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Abstract: In this paper, the formation control problem for a group of unmanned underwater vehicles
(UUVs) is investigated considering collision avoidance and environment disturbances. To address
the external force effect of the environment, such as waves and currents, a sliding mode disturbance
observer is designed to compensate for the unknown dynamic disturbances in finite time. A bounded
artificial potential field is incorporated into the control law to ensure collision avoidance among
UUVs. The form of an artificial potential function is much simpler and convenient for engineering
applications. A controller is devised to guarantee all the error signals are bounded, and the formation
pattern can be achieved in finite time after collision avoidance. The stability of UUV formation with
collision avoidance is proven by using the Lyapunov theorem, and the scheme has been shown to
be convergent using Barbalat’s lemma. Comparative simulations are presented to demonstrate the
effectiveness of the proposed method in 2-D and 3-D environments.

Keywords: multiple unmanned underwater vehicles; formation control; collision avoidance; adaptive
sliding mode disturbance observer

1. Introduction

In recent years, formation control for multiple agents has become a popular area of
research for scholars, due to high efficiency, a wide searching area, and so on [1–6]. In the
research process, there are a lot of challenges to address, such as nonlinearity in parameters,
communication constraints, and dynamic environmental disturbance. Various methods
have been proposed for formation control of autonomous underwater vehicles groups in a
decentralized manner, which is also known as high-level control and examples of which
include artificial potential field or methods based on agreement protocol such as leader–
follower, virtual structure, and behavioral approaches [7]. Ghommam [8] investigated a
coordinated adaptive controller for a group of unmanned underwater vehicles (UUVs) to
cope with uncertain dynamics and bounded unknown disturbances, and coordinate trans-
formation was introduced to overcome the control difficulty caused by underactuation of
UUVs. In [9], an adaptive neural network formation controller was developed for multiple
autonomous underwater vehicles with unknown model coupling terms and unknown
disturbances. A sliding mode formation controller was proposed for multiple autonomous
underwater vehicles to compensate the environmental disturbances [10]. Gao proposed
a fixed-time sliding control scheme with a disturbance observer to solve the compound
disturbance, which included both external environment disturbance and parameter uncer-
tainties [11]. Based on the minimal learning parameter algorithm, Lu proposed a robust
adaptive formation controller to achieve the formation control of multiple underactuated
surface vessels [12]. Due to the complicated underwater situation, the research progress of
UUV formation has been relatively slow, but the research on unmanned aerial vehicle for-
mations, autonomous ground vehicles, and multiagents has advanced. In [13], an adaptive
neural network control scheme was investigated to address the formation control problem
of multiple unmanned surface vessels with data dropout and time delays [14].
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The research on the collision avoidance strategy of multiagents has been deepened.
In [15–17], types of potential functions were designed to achieve connectivity preservation
and collision avoidance, and the Lyapunov function was used for stability analysis. For
multiagent systems, the virtual potential force of the artificial potential field (APF) was
treated as an external disturbance, which proved to be robust based on H ∞ analysis in [18].
Bong investigated an unmanned surface vessel formation system, which suffered from
heterogeneous limited communication ranges and designed a novel nonlinear transformed
formation error to achieve the initial connectivity preservation and collision avoidance [19].
In [20], a distributed control strategy was presented for the multiagent system to reach
the target plane with predesigned orientation, circulate around the target with prescribed
radius, and avoid collisions among multiagents. He and Wang proposed a formation
control method with collision avoidance for actuated multiple unmanned surface vessels
to address the parametric and nonparametric uncertainties and external disturbances by
imposing proper prescribed performance [21]. By integrating the gradient of repulsive APF
with a fast terminal sliding mode surface, a novel sliding mode surface-like variable was
improved for a position control scheme of an unmanned surface vessel formation [22].

