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Abstract: K nearest neighbor search (kNN-Search) is a universal data processing technique and a
fundamental operation for word embeddings trained by word2vec or related approaches. The benefits
of operations on dense vectors like word embeddings for analytical functionalities of RDBMSs
motivate an integration of kNN-Joins. However, kNN-Search, as well as kNN-Joins, have barely been
integrated into relational database systems so far. In this paper, we develop an index structure for
approximated kNN-Joins working well on high-dimensional data and provide an integration into
PostgreSQL. The novel index structure is efficient for different cardinalities of the involved join
partners. An evaluation of the system based on applications on word embeddings shows the benefits
of such an integrated kNN-Join operation and the performance of the proposed approach.
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1 Introduction

Word embedding techniques are powerful to study the syntactic and semantic relations
between words by representing them in dense vectors. By applying algebraic operations
on these vectors, semantic relationships such as word analogies, gender-inflections,
or geographical relationships can be easily recovered [LG14]. Due to the powerful
capabilities of word embeddings, some recent papers proposed their integration into
relational databases [BBS17, Gü18]. This allows exploiting external knowledge during
query processing by comparing terms occurring in a database schema with terms stored
in word embeddings. To give some examples: a user may query all products in a product
database and rank them according to their mean similarity to terms like “allergen” or
“sensitizer”. In the context of a movie database, a kNN-Search can be performed to return the
top-3 nearest neighbors of each movie title (see q1 in Fig. 1). Given the movie “Godfather”
as input this might result in “1972” (the release year), “Scarface” (another popular movie
in the same genre) and “Coppola” (the director). Our main observation is that most of
these SQL database word embedding operations perform similarity search with k nearest
neighbor search (kNN) as a common subtask. Furthermore, the domain of the kNN-Search
often needs to be restricted to terms that also appear in the database relation, i.e. the domain
modeled by the database schema. In this way arbitrary terms, having their origins in the
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m_id title …

1 Scarface …

2 Untouchables …

3 Goodfellas …

4 Ben Hur …

… … …

106 Godfather …

SELECT m1.title, m2.title

FROM movies m1 kNN-Join(3)movies m2

ON m1.title ~ m2.title  

WHERE m1.year= … AND m2.genre IN (…)

SELECT *

FROM kNN(movies.title,3 )

term vector

1972 [0,21; 0,58; …; -0,77]

Brando [-0,46; 0,25; …; 0,44]

Ben Hur [0,76; 0,33; …; 0,91]

Copolla [0,76; 0,48; …; -0,51]

… [-0,46; 0,53; …; 0,85]

Untouchables [0,86; -0,22; …; 0,12]

query set R

target set T

database table word embedding vector space

Legend

+

title VARCHAR

Godfather 1972

Godfather Scarface

Godfather Copolla

… …

Untouchables Connery

m1.title m2.title

Godfather Scarface

Godfather Goodfellas

Godfather Untouchables

… …

Untouchables Goodfellas

q1: q2: 
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Fig. 1: Two Example Queries: kNN-Search and kNN-Join

large text corpora on which the word embedding models have been trained on, are filtered
out. To give an example: if a kNN-Search is performed on an attribute movie titles the user
usually expects to get the most similar movies but not release years, actors, directors or
other terms that do not relate to the movie domain at all. Technically this boils down to a k
nearest neighbor join (kNN-Join) that combines each element in a query set R with the k
elements in a target set T that are closest to it. This is shown by q2 in Fig. 1 that extends q1
by a target set containing just movie titles and that returns movie titles only. Due to the
high dimensionality of word embeddings (100 to 300 dimensions are a typical number)
and large input data sets (query and target set), the kNN-Join is an extremely expensive
operation. Therefore, we investigate approximation and indexing techniques based on vector
quantization approaches, especially product quantization [JDS11], to accelerate kNN-Joins
in the realm of RDBMSs. In particular, our contributions are the following:

• We identify two different kNN-Join query types with different needs regarding the
supporting index structures.

• We propose a novel index structure which can cope with both query types and is
flexible enough to deliver good performance on them.

• We detail how to efficiently process an approximated kNN-Join query that adapts to
different query and target set sizes.

