

International Journal of Computing and Digital Systems
ISSN (2210-142X)

Int. J. Com. Dig. Sys. 6, No.5 (Sep-2017)

E-mail: h.b.tn@ieee.org, mariem.gzara@gmail.com, hbenabdallah@kau.edu.sa

 http://journals.uob.edu.bh

Evolution of the Distributed Computing Paradigms:

a Brief Road Map

Haitham Barkallah
1
, Mariem Gzara

1,2
 and Hanene Ben Abdallah

1,3

1 University of Sfax, MIRACL laboratory, Rt Tunis, B.P. 242, 3021 Sfax, Tunisia
2 University of Mounastir, Higher Institute of Computer Science and Mathematics, Tunisia

3 King Abdulaziz University, Jeddah, KSA

Received 11Jul. 2017, Revised 8 Aug. 2017, Accepted 22 Aug. 2017, Published 1 Sep. 2017

Abstract: Today's computing development is being characterized by the rapid development of high speed networks and the increase

in computing power. Computing is not any more limited to the supercomputers, PCs and laptops but also smart phones and tablets

which are available for billions of users offering high computing performances at low cost and interconnected via Internet. This

continuing technological development is leading the increase importance of the distributed computing paradigms and the apparition

of new ones. This paper aims to review the most important distributed computing paradigms and the principal similarities and

differences between them. This survey is a kind of a brief road map that would be useful for researchers, students, and commercial

users.

Keywords: Distributed Computing Paradigms, Cluster, P2P, Redundant, Pervasive, Edge, Jungle, Volunteer, Utility, Grid, Cloud,

Service, Review

1. INTRODUCTION
Computers has marked the 20st century and changed

radically the way we live and work. In scientific research,

they have enabled the resolution of many problems that

where impossible to do without computers. The need for

computing power continues to rise and new problems that

need massive computing resources show up.

Taking advantage of the fast technological progress in

networks and especially the emergence and evolution of

Internet, new computing paradigms have been proposed

based on the coordinated use of any available distributed

resources in the world ranging from private to public and

volunteer resources and from supercomputers to mobile

phones.

The availability of high speed networks at low cost

has revolutionized our everyday computing practices and

enabled the emergence of new distributed computing

paradigms.

In the literature, many authors tried to study the

existing distributed computing paradigms like B.

Kahanwal [1] and some others had the vision to

anticipate and propose new ones like M. Weiser [2].

In [3], a comparison between the computing models

of cluster, grid, and cloud computing is presented and in

[4], the authors have included utility computing as a

generic model. While in [5], [6], and [7], a side by side

comparison between the grid and cloud computing model

from various angles focusing on their essential

characteristics are presented.

In [8], the authors analyzed the performance of three

real scientific applications (AutoDock, Montage, and

ThreeKaonOmega) and made an evaluation of their

performance on different systems: Clusters, Grids, and

Clouds. They aimed to show how the application

performances can be significantly affected by the

system's characteristics and the hardware specification of

the computing nodes.

In [9], the authors discussed the reliability model of

volunteer peer-to-peer cloud computing. They proposed a

mechanism using dynamic replication to ensure trust

relationships and results correctness and to provide

efficient computation. While in [10], the authors

investigated the different alternatives like cluster, grid

computing and cloud computing (IaaS or PaaS) for

running an Adhoc data intensive application rather than

http://dx.doi.org/10.12785/ijcds/060502

http://journals.uob.edu.bh/

234 H. Barkallah et al.: Evolution of the Distributed Computing Paradigms: a Brief Road Map

http://journals.uob.edu.bh

using supercomputers. Alternatives to supercomputers are

explored in this paper.

A comprehensive explanation of cloud computing,

volunteer computing and also volunteer cloud computing

paradigms along with their advantages and also their

open issues is presented in [11]. And in [12], K. Skala

and al. presented the cloud computing, fog computing

and dew computing as new emerging paradigms that can

lower the cost and improve the performance of the

Internet of Things (IoT) and the Internet of Everything

(IoE) applications.

This work is the result of a large inspection of many

scientific documents (papers, books chapters, and PHD

reports) related to the distributed computing. A deep

process of collection, selection, and analysis has enabled

the establishment of this review.

This paper surveys the most important distributed

computing paradigms. It is useful, especially, for

debutant researchers, students, and commercial users. It

consists of an introductory knowledge that help them get

an idea about the past and the future of distributed

systems. It helps them differentiate these paradigms and

avoid confusion while providing deep and brief

understanding. For each paradigm a brief introduction is

presented then its goals, limits, and problems are

discussed. We strive to compare and contrast the

principal distributed computing paradigms from various

angles and give insights into their essential

characteristics.

This work can help to understand, share and predict

the distributed computing paradigms’ evolution.

This review paper is organized as follows. Section II

presents the limits of the serial and parallel computing

leading to the need of distributed computing. Section III,

details and discusses the principal distributed computing

paradigms: cluster, peer-to-peer, redundant, ubiquitous,

pervasive, mobile, edge, jungle, volunteer, service, grid,

and cloud computing. Then section IV aims at comparing

the different paradigms according to the geographical

distribution, the resource ownership, availability, and

reliability and the system’s scalability. Before concluding

this work, section V discusses the distributed computing

as a service. And we conclude by, the relation between

the different distributed computing paradigms and how

they coexist in real life systems.

2. LIMITS OF SERIAL AND PARALLEL COMPUTING

A. Serial vs Parallel computing

Traditionally, software has been written for serial

computation: the problem is broken into a discrete series

of instructions executed sequentially one after another on

a single processor (Figure 1). While in parallel

computing the problem is broken into discrete parts that

can be solved concurrently. Instructions from each part

execute simultaneously on different processors. An

overall control/coordination mechanism is employed

[13].

(a) (b)

Figure 1. Serial computing (a) vs Parallel computing (b) [13]

B. Parallel computing goal

The basic idea of parallel computing is to divide a

large problem into smaller ones which can be carried out

simultaneously on multiple processors in order to be

solved faster [14][15].

B. Barney confirmed that "compared to serial

computing, parallel computing is much better suited for

modeling, simulating and understanding complex, real

world phenomena" [13]. In fact, parallel computing had

been considered to be "the high end of computing", and

has been used to model very difficult problems in many

areas of science and engineering.

Parallel computing had made a huge impact on a

variety of problems ranging from computational

simulations for scientific and engineering applications to

commercial applications in transaction processing and

data analysis [16].

It has enabled scientists and application developers to

achieve computational results which could not be

obtained efficiently by serial computing methods. Then, a

new larger, and more complex applications has been

developed solving problems that could not be solved

previously [17].

C. The Moore's law impact

In 1965, Electronics magazine asked the research

director of electronics pioneer Fairchild Semiconductor

to predict the future of the microchip industry. Moore

guessed that the number of electronic devices crammed

onto microchips would roughly double every year.

Moore’s Law [18], became the golden rule for the

electronics industry. And have had economic,

technological and societal impacts.

http://journals.uob.edu.bh/

 Int. J. Com. Dig. Sys. 6, No.5, 233-249 (Sep-2017) 235

http://journals.uob.edu.bh

Figure 2. The need for distributed computing

In fact, for decades, the Von Neumann architecture

[19] has known many improvements like: increasing

Clock Frequency, Memory Hierarchy / Cache,

Parallelizing ALU structure, Pipelining, Very-long

Instruction Words (VLIW), Superscalar processors,

Vector data types, Multithreaded concurrent

programming, instruction-level parallelism (ILP),

multicore processors, etc.

However, since 2005 there has been no increment in

the processor's speed which attained the physical limit

in traditional uni-processors [20]. Herb Sutter claimed

"We’ll probably see 4GHz CPUs in our main stream

desktop machines someday, but it won’t be in 2005"

[20]. Then the trend in parallel architectures especially

multicore-processors and distributed computing (Figure

2) is how to meet the need for speeding up computation.