In practical engineering experiments, external disturbance cannot be ignored, which
can influence the stability of the multiagent system. Then, many control methods have
been proposed such as the H ∞ method, disturbance observer, and adaptive sliding mode
control theory to compensate for the external disturbance [23–25]. Nair [26] designed
an adaptive gain higher order sliding mode observer to approximate the noisy position
and velocity measurements, and the adaptive tuning algorithms could cope with the
unexpected state jitter. Hua [27] integrated the finite-time control, sliding mode control,
and the super-twisting algorithm to solve the large chattering of the control inputs for a
high-order multiagent system with mismatched disturbance and unknown leader input.

Motivated by the above observations, this paper presents an adaptive control scheme
for UUV formation with collision avoidance under an unknown disturbance. The specific
contributions of this paper can be summarized as follows:

1. An adaptive formation control law of UUVs with collision avoidance under unknown
bounded disturbance is proposed. The stability of the proposed method is proved,
and simulation results are presented to verify its effectiveness;

2. Based on sliding mode control theory, a novel sliding mode disturbance observer was
designed to approximate the unknown, nonlinear, and bounded disturbance. The
simulation results show the observer achieves a good performance;

3. The studies on collision avoidance for multi-UUV formation are mostly on the three
degree of freedom (DOF)F model in the horizontal plane. The state feedback lineariza-
tion method is used to transfer the nonlinear and coupling mathematical model of
UUVs into a second-order system model in 5-DOF. The artificial potential field theory
is applied to cope with the collision avoidance among the UUVs. The form of the
potential function is much simpler;

4. Based on the Lyapunov theory, the stability of the formation system is proven, and
the proposed controller is valid and performs well, which can be seen in the 3-D
simulation figures.

2. Preliminaries and Problem Formulation
2.1. Feedback Linearization of UUV Model

The kinematic and dynamic models of a UUV are described in two coordinate frames,
which are the Earth-fixed frame {E} and the body-fixed frame {B} as shown in Figure 1.
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Figure 1. Coordinate system of a UUV.

According to the structure of the UUV studied in the engineering application in our
lab, there is no thruster to control the angular velocity in roll. Meanwhile, the rolling has
little influence on the translational motion, so the roll speed can be ignored. Then, the
kinematic and dynamic equations of UUVs can be described as:

.
η = J(η)v

M
.
v = τ + ω− D(v)v−C(v)

(1)

where η = [x, y, z, θ, ψ]T denotes the position and the attitude angle of the UUV in the
Earth-fixed frame; v = [u, v, w, q, r]T is the velocity vector of the UUV in the body-fixed
frame. ω ∈ R5 is an unknown time-varying disturbance due to currents and waves. τ ∈ R5

is the control input acting on the UUV in the body-fixed frame. In addition, J(η) is the
transformation matrix; M,D(v), and C(v) denote the inertia matrix, damping matrix, and
the matrix of Coriolis and centrifugal terms, respectively. The structures of J(η) and M are
as follows:

J(η) =


cos ψ cos θ − sin ψ cos ψ sin θ 0 0
sin ψ cos θ cos ψ sin ψ sin θ 0 0
− sin θ 0 cos θ 0 0

0 0 0 1 0
0 0 0 0 1/ cos θ



M−1 =


m11 0 0 0 0

0 m22 0 0 m25
0 0 m33 m34 0
0 0 m43 m44 0
0 m52 0 0 m55


(2)

The mathematical model of UUV is nonlinear and strong coupling. To solve the
problem, the feedback linearization method is adopted to simplify the UUV model. The
standard double integrator dynamic model can be described as:

.
p = v,
.
v = τ,

p ∈ R5, v ∈ R5
(3)
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The specific linearization process can be obtained from [28]. In (3), the external
disturbances are not considered. Since the disturbance is unknown and nonlinear, no
matter how the conversion is performed in the linearization process, the final form of
disturbance is still unknown and nonlinear. Then, a modified linearization model is
proposed in this paper as:

.
pi = vi.

vi = τi + ω
(4)

where pi ∈ R5, vi ∈ R5 is the position and velocity of the UUVi in UUV formation with
i = 1, 2, . . . , n. τi ∈ R5 is the control input of UUVi. ω ∈ R5 is an unknown time-varying
disturbance.