• We provide a practical implementation of the operator and our optimizations in
PostgreSQL, which allows us to meaningfully evaluate the operator using high-
dimensional data and fully-featured SQL queries regarding both, accuracy and
runtime.
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The remainder of the paper is structured as follows: In the next section, we define the
kNN-Join problem and derive the challenges which arise by supporting this operation on
high-dimensional data. In Sect. 3, we provide the fundamentals of the vector quantization
techniques which form the foundation for our proposed index structure. In Sect. 4, we
present our inverted product quantization index as well as our approximated and adaptive
kNN-Join implementation. Given two real-world datasets, we evaluate the accuracy and
response time of this novel operator regarding different input relation sizes in Sect. 5. Finally,
we survey the related work in Sect. 6 and conclude the paper in Sect. 7.

2 Problem Description

Given two vector sets R and T in a d-dimensional Euclidean space Rd and two elements
r and t, with r ∈ R called query vectors and t ∈ T called target vectors, a kNN query is
defined as follows:

Definition 2.1. The kNN query of r over T , noted k N N (r,T ), can be defined as:
k N N (r,T ) = arg min{t1,...,tk }∈T [k]

∑k
i=1 d(r, ti).

Here d denotes the distance function between two elements. Typically, in the context of
word embeddings, the cosine distance is used. However, in case of normalized vectors r and
t, the cosine distance is proportional to the squared Euclidean distance. The normalization
of the vectors does not change the cosine distance. Thus the k N N (r,T ) for any r and T can
be computed using both metrics. If the query is not just one element but instead a set, the
operation is denoted as kNN-Join.

Definition 2.2. The kNN-Join between a query set R and a target set T is defined as:
k N N (R n T ) =

{〈r, t〉|t ∈ k N N (r,T ), r ∈ R
}
.

Challenges The aim of this paper is to provide a kNN-Join which is particularly suitable
for high-dimensional data and varying target sets. In detail, we identify the following
challenges:

1. Batchwise execution of large query sets: In contrast to a simple kNN-Search, it must be
possible to execute large amounts of nearest neighbor queries at once for kNN-Joins. Most
of the approximated kNN-Search (ANN-Search) approaches assume that the set of target
vectors contains a very large number of vectors, however, they do not process large amounts
of query vectors. In the case of kNN-Joins, the number of queries can be much larger than
the target vector set.
2. High-dimensional data: Previous work on kNN-Joins for relational database systems
focuses mostly on low-dimensional data [YLK10]. Because of the curse of dimensionality,
the distances of pairs of sample vectors from a high-dimensional vector space tend to
differ only little [Be99]. Therefore, techniques for exact kNN-Joins, trying to hierarchical
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partition vector spaces, cannot be applied efficiently. Hence, the system must support suitable
approximated search techniques to handle large vector sets.
3. Adaptive kNN-Join algorithm: An index for the kNN-Join stores all possible target
vectors. However, a target set T often contains just a small subset of all vectors in the
index. For example: target set for q2 in Fig. 1 only contains vectors of movies published
in a specific year out of millions of other vectors. The kNN-Join algorithm therefore must
be adaptive to different target set sizes and should enable fast approximated search. With
respect to the cardinality of R and T we identified two different kNN-Join query types in a
database system:
kNN queries with small query set R and large target set T: This is the ordinary type of
kNN queries, which most of the kNN frameworks assume.
kNN queries with large query set R and small target set T: This case is rather specific to
the use in database systems and is currently not supported.
4. Different demands on precision and response time: Regarding the approximation of
the vector similarity, it might be relevant for a user to specify how strongly the approximated
nearest neighbors should correspond with the exact values. On the contrary, real-world
systems need to comply with certain latency constraints, e.g., for exploratory data processing
fast response times are crucial. Consequently, the approximated kNN-Join should provide
features to configure such trade-offs. Providing this tunable trade-offs would also support
query execution in an online aggregation manner, i.e., get estimates of a kNN-Join query as
soon as the query is issued and steadily refine during its execution.

