote data
integrity check scheme. /e proxy server processes data
instead of users. In the scheme, incentive and unconditional
anonymous ID-PDP was first proposed to protect and en-
courage criminal whistleblowers. Yu et al. [13] used RSA
signature technology to design an ID-based integrity cloud
data check protocol. /e protocol supports variable size file
blocks and public verification. In order to further improve

security, Yu et al. [14] combined the key homomorphic
encryption technology in the cryptographic cloud audit
system and proposed an improved scheme with perfect data
privacy protection capabilities. /e ID-based privacy-pre-
serving integrity verification of shared data over untrusted
cloud scheme is proposed, which can support users to
update the data in cloud and protect users’ privacy in
untrusted cloud servers. Li et al. [15] proposed identity-
based privacy-preserving remote data integrity checking for
cloud storage scheme, which uses homomorphic verifiable
tags to reduce the computational complexity and uses
random integer addition to mask the original data to protect
the verifier from obtaining any knowledge about the data
during the integrity checking process.

1.2. Contribution. Currently, using cloud storage audit
protocols is regarded as an important cloud service. How-
ever, the existing audit protocols have certain shortcomings.
On the one hand, most of them rely on expensive public key
infrastructure (PKI), so certificate management/verification
is very complicated. On the other hand, most cloud users
have limited resources. Nowadays, ID-based cloud audit
protocols have attracted the attention of researchers, but
most of them require users with limited resources to perform
expensive operations.

Recently, Rabaninejad et al. [16] proposed a lightweight
identity-based provable data ownership cloud storage audit
scheme, which supports privacy and traceability of user
identities. /ey also proposed an online/offline ID-based
PDP scheme [17]. However, we discovered that there are
security flaws in the digital signature (OffTagGen) of their
scheme. Attackers, such as malicious cloud servers, can
destroy the privacy of user’s identity privacy and damage
data privacy and integrity. In order to get a more secure
protocol, based on the scheme presented in [16], we propose
an improved one and discuss its application in pandemic
data management. /e main contributions of this paper are
summarized as follows:

(1) We firstly point out the insecurity of Rabaninejad
et al.’s lightweight identity-based provable data
ownership cloud storage audit scheme. We give two
attacks to show that data tags can be easily forged.

(2) We provide an improved secure cloud audit protocol
that protects user privacy. /is new protocol is ef-
fective yet resistant to attacks.

(3) Finally, we show how our scheme can be applied to
the pandemic data management.

1.3. Organization. /e rest of this article is organized as
follows. In Section 2, we describe the system framework. In
Section 3, we review the cloud audit scheme proposed by
Rabaninejad et al. [17]. In Sections 4 and 5, we introduce the
attack. In Section 6, we provide an improved privacy pro-
tection cloud audit protocol and conduct a rough analysis of
its security. In Section 7, we apply our scheme to pandemic
data management. Finally, in Section 8, we conclude the
work and point out some directions for future work.

2 Wireless Communications and Mobile Computing

2. System Framework

In this section, we first describe the system model. /en, we
give the goals of the design. After that, we introduce some
necessary definitions. Finally, we show the security model.

2.1. SystemModel. /e system model includes four entities,
as shown in Figure 1, which involves the key generation
center (KGC), the users, the third-party auditor (TPA), and
the cloud server. /e functions of each entity are summa-
rized as follows:

(1) KGC. Based on the user’s identity, KGC generates its
private key.

(2) The Users. When the users want to store data files
remotely in the cloud, they first divide the file into
several blocks, use their own private key to generate a
label or tag on each data block, and then outsource
(block, label) to the cloud server.

(3) TPA. TPA performs public audits delegated by the
users.

(4) Cloud Server. /e cloud server stores user-managed
data and generates a proof verified by TPA.

As shown in Figure 1, the workflow of the four parties
can be described as follows:

(1) /e users generate the offline tags and store them
locally.

(2) /e users send their identity information to KGC.
(3) KGC uses the master key and the users’ identity

information to generate the users’ private key and
returns it to them.

(4) When users need to store data files in the cloud
server, they generate online tags by using some
lightweight computations based on offline tags.

(5) Users outsource the (block, online tag) pair to the
cloud server.

(6) /e user sends an audit request to TPA with some
audit information attached.

(7) TPA sends the challenge message to the cloud server.
(8) /e cloud server generates a proof based on the

challenge message and sends it to TPA.
(9) TPA sends the results of the audit as the auditing

report to the users.

2.2. Design Goal. /e design goals are roughly as follows.

(i) Correctness. If TPA honestly follows the agreement,
it can correctly audit the integrity of outsourced
data.

(ii) Soundness. If an untrusted cloud server has not
completely stored the outsourcing data, it cannot
pass the audit.

(iii) Public Audit. TPA can replace the user to remotely
audit the integrity of the data.

(iv) Scalability. TPA can simultaneously support the
effective verification of multiple audit requirements.

(v) Lightweight. TPA provides low-cost label genera-
tion algorithms for users with limited computing
resources.