Due to the complexity of the underwater environment, if faults occur to the leader in
leader–follower method, the mission of UUV formation will not be able to be completed.
To enhance the fault tolerance ability of the formation control, a virtual leader is introduced
and defined as: .

pl = vl.
vl = gl(t)

(5)

where pl ∈ R5 is the position of the virtual leader, and vl ∈ R5 is the velocity of the virtual
leader. gl(t) is a given bounded and time-varying function, and ð is a positive constant and
‖gl(t)‖ < ð. Define the error variable of the system as:

epi = pi − pl − εi
evi = vi − vl

(6)

where εi ∈ R5 is the desired relative position between UUVi and the virtual leader. The
desired velocity of UUVi is the same as the velocity of the virtual leader, such that

.
εi = 0.

Further, we assume epi and evi are bounded. Let

Ep= [eT
p1, eT

p2, . . . , eT
pn]

T

Ev= [eT
v1, eT

v2, . . . , eT
vn]

T
(7)

2.2. Graph Theory

Considering a multi-UUV system consisting of n vehicles, we use the graph theory to
model the information exchange among UUVs. Let the graph G = (N, E, ) be an undirected
graph, which consists of a node set N = {n1, n2, · · ·, nn}, an edge set E ⊆ N × N, and the
adjacency matrix A =

[
aij
]
∈ Rn×n. The element aij = 1 denotes that the node i can receive

information from the node j, otherwise aij = 0. In addition, for all i,aii = 0. Moreover,
G is undirected if aij = aji = 1. The collection of connected neighbors of ni is denoted
as Ni =

{
nj ∈ N : (nj, ni) ∈ E

}
. The in-degree matrix B = diag{b1, b2, · · ·bn} ∈ Rn×n is

a diagonal matrix, where wi =
n
∑

j=1
aij, i = 1, 2, . . . , n is the in-degree of node ni. Then the

Laplacian matrix L =
[
lij
]
∈ Rn×n is defined as L = B− A ∈ Rn×n.

2.3. Artificial Potential Field

The APF method regards each UUV as a high-potential field. If any UUV is close
to its neighbor, the repulsive force will repel the UUV away from other UUVs’ potential
field. There are two advantages for collision avoidance by using the APF method. The
first one is that the individuals of the multi-UUV systems can be separated from each
other to avoid collisions. The second one is that fewer parameters need to debug, and the
controller design is much simpler than other collision avoidance methods. In practical
engineering, a UUV is a rigid body with volume instead of a particle. Then, we assume
that each UUV has the same structure and define the collision sphere and the collision
avoidance sphere of a UUV, as shown in Figure 2. The collision avoidance sphere is defined
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by the black sphere with safe radius rs. The collision sphere is shown by the red sphere
with collision radius rc. We define

∥∥dij
∥∥ as the distance between UUVi and UUVj, where∥∥dij

∥∥ =
∥∥pi − pj

∥∥ =
√∥∥xi − xj

∥∥2
+
∥∥yi − yj

∥∥2
+
∥∥zi − zj

∥∥2. Shi [29] concludes that UUVj

is a collision avoidance neighbor Nc
i of UUVi while

∥∥dij
∥∥ ≤ rs. When

∥∥dij
∥∥ ≤ 2rc, collision

occurs between UUVi and UUVj.
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To ensure that no collision occurs among the UUVs, an artificial potential function
δij(d) and an action function ς(d) are defined as:

δij(d) =
∫ d

rs
ς(s)ds (8)

ς(d) =

{
− βi

d2 d ∈ (2rc, rs)

0 d ∈ [rs, ∝)

}
(9)

where βi > 0 is a design parameter. When βi is large enough, and d→ 2rc , the potential
function δij(d) will tend to infinity. Thus, the repulsive force for collision avoidance is:

τca
i = βi ∑

j∈Nc
i

−∇xi δij(d) = −βi ∑
j∈Nc

i

ς(
∥∥dij

∥∥) dij∥∥dij
∥∥ (10)

where −∇xi denotes a negative gradient along xi.