3 Vector Quantization
The index structure we propose is based on different vector quantization techniques.
Vector quantization is able to transform vectorial data in an approximated compact
representation [Gr84]. Furthermore, it enables fast approximated distance calculation which
subsequently can be used to speed up kNN-Join operations. It is the basis of product quanti-
zation as well as the basis for inverted indexing techniques described in Sect. 3.2 and Sect. 3.3.

3.1 Quantization Function

Vector quantization can be implemented by a quantization function q(y) which assigns a
vector y to a centroid cj ∈ C where cj is the vector of C which has the lowest distance to
y. There are different ways to obtain such a quantization function, which is specified by
the centroid set C and a distance function d. As a distance function, we use the Euclidean
distance. The set C should be selected so that the distortion is minimal. The k-means
algorithm is commonly used to achieve this goal for a given number of centroids |C |. An
approximated representation of a vector dataset can be obtained by replacing every vector
y ∈ Y (floating point values) with their centroid id j of its quantization centroid cj = q(y)
(integer values).
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𝑞1 𝑞2 𝑞𝑚

𝒚 = {1.2, 1.4, −0.2, 1.3, −0.9, 0.3, −1.1, 0.1, 0.7}

𝑢1(𝒚) 𝑢𝑚(𝒚)𝑢2(𝒚)

{1.1, 0.9, −0.5}
Product 
Quantization: {1.7, −0.8, 0.1} {0.3, −0.1, 0.7}

PQ-Sequence: 3 19 7

(a) Generating PQ sequences

𝑞𝑖(𝑢𝑖 𝒚 )

𝑢𝑖 𝒚

𝑢𝑖 𝒙

𝑑

(b) Asymmetric Distance Calculation
Fig. 2: Product Quantization

3.2 Product Quantization

A simple vector quantization approach might lead to a quite inaccurate representation of
the vector dataset. For a more precise representation, huge numbers of centroids would
be necessary that are impossible to process or even to store. For this reason, product
quantization [JDS11] applies multiple quantizers on m subvectors u1(y), . . . , um(y) of the
original vector y (see Fig. 2a.). Those quantizers are defined by quantization functions
q1, . . . , qm with qi : Rd → Ci . Typically, the cardinalities |C1 |, . . . , |Cm | are equal. The
product quantization is the sequence of centroids obtained by that process.

y1, . . . yd︸    ︷︷    ︸
u1 (y)

, . . . , y(D−d)+1, . . . yD︸              ︷︷              ︸
um (y)

→ q1(u1(y)), . . . , qm(um(y)) (1)

Using a dictionary denoted as codebook, the sequence of centroid vectors can be compactly
represented as a sequence of centroid ids.

kNN-Search with PQ-Index Product quantization sequences can be utilized to accelerate
the calculation of nearest neighbors by providing a fast way to compute approximated
squared distances. Approximated square distances between a query vector x and a vector y
for which a product quantization sequence is available can be calculated by Eq. (2).

d̂2(x, y) =
m∑

i=1
d(ui (x), qi (ui (y)))2 (2)
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[1.78, 3.22, -2.55, ...]

[1.78, -1.35, 0.45, ...]

[1.11, 2.22, -2.01, ...]

[0.78, -0.72, 5.12, ...]

[1.89, 2.42, -1.78, ...]1

2

3

4

[3.78, -1.22, 2.55, ...]

[-0.78, -3.28, -0.57, ...]

[4.17, 0.22, 2.24, ...]

[1.80, -0.43]

[-2.49, -1.89]

...

[1.07, 3.22 ]

1

2

3

4

1

4

1

2

............... ... ... ...

Fig. 3: Index Data Structure

The squared distances d(ui (x), qi (ui (y)))2 have to be precomputed at the beginning of
the search process. For every subvector ui (x) there are |Ci | distance values to calculate,
since qi (ui (y)) can be any value of Ci . The distance measure is denoted as asymmetric
by [JDS11], since it is defined between quantized and non-quantized vectors as visualized
in Fig. 2b. Despite the effort of the preprocessing the technique reduces the computational
costs, since the number of index entries in large vector datasets is much higher than m · |Ci |,
the number of those squared distances. Furthermore, the compact representation makes it
easier to provide fast access to the index entries which can also improve performance.