2.3. Definition. /e ID-PDP scheme includes the following
algorithms:

(i) Setup(1k)⟶ (param, msk). KGC executes this
algorithm. /e input is the security parameter 1k,
and the output is the master key msk and the public
parameter param.

(ii) Extract (ID, param, msk)⟶ kID. KGC receives
the inputs, including msk, and identity ID and then
outputs the secret key kID.

(iii) TagGen(param​ , kID ​ , F)⟶ σ. /e data owner
with the key kID executes this algorithm, inputs the
parameters and the data file, and first splits F into n
blocks F � (m1, . . . , mn). Next, the data owner
generates a corresponding label σi for each block mi

and outsources the label σ � (σ1, σ2, . . . , σn) and
the data blocks F � (m1, . . . , mn) to the cloud
together.

(iv) Challenge (param, Fname; ID)⟶ chal. TPA
outputs a challenge on behalf of the data owner
whose identity is ID to challenge the integrity of the
Fname file. /e parameters, the name Fname of the
data file F, and the identity ID of the data owner are
taken as input.

(v) ProofGen (param, ID, chal, F, σ)⟶ proof. /e
cloud server executes ProofGen, inputs
param, chal, owner’s identity ID, and the file F

with label σ, and outputs a certificate proving the
integrity of the challenge block.

(vi) ProofVerify (param, Fname, R, ID, chal,

proof) ⟶ 0, 1{ }. TPA executes ProofVerify to
verify the proof of challenge reported by the cloud
server. /e input are param, Fname, the identity ID

of the data owner, and the pair (chal, proof). If the
verification is passed, 1 is output, otherwise 0.

2.4. Security Model. For maintaining their own reputation,
cloud servers are generally unwilling to disclose data loss/
damage to the verifier, so they are not completely credible in

Wireless Communications and Mobile Computing 3

the PDP scheme. Here, we focus on the security model of
auditing soundness of the cloud storage auditing protocol.
/e security model is described as follows: a game between
an adversary server A and a challenger B.

(i) Setup. /e algorithm Setup is run by challenger B,
and the master key msk and public parameters
param are obtained. /en, challenger B forwards
the parameters to the server A but keeps msk

secret.

(ii) Query. /e adversary server A adaptively makes the
following queries to the challenger B:

(a) Hash Query. A performs a hash function query,
and B uses the hash value as a response.

(b) Extract Query. A can query any user’s key
through it. B obtains the key by running the
Extract algorithm and sends the obtained result
to A.

(c) Tag Query. A queries the tags on the input pair
(ID, m). B responds to the query by running the
TagGen algorithm and feeds the results back to
A.

(iii) Challenge. Challenger B runs the Challenge al-
gorithm on the file F of the user with ID, and B

sends a challenge to A. Note that ID has never
been queried from the Extract oracle, and all
blocks of the file F have been queried from the tag

oracle.
(iv) ProofGen. Adversary A executes the algorithm and

computes a proof based on the received challenge.

(v) ProofVerify. If the proof is verified, A wins the
game. Also, part of the proof represented by µ in the
protocol is not equal to the aggregate value coming
from the challenger B based on the ProofGen
algorithm.

3. Review of Rabaninejad’s Scheme

In this section, we will review the specific scheme of
Rabaninejad et al. [17]. First, we review the concept of a
bilinear map. G1 and G2 denote a cyclic additive group and a
cyclic multiplicative group of the same prime order q, where
g is the generator of G1. /e bilinear map
e : G1 × G1⟶ G2 is a function with the following
properties:

(i) Bilinearity. e(aP, bQ) � e(P, Q)ab, for all P, Q ∈ G1
and a, b ∈ Zq.

(ii) Non − De generacy. e(P, P)≠ 1, where 1 denotes
the identity element of G2.

(iii) Computability. /ere exists an efficient algorithm to
compute e(P, Q) for all P, Q ∈ G1.

Rabaninejad et al. [17] proposed an online/offline ID-
based PDP scheme, which consists of the following algo-
rithms. In addition to the definition and notation in the
bilinear map, two hash functions H: 0, 1{ }∗ ⟶ G1 and
h: 0, 1{ }∗ ⟶ Zq are used in the scheme.

(1) Setup. /e KGC chooses a random value α ∈ Zq as
the master secret key msk and sets the master public
key as mpk � gα. So, the system public parameters
are param � (e, q, G1, G2, g, mpk, h, H).

KGC

Third Party Auditor

Cloud Server

Identity

Response

Challenge

Shared Data Blocks and Tags

Private Key

Auditing Report

Auditing Information

Group Users

Figure 1: System model.

4 Wireless Communications and Mobile Computing

(2) Extract. /e KGC uses param � (e, q, G1, G2, g,

mpk, h, H) and mpk � α to generate the secret key
kID � H(ID)α for user ID.