3. DISTRIBUTED COMPUTING PARADIGMS

The technological progress in network speed and

bandwidth made possible the emergence and evolution

of distributed computing.

It started in the 1960s within the message-passing

communication between two or more computing

resources. Then the local area networks, ARPANET,

and especially the introduction of the email service

marked the 1970s.

The use of distributed computing has known a huge

expansion benefiting from the availability of powerful

computing resources and network speed to the public at

low cost. It made possible the resolution of large

complex problems that where considered extremely

hard to solve.

Figure 3. Principal distributed computing paradigms

In this section, we are going to present the principal

distributed computing paradigms (Figure 3): the idea

behind them, their goals, problems, and limits. Then in

the next section we are going to compare them.

A. Cluster computing

Clusters are groups of co-located standalone

computers interconnected using a high speed network

[21], working together closely so that in many aspects

they form a single computer. Clusters are, naturally,

suited to systems that perform large numbers of

independent (or nearly independent) small computations

[22]. The components of a cluster are commonly, but

not always, connected to each other through fast LAN

http://journals.uob.edu.bh/

236 H. Barkallah et al.: Evolution of the Distributed Computing Paradigms: a Brief Road Map

http://journals.uob.edu.bh

[14]. The set of loosely or tightly connected computers

are viewed as a single system.

The success of cluster computing is based on the use

of low-cost and widely-used commercial hardware and

software. And its primary objective in high performance

cluster computing is to reduce the execution time [23].

In practice, each node of a cluster runs a local copy of a

uniprocessor operating system. Hence, any system-level

management must be done by "middleware" above the

OS [24].

Clusters can be classified according to:
- The type of used hardware:

o Work stations based Clusters: Composed of
low-cost computers.

o High-performance clusters: High-
performance clusters use supercomputers to
solve advanced computation problems.

- Their visibility to the publics

o Open cluster: All nodes are visible from
outside, and hence they cause security
concerns. But they are more flexible and can
be used to perform Internet and web tasks for
example.

o Close Cluster: The nodes are hidden behind a
gateway node which provides better security
level.

1) Goals

Cluster computing has two major goals:

- Aggregating computing power: Aggregating
many single computers working together so that
in many aspects they form a single powerful
computer.

- High availability clusters: The clusters are
designed to maintain redundant nodes that can
act as backup in case of system failure.

- Load-Balancing clusters: Load-balancing
clusters are used to redistribute the workload
efficiently between the active nodes in order to
optimize the processing power efficiency.

2) Limits

The cluster computing paradigm presents two

principal limits:
- The computing applications and the treated

problems are increasingly complex and require
high amounts of computing resources that
exceed the clusters’ capacity.

- Sometimes, the aggregated computing power is
not enough to handle the peak of loads and
produce the desired output in time creating the

possibility of system’s unavailability and/or
unreliability.

3) Problems

The two major problems of cluster computing are:
- High costs: implementing and maintaining a

cluster computing infrastructure is, of course,
cheaper than the HPC supercomputers, but it is
still considered expensive.

- Low computing power utilization’s rate:
usually, the cluster’s resources are not entirely
used most of the time.

B. Peer-to-Peer

In Peer-to-peer computing [25], in contrast to

Client-Server systems, every node acts as both a client

and a server providing part of the system resources. All

client machines act autonomously to join or leave the

system freely. This implies that no master-slave

relationship exists among the peers. No central

coordination or no central database is needed. In other

words, no peer machine has a global view of the entire

P2P system. The system is self-organizing with

distributed control without the need for centralized

coordination by central server [1].

Figure 4. Peer-to-Peer network

The shared resources and services include the

exchange of information, processing cycles, cache

storage, and disk storage for files [26]. They are used in

many application domains such as data transfer and data

storage but the concept was popularized by file sharing

systems such as the music-sharing application Napster

[27].
1) Goals

Peer-to-peer computing resides on the edge of the

Internet or in ad-hoc networks [25]. It has several goals

[1][25]:
- Cost sharing/reduction: eliminating the need

for costly infrastructure by enabling direct
communication among clients. The maintenance
cost is spread over all the peers [25].

http://journals.uob.edu.bh/

 Int. J. Com. Dig. Sys. 6, No.5, 233-249 (Sep-2017) 237

http://journals.uob.edu.bh

- Resource aggregation (improved
performance) and interoperability: each node
brings with it certain resources such as compute
power or storage space. "The whole is made
greater than the sum of its parts" [25].

- Improved scalability/reliability: by avoiding
dependency on centralized points and inducing
maximum load distribution [28].

- Increased autonomy: the local node does work
on behalf of its user.

- Anonymity/privacy: allowing peers a greater
degree of autonomous control over their data
and resources [25]. The system has no server
that will typically be able to identify the client.
The users can avoid having to provide any
information about themselves to anyone else.

- Dynamism: resources enter and leave the
system continuously.

- Enabling ad-hoc communication and
collaboration: the system takes into account
changes in the group of participants such as
members come and go based on their current
physical location or their current interests.

2) Limits

Peer-to-peer computing suffers from different limits,

especially:
- Offers Limited bandwidth especially in case of

non-dedicated network resources compared to
the high bandwidth speed allowed by cluster
computing. Peer-to-Peer infrastructures usually
relies on Internet in order to interconnect the
resources, usually geographically distributed,
while in cluster computing dedicated network
infrastructure is required.

- Redundancy cost: redundancy is important in
order to ensure reliable data storage within
unreliable peers but this can affect the network
bandwidth and the global storage capacity of the
whole system.

- Incompatibility issues: many traditional
algorithms and solutions perform poorly running
on the peer-to-peer infrastructure considered to
be unreliable and offering limited computing,
storage, and bandwidth compared to cluster and
super computers.

3) Problems

Peer-to-peer computing presents serious problems

like:
- Security and privacy weaknesses: the peer-to-

peer infrastructure is accessible to all the peers
without the need of a centralized security access
point. The exchanged and/or stored data needs to
be encrypted in order to prevent manipulation.

Usually, trust qualification mechanisms are
implemented in order to evaluate the peers’
behavior.

- Heterogeneity of the peers: unlike clusters, in
peer-to-peer infrastructures, the peers are usually
heterogeneous in terms of memory, storage and
computing capacities, network bandwidth...

- Reliability of the resources: in peer-to-peer
systems sudden arrival and departure of peers is
very frequent. This problem is considered to be
the most challenging and can, extremely, limit
the system’s availability and scalability.

C. Redundant Computing

Ensuring the reliability of a distributed system is

primordial especially when the resources availability

and trustiness are not guaranteed. In that case,

redundant computing is the appropriate response.

Redundant computing is based on two techniques:
- Job replication: sending copies to different

resources [29]:

o If the deadline respect is not guaranteed to
escape possible tardiness or job execution
failure

o The results received from different resources
are compared to ensure trustiness [30][9][31].

- Resource redundancy: resources are doubled to
be used in case of failure.

Redundant computing is especially used in two

types of situations:
- Volunteer computing: when the resources are

owned by users who voluntarily allow their
utilization.

- Critical computing: when computing errors,
execution failure [32] and hard deadline real-
time job execution are never permitted and can
cause life and/or financial loss.

1) Goals

By incorporating redundant processing elements in a

distributed system, one can potentially:

- Increase system’s reliability and/or
availability: In fact, it allows applications to
continue working even when failures
occur[32].The users can accept a partial
degradation in system performance, when a
failure cripples a fraction of the resources or
links of a distributed system. For S. Ghosh, a
distributed system thus provides an excellent
opportunity for incorporating fault-tolerance and
graceful degradation [33].