3.3 Inverted Index Structures for Approximated Nearest Neighbor Search

For the standard product quantization search, it is necessary to calculate |T | distance values
for every query vector against the target set T . To reduce the number of distance computations
and achieve non-exhaustive search behavior one can divide the dataset into partitions of
vectors called cells which are locally close to each other. After that, only vectors which are
in the same cell as the query vector are considered as candidates for the nearest neighbors.
One can also extend the search to a certain amount of nearby cells. There are several ways to
define the cells: typically, vector quantization is employed by [JDS11] to build the so-called
IVFADC index. Here, a cell is defined by the subspace which the quantization function
assigns to the same centroid (Voronoi cell). In [BBS17] it is stated that either LSH or
k-means is used for that. Babenko et al. use product quantization [BL12] to build a fine
granular inverted index which is described in detail in Sect. 4.3.
However, these non-exhaustive methods prohibit the search in arbitrary subsets of the index
entries which is needed for smaller target sets T . To give an example: if one queries only in
a cell of the vector space and the target set is small it is very likely that the index might
return an empty set of candidates. To solve this problem we propose an adaptive kNN-Join
algorithm which determines a suitable number of cells and provides multiple lookups.

4 Adaptive Search Algorithm for Approximated kNN-Joins

We propose an adaptive search algorithm for kNN-Joins which can cope with arbitrary
target sets T . The index structure used by this algorithm is described in Sect. 4.1 and the
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algorithm itself in Sect. 4.2. We employ the inverted multi-index described in Sect. 4.3
that is especially efficient for RDBMSs and propose an approach to estimate the number of
targets read out from the inverted index in Sect. 4.3 which is necessary to use it for different
target sets. The distance computation is outlined in Sect. 4.4. This is based on product
quantization as described in Sect. 3.2. However, for the adaptation to different cardinalities
of T , we employ a modification described in Sect. 4.5. Further optimizations are presented
in Sect. 4.6.

4.1 Index structure

The data structure of our proposed index for word vectors is shown in Fig. 3. Every index
entry in the Index Data table has an id to reference it (Entry ID). In addition, it consists
of a Coarse ID referring to a partition the vector belongs to for the inverted search and a
product quantization sequence (PQ Sequence). Every partition has a centroid which is stored
in the Coarse Quantizer table. The centroids of subvectors for the product quantization are
stored in a Codebook. Each of those PQ centroids has an ID which corresponds to codes
in the product quantization sequences and a position Pos ∈ {1, . . .m} which refers to the
position of the subvector it is calculated for (u1, . . . , um). The original vectors are stored in
a Original Vectors table.

4.2 Adaptive kNN-Join Algorithm

Fig. 4a shows a flow chart and Fig. 4b the pseudo code of our proposed kNN-Join algorithm.
As input parameters, the algorithm gets a set of query vectors R = r1, . . . rn, the set of
target vectors T represented as subset of index entry ids and the desired number k of nearest
neighbors. Furthermore, there are two configuration parameters: α and Thflex. The value α
determines the minimum number of targets per result that has to be considered for the search
process. A higher value of α leads to a higher precision of the result set. The value Thflex
configures the calculation of distances with the product quantization which is discussed in
detail in Sect. 4.5. The algorithm consists of four steps: At first, there is a preprocessing step
(Line 3 to 6), which is necessary for the product quantization based distance calculation
described in Sect. 3.2. There are two different types of distance calculations via product
quantization based on either SHORT_CODES or LONG_CODES. The first one is suitable for large
numbers of distance calculations per query whereas the second one is applicable for fewer
distance calculations. Details are provided in Sect. 4.5. Thflex determines the limit of distance
calculation where the algorithm switches from LONG_CODES to SHORT_CODES, whereas the
distance calculations depends on α · k. The precomputed distance values of subvectors are
stored in Dpre. In the query construction step, the retrieval of database entries from the
inverted index is prepared. This involves the calculation of the coarse quantization C for
every query vector ri in Line 9 which returns a sequence of the coarse centroid ids from the
Coarse Quantizer table (see Fig. 3) in decreasing order according to the distance between
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(2) Query
Construction

(4) Distance 
Calculation

SQL 
Query

T

enough
results

not enough 
results

Increase
α value

for remaining 
query vectors R'

Construct 
Result Table

Enough
Targets?