(3) OffTagGen. /e user with identity ID chooses a
secret random value x ∈ Zq as the trapdoor key and
sets c � mpkx. /en, it generates an offline tag σoff

i

for i ∈ [1, B] by choosing two random value (m’
i, r’i)

from Zq as follows:

σoff
i � k

x
ID(􏼁

mt′krt
′

ID � k
xm′+rt
′

ID . (1)

At last, the offline tags (mt
i , rt

i , σ
off
i)􏼈 􏼉i∈[1,B] are locally

stored.
(4) OnTagGen. /e user with identity ID owns the file F

with Fname. First, it divides F into n blocks as
F � (m1, ..., mn), where mi ∈ Zq. /en, it generates
the online tag (ri, σi) on blockmi based on an unused
offline tag(mt

i , ri
′, σoff

i) and uses trapdoor key as
follows:

ri � r
t
i + x m

t
i − mi􏼐 􏼑mod q,

σi � σoff
i .

(2)

Finally, the online tag (ri, σi)􏼈 􏼉i∈[1,n] together with the
data blocks F � (m1, . . . , m)n is outsourced to the
cloud server./e data owner also creates an MHTon
the ordered hash value h(ri)􏼈 􏼉i∈[1,n] with the root
node root and generates σroot � I DS(root). At the
same time, the pair (root, σroot) together with
(c, Fname), IDS(c ||Fname) is sent to the server and
the TPA. Here, IDS is a secure ID-based signature.
When the server receives the tags (ri, σi)􏼈 􏼉i∈[1,n] and
the data blocks F � (m1, . . . , mn), it first checks
whether Verify(mi, ri, σi, I D, mpk, c) � 1 passes
for all i ∈ [1, n]. If so, it stores (mi, ri, σi)􏼈 􏼉i∈[1,n] in its
storage; otherwise, it outputs ⊥. Furthermore, if σroot

and I DS(c||Fname) are valid signatures, the server
and the TPA save the values’ root, c for the file name
Fname.

(5) Challenge. In order to challenge the integrity of the
file Fname which is owned by the user with identity
ID, the TPA runs the following process:

(a) Choose a random subset J ⊂ [1, n] as the block
indices to be challenged in the auditing process,
and for each j ⊂ J, choose a random value
yj ∈ Zq.

(b) Send the challenge chal � (Fname, (j, yj)􏽮 􏽯
j∈J) to

the server.

(6) ProofGen. /e server generates an auditing proof
according to the received challenge chal �

(Fname, (j, yj)􏽮 􏽯
j ⊂ J

), through the following
procedure:

(a) Computes a combination of the challenged
blocks as µt � 􏽐j∈Jyimj and sets µ � H(ID)µ.

(b) Aggregates the tags as σ � 􏽐j∈Jσ
yj

j .

(c) Sends back (µ, σ, rj.Δj􏽮 􏽯
j∈J) as the auditing

proof to the TPA. Here, rj is the first term in
tag of block mj and Δj is the corresponding
AAI in MHT.

(7) ProofVerify. When TPA receives the proof
(µ, σ, rj.Δj􏽮 􏽯

j∈J), it first computes root′ from

h(rj)j ∈ J􏽮 􏽯 and the corresponding AAI Δj􏽮 􏽯j ∈ J .

If root′ � root, it then computes R � 􏽐j∈Jyjrj and
checks equation (3). which indicates that the cloud
storage is good or not

e(σ, g)�
?

e(μ, c) · e(H(ID), mpk)
R
. (3)

4. Attack I on the OffTagGen Algorithm

/e attack I is as follows:

(1) /e adversary (which can be the malicious cloud
server) can obtain many block-signature pairs, such
as (M1, σ1), (M2, σ2), . . . , (Mn, σn), and the fol-
lowing holds:

σ1 � k
xm1′+r1′
ID � k

xm1+r1
ID ,

σ2 � k
xm2′+r2′
ID � k

xm2+r2
ID ,

· · ·

σn � k
xmn
′+rn
′

ID � k
xmn+rn

ID .

(4)

(2) Let kx
ID � A, kID � B, and r1, r2, ..., rn be all known to

the adversary; thus, the above equations can be re-
written as follows:

σ1 � k
xm1+r1
ID � A

m1B
r1 ,

σ2 � k
xm2+r2
ID � A

m2B
r2 ,

· · ·

σn � k
xmn+rn

ID � A
mn B

rn .

(5)

(3) With these equations, the adversary can compute A

and B. Wemust point out that actually two equations
are enough to compute A and B. Concretely, the
adversary first computes

σm2
1 � A

m1m2B
r1m2 ,

σm1
2 � A

m2m1B
r2m1 ,

σr2
1 � A

m1r2B
r1r2 ,

σr1
2 � A

m2r1B
r2r1 ,

(6)

and then computes

σm2
1

σm1
2

�
A

m1m2B
r1m2

A
m2m1B

r2m1
�

B
r1m2

B
r2m1

� B
r1m2− r2m1 ,

σr2
1

σr1
2

�
A

m1r2B
r1r2

A
m2r1B

r2r1
�

A
m1r2

A
m2r1

� A
m1r2− m2r1 .

