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Manufacturing, one of the most valuable industries in the world, is boundlessly automatable yet still quite stuck in traditionally
manual and slow processes. Industry 4.0 is racing to define a new era of digital manufacturing through Internet of Things-
(IoT-) connected machines and factory systems, fully comprehensive data gathering, and seamless implementation of data-
driven decision-making and action taking. Both academia and industry understand the tremendous value in modernizing
manufacturing and are pioneering bleeding-edge strides every day to optimize one of the largest industries in the world. IoT
production, functional testing, and fault detection equipment are already being used in today’s maturing smart factory
paradigm to superintend intelligent manufacturing equipment and perform automated defect detection in order to enhance
production quality and efficiency. This paper presents a powerful and precise computer vision model for automated
classification of defect product from standard product. Human operators and inspectors without digital aid must spend
inordinate amounts of time poring over visual data, especially in high volume production environments. Our model works
quickly and accurately in sparing defective product from entering doomed operations that would otherwise incur waste in the
form of wasted worker-hours, tardy disposition, and field failure. We use a convolutional neural network (CNN) with the
Visual Geometry Group with 16 layers (VGG16) architecture and train it on the Printed Circuit Board (PCB) dataset with
3175 RBG images. The resultant trained model, assisted by finely tuned optimizers and learning rates, classifies defective
product with 97.01% validating accuracy.

1. Introduction

In recent years, the world has moved towards the Fourth
Industrial Revolution, which is also known as Industry 4.0.
Its defining characteristic is to build the boosted productivity
and increased efficiency that can be seen in factories and
achieved by modern technologies [1] like the Internet of
Things (IoT), Artificial Intelligence (AI), robotics, Cloud

Computing (CC), sensors, and integrated systems. In Indus-
try 4.0, large-scale IoT systems and machine-to-machine
communications (M2M) are integrated to enhance automa-
tion, communication, and self-monitoring without the need
for human intervention. The smart factory is a step beyond
traditional automated manufacturing environments to facto-
ries where it may consider fully automotive systems. The
machines are controlled by superior computational intelli-
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gence and are linked to sensors and other devices through
wired or wireless networks [2]. In a study [3], the integration
of all physical components and digital technologies into one
system is called Cyber-Physical Systems (CPSs) and is ana-
lyzed in detail. In addition, the amount of sensors collecting
data in smart factories is increasing exponentially [4].
Among the various kinds of sensor systems found in facto-
ries, vision-based systems are the most popular and effective
when it comes to estimating and classifying product quality.
A comprehensive review of automated vision-based defect
detection approaches that look at numerous kinds of mate-
rials such as ceramics, textiles, and metals is introduced
in [5].

Smart manufacturing is a recent production paradigm in
which machines are fully networked, monitored by sensors,
and managed by better computer intelligence to boost sys-
tem efficiency, product quality, and sustainability while cut-
ting costs. The IoT, CC, and CPS are all-important
supporting technologies for modern production [6–10].
These contemporary manufacturing technologies collect
and analyze data from several stages of a product’s life cycle,
including raw materials, machine operations, facility logis-
tics, and also human operators [8]. Thanks to the prolifera-
tion of industrial data, data-driven intelligence combined
with powerful analytics transforms massive volumes of data
into relevant and insightful information for smart
manufacturing.

An important aspect of product quality control in the
manufacturing environment is faulty product categorization
on the product line. Currently, numerous methods are
deployed to tackle this task. These defective product classifi-
cation systems must match challenging requirements such as
the need to work in real-time with high accuracy and robust
performance in noisy environments like those seen in real-
world factories. With the development of machine learning
and sophisticated vision systems, feature-based defect classi-
fication algorithms are starting to be investigated and
applied to classify defective products using various classifiers
such as artificial neural networks (ANN), Bayesian network
classifiers, and support vector machine (SVM) [11, 12].
When applied in real-world factories, these feature-based
categorization methods might be susceptible to noise such
as lighting fluctuations or shadows in photos. Moreover,
some companies manufacture a large range of items across
many product lines, making them inappropriate for the
application of feature-based approaches.