(1) Pre-
processing

kR

Representation of target vectors 
for  every query vector

(3) Data Retrieval

(a) Flow Chart of Algorithm

Require:
Selectivity: α
Threshold Flexible-PQ: Thflex

1: function Adaptive-kNN-Join(R, k, T, α)
2: R′ ← R, j ← 1
3: if α · k > Thflex then . only for product quantization
4: Dpre ←preprocessing(R, T , SHORT_CODES)
5: else
6: Dpre ←preprocessing(R, T , LONG_CODES)
7: while R′ , ∅ do
8: for all ri ∈ R do
9: C∗ ←coarseQuantize(ri)

10: ω ←estimateOrder(C, T , α · k · j)
11: centr(i) ← {c ∈ C | order (c) < ω }
12: query←constructQuery(centr, T )
13: Tsub ←execute(query)
14: R′ ← {ri | |Tsub (i) | < α · k }
15: j ← 2 · j
16: for all ri ∈ R do
17: for all t ∈ Tsub (i) do
18: d ←distFunc(ri, t, Dpr∗e)
19: Update(topk[ri], d)
20: return topk

* ordered list of centroid ids

(b) Pseudo-Code of the Algorithm
Fig. 4: Adaptive kNN-Join Algorithm

the coarse centroid and the query vector ri. Every centroid id corresponds to a partition in
the index. The number of partitionsω to be considered is estimated by the estimateOrder
function (details are given in Sect. 4.3). Based on ω and C the set of the centroids to be
retrieved from the index for ri is then added to centr(i). After that, a single SQL query is
constructed to retrieve the data for all query vectors from the index (data retrieval step,
Line 13). Then, the query vectors R′ for which not enough index entries could be retrieved
are determined. For them, another query construction and retrieval iteration is done with a
less conservative order estimation (modified by j). If the number of targets is sufficient,
the distance values between every query vector ri and its respective index entries Tsub(i)
are calculated by a distance function distFunc ((distance calculation step). We elaborate
more on the distance function in Sect. 4.4. The best candidates for the kNN operation are
held in a sorted list topk which is updated after every distance calculation.

4.3 Inverted Multi-Index and Partition Estimation

In Sect. 3.3 we described the advantages of inverted indexing for ANN. However, inverted
indexing in general is poorly suitable when the target set T is only a subset of all vectors
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𝑢1 𝑢2
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Fig. 5: Inverted Multi Index
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No Return Centroid Ids
of 

Determine Coarse
Quantization

Fig. 6: Confidence Estimation

in the index TI , i.e. T � TI . For this case it is not obvious how many partitions should be
considered. To solve this problem, we propose a method to estimate the number of targets
observed by the search when a certain number of partitions is read out from the index. This
allows us to pick the optimal number of partitions (Fig. 4b Line 11). To optimize the coarse
quantization step (Fig. 4b Line 9) we use an inverted multi-index [BL12] which enables fast
lookups even if large numbers of index partitions are needed.

Inverted Multi-Index A simple inverted index based on quantization could be created
by clustering all possible target vectors TI into n distinct partitions P1∪̇ . . . ∪̇ Pn which
corresponds to the Voronoi cells of the centroids c1, . . . , cn. To determine the partitions in
which to search for a query r, one has to calculate all the distances d(r, c1), . . . , d(r, cn).
However, this could be time-consuming for database queries with a large query set R. To solve
this problem, [BL12] propose to use product quantization to obtain more smaller clusters
for the partitions with only a few centroids. Suppose the product quantization sequences
which serve as labels for the partitions consist of two centroid indexes c1, c2 ∈ {1, . . . , n},
there are n2 numbers of partitions (see Fig. 5). But, to determine the nearest clusters one
has to calculate only the 2 · n square distances between the subvectors of the query vector
centroids stored in a codebook. Subsequently, an order of centroids in accordance with the
distances to the query vector can be obtained by using the algorithm described in [BL12].
The data structure shown in Fig. 3 is designed for a simple coarse quantizer. If product
quantization according to the inverted multi-index is used, the coarse quantization table is
replaced by a second codebook relation and the ids c1 and c2 are represented by a single id
idc = c1 · n + c2 in Coarse ID.