(7)

Wireless Communications and Mobile Computing 5

(4) Let C � σm2
1 /σm1

2 and D � σr2
1 /σ

r1
2 :

C �
σm2
1

σm1
2

� B
r1m2− r2m1 ,

D �
σr2
1

σr1
2

� A
m1r2− m2r1 .

(8)

For the exponential prime modular, q is publicly
known to all; thus, the adversary can compute A and
B as follows:

C
1/r1m2− r2m1 � B,

D
1/m1r2− m2r1 � A.

(9)

(5) With A and B, the adversary can forge any offline
and online tags; concretely, the offline tags and
online tags are generated as follows:

(a) OffTagGen. /e adversary forges offline tags
σoff for i ∈ [1, B], and by choosing random
values (mi

′, ri
′) from Zq, it computes

σoffi � A
mi
′
B

ri
′

� k
x
ID(􏼁

mi
′
k

ri
′

ID � k
xmi
′′ri
′

ID . (10)

Because the adversary knows A and B, it can
compute σoff. At last, the adversary locally
stores the offline tags (mi

′, ri
′, σoffi)􏼈 􏼉i∈[1,B].

(b) OnTagGen. For the file F with Fname where
� (m1, . . . , mn), assume the adversary wants to
modify F � (m1, . . . , mn) to be F � (m1,

m2, . . . , mn) and then forge the tags. It generates
the online tag (ri, σi) on block mi as follows:

ri � rimod q,

σi � A
mi B

ri � k
x
ID(􏼁

mi k
ri

ID � k
xmi+ri

ID .
(11)

Finally, the online tags (ri, σi)􏼈 􏼉i∈[1,n] together with the
data blocks F � (m1, m2, . . . , mn) are outsourced to the
cloud server. At the same time, the original pair (root, σroot)

together with (c, Fname), I DS(c||Fname) is also sent to the
server and the TPA. Here, I DS is a secure ID-based
signature.

We can check that the forged tag σi a valid one because
the below equation holds:

e σi, g(􏼁 � e k
xmi+ri

ID , g􏼒 􏼓

� e HID(􏼁
αxmi · HID(􏼁

αri , g􏼐 􏼑

� e HID(􏼁
αxmi , c􏼐 􏼑 · e HID(􏼁

ri , mpk(􏼁.

(12)

/us, OffTagGen algorithm is not secure. Even with two
block-signature pairs, anyone can first modify the contents
of the blocks and then forge the offline and online tags
correspondingly.

5. Attack II on the Cloud Auditing Protocol

In our attack II, we show that the adversary (which can be
the malicious cloud server) can forge proof while it can even
delete all the outsourced data blocks. Concretely, the attack
is the following:

(1) /e first four steps of the attack are the same as attack
I. /e malicious cloud server can get � kx

ID, B � kID

after these steps. /e below steps follow the
framework of the cloud auditing protocol

(2) When the cloud server receives the tags (ri, σi)i∈[1,n]

and the data blocks F � (m1, m2, . . . , mn) out-
sourced by the data owner, it first checks whether
Verify(mi, ri, σi, I D, mpk, c) � 1 passes for all
i ∈ [1, n]. If so, it stores (mi, ri, σi)􏼈 􏼉i∈[1,n] in its
storage; otherwise, it outputs ⊥. Furthermore, if σroot

and I DS(c||Fname) are valid signatures, the server
and the TPA save the values’ root, c for the file name
Fname.

(3) Challenge. In order to challenge the integrity of the
file F name which is owned by the user with identity
ID, the TPA runs the following process:

(a) Choose a random c−element subset J ⊂ [1, n] as
the block indices to be challenged in the auditing
process, and for each j ⊂ J, choose a random
value yi ∈ Zq.

(b) Send the challenge chal � (Fname, (j, yj)􏽮 􏽯
j∈J) to

the server.

(4) ProofGen. Here we show that the malicious cloud
server can even delete all the outsourced data blocks
but still has the ability to return the correct auditing
proof to the TPA. Note here that the malicious cloud
server still stores all the tags (ri, σi)􏼈 􏼉i∈[1,n]. Con-
cretely, the server generates an auditing proof
according to the received challenge chal �

(Fname, (j, yj)􏽮 􏽯
j ⊂ J

), through the following
procedure:

(a) First, it randomly chooses 􏽢mj ∈ Zq(j ∈ J) and
computes a combination of the challenged
blocks as μ′ � 􏽐j∈Jyj 􏽢mj and sets μ � H(ID)μ

′ .
(b) For any 􏽢mj ∈ Zq (j ∈ J), the malicious cloud

server computes the forged tags as 􏽢σj � A􏽢mj Brj �

(kx
ID)􏽢mj k

rj

ID � k
x􏽢mj+rj

ID and aggregates the tags as
σ � 􏽑j∈J􏽢σyi

j .
(c) It sends back (μ, σ, rj,Δj􏽮 􏽯

j⊂J) as the auditing
proof to the TPA. Here, rj is the first term in the
original tags of corresponding to the deleted
block mj and Δj is the corresponding AAI in
MHT.