- Deal with erroneous results: For Syed A.
Ahson and Mohammad Ilyas[31], in addition to
the mosaic of resources (high heterogeneity), the

http://journals.uob.edu.bh/

238 H. Barkallah et al.: Evolution of the Distributed Computing Paradigms: a Brief Road Map

http://journals.uob.edu.bh

application results returned to the master are
subject to errors. These errors can occur because
of hardware malfunction (particularly on over-
clocked computers) or malicious volunteers
attempting to get credit for computing not
actually performed. Basically, the result is
considered valid when it reaches a consensus (a
set of similar results) by running the same
computations on a number of resources.

- Used to address the issues to the volunteer
computing, including malicious attacks, network
latency, and hardware malfunctions [30]. This
mechanism involves dispatching two or more
replicas of a same job to different computers. A
job is complete and the corresponding results are
valid only if a certain number of volunteers
respond and all report the exact same result. B.
Sawicki[9] considered redundant computing
(also called replication) as a method of
protecting the system from dishonest nodes.

2) Limits

Redundant computing has two main limits:
- Low resource utilization rates: Each unit of

work is sent to at least two computers. The
results from those computers are returned to the
server and compared to see if the results agree. If
they do not, then additional copies are sent to
different computers until a consensus can be
reached. Results can be compared to see if they
are either identical or within an acceptable range
of variance. This technique is crucial especially
in volunteer computing in order to overcome the
problem of malicious peers and settle down a
trust ranking system.

- High Cost: redundant computing is based on
resources replication which involves increasing
cost of additional computing resources that
might not be used only during system failure or
maintenance periods. This explains the fact that
redundant computing is practically used in
volunteer computing since the resources are free
or in very critical computing infrastructures
where system’s reliability and availability
problems are never acceptable.

3) Problems

The major problems of redundant computing are

related to resources waste and data inconsistency:
- High amounts of resources use: in redundant

computing based on job replication, n copies of
the jobs/applications are sent to the computing
resources in order to be executed. The necessary
used computing power is then multiplied by n
including the data storage capacity and the
network bandwidth.

- Data replication management: due to the job
replication process the same piece of data is held
in many separate places. Data redundancy can
lead to data inconsistency problems especially
when the executed jobs are dependent (the
output of one is the input of another).

D. Edge Computing

Edge computing is a natural extension of the

Content Delivery Network (CDN) architecture [34][35].

It pushes application logic and the underlying data

processing from corporate data centers out to proxy

servers at the "edge" of the network in order to achieve

scalable and highly available Web services [34] and for

better efficiency and performance [36].

Edge computing has several applications in different

domains. For G. Roussos and al. [37] this shift towards

edge computing is typical in pervasive computing

applications and is observed in a variety of related

situations, notably with wireless sensor networks. Then

all information processing, content routing, and

persistence are all located at the edge, which gains a

role of far greater importance.

Also, in modern Internet applications, by replicating

application contents (e.g., Web objects and fragments of

DBMS data) and logic (e.g., scripts for dynamic

generation of Web contents and remote interaction with

origin sites) across a large number of geographically

distributed servers, edge computing platforms allow to

achieve significant enhancements of the proximity

between clients and contents, and of the system

scalability [38]. Desktop machines are being used to

perform some of the computation instead of all

computation happening on servers. Client side scripts

and web applications enable much of the computation

occurs on the clients' side [21].

1) Goals

According to H. Pang and al. [34], performing

computation at the edge of the network instead of

machines at the core [21] has several potential

advantages like:
- Cuts down network latency and produces faster

responses to end-users "applications and
partners" Web services. In fact, it moves some
of the data processing closer to devices that
require real-time interaction, thus reducing the
number of network hops and hence latency [39].

- Adding edge servers near user clusters is also
likely to be a cheaper way to achieve scalability
than fortifying the servers in the corporate data
center and provisioning more network
bandwidth for every user.

- removes the single point of failure in the
infrastructure by lowering the dependency to the
corporate data center, hence reducing its

http://journals.uob.edu.bh/

 Int. J. Com. Dig. Sys. 6, No.5, 233-249 (Sep-2017) 239

http://journals.uob.edu.bh

susceptibility to denial of service attacks and
improving service availability [34].

2) Limits

Edge computing has two major limits:
- Tasks and data partitioning: in order to be

executed at multiple geographic locations, the
tasks and the necessary input data have to be
partitioned into multiple independent sub entities
which is not possible most of the time.

- Technological limitations: edge computing
provides a generic template for applications
development that imposes certain technological
limitations in order to facilitate the application’s
distribution among the different nodes.

3) Problems

The principle edge computing problems are related

to the load distribution and the system’s security:
- Data replication management: Due to the job

partitioning process the user’s/application’s data
is held in different locations. This can lead to
data inconsistency problems especially when the
input data is shared between the different sub-
jobs and is subject to modifications during the
execution.

- Offloading the load to the nodes is associated
with security risks especially when the
computing resources are not privately owned.
Publicly accessible nodes pose a number of
security challenges that need to be addressed.

E. Ubiquitous, Pervasive, and Mobile computing

Ubiquitous computing, which means "existing

everywhere", is the method of enhancing computer use

by making many computers available throughout the

physical environment, but making them effectively

invisible to the user [40][2]. Its beginning was in the

Electronics and Imaging Laboratory of the Xerox Palo

Alto Research Center [41] in the early 80's. And it

offers a framework for new and exciting research across

the spectrum of computer science [40].

Ubiquitous computing started in Xerox’s Palo Alto

Research Center. In 1991, Mark Weiser, the chief

technology officer, described the ubiquity of personal

computers: "The most profound technologies are those

that disappear. They weave themselves into the fabric of

everyday life until they are indistinguishable from it"

[42]. He anticipated "the ubiquitous computer leaves

you feeling as though you did it yourself. Its extensive

use of video and audio, including voice communication,

will transform electronic interfaces into interpersonal

ones" [2].

1) Goals

Ubiquitous computing touches on a wide range of

research topics, including distributed computing, mobile

computing, location computing, mobile networking,

context-aware computing, sensor networks, human-

computer interaction, and artificial intelligence. It is

different from pervasive computing by:
- Integrating large-scale mobility [43].

- Including invisibility to the user much more than
mobile computing [44].

- Embedding microprocessors in everyday objects
so they can communicate information.

- Introducing seamless access to remote
information resources and communication with
fault tolerance, high availability, and security
[42].

2) Limits

Ubiquitous computing has three important limits:
- Limited network bandwidth: even though

mobile network bandwidth is now more and
more powerful, especially with the emerging
3G, 4G, and 5G technology, but it is still slower
than direct cable connections which has direct
impact on the type of applications. This has
direct impact on the kind of applications which
can be deployed and executed.

- Energy consumption: since the resources used
in ubiquitous, pervasive, and mobile computing
rely on battery power, energy consumption
restrictions are imposed.

- Human-machine interface: in the mobile
devices, screens and keyboards are small, which
makes restrictions on the application’s interface
and input/output functionalities.

3) Problems

The most important problems in ubiquitous,

pervasive, and mobile computing are:
- Lack or poor network coverage: the

computing resources are supposed to be mobile
and geographically distributed, but the signal
reception is not guaranteed and sometimes poor
or even unavailable in tunnels, some buildings,
and rural areas.

- Potential health risks: some mobile devices
may interfere with sensitive devices especially
medical. And, due to the possibility of
distraction, users using their mobile devices
while driving are most likely involved in traffic
accidents.

- Security concerns: using a huge number of
resources relying on public networks, is usually
source of security problems.