Assumption 1. The disturbance is time-varying and bounded. Then, there exists a positive
constantσ, such that ‖ω‖ < σ.

Assumption 2. The velocity of UUVs and the virtual leader are not zero, e.g., vi 6= 0 and vl 6= 0.
According to the characteristics of UUV, the velocity of UUVs is bounded, e.g., ‖vi‖ < γi and
‖vl‖ < γl , where γi and γl are positive constants.

Assumption 3. At least one UUV can receive the information from the virtual leader, e.g., ϑ 6= 0,
where ϑ is the communication matrix between the virtual leader and followers. In addition, the
communication between the UUVs is connected, e.g., A 6= 0 and L 6= 0.



J. Mar. Sci. Eng. 2022, 10, 516 6 of 16

Assumption 4. The initial error in relative position and relative velocity of any two UUVs are
bounded. e.g.,

∥∥epi − epj
∥∥ < αp,

∥∥evi − evj
∥∥ < αv. αp and αv are positive finite values.

Lemma 1 ([30]). Suppose a1, a2, . . . , an and 0 < p < 2 are all positive numbers; then, the following
inequality holds:

(a2
1 + a2

2 + · · ·+ a2
n)

p ≤ (ap
1 + ap

2 + · · ·+ ap
n)

2
(11)

Lemma 2 ([31]). S(t) > 0 is a continuous function for any times, and the initial state of
S(0) is bounded. If the inequality holds,

.
S(t) > λS(t) for t > 0, λ > 0, then, we have the

following inequality:
S(t) > eq(t−t0)S(t0) (12)

Lemma 3 ([29]). ϑ = diag{θ1, θ2, . . . , θn} and θi ≥ 0. If the Laplacian matrix L of the undirected
graph is irreducible, then the eigenvalues of the matrix L + ϑ are positive definite, e.g., L + ϑ > 0.

3. Adaptive Formation Control Scheme Design
3.1. Adaptive Sliding Mode Disturbance Observer Design

In the process of performing underwater tasks, UUVs will be subject to environmental
disturbances from ocean currents and waves. These disturbances are unknown and nonlin-
ear. In this section, we design an adaptive sliding mode disturbance observer to estimate
the disturbance ω. Firstly, an auxiliary state estimation error e0 ∈ R5 is defined as:

eo = z− v (13)

where z ∈ R5 is the auxiliary variable vector and its dynamic equation is designed as:

.
z = τ + vs (14)

where vs ∈ R5 is the switching term to be designed. Substituting (4) and (14) into the result
of differentiating (13), it yields:

.
eo = vs −ω (15)

To guarantee that the system can deduce the sliding motion, we design the switching
term as:

vs = −Λ1eo −Λ2e
m
n
o − Ksgn(eo) (16)

where Λ1 = diag{λ11, λ12, λ13, λ14, λ15}, Λ2 = diag{λ21, λ22, λ23, λ24, λ25}, and
Ki = diag{k1, k2, k3, k4, k5} are all positive definite diagonal matrices. m and n are odd
positive integers, and m < n.