(5) ProofVerify. When TPA receives the proof
(μ, σ, rj,Δj􏽮 􏽯

j ⊂ J
), it first computes root′ from

h(rj)j∈J􏽮 􏽯 and the corresponding AAI Δj􏽮 􏽯
j∈J. If

root � root′, it then computes R � 􏽐j∈Jyjrj and

6 Wireless Communications and Mobile Computing

checks equation (13). If the equation holds, the TPA
outputs 1, which means that the verification passes;
otherwise, it outputs 0.

e(σ, g)�
?

e(μ, c) · e(H(ID), mpk)
R
. (13)

Here, we can verify that the forged proof, is a valid one
because the below equation holds:

e(σ, g) � e 􏽙
j∈J

􏽢σyj

j , g⎛⎝ ⎞⎠

� e 􏽙
j∈J

k
x
ID(􏼁

􏽢mj􏼒 􏼓
yj

, g⎛⎝ ⎞⎠e k
rj

ID􏼐 􏼑
yj

, g􏼐 􏼑

� e 􏽙
j∈J

H
xα
ID(􏼁

􏽢mj􏼒 􏼓
yj

, g⎛⎝ ⎞⎠e H
α
ID(􏼁

rj(􏼁
yj , g􏼐 􏼑

� e 􏽙
j∈J

HID(􏼁
􏽢mj􏼒 􏼓

yj

, g
xα⎛⎝ ⎞⎠e H

rj

ID􏼐 􏼑
yj

, g
α

􏼐 􏼑

� e 􏽙
j∈J

HID(􏼁
yj 􏽢mj , g

xα⎛⎝ ⎞⎠e H
rjyj

ID , g
α

􏼐 􏼑

� e 􏽙
j∈J

HID(􏼁
yj 􏽢mj , g

xα⎛⎝ ⎞⎠e HID, g
α

(􏼁
rjyj

� e HID(􏼁
Σj∈Jyj􏽢m, g

xα
􏼒 􏼓e HID, g

α
(􏼁

Σj∈Jrjyj

� e(μ, c) · e(H(ID), mpk)
R
.

(14)

6. Our Improved Cloud Auditing Protocol

(1) Setup. /e KGC chooses a random value α ∈ Zq as
the master secret key msk and sets the master public
key as mpk � gα. So, the system public parameters
are param � (e, q, G1, G2, g, mpk, h, H).

(2) Extract. /e KGC uses param � (e, q, G1, G2, g,

mpk, h, H) and mpk � α to generate the secret key
kID � H(ID)α for user ID.

(3) OffTagGen. /e user with identity ID owns the file
F with Fname, chooses a secret random value x ∈ Zq

as the trapdoor key, and sets c � mpkx, c′ � gx.
/en, it generates an offline tag θoff

i for i ∈ [1, B], by
choosing two random values (mi

′, ri
′) from Zq as

follows:

σoff

i � k
x
ID(􏼁

mi
′
k

r’i
IDH Fname||i(􏼁

x

� kID(􏼁
mi′x+ri′H Fname||i(􏼁

x
.

(15)

At last, it locally stores the offline tags,
(mi
′, ri
′, σoff

i)􏽮 􏽯
i∈[1,B]

.

(4) OnTagGen. First, it divides F into n blocks as
F � (m1, . . . , mn), where mi ∈ Zq. /en, it generates
the online tag (ri, σi) on block mi based on an unused
offline tag (mi

′, ri
′, σoffi) and uses trapdoor key as follows:

ri � ri
′ + x mi

′ − mi(􏼁mod q,

σi � σoff
i .

(16)

Finally, the online tags (ri, σi)􏼈 􏼉i∈[1,n] together with
the data blocks F � (m1, . . . , mn) are outsourced to
the cloud server. /e data owner also creates an
MHTon the ordered hash value h(ri)􏼈 􏼉i∈[1,n] with the
root node root and generates σroot � IDS(root). At
the same time, the pair (root, σroot) together with
(c, Fname), IDS(c‖Fname) is sent to the server and the
TPA. Here, IDS is a secure ID-based signature.
When the server receives the tags (ri, σi)􏼈 􏼉i∈[1,n] and the
data blocks F � (m1, . . . , mn), it first checks whether
Verify(mi, ri, σi, ID, mpk, c) � 1 passes for all
i ∈ [1, n]. If so, it stores (mi, ri, σi)􏼈 􏼉i∈[1,n] in its storage;
otherwise, it outputs ⊥. Furthermore, if σroot and
IDS(c, Fname) are valid signatures, the server and the
TPA save the values’ root, c for the file name Fname.

(5) Challenge. In order to challenge the integrity of the
file Fname which is owned by the user with identity
ID, the TPA runs the following process:

(a) Choose a random c−element subset J ⊂ [1, n] as
the block indices to be challenged in the auditing
process, and for each j ⊂ J, choose a random
value yj ∈ Zq.