F. Volunteer Computing

Volunteer computing is often named Desktop

computing as it uses desktop computers as the

http://journals.uob.edu.bh/

240 H. Barkallah et al.: Evolution of the Distributed Computing Paradigms: a Brief Road Map

http://journals.uob.edu.bh

underlying computational resources [31]. Most of the

volunteer computing platforms have the same structure:

a client program runs on the volunteer’s computer. It

periodically contacts project servers over the Internet,

asking for jobs and sending back the results of

completed jobs.

1) Goals

Volunteer computing is a type of distributed

computing that allows people donating their computing

resources. The idle time of PC’s is used to do research

and scientific projects. The system employs unused

CPU cycles to fulfill the work. By breaking a

monolithic job into a large number of units and

distributing into different desktop computers called

workers, it can perform jobs efficiently via massive

parallelism [30].

Figure 5. Volunteer Computing

Nowadays, volunteer computing provides Petaflops

of processing power to solve large variety of problems

like formalization of complex mathematics models,

climate changes prediction, etc. [45].

2) Limits

Volunteer computing also has several limits:
- The resources need to be treated as totally

independent entities and can be suitable most for
independent tasks that do not require any inter-
task communications.

- The task data input and output data transfers
must be small and the task runtime has to be
short.

- The resources are volatile and the whole system
depends on the willingness of the public to share
their computational power.

3) Problems

a) Environment complexity:

To develop Volunteer computing platforms, we have

to consider many problems. One of these issues is we

have to deploy easy to understand environment. This is

because of the users (donors) are in a wide technical

background ranges. Our platform must attract more

volunteers to have more systems and so more powerful

computing power [45].

b) Resource Availability:

Since volunteer computing heavily relies on the

donation of computer CPU cycles by public participants

whose identities are unknown, the resource availability

must be taken into consideration before operating on

these resources [30].

c) Resource heterogeneity:

Due to volunteer’s nature, donors might own very

different systems with a variety of OSs and different

software and applications. So we have to consider

framework independence to avoid from compatibility

issues [45]. It is a "mosaic of resources" [31].

d) Trustiness:

As the computers are not controlled by the person or

organization conducting processing on the grid, the

volunteered computers cannot be trusted [29][31][9].

In fact, in addition to this mosaic of resources, the

application results returned to the master are subject to

errors. These errors can occur because of hardware

malfunction (particularly on over-clocked computers) or

malicious volunteers attempting to get credit for

computing not actually performed [31].

In order to produce reliable results redundant

computing is used. The system sends each unit of work

to at least two computers. The results from those

computers are returned to the server and compared to

see if the results agree. If they do not, then additional

copies are sent to different computers until a consensus

can be reached. Results can be compared to see if they

are either identical or within an acceptable range of

variance [29].

Trust of particular node depends on how many jobs

are confirmed and by whom. The more trusted a node

is, the more valuable its confirmation is. As node has

more of its results confirmed, its trust grows [9].

In [33], in order to guarantee fault-tolerance,

processors cross-check one another at predefined

checkpoints, allowing for automatic failure detection,

diagnosis, and eventual recovery. The correct result is

determined by a majority vote.

G. Service computing

Service computing (or service-oriented computing)

is “a way of developing application systems with

services as the basic elements” [46]. It is an effective

approach for distributed computing paradigm and one of

http://journals.uob.edu.bh/

 Int. J. Com. Dig. Sys. 6, No.5, 233-249 (Sep-2017) 241

http://journals.uob.edu.bh

keys of cloud computing used to model, create, operate,

and manage business services [47].

The service computing model is based on a service

registry, service consumer, and service provider. It is

driving distributed computing towards a model of

dynamic service based interactions. First, the service

provider registers itself in the registry. The service

consumer, then, discovers the service from the registry,

and uses it.

1) Goals

The fundamental objectives of service computing

are:
- To enable a maximum level of interoperability

among different applications running on
different platforms.

- It is widely used to realize distributed
applications/solutions based on loosely coupled,
reusable services that can be binned to form
service compositions [46].

- Easy Maintainability: since a service is an
independent entity, it can be easily updated
and/or maintained.

- Better Scalability and Availability: in fact,
multiple instances of a single service can run on
different servers at the same time. This improves
the response time and the satisfaction for the
users.

2) Limits

The mutation to service oriented architectures is

considered as hard and expensive. In most cases, the

change is implemented incrementally and carefully

during a long period.

3) Problems

The service oriented architecture is not considered

well suitable to the applications requiring high amounts

of data exchange or do not require request/response

asynchronous communication and, also, standalone and

short lifespan applications’ implementations.

H. Grid Computing

Grid computing is the sharing of computing

resources (computers, clusters, parallel machines, ...) by

a collection of people and institutions in a flexible and

secured environment [14]. It creates the illusion of a

simple and powerful self-managing virtual computer out

of a large collection of heterogeneous systems and

resources [48]. The aim is to enable coordinated

resource sharing and problem solving in dynamic,

multi-institutional virtual organizations [1]. Clabby

Analytics defined the grid as a distributed network

architecture that finds and exploits unused

compute/storage resources which reside within a

distributed computing environment [49].

Grid computing can be used in a variety of ways to

address various kinds of application requirements.

There are a large number of projects around the world

working on developing Grids for different purposes at

different scales in order to provide non-trivial services

to users [50].

1) Goals

Using grid computing has many motivations [51]:

- Allows sharing computing resources across
networks: This can increase the available
computational power and reduce the number of
computers needed by an organization.

- Allows low-cost computing: enables linking a
large number of low-cost machines together
rather than spending a large amount of money
on a single machine or super-computer with a
larger processing capability.

- Exploiting underutilized resources: computing
resources are most of the day time idle. For
example, desktop machines are busy less than 5
percent of the time especially during off
business hours [52].

- Access to additional resources: Grid enables
the virtualization of distributed computing and
data resources such as processing, network
bandwidth, storage capacity, special equipment,
software, licenses, and other services to create a
single powerful system image, granting users
and applications seamless access to vast
information technologies capabilities. In order to
meet internal deadlines, it gives access to on
demand additional capacity during peak
production cycles, and improves utilization of
existing resources.

- Virtual resources and virtual organizations
for collaboration: Grid computing is more than
just cluster computing in the “large”. It offers
the potential for groups of people both
geographically and organizationally distributed
to work together on problems, to share
computers AND other resources such as
databases and experimental equipment.

- High system’s scalability and reliability
levels: The grid model scales very well. In order
to add more compute resources, one just have to
plug them in by installing grid client on
additional desktops or servers. They can be
removed just as easily on the fly. The grid
system doesn't have single points of failure.
When there is any kind of detected failure at one
location, Grid Management Service can
automatically resubmit jobs to other machines
on the grid. The user doesn’t need to rush either
because nobody should even notice that a node
is down as long as there are other nodes

http://journals.uob.edu.bh/

242 H. Barkallah et al.: Evolution of the Distributed Computing Paradigms: a Brief Road Map

http://journals.uob.edu.bh

available to take jobs. It can also run multiple
copies of important jobs on different machines
in order to minimize failure probability [41].

2) Limits

Grid computing has great potential, but there are still

some limits that must be overlooked.
- In order to use all the benefits of grid computing,

the users’ applications require modifications
before it can be run on the grid. These
modifications can be expensive especially for
the applications that not designed to use an MPI
(Message Passing Interface)

- Since the job execution is shared among
multiple nodes, the grid users have to wait until
all processes send their sub results and then
collaboratively assessed. Before that, it is not
possible to define or to declare a final outcome.
This is considered as a serious limit for time
sensitive projects.

- In most cases, grid computing is considered to
be more adapted to batch jobs [53]. In fact, the
grid is usually aggregating non dedicated
resources that is hard to rely on for critical real-
time applications.

3) problems

Grid computing has two major problems:
- It suffers from security issues compared to other

distributed paradigms. In fact, grid jobs are
considered as external code that can be harmful
for the local resources. Also, major
vulnerabilities including resources disconnection
resulting in denial of service, issues related to
data integrity and confidentiality, vulnerable
hosts sending back incorrect results.