Deep learning-based algorithms have shown outstanding
outcomes in many computer vision applications like object
detection, picture categorization, and object identification
during the last several years. These successes have displayed
their great potential for application in the manufacturing
environment [13, 14]. To combine wire defect region identi-
fication with faulty product categorization with a multitask
CNN is devised [15, 16]. Other quality inspection tasks that
use CNNs have been suggested to monitor various products
such as PCBs [17, 18], metal surfaces [19], bottled wine,
casting products, semiconductor fabrication, and light-
emitting diode (LED) cup apertures, mobile phone screen,
cover glass of display panels, bearings, optical film, and

leather defect. Therefore, this research focuses on defect clas-
sification using a deep learning model (CNN) with VGG16
for better accuracy in classifying the model. Most researchers
only concentrated on developing the software model and
implementing it on a personal computer (PC) or server
computer with graphics processing unit (GPU). The utiliza-
tion of another computer for classifying products is not suit-
able with practical factories in terms of grade existed
systems. Moreover, this research focuses on learning rate
to generate a better-trained model by SGD optimizer which
even produce better accuracy in large dataset. This proposed
CNN with VGG16 assists to classify the defective PCB more
accurately because of the better learning rate obtained by the
pretrained model.

The organization of the article is listed as follows: Section
2 suggests that the defective classification can be done
through CNN and various defective product identification
is discussed. Section 3 discusses the VGG16 architecture
with CNN for a better training model, and an SGD opti-
mizer for a high learning rate is illustrated. Section 4 has
evaluated the defective detection classification from the nor-
mal product through CNN with VGG16 with other existing
CNN and CNN with ResNet through various parameters
like accuracy, precision, recall, and F1 score. Section 5 con-
cludes that CNN with VGG16 has better accuracy in train-
ing model accuracy and evaluation with existing CNN
shows that CNN with VGG16 has a high accuracy of 97%.

2. Related Work

This review is intended to study the approach of defective
classification done on smart factories to enhance their level
through various deep learning methods. Those are discussed
by several researchers, and a few are discussed below. The
image processing method and computer vision are focused
on by Xie, who carefully reviews current improvements in
surface identification. This research is mostly focused on
industrial applications, while surface defect detection based
on image processing needs high real-time performance by
matching the results of prior studies [20]. From the stand-
point of the textile industry’s defect management, Ngan
et al. and Mahajan et al. investigated the use and develop-
ment of flaw-detection systems frequently used in the
manufacturing of textile for the textile industry in the
advancement of defect detection [21, 22]. Thermal imaging
technology is widely employed in a variety of industries.
Aldave et al. [23] examined data from commercially avail-
able nonexperimental IR techniques to provide cameras in
the field of nondestructive defect detection with references.
In both business and academics, defect detection technology
is a popular issue. Steel [24] and textile [25], which serve as
crucial detection approaches, have yet to be classified by
Pernkopf and Zhang et al. The description shows how
defect-detection technology works, as well as current
defect-detection equipment and alternative options. Further-
more, the assessment, review, and summary of the research
status with major technologies in the US and abroad have
yet to be finished.
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Ren et al. have examined the electrical resistance tomog-
raphy (ERT) images for presenting the depictive identifica-
tion through an evaluation approach based on color
histogram [26]. Similarly, Song et al. devised a classification
methodology for detecting flaws on wood surfaces based on
the percentage color histogram feature and feature vector
texture feature of picture blocks, which has been proved to
be effective in trials, especially for junction type defects
[27]. Prasitmeeboon and Yau proposed a two-step technical
procedure for particleboard defect identification, involving
the use of SVM and color histogram characteristics for
defect detection and smoothing and threshold technology
for defect localization [28, 29]. To differentiate keyboard
light leakage faults from dust, Ren and Huang suggested an
approach that combines Autoencoder and FCN with a deep
neural network. In a test set of 1632 photos, the suggested
technique is shown to reduce the false positive rate of light
leaking defects from 6.27 percent to 2.37 percent [30]. Sam-
pedro et al. suggested a method for the automated identifica-
tion and diagnosis of insulator strings that contained one
segmentation component for insulator strings and two diag-
nostic components for missing and damaged insulator disc
units, respectively [31]. Balzategui et al. propose a method
for segmenting defects in solar cell electroluminescence pic-
tures. When compared to the method of continually per-
forming CNN sliding windows, this methodology uses
FCN with unique U-net architecture to generate the defect
segmentation map in a single step [12, 32]. Gao et al. used
FCN with faster RCNN to construct a deep learning model
for tunnel defect detection based on FCN. This model can
accurately and quickly detect flaws like stains, leaks, and
pipeline blockages [33, 34]. Baumgartl et al. have developed
a Laser Powder Bed Fusion (LPBF) device that incorporates
off-axis in situ imaging and thermography. The photos were
used as a source of data for the CNN model, which is used to
identify printing problems. This model is used to detect
thermographic in situ defects in LPBF processes, and it
achieves a model accuracy of 96 percent. This CNN model,
on the other hand, can only identify splatter and delamina-
tion faults in metal LPBF. As a result, other related flaws
such as cracks, porosity, and unmelted powder, as well as
alternative methods such as selective laser sintering (SLS),
are not investigated [35, 36]. Jayanthi et al. illustrate that
the application of Hough Circle Transform (HT) is to local-
ize the targeted region of iris region efficiently through mask
region-based CNN during the segmentation process. The
proposed technique has presented with the performance of
supreme iris recognition and resulted in maximum recogni-
tion accuracy of 99.14% which is comparatively higher than
existing UniNet V2, AlexNet, Inception, ResNet, DenseNet,
and VGGNet models [37, 38].