(b) Send the challenge chal � (Fname, (j, yj)􏽮 􏽯
j∈J) to

the server.

(6) ProofGen. /e server generates an auditing proof
according to the received challenge
chal � (Fname, (j, yj)􏽮 􏽯

j ⊂ J
), through the following

procedure:

(a) Computes a combination of the challenged
blocks as µt � 􏽐j∈Jyjmj and sets µ � H(ID)µ

′ .
(b) Aggregates the tags as σ � 􏽐j∈Jσ

yj

j .
(c) Sends back (µ, σ, rj.Δj􏽮 􏽯

j∈J) as the auditing
proof to the TPA. Here, rj is the first term in
tag of block mj and Δj is the corresponding
AAI in MHT.

(7) ProofVerify. When TPA receives the proof
(µ, σ, rj.Δj􏽮 􏽯

j∈J), it first computes root′ from

h(rj)j∈J􏽮 􏽯 and the corresponding AAI Δj􏽮 􏽯
j∈J. If

root′ � root, it then computes R � 􏽐j∈Jyjrj and
checks equation (17).

e(σ, g) � e 􏽘
j∈J

H Fname||i(􏼁(􏼁
yj , c′⎛⎝ ⎞⎠e(μ, c)e(H(ID), mpk)

R
.

(17)

Wireless Communications and Mobile Computing 7

7. Security Analysis

In this section, we first prove the correctness of our im-
proved scheme. /en, we prove that the audit proof in our

proposed scheme cannot be forged, which proves that our
proposed scheme can resist attacks I and II.

(1) Correctness. /e correctness of verification equation
(17) is proved below:

e(σ, g) � e 􏽘
j∈J

k
x
ID(􏼁

mi′kri′
IDH Fname||i(􏼁

x
􏼒 􏼓

yj

, g⎛⎝ ⎞⎠

� e 􏽘
j∈J

H Fname||i(􏼁
x

(􏼁
yj , g⎛⎝ ⎞⎠ · e 􏽘

j∈J
k

x
ID(􏼁

mi′􏼐 􏼑
yj

, g⎛⎝ ⎞⎠ · e 􏽘
j∈J

k
ri′
ID􏼒 􏼓

yj

, g⎛⎝ ⎞⎠

� e 􏽘
j∈J

H Fname||i(􏼁(􏼁
yj , c′⎛⎝ ⎞⎠ · e 􏽘

j∈J
H

mi
′

ID􏼒 􏼓
yj

, g
xα⎛⎝ ⎞⎠ · e 􏽘

j∈J
k

ri′
ID􏼒 􏼓

yj

, g
x⎛⎝ ⎞⎠

� e 􏽘
j∈J

H Fname||i(􏼁(􏼁
yj , c′⎛⎝ ⎞⎠ · e(μ, c) · e(H(ID), mpk)

R
.

(18)

(2) Soundness. In our improved scheme, a malicious
CSP cannot forge a correct audit proof by using our
attacks.
Proof

(i) Setup. /e challenger B chooses a random value
α ∈ Zq as the master secret key msk and sets the
master public key as mpk � gα./en, challenger
B forwards the parameters to the server A but
keeps msk secret.

(ii) Query. /e adversary server A adaptively makes
the following queries to the challenger B:

(a) Hash Query. A queries hash value based on
IDi, and B chooses random yi ∈ Zq and
then outputs Hi � gyi as a response.

(b) Extract Query. A can query any user’s key
through its ID. By running the Extract al-
gorithm, B generates KIDi

� (gyi)α and
sends the obtained result to A.

(c) Tag Query. A queries the tags on the input
pair (PID, m). B responds to the query by
running the TagGen algorithm. B chooses
random ri, rj ∈ Zq and generates
σij � ((gx)riyiα)mj · (gyiα)rj · H(Fname||i)

x.
Finally, B outputs (rj, σij) and (ci, I DS

(ci)) and sends them to A.

(iii) Challenge. Challenger B runs the Challenge

algorithm on the file F of the user with PID and
B sends a challenge chal∗ � (F∗name ,

(j, yj)􏽮 􏽯
j∈J∗) to A.

(iv) ProofGen. Adversary A executes the algorithm
and computes a Proof P∗ � (μ∗, σ, r∗j ,Δ∗j􏽮 􏽯

j∈J∗)

based on the received challenge chal∗.
(v) ProofVerify. If the proof is verified, A wins the

game. Also, part of the proof represented by μ∗
in the protocol is not equal to the aggregate

value μ coming from the challenger B based on
the ProofVerify algorithm.