- It relies heavily on dispersed data management
and network connectivity. This has big impact
on the system’s availability and reliability
especially when the resources are based on
personal volunteering effort.

I. Cloud Computing

Cloud computing is a large-scale distributed

computing paradigm that has evolved from work in

areas such as Grid computing and other large distributed

applications [54]. It is a model of supplement,

consumption, and delegation of computing resources to

the users on-demand [30].

Cloud computing is another form of utility

computing which allows reasonably priced use of

computing infrastructures and mass storage capabilities

[1]. It is driven by economies of scale, in which a pool

of abstracted, virtualized, dynamically-scalable,

managed computing power, storage, platforms, and

services are delivered on demand to external customers

over the Internet [30][6].

Cloud computing offers its benefits through three

types of service or delivery models (Infrastructure-as-a-

Service (IaaS), Platform-as-a-Service (PaaS) and

Software-as-a-Service (SaaS)) and different types of

Clouds (Private, Public, Hybrid, and Community) [1].

1) Goals
The cloud computing paradigm has different goals:
- Reduced computing infrastructure’s

cost: adopting cloud computing reduces the cost
of managing and maintaining the IT systems. In
fact, rather than purchasing expensive
computing resources, cloud computing can
reduce the costs by using the cloud resources
offered and maintained by a service provider.
The cloud’s client has no longer to think about
the operating costs: like energy consumption,
wages for expert staff, resources maintenance
and upgrade.

- Better flexibility and scalability: new
computing resources can be added on the fly in
order to meet the needs.

- Better resource utilization: cloud computing
enables a better resource utilization rates and
minimizes the resources waste. The users’ only
pay for use.

- Data backup and disaster recovery: cloud
computing makes the entire process of backup
and recovery much simpler than other traditional
methods of data storage. The service providers
are responsible for users’ data storage,
management, and to handle recovery of
information.

- Globalized workspace/easy data
accessibility: cloud users have the ability to
access their data from wherever they are
equipped with an internet connection. A
globalized virtual workspace is offered in order
to enable team work, collaboration and
effectiveness.

- Increased system’s availability and
reliability: by achieving strong service level
agreements, the cloud users’ are offered
effective and highly reliable computing
infrastructures.

2) Limits

Cloud computing has different limitations like:
- Peripherals: Some of the peripheral devices

might not work with cloud infrastructures and
this may require some investment to inquire new
peripherals.

http://journals.uob.edu.bh/

 Int. J. Com. Dig. Sys. 6, No.5, 233-249 (Sep-2017) 243

http://journals.uob.edu.bh

- Generic: public clouds offer very generic and
multi-tenancy services which require important
efforts to adapt them to the needs.

- Cloud platform dependent: due to the platform
differences between the cloud providers, it is not
possible to migrate from one cloud platform to
another without complex and expensive
application’s modification in order to meet the
new provider’s requirements.

- Integration: Integrating local applications with
the cloud applications might be complex and in
some cases not feasible.

- Limited control and flexibility: cloud users
have limited control over the hosting
infrastructure. The provider’s policies might
impose limits on the applications, data, and
services, which should be taken into
consideration.

3) Problems

The most important problems of cloud computing

are:
- Downtime: Cloud computing makes the

computing resources dependent on the reliability
of the Internet connection. In case, the internet
service at the client side suffers from frequent
disconnections or slow download and upload
speeds, especially for data massive applications,
cloud computing may not be suitable.

- Security and privacy: The stored data is
accessible from anywhere on the internet,
meaning that can be susceptible to hacking or
phishing attacks especially when it comes to
managing sensitive data. The cloud provider is
expected to manage and secure the clients’ data,
applications, and the underlying hardware
infrastructure; however remote access is the
clients’ responsibility.

- Hidden/additional costs: Cloud computing
allow reducing staff and hardware costs but the
overall price tag could end up higher than
expected. Some of the cloud providers charge
the clients hidden or additional costs like for
data transfer. The cloud computing may end up
with higher costs compared to privately owned
servers.

J. Jungle computing

Jungle computing was first introduced in 2011 by F.

J. Seinstra and al. [55]. It refers to the use of diverse,

distributed and highly non-uniform high performance

computer systems to achieve peak performance [1].

The resulting distributed system, called Jungle

Computing System, is both highly heterogeneous and

hierarchical, potentially consisting of grids, clouds,

stand-alone machines, clusters, desktop grids, mobile

devices, and supercomputers, possibly with accelerators

such as GPUs [56] (Figure 6). Jungle Computing

Systems are Multi-Model / Multi-Kernel [56].

Figure 6. Jungle computing system [55]

1) Goals
There are several reasons for using Jungle

Computing Systems. In fact, combining resources may

be necessary if no single resource is available that is

large enough to perform the required computation, or

because different parts of the computation have

different computational requirements [56].

2) Limits

Integrating such different kinds of resources at a

very large scale is not an easy task. In fact, the

aggregated resources belong to different administration

domains, have their own security strategy, resource

management policy, and objective functions, etc. Also

limitations related to the system’s development,

deployment, and maintenance costs and economic

feasibility has to be considered.

3) Problems

Jungle Computing System is highly heterogeneous.

Resources differ in basic properties such as processor

architecture, amount of memory, performance, and

installed software such as compilers and libraries will

also differ. The heterogeneity makes it hard to run

applications on multiple resources. The application may

have to be re-compiled, or even partially re-written, to

handle the differences in software and hardware.

4. ANALYSIS OF THE DISTRIBUTED PARADIGMS

Technological progress doesn’t stop changing the

way we do computing. As a result, the different

computing paradigms revolutionize the everyday

practice of data storage and computing. These

paradigms can be analyzed using different factors like

geographical distribution of the computing resources,

the system’s performance, scalability, and availability to

the users, fault tolerance, resources ownership, etc.

http://journals.uob.edu.bh/
https://www.thebalance.com/computer-networks-and-internet-connections-for-business-2533592

244 H. Barkallah et al.: Evolution of the Distributed Computing Paradigms: a Brief Road Map

http://journals.uob.edu.bh

A. Geographical distribution of the resources

The emergence of high-speed networks at low costs

and the availability of Internet to the large public have

encouraged the geographical distribution of the

resources at large scale (Figure 7).

Figure 7. Geographical distribution of the resources

The local area networks have enabled the transition

from serial and parallel computing to the cluster and

redundant computing paradigms. After that, the

apparition of Internet has, first, allowed the systems’

designers to move the computing resources to the edge

of the network creating, especially, local copies of the

data in order to be closer to the users. Second, it enabled

the raise of highly scalable utility computing paradigms

like service, grid, and cloud.

B. Resources ownership

The distributed computing paradigms have evolved

through time to include different types of resources

(Figure 8) from the computing clusters based on private

resources to the public grids and clouds integrating

multiple types of public resources and offering them to

the public using a pay per use business model.

It is also possible to have hybrid private and public

resources combined together to form a large scale

system. Or a community owned resources shared in the

purpose of a specific common project between two or

more teams and/or labs.

Figure 8. Resources classification based on ownership

C. Resources availability and Reliability

System’s availability refers to the operational

continuity of the system. While the reliability is “related

to systems and network failure, disconnection,

availability of resources, etc.” [1].

According to R. Buyya [57], the “availability refers

to the ability of a user’s community to access the

system—whether for submitting new work, updating or

altering existing work, or collecting the results of the

previous work. If a user cannot access the system, it is

said to be unavailable”.

The different distributed computing paradigms aimed

to provide a high level availability by eliminating the
weakness of central point and by binning closer the
service providing resources to the users which is very
important especially to the services considered as critical
requiring continuous availability.