This section discusses the various approaches of defect
detection identification in various kinds of factories as well
as various analyses from several researchers about machine
learning methods and CNN in defect detection of products
in factories. The defect detection through image processing
can be done only through CNN, which shows better accu-
racy, and several researchers also justify that. Thus, the
review support in focusing the CNN with VGG16 has

assisted to identify the defective product classification with
high accuracy.

3. Research Methodology

The goal of this research is to identify and classify defective
product from the raw material of the manufacturing indus-
tries. This study focused on real-time datasets collected from
the captured image through the network, and the images are
preprocessed by region of interest (RoI) extraction. The pur-
pose of RoI extraction is utilized for image segmentation
which influences the performance of the preprocessing.
Once the preprocessing is done by RoI extraction, then the
dataset is progressed for the normalization which is done
for splitting each pixel by 255. The entire pixel is represented
in terms of 0 and 1 assist to learn the model better, and the
dataset gets split into train dataset and test dataset.

In general, the normalization is the initial process of all
neural network, and the CNN works based on the deep for-
ward neural network (FNN) that assist in learning invariant
feature hierarchies. The distinctive attributes and invariant
present in the CNN context are the CNN features that rep-
resent the same transformation applied at various locations
of the model. CNN model is majorly used for training and
data processing in grid topology or in a spatial relationship.
The CNN model with VGG16 architecture working is per-
formed as the training process and get evaluated for accom-
plishing the better pretrained model for identifying the exact
defective product from manufactured product progressed
from each unit of the smart manufacturing unit as shown
in Figure 1.

3.1. Data Collection. This study used Peking University’s
intelligent robot laboratory and a PCB defect dataset with
1245 photos and four different types of defects: false copper,
mouse bite, missing hole, and open circuit. The various
defect images have been fed for detecting and classifying
them as the defective product from the normal image of
the PCB dataset. Figure 2 shows a categorized picture dataset
with various defect kinds grouped into different groups.

Based on the measurements, the callout box average size
for the defect available in the data set is about 8 × 8 pixels as
shown in Figure 2. The images can be rotated to a specific
angle over the program for improving the model robustness
and confirming the detection accuracy though the image
gets rotated in the ensuing detection.

3.2. Data Preprocessing. The casting images are captured
using special arrangements to ensure that the image is cap-
tured in stable lighting conditions. The lighting condition
changes over time may lead to classification errors in the
real-world manufacturing environment, and the vision sys-
tem completely depends upon lighting conditions. The RoI
extraction from the captured image is based on saturation
channel details and hue saturation value (HSV) which dis-
cusses the color HSV and that the PCB color level gets differ
from the background. Initially, the red, blue, and green
(RBG) image is converted to HSV color space based on a
general equation. Let us considerR, B,G ∈ ½0, 1�, the
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maximum region as MAX≕max ðR, B,GÞ and the mini-
mum region asMIN≕MINðR, B,GÞ. Thus, the equation of
H, S, and V is expressed as follows:

H : 0f , if R = B =G 60° × 0 +
B − G

MAX −MIN

� �
,

if MAX = R 60° × 2 +
G − R

MAX −MIN

� �
,

if MAX = B 60° × 4 +
R − B

MAX −MIN

� �
,

if MAX =G, ð1Þ

S : 0f , if R = B = G
MAX −MIN

MAX
, else, ð2Þ

V ≔MAX: ð3Þ
Eventually, the selection of the HSV threshold is based

on pixel range values of the HSV color spacing concerning
each histogram channel. Morphology is applied subse-
quently for removing the noise from the threshold images.
Hence, the RoI extraction is considered to be the region of

the PCB whereas this RoI is made to be located and cropped
from original images.