In the original scheme, the adversary A can compute
μ � H(IDi)

μ′ ; therefore, he can set μ � μ∗.
However, in our improved scheme, the authentica-
tion tag is calculated as equation (15):

σoff
i � kID(􏼁

mi
′x+ri
′
H Fname||i(􏼁

x
. (19)

Before the malicious adversary forges an off tag, he
needs to know the value of H(Fname||i)

x. However,
for i ∈ [1, n], the value of H(Fname||i)

x is different.
Even if he can get the hash value of the data
H(Fname||i), calculating H(Fname||i)

x is as hard as
solving the DL problem in G1, which is computa-
tionally infeasible. If p∗ passes the verification, we
can get (xr∗i)μ′ + R � (xr∗i)μ′∗ + R∗, where μ≠ μ∗. B
outputs ((μ/μ∗)ΔR

−1
)r∗

i
y∗− 1

i which is a solution to the
InvCDH problem and is not feasible. /erefore, the
malicious CSP cannot forge a correct audit proof to
pass the proof verify of TPA.

(3) Data Privacy against TPA. While providing the in-
tegrity audit service to the user, TPA cannot obtain
any information about the content of the user’s data
from the information provided by the user or from
the auditing process.
Proof. On the one hand, TPA received information
from user before performing the auditing work are
(root, σroot) and (c, Fname). /e user data cannot be
accessed from root due to the one-way nature of the
hash function. Meanwhile, c �mpkx, and TPA
cannot get user’s data from it.
On the other hand, in the auditing process, the TPA
gains μ � H(IDi)

μ′ . However, given H(IDi) ∈ G1
and μ ∈ G1, computing μ′ � 􏽐j∈Jyjmj is solution to
the DL problem.

8 Wireless Communications and Mobile Computing

/erefore, our improved scheme can preserve the
user’s data privacy.

8. Application of Our Scheme

As an application, we consider the hospital’s data man-
agement in cloud setting as an example to demonstrate the
effectiveness of our scheme to the actual pandemic data
management. During the prevention and control of the
epidemic, many medical data of patients need to be
recorded, including the patients’ nucleic acid testing results,
the doctor’s diagnosis, and if diagnosed as COVID-19, the
recent whereabouts of the patients. In fact, the amount of
these data is very huge; if the hospital stores them locally, it
will consume a lot of storage resources, so it is better to
outsource these huge data to cloud servers for storage.
However, the cloud server is not completely reliable. Many
important data may be lost due to various unexpected ac-
cidents. /is will cause the treatment of many patients to be
delayed due to the loss of data. Furthermore, the loss of some
key data of diagnosed patients may lead to inadequate
control of the epidemic, which may lead to the spread of the
epidemic. If there is no data integrity audit mechanism, we
cannot know whether the data are completely stored. So, an
integrity audit mechanism is used to ensure the integrity of
cloud data. At the same time, the public key is usually used to
generate the authentication information of patient data. Due
to the large number of patients and the continuous increase
in the number of patients, the key management is a big
problem. Our scheme uses identity-based way to generate
public and private keys and directly uses the user’s identity
information to generate public keys, which effectively avoids
the difficulty of key management.

Figure 2 illustrates the system model. It includes five
entities. /e five entities are patients, hospital (which we
termed as HSP), KGC, CSP, and TPA. Because the KGC
generates the private keys for the patients, it is necessary for
the hospital to select a trusted key generation server as the
KGC. As the cloud server needs to store a large amount of
medical data, servers with strong storage capacity are se-
lected as the cloud storage servers. Since the TPA requires a
lot of audit work, a server with powerful computing power is
used as the TPA./ere are three steps in this model, and they
are key generation, data upload, and integrity verification.
/e concrete implementation is as follows:

Step 1 (key generation): first, the KGC in the HSP sets
the parameters and calculates the master key in the
Setup stage.When the patient comes to the hospital, the
hospital generates the patient’s ID based on the pa-
tient’s identity information and sends the ID to KGC.
/en, the KGC computes the identity-based private key
for the patient according to the Extract algorithm.
Step 2 (data upload): after the hospital collected the
patients’ data, these data need to be uploaded to the
HSP’s storage server. Firstly, the hospital computes the
corresponding tag for the patient based on the corre-
sponding collected data. /en, it uploads the data
blocks and the corresponding tags to the HSP’s storage
server. According to the policy, the tags and auxiliary
information based on patient’s identity are transmitted
to TPA, ensuring that the TPA can implement the
auditing for the data stored in the cloud server.
Step 3 (integrity verification): in order to guarantee the
integrity of the data, HSP needs to check it regularly.
First of all, the hospital or patients make a request for

KGC

Patients Hospital

TPA

Cloud Server

Identity of Patients

Data of patients

Resp
onseChalle

nge

Shared Data Blocks and Tags

Private Key

Auditing Report

Auditing Information

Figure 2: Pandemic data management in a hospital-based application.

Wireless Communications and Mobile Computing 9

integrity verification to TPA, which in turn uses the
challenge-response auditing protocol to verify the in-
tegrity of the data stored in the cloud, as requested. If
the verification is successful, the patient’s data are
considered to be good stored in the cloud server.
Otherwise, the CSP does not store the patient’s data
well, and other patient’s data blocks may also be lost. At
this time, other important data need to be checked also,
and if the data are lost, remedial measures such as
backup and recovery of the lost data are needed in time.