First, as shown in Figure 9, the availability level can
be directly seen in relationship with the resources
ownership. In fact, volunteer computing provides the
less level since the resources are not dedicated and they
are being used by their authentic owners for their
purpose too. Second, it has also a direct relationship with
the geographical distribution of the resources. The more
the resources are not located in one central location, the
less probability of system’s unavailability and/or failure
is.

Figure 9. Resources Availability

D. System’s Scalability

The system scalability, simply, means the possibility
of the system to integrate a big and incremental number
of computing resources when needed to be used by
incremental number of users.

In [1], the authors defined it as “how many systems
can be reached from one node, how many systems can
be supported, how many users can be supported, and
how much storage can be used”.

http://journals.uob.edu.bh/

 Int. J. Com. Dig. Sys. 6, No.5, 233-249 (Sep-2017) 245

http://journals.uob.edu.bh

As shown in the Figure 10, the distributed computing
paradigms evolved from the cluster integrating tens to
thousands of computers to Peer to Peer, volunteer, utility
and now the mobile and pervasive computing integrating
hundreds of thousands to millions of different types of
computing resources like supercomputers, PCs, Mobile
phones, etc.

Figure 10. System’s scalability

‎TABLE I. The table below (TABLE I.) summarizes
the most important characteristics of some distributed
computing paradigms.

TABLE I. COMPARING THE MOST IMPORTANT COMPUTING

PARADIGMS

 Cluster Volunteer Grid Cloud Mobile

Scalability     

Ownership     

Cost saving     

Availability     

Performance     

Security     

5. DISTRIBUTED COMPUTING AS A SERVICE

Deliver computing power and storage capacity as a
service to the users is a computing business model of
distributed computing called utility computing (Figure
11). It is supported by technology that will enable
companies to serve and consume IT resources and
business functionalities as needed [58][49]. Its analogy is
derived from the real world where service providers
maintain and supply utility services, such as electrical
power, gas, and water to consumers [54].

The utility computing is basically the grid computing
and the cloud computing [1]. Computing resources, such
as computation and storage, can be utilized internally by
a company or packaged and exposed to the public as
metered services [6].

When the system runs out of resources, using the
utility model, it acquires those resources from another
source (pay-as-you-use model) from a resources
provider [49].

Figure 11. Utility computing paradigm

Therefore, the ability of utility computing to expand
and contract ensures that an application can ride the hype
curve to success [54]. Users (consumers) pay providers
for using computing power only when they need to. All
grid/cloud platforms are regarded as utility service
providers. However, cloud computing offers a broader
concept than utility computing [1].

A. Utility vs. non-utility computing

Utility computing and traditional non-utility
computing are two different ways to do computing. The
table below (‎TABLE II.) gives a brief comparison
between the two paradigms.

TABLE II. GRID VS. CLUSTER COMPUTING

Utility computing Non-utility computing

You don't have to own the

computing infrastructure. You

just need to rent one.

You have to own your private
computing infrastructure (rooms,

servers, network…), hire admins,

etc.

A ‘pay as you go’ model is

applied. The user has to pay only

for the used resources.

Regardless the percentage of

computing power, storage space,

network bandwidth you actually

use, fixed charges have to be

paid.

Created for general purpose

Generally constructed to serve a

specific application or project.

The users doesn’t know the

where the resources are located

Resources are located at one or
some specific sites

Add, modify, and remove
computing resources can be

easily done “on-demand”. Utility

computing enables rapid
elasticity.

It is not simple nor easy to add,
modify or remove a computing

resources

The high resource’s

virtualization enables excellent

levels of isolation among the
different users.

Offers poor isolation levels for
the multiple users that might have

conflicting objectives and storing

their data on the same resources

http://journals.uob.edu.bh/

246 H. Barkallah et al.: Evolution of the Distributed Computing Paradigms: a Brief Road Map

http://journals.uob.edu.bh

The quality of service is
guaranteed by a service level

agreement between the service

provider and the users.

The users are offered best effort

quality of service which doesn’t
guarantee system’s performance

especially during peak of loads

periods.

Only the service provider has

access to the underlying

infrastructure.

The user can has access to the

physical computing
infrastructure.

The user can design a whole

computing infrastructure
(servers, storage blocks,

operating systems, software
platforms, etc.) and deploy and

run all applications he needs.

The user can execute specific
applications on specific servers.

B. Utility vs. grid computing

In the report [49] issued by Connecticut-based

Saugatuck Technology in 2004 indicated that IS

managers have had difficulty understanding the

differences between grid computing and utility

computing. In fact, the utility model of computing can

make use of grids to provide computing power to users

and applications. They both:
- deal with finding and using computing resources

- can be deployed internally, or can make use of
external resources

- helps enterprises to reduce computing costs.

Despite these resemblances, there are significant
differences between grid computing and utility
computing presented in the table below (‎B‎TABLE III.).

TABLE III. UTILITY VS. GRID COMPUTING

Utility computing Grid computing

A model used to provide access

to computing resources when an

application runs out of
computing resources

a distributed computing

environment designed to find and

exploit unused computing
resources

utility computing relies heavily

on accounting for resource

utilization

most of the time used by research

teams to share computing

resources

when the system is out of

computing power or storage, the

utility model "acquires"
additional resources to finish the

jobs (often at a billed cost)

When a grid runs out of

resources, it is out of resources.

C. Utility vs. cloud computing

Although utility computing and cloud computing are
considered to be the same, the differences between them
are important (‎TABLE IV.). In fact, utility computing
refers to the ability to deliver the computing power just
like other public utility services such as electricity. It is a
business model proposed to meter the offered services
and charge customers for usage.

TABLE IV. UTILITY VS. CLOUD COMPUTING

Utility computing Cloud computing

relates to the business model in

which computing resources and
are delivered

A specific technology related to
the way we design, build, deploy

and run applications

Doesn’t require resource

virtualization

Virtualization is a key factor and
different levels are offered

Might be restricted to specific

networks

accessible through the Internet
network

Can be applied for different

scales

Used for big scale infrastructures
and applications for economic

efficiency

While cloud computing offers, in addition to the
accounting service, a virtualized environment for sharing
and dynamically acquire new resources to guarantee
higher scalability and reliability levels.

D. Grid vs. cloud computing

Since they are both kind of distributed and utility

computing models, Grid and cloud computing have

many common points Ian Foster and al. [6]. They both:
- Reduce the cost of computing resources and

storage for the enterprises and research projects

- Increase the system’s reliability and fault
tolerance; especially for the cloud computing.

- Increase flexibility by enabling the users to
access new resources on the fly and giving the
illusion of infinite computing power

- Massively scalable to deal with the huge number
of computing resources they are interconnecting.
They have both a common need to manage large
facilities.

- Enables to implement highly parallel
applications to serve problems that need massive
computing power

- Can be encapsulated as an abstract entity that
delivers different levels of service. The whole
grid or cloud can be considered as one
supercomputing resource

However, despite these similarities, grid and cloud
computing differs from each other in many other points
(‎TABLE V.).

http://journals.uob.edu.bh/

 Int. J. Com. Dig. Sys. 6, No.5, 233-249 (Sep-2017) 247

http://journals.uob.edu.bh

TABLE V. GRID VS. CLOUD COMPUTING

Grid computing Cloud computing

Focuses on computing power in

terms of processing cycles as the

main shared resource to execute
the jobs (usually batch execution

that often has a known/predictable

start and finish time)

Usually used for analysis of

massive data and mainly

handles provisioning of user-
driven services that are less

predictable in terms of resource

needs [59]

Reconfiguration of the different

components is required

Resources, applications, and

services can be dynamically

configured (via virtualization or
other approaches) and delivered

on demand

Is tasks processing and user’s jobs

centric even though it can run and

support web services

is being web-centric [60] with

adoption of Services

Computing and Web 2.0 apps

Is driven by the need to exploit of
the underutilized resources and

share them especially in scientific

research domain

Is driven by economies of
scale. Billions of dollars being

spent by companies to create

real commercial large-scale
systems with hundreds of

thousands of computers

The resources are abstracted and
virtualized to be offered to the

different users and applications as

services

Enables resources abstraction
and virtualization but at much

higher level [61] offering three

virtualization levels SaaS,
PaaS, and IaaS

As a conclusion, the Figure 12 summarizes the most

important characteristics of the utility computing

paradigms: service, grid, and cloud.