3.3. Classification of Defective Product by CNN with VGG16.
This portion of the research is devoted to determining which
class the retrieved ROI picture belonged to. The defective
product classification training method undergoes two major
steps as follows:

(i) Step 1. Training CNN with VGG16

(ii) Step 2. Optimize and retrain the network

3.3.1. Step 1: Training CNN with VGG16. To obtain better
performance, CNN methods have been deployed in embed-
ded systems. However, CNNs trained from scratch require a
dataset with several labeled entries, more time consumption,
and high power consumption in computation. Transfer
learning (TL) is introduced to tackle these issues; TL is a
technique for retraining a CNN model on a novel, small
dataset through reprocessing its feature extractor portion.
It gets trained using an existing large dataset, in this case
the ImageNet dataset, and retrained only on the functional-
ity of classification for saving training time. Based on TL, the
pretrained model weights are fine-tuned for classifying a
novel dataset. Moreover, this knowledge transfer can be sig-
nificantly improved by learning performance without
requiring efforts from work-intensive data labeling. The TL
approach has accomplished advanced results on many data-
sets instead of a specified certain amount of training time.
This proposed model VGG16 is familiar and mainly consid-
ered as one step up from AlexNet because of its deeper
architecture and smaller kernel sizes.

VGG16 has acquired more information from the Alex-
Net because it is a deep learning model represented in terms
of layer numbers. The proposed VGG16 with CNN model
intended on earlier model inadequacy and focused on better
accuracy with high efficiency. According to this research,
there are 6 variants with similar architecture that have been
implemented and have layer numbers ranging from 11 to 19.
In this proposed VGG16 architecture, the layers involved are
16 layers which include 13 convolutional layers along with
max-pooling layer and 3 fully connected layers that are
shown in Figure 3. The main advantage present in VGG16
architecture while compared to AlexNet is usage of smaller
filters placed on top of each other rather than one single
large filter. The concept behind this approach is closely asso-
ciated with sensitive fields of convolutional filters. However,
each pixel receives information from 49 pixels of the previ-
ous layer through the kernel of 7 × 7. Hence, the higher sen-
sitive fields can able to capture more motifs in a large area
during missing of details whereas lesser receptive fields have
failed to capture the usual patterns. Thus, the VGG16 archi-
tecture contains convolutional layers, max pooling layers,
and fully connected layers. Even though there are further
dissimilarities, the model which is implemented in this stake
involves 3 × 3 and 2 × 2 convolutional filters. 1 × 1 fully con-
nected convolutions only represented the linear combina-
tion of a pixel location over the layers. Indeed, the
utilization of nonlinear activation and ReLU has been

Data collection of images captures from
each product of all units

RoI extraction by converting to HSV
image and threshold with S-channel image

Finding of RoI a�er morphology and
image localization as well as resizing.

Normalization of dataset

Training images to
CNN with VGG16 as

training model
Testing images

Evaluation of training model Pre-trained model

Classification of the defective product and normal product
with product ID as output

Figure 1: Workflow of proposed classification method for a defect
product.
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preferred in the AlexNet. Moreover, training of AlexNet on
MNIST is not an issue in the earlier stack but VGG16 is a
quite larger model and needs more data for highly trained.
The MNIST dataset does not provide the preferred statistical
variety to the model but the pretrained models are available
in Keras and various deep learning frameworks and libraries.
The adjustable weights and pretrained frameworks are the
general practice to acquire certain layers or all layers from
those networks have performed as the backbone of the fea-
ture extractor module. This method is said to be TL, and it
speeds up deep learning models by eliminating the require-
ment of training huge models from scratch.

3.3.2. Step 2: Optimize and Retrain the Network. TensorRT-
based applications have performed 40 times faster than
CPU-only platforms during inference. Based on the Ten-
sorRT, the researchers were only required to focus on gener-
ating a new application with AI-powered instead of
performance tuning for inference deployment. Then the
pre-trained models are converted to the format of Open
Neural Network Exchange (ONNX). These processes are
completed on the server whereas the TensorRT model in
the ONNX format can then be downloaded from the cloud
and loaded onto the training dataset for the prediction
phase. The experimental findings show that the deployed
model can execute in real-time for all deep learning func-
tions that run on the same objective function f ðxÞ for min-
imizing error and establishing fresh data input. This
research focuses on the sample with a minibatch drawn con-
sistently from the training set. The size of the minibatch is
generally selected to be a comparatively less instance num-
ber that can be generated from one to a few hundred.