9. Conclusions

In this paper, we review a lightweight ID-based verifiable
data ownership cloud storage audit scheme proposed by
Rabaninejad et al. [17]. /en, we point out the security
vulnerabilities in the OffTagGen and OnTagGen part of the
scheme and further demonstrate the insecurity of the
original protocol by showing the attack. In order to protect
the integrity of users’ data, an improved secure cloud audit
protocol is proposed. /e security analysis shows that the
new protocol is secure.

Data Availability

/e data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

/e authors declare that they have no conflicts of interest.

Acknowledgments

/is study was supported by the National Natural Science
Foundation of China under grant nos. U1636114, 62102452,
and 62172436, Open Project from Guizhou Provincial Key
Laboratory of Public Big Data under grant no.
2019BDKFJJ008, Engineering University of PAP’s Funding
for Scientific Research Innovation Team under grant no.
KYTD201805, and Engineering University of PAP’s Funding
for Key Researcher under grant no. KYGG202011.

References

[1] K. Ren, C. Wang, and Q. Wang, “Security challenges for the
public cloud,” IEEE Internet Computing, vol. 16, no. 1,
pp. 69–73, 2012.

[2] M. Khorshed, A. B. M. Ali, and S. Wasimi, “A survey on gaps,
threat remediation challenges and some thoughts for pro-
active attack detection in cloud computing,” Future Gener-
ation Computer Systems, vol. 28, pp. 833–851, 2012.

[3] J. Gudeme, S. Pasupuleti, and R. Kandukuri, “Review of re-
mote data integrity auditing schemes in cloud computing:
taxonomy, analysis, and open issues,” International Journal of
Cloud Computing, vol. 8, p. 20, 2019.

[4] G. Ateniese, R. Burns, R. Curtmola et al., “Provable data
possession at untrusted stores,” pp. 598–609, 2007.

[5] M. Shah, R. Swaminathan, and M. Baker, “Privacy-preserving
audit and extraction of digital contents,” IACR Cryptology
ePrint Archive, vol. 2008, p. 186, 2008.

[6] H. Shacham and B. Waters, “Compact proofs of retriev-
ability,” in Proceedings of the International Conference on the
@eory and Application of Cryptology and Information Secu-
rity, pp. 90–107, Melbourne, VIC, Australia, December 2008.

[7] R. Curtmola, O. Khan, R. Burns, and G. Ateniese, “MR-PDP:
multiple-replica provable data possession,” in Proceedings of
the 28th International Conference on Distributed Computing
Systems, Beijing, China, June 2008.

[8] Z. Hao, S. Zhong, and N. Yu, “A privacy-preserving remote
data integrity checking protocol with data dynamics and
public verifiability,” IEEE Transactions on Knowledge and
Data Engineering, vol. 23, pp. 1432–1437, 2011.

[9] C. Wang, Q. Wang, K. Ren, and W. Lou, “Privacy-preserving
public auditing for data storage security in cloud computing,”
in Proceedings of the 2010 Proceedings IEEE INFOCOM,
pp. 525–533, San Diego, CA, USA, March 2010.

[10] H. Wang, Q. Wu, B. Qin, and J. Domingo-Ferrer, “Identity-
based remote data possession checking in public clouds,”
Information Security, vol. 8, pp. 114–121, 2014.

[11] H. Wang, “Identity-based distributed provable data posses-
sion in multicloud storage,” IEEE Transactions on Services
Computing, vol. 8, pp. 328–340, 2015.

[12] H. Wang, D. He, and S. Tang, “Identity-based proxy-oriented
data uploading and remote data integrity checking in public
cloud,” IEEE Transactions on Information Forensics and Se-
curity, vol. 11, no. 6, pp. 1165–1176, 2016.

[13] Y. Yu, M. Au, G. Ateniese et al., “Identity-based remote data
integrity checking with perfect data privacy preserving for
cloud storage,” IEEE Transactions on Information Forensics
and Security, vol. 12, no. 4, pp. 767–778, 2017.

[14] Y. Yu, L. Xue, M. H. Au et al., “Cloud data integrity checking
with an identity-based auditing mechanism from RSA,” Fu-
ture Generation Computer Systems, vol. 62, 2016.

[15] J. Li, H. Yan, and Y. Zhang, “Identity-based privacy preserving
remote data integrity checking for cloud storage,” IEEE
Systems Journal, vol. 15, no. 1, pp. 577–585, 2020.

[16] R. Rabaninejad, S. M. Sedaghat, M. Ahmadian Attari, and
M. R. Aref, “An ID-based privacy-preserving integrity veri-
fication of shared data over untrusted cloud,” Computer So-
ciety of Iran, vol. 2020, pp. 1–6, 2020.

[17] R. Rabaninejad, M. R. Asaar, M. A. Attari, andM. R. Aref, “An
identity-based online/offline secure cloud storage auditing
scheme,” Cluster Computing, vol. 23, pp. 1455–1468, 2020.

10 Wireless Communications and Mobile Computing