Figure 12. Comparing the utility computing paradigms

6. CONCLUSION

This paper reviewed the most important paradigms
related to distributed computing and analyzed these
paradigms according to different factors. It can be
considered as a brief road map that would be useful for
researchers, students, and commercial users. It consists
of an introductory knowledge that helps them get an idea

about the past and the future emerging computational
technologies.

The idea is that the evolution of the distributed
computing paradigms does not involve the vanish of the
older ones. In fact, if one looks carefully the
development of cloud computing, as an example,
“swallowed” the grid and service computing paradigms.

The cloud users can easily design and run a whole
grid infrastructure based on virtual cloud resources.
Applications running on the grid or the cloud
infrastructures can provide any kind of services to the
public based on service computing. A good example is
presented by N. Fallenbe et al. [62] who tried to merge
grid and cloud computing paradigms and “enables users
to set up their own VMs to be used as Grid job execution
environments”.

In the same way, all the rest of distributed computing
paradigms and computing models still exist but in
different forms. The users can use the cloud computing
services to design computing infrastructures like
clusters, pools, grids. But they can use their existing
infrastructures to deploy private and public clouds. They
can, also, share their computing resources voluntarily
and contribute in the research efforts using volunteer
computing power.

In real world projects, the different distributed
computing paradigms coexist in order to serve a specific
goal or fulfill a user’s need in the best way. It is u to the
solution’s developer to make the necessary choices.

Few predictions can be made based on the belief that
the economics of computing is leading big number of
academic researchers and industrial giants to develop
new computing paradigms. Many efforts are still needed
to satisfy the users’ “hunger” for computing power,
mobility, scalability, availability, reliability, and
efficiency.

REFERENCES

[1] B. Kahanwal, “The Distributed Computing Paradigms : P2P ,
Grid , Cluster , Cloud , and Jungle,” Int. J. latest Res. Sci.

Technol., vol. 1, no. 2, pp. 183–187, 2012.

[2] M. Weiser, “Ubiquitous computing,” in ACM Conference on
Computer Science, 1994, p. 418.

[3] C. Engineering and B. Bili, “Comparison of Cluster , Grid and

Cloud Computing using Three Different Approaches,” pp. 1–4,
2015.

[4] D. Sood, “Survey of Computing Technologies : Distributed ,

Utility , Cluster , Grid and Cloud Computing,” vol. 6, no. 5, pp.
99–102, 2016.

[5] M. Singh, “A Comparative Study on Grid Computing and Cloud

Computing,” no. June, pp. 708–713, 2015.

[6] I. Foster, Y. Zhao, I. Raicu, and S. Lu, “Cloud Computing and

Grid Computing 360-Degree Compared,” 2008 Grid Comput.

Environ. Work., pp. 1–10, Nov. 2008.

http://journals.uob.edu.bh/

248 H. Barkallah et al.: Evolution of the Distributed Computing Paradigms: a Brief Road Map

http://journals.uob.edu.bh

[7] S. M. Hashemi and A. K. Bardsiri, “Cloud Computing Vs . Grid
Computing,” vol. 2, no. 5, pp. 188–194, 2012.

[8] E. Hwang, S. Kim, T. Yoo, J.-S. Kim, S. Hwang, and Y. Choi,

“Performance Analysis of Loosely Coupled Applications in
Heterogeneous Distributed Computing Systems,” IEEE Trans.

Parallel Distrib. Syst., vol. 9219, no. c, pp. 1–1, 2015.

[9] B. Sawicki, “Reliable peer-to-peer computing system,” no. 5, pp.
61–63, 2014.

[10] D. A. Prathibha, “Issues in adapting cluster , grid and cloud

computing for HPC applications,” vol. 2, no. 1, pp. 12–16, 2014.

[11] J. Melorose, R. Perroy, S. Careas, M. Anjomshoa, M. Salleh,

and M. P. Kermani, “A taxonomy and survey of distributed

computing systems,” J. Appl. Sci., vol. 15, no. 1, p. 46, 2015.

[12] K. Skala, E. Afgan, and Z. Sojat, “Scalable Distributed

Computing Hierarchy : Cloud , Fog and Dew Computing,” Open

J. Cloud Comput., vol. 2, no. 1, pp. 16–24, 2015.

[13] B. Barney, “Introduction to parallel computing,” Lawrence

Livermore Natl. Lab., vol. 6, no. 13, p. 10, 2010.

[14] E. Yiannis and G. Joseph, “Introduction to Grid’5000,” 2011.

[15] M. Estep, F. Moinian, J. Carroll, and C. Zhao, “Methods for

Teaching a First Parallel Computing Course to Undergraduate

Computer Science Students.”

[16] A. Grama, A. Gupta, G. Karypis, and V. Kumar, Introduction to

Parallel Computing. 2003.

[17] F. Berman and R. Wolski, “Scheduling from the perspective of

the application,” Proc. 5th IEEE Int. Symp. High Perform.

Distrib. Comput., 1996.

[18] R. R. Schaller, “Moore’s law: past, present and future,” IEEE
Spectr., vol. 34, no. 6, 1997.

[19] W. Aspray, John von Neumann and the origins of modern

computing, vol. 191. Mit Press Cambridge, MA, 1990.

[20] H. Sutter, “The free lunch is over: A fundamental turn toward

concurrency in software,” Dr. Dobb’s J., pp. 1–9, 2005.

[21] H. Suleman, “Utility-based High Performance Digital Library
Systems,” Proc. Second. Very Large Digit. Libr. VLDL2009 A

Work. conjunction with Eur. Conf. Digit. Libr. 2009, 2009.

[22] R. Friedman, K. P. Birman, S. Keshav, and W. Vogels,
“Reliable time delay-constrained cluster computing.” Google

Patents, 21-May-2002.

[23] Y. Li and Z. Lan, “Exploit failure prediction for adaptive fault-

tolerance in cluster computing,” Sixth IEEE Int. Symp. Clust.

Comput. Grid, 2006. CCGRID 06, no. June 2015, pp. 531–538,
2006.

[24] M. Li, D. Goldberg, W. Tao, and Y. Tamir, “Fault-tolerant

cluster management for reliable high-performance computing,”
in Int. Conf. on Parallel and Distributed Computing and

Systems, 2001, no. August, pp. 480–485.

[25] D. S. Milojicic et al., “Peer-to-peer computing.” 2002.

[26] M. Arumugam, A. Sheth, and I. B. Arpinar, “Towards Peer-to-

Peer Semantic Web: A Distributed Environment for Sharing

Semantic Knowledge on the Web,” Knowl. Creat. Diffus. Util.,
vol. Master of, p. 51, 2002.

[27] L. L. C. Napster, “Napster,” URL http//www. napster. com,

2001.

[28] H. Barkallah, M. Gzara, and H. Ben Abdallah, “A fully
distributed Grid meta scheduling method for non dedicated

resources,” in International Conference on Parallel and

Distributed Processing with Applications (ICPDPA’2014), IEEE
WCCAIS’2014 Congress, 2014, no. 1, pp. 1–6.

[29] K. Reed, “Reducing Heterogeneity in Volunteer Computing

using Virtual Machines,” 2008.