We design the Lyapunov function as follows:

VO =
1
2

eT
o eo (17)

Substituting (15) and (16) into the time derivative of VO, it yields:

.
VO = eT

o eo = eT
o (vs −ω) = eT

o

(
−Λ1eo −Λ2e

m
n
o − Ksgn(eo)−ω

)
=

5
∑

i=1
−λ1ie2

oi − λ2ie
m+n

n
oi − ki|eoi| − eoiωi

(18)

According to Assumption 1, ω is bounded. Choose ki > |ωi|, such that −ki|eoi| −
eoiωi ≤ −ki|eoi|+ |eoi||ωi| < 0. Thus,

.
VO ≤

5

∑
i=1
−λ1ie2

oi − λ2ie
m+n

n
oi (19)



J. Mar. Sci. Eng. 2022, 10, 516 7 of 16

According to Lemma 1, we have

(
5

∑
i=1

e2
oi)

1
2 < (

5

∑
i=1

e
m+n

n
oi )

n
m+n

⇒ −(2V0)
m+n

2n > −
5

∑
i=1

e
m+n

n
oi (20)

Substituting (16) into (14), we obtain

.
VO ≤ −2

m+n
2n λ1min(VO)

m+n
2n − λ2minVO (21)

where λ1min = min{λ11, λ12, λ13, λ14, λ15} > 0, and λ2min = min{λ21, λ22, λ23, λ24, λ25} > 0.
According to [31], since 1

2 < m+n
2n < 1, VO → 0 in the finite time, such that eo → 0 . Then,

vs can be used to estimate the disturbance ω, i.e.,

vs = ω̂ (22)

where ω̂ is the estimation of the ω.

3.2. Adaptive Formation Control with Collision Avoidance under Unknown Disturbances

The formation control scheme of the multi-UUVs are defined as:

τ
f

i = −µ1 ∑
j∈Ni

aij(epi − epj)− µ2 ∑
j∈Ni

aij(evi − evj)− θi(c1epi + c2evi)− vs (23)

where µ1,µ2,c1, and c2 are parameters to be designed; θi = 1 means that UUVi can receive
the information from the virtual leader, and θi = 0 otherwise. The formation controller
with collision avoidance under unknown disturbances is designed as

τi = τ
f

i + τca
i (24)

Theorem 1. Under Assumptions 1–3, consider N UUVs with dynamics (1), control input (24)
with adaptive sliding mode disturbance observer (16), and artificial potential function (8). If the
control parameters are selected such that ki > |ωi|, m < n, then the disturbance estimation error
m < n converges to zero in finite time, and

.
VC < 0,

∥∥dij
∥∥ > 2rcholds, which means that (a)

the tracking errors converge to a small neighborhood around zero; (b) collision avoidance can be
guaranteed for each UUV.

Proof of Theorem 1. We define the Lyapunov function as follows:

VC =
1
2

5

∑
i=1

(θieT
piepi + eT

vievi) +
1
2

ET
p (L⊗ I5)Ep (25)

where ⊗ represents the Kronecker product. Taking the time derivative of the Lyapunov
function, we obtain

.
VC =

5
∑

i=1
(θieT

pi
.
epi + eT

vi
.
evi) + ET

p (L⊗ I5)
.
Ep

=
5
∑

i=1
(θieT

pievi + eT
viτi + eT

viω) + ET
p (L⊗ I5)Ev

(26)
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Substituting (23) and (25) becomes

.
VC =

5
∑

i=1
θieT

pievi +
5
∑

i=1
eT

viω + ET
p (L⊗ I5)Ev − µ1

5
∑

i=1
eT

vi ∑
j∈Ni

aij(epi − epj)

−c1
5
∑

i=1
θieT

viepi − c2
5
∑

i=1
θieT

vievi − µ2
5
∑

i=1
eT

vi ∑
j∈Ni

aij(evi − evj)−
5
∑

i=1
eT

vivs

−βi
5
∑

i=1
eT

vi ∑
j∈Nc

i

−∇pi δij(d)

(27)

We define that ω̃ = ω̂−ω is the error between the real disturbance and the estimated
disturbance. For an undirected graph, the repulsive forces between UUVs are equal and

opposite in direction [32]. Therefore, βi
5
∑

i=1
eT

vi ∑
j∈Nc

i

−∇pi δij(d) = 0. Then, we obtain

.
VC =

5
∑

i=1
eT

vi(ω− ω̂) + ET
p (L⊗ I5)Ev − µ1

5
∑

i=1
eT

vi ∑
j∈Ni

aij(epi − epj)