Labellmg

Missing_hole

voc

(a)

Labellmg?vo
c

Spurious_copperl

(b)

Labellmgvo
c

Open_circuit

(c)

Labellmgvo
c

Mouse_bitel

(d)

Figure 2: Input images with dissimilar defects on PCB: (a) missing hole; (b) spurious copper; (c) open circuit; (d) mouse bite.

224 x 224 x 64

224 x 224 x 3

Convolution + ReLU

112 x 112 x 128

56 x 56 x 256

28 x 28 x 512

14 x 14 x 512

7 x 7 x 512

Max pooling

Fully connected + ReLU

So�max

1 x 1 x 4096 1 x 1 x 1000

Figure 3: VGG16 architecture with CNN.

Table 1: Dataset distributions for training, validation, and testing.

Product
dataset

Product
class status

Image
count

Training images Testing
imagesTraining Validating

PCB
dataset

Normal 1937 1317 232 387

Defective 1238 842 149 248
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However, the SGD performs as the machine-learning algo-
rithm that executed better once it gets trained, though it
reaches the local minimum in a reasonable amount of time.
Hence, the significant parameter for SGD is the learning rate
which is essential for decreasing the learning rate over time.
The learning rate is represented with iteration k.

Moreover, the pretrained model supports classifying the
image through its loss functions and learning rates and assist
in performing the classifier model. Therefore, the performed

classifier CNN with VGG16 model has accomplished with
better accuracy in identifying and classifying the defective
product from normal along with the manufacturing shop
ID.

The experimental findings show that the deployed model
can be execute in real-time applications for all deep learning
functions that run on the same objective function f ðxÞ for
minimizing error and establishing a fresh data input. This
paper focuses on the sample with a minibatch, which draws
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Figure 4: Model accuracy for train and validation.
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Figure 5: Model loss for train and validation.
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consistently from the training set. The size of minibatch is
generally selected to be a comparatively less instance num-
ber that can be generated from one to few hundreds.

In a neural network, the loss of gradient over each
parameter can be computed using back propagation net-
works. This will assist in initiating the model from the model
loss and measured its derivative based on the weightage of
last model layers. The derivatives have been selected in
accordance with each layer that executed backward from last
layer of previous model to first layer of previous model con-
sidered. However, the SGD performs as the DL algorithms
that executed better once it gets trained, though it reaches
the local minimum in a reasonable amount of time. Hence,
the significant parameter for SGD is the learning rate which
is essential for decreasing the learning rate over time. The
learning rate has the ability in controlling the sizes of the
updated steps along with gradient that is represented with
iteration k. Thus, selecting the suitable learning rate is signif-
icant to train any neural network model whereas the better
learning rate relies on every individual model and issues in
the model.

4. Result and Discussion

This experimental research utilized a high performance
server along with the configuration of an Intel Core i7
DMI2 CPU, 16GB RAM, and a Quadro K600 GPU. The
operating system used is Ubuntu 16.04.6 LST for executing
the abovementioned GPU while training the dataset images.
The optimizer and loss function utilized in this proposed
model are SGD and cross entropy. The learning rate is set

at 0.01 and the training epoch at 50 for optimal iteration.
The casting dataset, a publicly accessible dataset relevant to
product categorization, is used to assess and compare the
performance of the suggested technique [37]. The PCB
product data one contains 3175 augmented, 300 × 300 pixel
RBG images for training and testing the system. The 3175
images consist of a normal product as well as defective prod-
uct images shown in Table 1.

The original electrical wire and cropped electrical wire
datasets are used to examine the effect of applying the ROI
extraction step. The final number of cropped images is
smaller than the number of original electrical wire images
due to not including images when the ROI extraction pro-
cess failed. For all datasets, we randomly choose 80% for
training (70% for training and 10% for validation) and leave
the remaining 20% for testing. The details of each dataset
and the distributions used for training, validation, and test-
ing are provided.

Figure 4 illustrates that the accuracy of the train model
begins at 35% approximately at 2 epochs and improves until
94.8% at 10 epochs. A slight fluctuation occurs from 10 to 30
epochs and becomes steady with an accuracy of 96.2% after
50 epochs. In the case of the validation model, the accuracy
is lower at the start and fluctuates until 10 epochs, but it
steadies from 10 to 50 epochs with accuracy of 97.4%. This
shows that the learning rate and the optimizer have reduced
the loss function and improved the TL with better knowl-
edge transformation through the pretrained model.