[30] L. P. Chen, J. A. Lin, K. C. Li, C. H. Hsu, and Z. X. Chen, “A

scalable blackbox-oriented e-learning system based on desktop

grid over private cloud,” Futur. Gener. Comput. Syst., vol. 38,
pp. 1–10, 2014.

[31] M. I. Syed A. Ahson, Cloud Computing and Software Services.

2010.

[32] R. Riesen, K. Ferreira, J. Stearley, R. Oldfield, J. H. L. Iii, and

R. Brightwell, “Redundant Computing for Exascale Systems,”

Sandia Natl. Lab., 2010.

[33] S. Ghosh, Distributed Systems: An Algorithmic Approach. Iowa,

2007.

[34] H. Pang and K. L. Tan, “Authenticating query results in edge
computing,” Proc. - Int. Conf. Data Eng., vol. 20, pp. 560–571,

2004.

[35] A. Davis, J. Parikh, and W. E. W. Weihl, “Edgecomputing:
extending enterprise applications to the edge of the internet,” in

Proceedings of the 13th international World Wide Web

conference on Alternate track papers & posters, 2004, pp. 180–
187.

[36] C. Canali, M. Rabinovich, and Z. Xiao, “Utility computing for

Internet applications,” in Web Content Delivery, Springer, 2005,
pp. 131–151.

[37] G. Roussos and V. Kostakos, “rfid in pervasive computing:

State-of-the-art and outlook,” Pervasive Mob. Comput., vol. 5,
no. 1, pp. 110–131, 2009.

[38] P. Romano, F. Quaglia, and B. Ciciani, “Design and evaluation

of a parallel edge server invocation protocol for transactional
applications over the Web,” Proc. - 2006 Int. Symp. Appl.

Internet, SAINT 2006, vol. 2006, pp. 206–209, 2006.

[39] R. Want, B. N. Schilit, and Jenson Scott, “Enabling the Internet
of Things,” 2011.

[40] M. Weiser, “Some computer science issues in ubiquitous
computing,” ACM SIGMOBILE Mob. Comput. Commun. Rev.,

vol. 3, no. 3, p. 12, 1999.

[41] M. Weiser, R. Gold, J. S. Brown, B. Sprague, and R. Bruce,
“The origins of ubiquitous computing research at PARC,” IBM

Syst. J., vol. 38, no. 4, pp. 693–696, 1999.

[42] D. Saha and A. Mukherjee, “Pervasive computing: A paradigm
for the 21st century,” Computer (Long. Beach. Calif)., vol. 36,

no. 3, p. 25–31+4, 2003.

[43] K. Lyytinen and Y. Yoo, “The shift toward ubiquitous
computing poses multiple novel technical, social, and

organizational challenges. capability,” Commun. ACM, vol. 45,

no. 12, pp. 643–4, 2002.

 [44] M. Satyanarayanan, “Pervasive computing: Vision and

challenges,” IEEE Pers. Commun., vol. 8, no. 4, pp. 10–17,

2001.

[45] D. Meenakshi and S. Thirunavukkarasu, “An effective cluster

score job scheduling algorithm for grid computing,” Int. J. Appl.

Eng. Res., vol. 9, no. 22, pp. 7232–7236, 2014.

http://journals.uob.edu.bh/

 Int. J. Com. Dig. Sys. 6, No.5, 233-249 (Sep-2017) 249

http://journals.uob.edu.bh

[46] Z. Wu, S. Deng, and J. Wu, Service Computing: Concept,
Method and Technology. Academic Press, 2014.

[47] R. Buyya, C. S. Yeo, and S. Venugopal, “Market-oriented cloud

computing: Vision, hype, and reality for delivering it services as
computing utilities,” in High Performance Computing and

Communications, 2008. HPCC’08. 10th IEEE International

Conference on, 2008, pp. 5–13.

[48] A. Jain and R. Singh, “An Innovative Approach of Ant Colony

Optimzation for Load Balancing in Peer to Peer Grid

Enviomment,” pp. 1–5, 2014.

[49] J. Clabby and C. Analytics, “The Grid report, 2004 edition,”

Technical report, Clabby Analytics, 2004.

[50] F. Dong and S. G. Akl, “Scheduling Algorithms for Grid

Computing : State of the Art and Open Problems,” pp. 1–55,

2006.

[51] Y. Zhu and L. M. Ni, “A survey on grid scheduling systems,”
Department of Computer Science, Hong Kong University of

science and Technology, vol. 32. pp. 1–47, 2003.

[52] M. J. Kim, “Resource virtualization and optimization via Grid
and Cloud Computing.”

[53] H. Barkallah, M. Gzara, and H. Ben Abdallah, “Dynamic and

adaptive topology-aware load balancing for Grids,” in
FCST’2014, 2014.

[54] S. Fiore, G. Aloisio, and G. A. Sandro Fiore, Grid and Cloud

Database Management. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2011.

[55] F. J. Seinstra et al., “Jungle computing: Distributed

supercomputing beyond clusters, grids, and clouds,” in Grids,
Clouds and Virtualization, Springer, 2011, pp. 167–197.

[56] N. Drost et al., “High-performance distributed multi-model /

multi-kernel simulations: A case-study in jungle computing,”
Proc. 2012 IEEE 26th Int. Parallel Distrib. Process. Symp.

Work. IPDPSW 2012, pp. 150–162, 2012.

[57] R. Buyya, J. Broberg, and A. M. Goscinski, Cloud computing:
Principles and Paradigms. John Wiley & Sons, 2011.

[58] A. Mendoza, utility computing technologies, standards, and

strategies. .

[59] S. Disaggregation, Dynamic Cloud Resource Management.

2014.

[60] A. Marinos and G. Briscoe, “Community cloud computing,”

Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif.

Intell. Lect. Notes Bioinformatics), vol. 5931 LNCS, pp. 472–
484, 2009.

[61] A. Ahmed and A. S. Sabyasachi, “Cloud computing simulators:

A detailed survey and future direction,” 2014 IEEE Int. Adv.
Comput. Conf., pp. 866–872, Feb. 2014.

[62] N. Fallenbeck, M. Schmidt, R. Schwarzkopf, and B. Freisleben,

“Inter-site virtual machine image transfer in grids and clouds,”
in Proceedings of the 2nd International ICST Conference on

Cloud Computing (CloudComp 2010), 2010, pp. 1–19.

B. Haitham received a master

degree in Computer Science and

multimedia from the University of

Sfax, Tunisia. Currently, he is a

Ph.D. student and a member of the

Multimedia, Information systems

and Advanced Computing

Laboratory (Mir@cl), University of

Sfax. His research interests include

grid and cloud computing,

scheduling and load balancing

optimization.

M. Gzara received a PhD in

automatic and industrial computing

from the University of Lille 1,

France. She is currently an Associate

Professor in Computer Science at

the Higher School of Computer

Science and Mathematics of

Monastir, University of Monastir,

Tunisia. She is a member of the Multimedia, Information

systems and Advanced Computing Laboratory (Mir@cl),

University of Sfax. Her research interests include data mining

techniques, Optimization, Parallelization, Distributed

Compuattion and Information Retrieval.

H. Ben-Abdallah received a BS in

Computer Science and BS in

Mathematics from the University of

Minnesota, MPLS, MN, a MSE and

PhD in Computer and Information

Science from the University of

Pennsylvania, Philadelphia, PA. She

worked at University of Sfax,

Tunisia from 1997 until 2013. She is

now full professor at the Faculty of

Computing and Information Technology, King Abdulaziz

University, Jeddah, Kingdom of Saudi Arabia. She is a

member of the Multimedia, Information systems and

Advanced Computing Laboratory (Mir@cl), University of

Sfax. Her research interests include software design quality,

reuse techniques in software and business process modeling.

http://journals.uob.edu.bh/