+(1− c1)
5
∑

i=1
θieT

viepi − c2
5
∑

i=1
θieT

vievi − µ2
5
∑

i=1
eT

vi ∑
j∈Ni

aij(evi − evj)

=
5
∑

i=1
eT

viω̃ + (1− µ1)ET
v (L⊗ I5)Ep + (1− c1)

5
∑

i=1
θieT

viepi

−c2ET
v (ϑ⊗ I5)Ev − µ2ET

v (L⊗ I5)Ev

(28)

where ϑ = diag{θ1, θ2, θ3, θ4, θ5}. vs can approximate the disturbance ω in finite time; thus,
ω̃ → 0 . Let µ1 = c1 = 1, then

.
VC = −c2ET

v (ϑ⊗ I5)Ev − µ2ET
v (L⊗ I5)Ev

= −ET
v ((µ2L + c2ϑ)⊗ I5)Ev

(29)

Since c2 > 0,µ2 > 0, L and ϑ are semi-definite. Thus,
.

VC is negative semi-definite,
which proves that VC is bounded. Then, the second derivative of VC is found as

..
VC = −2ET

v ((µ2L + c2ϑ)⊗ I5)(Ti + W) (30)

where Ti = [τ1, τ2 . . . , τ5]
T , and Wi = [ω1, ω2 . . . , ω5]

T . Using polygon inequality, we obtain

‖τi‖ ≤ µ1 ∑
j∈Ni

aij
∥∥(epi − epj)

∥∥+ µ2 ∑
j∈Ni

(aij
∥∥(evi − evj)

∥∥+ θi
∥∥(c1epi + c2evi)

∥∥)
+‖vs‖+ βi ∑

j∈Nc
i

ς(
∥∥dij

∥∥) dij

‖dij‖
(31)

By choosing the proper β, the function ς(d) is bounded. According to Assumption
1 and 4, we can see that the control law τi is bounded. This implies

..
VC is bounded.

Combining this with the fact that VC is bounded and
.

VC is negative semidefinite, and
applying the Barbalat’s lemma, we can obtain

.
VC → 0 , as t→ ∞ . µ2L + c2Π is positive

definite, from (29), which indicates t→ ∞, ev → 0 . In addition,
.
ev = τi + ω → 0 , which

is only possible when all individual control parts become zero, and vs can estimate the
disturbance ω [33]. Then, we can obtain
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lim
t→∞

5
∑

i=1
eT

pi
.
evi = lim

t→∞

5
∑

i=1
eT

pi(τi + ωi)

= − lim
t→∞

5
∑

i=1
eT

pi

{
µ1 ∑

j∈Ni

aij(epi − epj) + µ2 ∑
j∈Ni

aij(evi − evj)

+c1θiepi + c2θievi − βi ∑
j∈Nc

i

−∇pi δij(d) + vs −ωi

}
= − lim

t→∞

5
∑

i=1
{ ∑
j∈Ni

aij(eT
piepi − eT

piepj) + c1eT
piθiepi}

= − lim
t→∞

ET
p ((W − A + ϑ)⊗ Im)Ep

= − lim
t→∞

ET
p ((L + ϑ)⊗ Im)Ep

= 0

(32)

where L + ϑ > 0 can be obtained from Lemma 3. Therefore, lim
t→∞

epi = 0. Then, the adaptive

UUV formation system with disturbance achieves performance.
We define an energy function:

S(t) =
1
2

dT
ij(t)dij(t) +

1
2

vT
i (t)vi(t) (33)

where dij(t) denotes the relative position variable between the UUVi and its collision
avoidance neighbor UUVj. Because all the UUVs in the formation have the same structure
and characteristics of kinematic and dynamic, each UUV’s collision avoidance performance
is analyzed in the same way. The specific proof can be obtained from [26]. Taking the time
derivative of (29) yields:

.
S(t) = dT

ij(t)
.
dij(t) + vT

i (t)
.
vi(t)

= dT
ij(t)(

.
pi(t)−

.
pj(t)) + vT

i (t)(τi(t) + ωi)

= dT
ij(t)(vi(t)− vj(t)) + vT

i (t)(−µ1 ∑
j∈Ni

aij(epi − epj)− ∑
j∈Ni

c1θiepi

− ∑
j∈Ni

c2θievi − µ2 ∑
j∈Ni

aij(evi − evj)− ω̂i − βi ∑
j∈Nc

i

−∇pi δij(d) + ωi)

(34)

From (30), it is easy to obtain ω̃ = ω̂−ω → 0 , because of the disturbance observer
we designed. The error terms evi and epi tend to zero. vi(t) 6= 0, vj(t) 6= 0, and dij(t)→ 2rc
are bounded. However, the potential function δij approaches infinity, if dij(t)→ 2rc . Then,
we can obtain the inequality by choosing the appropriate parameter as follows:

vT
i (t)∇pi δij(dij(t)) > 1

2 dT
ij(t)dij(t) + 1

2 vT
i (t)vi(t)

− 1
βi

dT
ij(t)(vi(t)− vj(t)) + 1

βi
vT

i (t)(−µ1 ∑
j∈Ni

aij(epi − epj)

− ∑
j∈Ni

c1θiepi − ∑
j∈Ni

c2θievi − µ2 ∑
j∈Ni

aij(evi − evj)− ω̃i)

(35)

Then, .
S(t) > βiS(t) (36)

According to Lemma 2, we can obtain the following inequality

dT
ij(t)dij(t) > 2eβi(t−t0)S(t)− vT

i (t)vi(t) (37)

By designing the parameter βi, we have 2eβi(t−t0)S(t)− vT
i (t)vi(t) > rc

2. Substituting
it into (34), we obtain

∥∥dij(t)
∥∥ > 2rc. Therefore, the UUV formations can avoid collisions

among them by the proposed control law. �
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4. Experimental Results and Simulation

To illustrate the effectiveness of the proposed algorithms, the simulation results are
presented. The verification is mainly divided into two parts. The first one analyzes the
effect of the sliding mode disturbance observer. The other part is about the effectiveness
of the collision avoidance. The UUV formation consists of four UUVs in the simulation
experiment, and UUV0 is the virtual leader. Before showing the simulation results, some
parameters used in the system are listed in Table 1.

Table 1. Parameters.

Entry Value Entry Value Entry Value

ϑ1 0 ϑ2 0 c1 1
ϑ3 1 ϑ4 1 c2 2
rc 0.3 µ1 1 β 5
rs 0.8 µ2 2 β 2

The adjacency matrix and Laplacian matrix are

A =


0 0 1 1
0 0 0 1
1 0 0 1
1 1 1 0

, L =


2 0 −1 −1
0 1 0 −1
−1 0 2 −1
−1 −1 −1 3


The initial velocities of the UUVs are designed as zero, and the initial position of the

UUVs is given as

pi =


p1
p2
p3
p4

 =


−10 10 0 0 0

0 −10 0 0 0
0 0 −10 0 0
−5 −5 0 0 0


The position of the virtual leader is given as pl = [20 cos(0.1t), 20 sin(0.1t), 0.1t, 0, 0].