Figure 5 illustrates that the loss of the train model begins
at 1.56 at 2 epochs and decreases as we approach 40 epochs.
There is slight fluctuation occurs from 40 to 50 epochs

Table 2: Evaluation of testing image by confusion matrix for various algorithm.

S. no Algorithm
Confusion matrix values

True positive (TP) True negative (TN) False positive (FP) False negative (FN)

1 CNN 337 249 10 39

2 CNN–VGG16 391 225 6 13

3 CNN-ResNet 358 241 8 28

92.28 97.01 94.33
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Figure 6: Comparison of accuracy performance for various deep learning models.
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which stabilizes at a loss of less than 0.16 at 50 epochs. In the
case of the validation model, the loss begins at 1.52 and fluc-
tuates until 30 epochs, but it stabilizes from 30 to 50 epochs
with a loss of less than 0.1. This shows that the learning rate
and the optimizer have reduced the loss function and
improved the TL with better knowledge transformation
through the pretrained model.

In this study, accuracy, precision, recall, and F1 scores
were used as assessment measures for the suggested CNN
with VGG16 for product categorization. Table 2 shows
how these four assessment metrics were computed using
true positive (TP), true negative (TN), false positive (FP),
and false negative (FN) outcomes from a confusion matrix
between the prediction and the reality. The ratio of correct
predictions (TP + TN) to the total number of predictions
(TP + TN + FP + FN) is known as accuracy. The number of
accurately predicted samples (TP) divided by the number
of positive samples anticipated (TP + FP) yields precision.
The number of properly predicted (TP) samples divided by
all actual positive samples (TP + FN) yields recall. The
weighted average of accuracy and recall is the F1 score.
The problem of defect classification in the product is binary.
Therefore, F1 score more reliable statistical rate evaluation
metric that considers both positive elements and negative
elements is adopted for this study.

Figure 6 illustrates that the accuracy of CNN with
VGG16 is high while compared to the existing CNN and
CNN-ResNet. The performance of the proposed CNN-
VGG16 is 97%, and it also determined that the TL is even
better for large datasets than CNN and CNN-ResNet.

Figure 7 illustrates the performance of precision, recall,
and F1 score that describes the proposed model CNN-
VGG16 that has high scores in all precision, recall, and F1
score that are 0.98, 0.97, and 0.98, correspondingly. The
scores of CNN-VGG16 discuss that because of a better pre-
trained model using SGD optimizer and loss function as

cross entropy. The positive is high in actual as well as predic-
tion which assists in performing precision and recall that
make the better weightage in F1 score. When comparing
the performance of the proposed model CNN-VGG16, the
CNN and CNN-ResNet have performed less in precision,
recall, and F1 score.

Moreover, the proposed CNN-VGG16 has better accu-
racy in classifying the defective product from the normal
product in the smart factories through image processing.
This initiation makes this Industry 4.0 technology reduces
the waste as well as minimizes the cost of production.

5. Conclusion

As the manufacturing industry continues to propel into the
modern age, intelligent data-driven systems are becoming
ubiquitous in optimizing, replacing, and augmenting human
labor. Improvements to the models behind these systems are
becoming increasingly necessary. Our proposed model pro-
vides one such advance, in providing accurate classification
for product defect in production. The model’s CNN-
VGG16 architecture emphasizes layers that assist in captur-
ing large pixels, and the SGD optimizer generates an optimal
learning rate for learning PCB data. This pretraining model
assists in implementing a better TL model to retrain CCN-
VGG16 for PCB product dataset ROI extraction based on
S-channel data. Each pretrained model is deployed for deter-
mining the defective PCB product with an accuracy of 97.3%
in training. Moreover, the proposed CNN-VGG16 is evalu-
ated using various deep learning models such as CNN and
CNN-ResNet. Hence, the evaluation result through testing
the image dataset of the proposed CNN-VGG16 has an
accuracy of 97%. Thus, the proposed CNN-VGG16 can
excel at determining defected PCBs before they reach further
production stages. This will reduce scrap, increase yield, and
minimize production cost across the board. As the Industry
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Figure 7: Comparison of precision, recall, and F1 score performance for various deep learning models.
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4.0 paradigm encompasses production around the world,
advancements such as ours will provide value for countless
companies.
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