4.1. Disturbance Observer Simulation Result

Since the disturbance we considered is nonlinear and bounded, ωi is given as:

ωi =


(sin(0.2t))2 × (cos(1 + 0.2t))
(sin(0.2t))2 × (cos(2 + 0.2t))
(sin(0.2t))2 × (cos(1 + 0.2t))
(sin(1 + 0.2t))2 × (cos(0.2t))
(sin(2 + 0.2t))2 × (cos(0.2t))


The disturbance observer we designed is

vs = −Λ1eo −Λ2e
m
n
o − Ksgn(eo)

The parameters are selected as m = 3, n = 5, Λ1 = diag{1, 1, 1, 1, 1}, Λ2 = diag{1, 1, 1, 1, 1},
and Ki = 1.1× diag{1, 1, 1, 1, 1}.

In this section, our goal is to illustrate the effectiveness of the sliding mode disturbance
observer. Thus, the control law has included the part of collision avoidance in simulation.
The virtual leader trajectory and the UUVs trajectories are plotted in Figure 3 to show the
formation control performance; the initial and final position of the UUVs are also shown.
The 3D trajectory in Figure 3 shows the controller with the disturbance observer. The
tracking trajectory is smooth and steady. Figure 4 displays the 3D trajectory results from
the controller without the disturbance observer. It is obvious that the tracking trajectory
has jitter, and the disturbance has a great influence on the formation maintenance. The
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simulation results show that the adaptive sliding mode disturbance observer achieves
good performance.
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To verify the performance of the disturbance observer, an adaptive nonlinear distur-
bance observer (ANDO) proposed in [34] is compared with the observer proposed by us.
The results of comparation are shown in Figures 5 and 6. The red line is the real disturbance
value curve. The blue line is the estimated value produced by the observer proposed in
this paper. In addition, the green line is the estimation of the ANDO observer. From the
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enlarged views in Figures 5 and 6, compared with the green line, the blue one is always
closer to the red line. It means the estimation of SMDO is more precise than the ANDO.
The SMDO achieves a better performance.
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4.2. Collision Avoidance Simulation Result

To show the performance of the controller of collision avoidance, we used the pro-
posed disturbance observer to estimate the disturbance. Since the UUV will not stop after
a collision, the difference of the 3D trajectories between the control law with collision
avoidance and the controller without collision avoidance is small. So, the 3D trajectories
are not displayed in this section. The distance between any two UUVs is more clearly to
show the collision. The 2rc line is set at the bottom of the Figures 7 and 8. If the distance∥∥dij

∥∥ < 2rc, the collision occurs. Figure 7 shows the distance between any two UUVs of the
formation with considering collision avoidance. There is no line under the 2rc line. Due to
the spiral trajectory, there are some fluctuations in the distance between UUVs. It has no
influence on the stability of system. Figure 8 shows the distance between any two UUVs of
the formation without considering collision avoidance. It is obviously that collision occurs
several times from 4 s to 6 s. The distance between UUVs is below 2rc. Without the collision
avoidance control, the formation performance cannot be guaranteed.
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The position error and velocity error performance are validated as shown in Figures 9–11.
All the errors converge to zero in finite time, which means that the controller works
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satisfactorily and the system is stable. The simulation results show the four UUVs can track
the virtual leader well without collision and maintain a good formation.
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5. Conclusions

The adaptive formation control for multi-UUVs with collision avoidance under un-
known disturbance was discussed. Graph theory was utilized to model the communica-
tions between UUVs. Feedback linearization was used to simplify the 5-DOF mathematical
model. The overall structure of the control law was composed of a formation controller
and a collision avoidance controller. The adaptive sliding mode disturbance observer
was adopted to approximate the nonlinear and unknown dynamic disturbance term. By
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integrating the artificial potential field method into the virtual leader–following formation
strategy, the problem of collision among UUVs was solved. The system stability was proven
using the Lyapunov theory. Finally, we compared the proposed disturbance observer with
the observer in another paper. The result shows the observer proposed in this paper per-
formed better. The simulation results on formation control with collision avoidance have
demonstrated the controller designed in this paper is valid and performs well. In the future,
we will work on improving the observer to eliminate the jitter caused by the sliding mode
and formation control subject to constraints.
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