Estimation of the Number of Targets The overall objective of the estimation (Fig. 4b
Line 10) is to determine a suitable number ω ≤ n of nearest partitions in a way, that the
probability Pest that it is necessary to run further database requests for the query vector
ri is lower than a certain value 1 − Pconf . This is done by iteratively incrementing ω until
the confidence value obtained by a probabilistic model is higher than Pconf (see Fig. 6).
The estimation relies on statistics about the distribution of the index. Those contain the
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relative sizes of all partitions P1, . . . , Pn compared to the whole index size (the total number
of vectors). For the estimation, we consider the set of all index entries TI , the target set
of the current query Ti and a set of partitions P1∪̇ . . . ∪̇Pω = Tp which are selected as
the partitions with the nearest centroids to the query vector. We then want to estimate
the probability 1 − Pest that Ti contains at least β = k · α entries which corresponds to
the condition in the algorithm of Fig. 4b in Line 14. It corresponds to the cardinality of
Ti ∪ Tp. For this purpose, we leverage a hypergeometric probability distribution (Eq. (3))
which describes the probability to get s successes by drawing M elements out of a set of N
elements without replacement. In our case, s is the desired number of targets in Ti ∪ Tp,
M is the cardinality of Tp and N equals |TI |. The probability of drawing at least β target
vectors from the set TI of all vectors in the index can be calculated with Eq. (4) by using the
cumulative distribution function.

h(X = s ; |TI |, |Ti |, |Tp |) =
( |Tp |

s

) ( |TI |− |Tp |
|Ti |−s

)

( |TI |
|Ti |

) (3)

µ = |Ti | ·
|Tp |
|TI | σ2 = |Ti | ·

|Tp |
|TI | ·

(
1 − |Tp |
|TI |

)
· |TI | − |Ti |
|TI | − 1

1 − Pest = hcdf (β − 1 ; |TI |, |Ti |, |Tp |) = 1 −
β−1∑

s=0

( |Tp |
s

) ( |TI |− |Tp |
|Ti |−s

)

( |TI |
|Ti |

) (4)

However, because of the complexity of the computation of the binomial coefficients, we
have to use an approximation based on the normal distribution Eq. (5). To obtain the
approximation, we use the mean µ and the variance σ2 from the hypergeometric distribution
(see Eq. (3)). In contrast to Eq. (3), which involves a cumulative distribution function, here,
the number k is a specific number of targets which corresponds to Ti ∪ Tp .

N (k; µ, σ2) =
1√

2πσ2
· exp

[
− (k − µ)2

2σ2

]
(5)

The approximation of the probability of getting at least β − 1 targets (Eq. (6)) is then
obtained by its cumulative distribution function. The addition of 0.5 serves as a continuity
error correction. It is added to the formula since the hypergeometric distribution is a discrete
probability distribution. Since β is an integer value, k < β − 1 corresponds to k < β − 0.5.

hcdf (β − 1; µ, σ2) ≈ 1 −
β−1∑

s=0
N (s; µ, σ2) (6)

≈ 1 − 1
2
·
(
1 + erf

( (β − 1) + 0.5 − µ√
2σ

))
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The probability hcdf of getting enough targets can be increased by raising the number of
partitions in Tp which corresponds to the coarse order ω in the algorithm in Line 10 of
Fig. 4b. The algorithm chooses ω in a way that it is minimal and hcdf is higher than a certain
probability Pconf which is also termed as the confidence value. From experimental results,
we noticed that 0.8 seems to be a good value to achieve high response time for the algorithm.

4.4 Distance Calculation

Beside the adaptive number of partitions and vectors to be considered by the kNN-Join
algorithm, the trade-off between precision and runtime also depends on the distance function,
namely: (1) exact calculation, (2) product quantization and (3) product quantization with
post verification. Product quantization is the fastest one but also provides the lowest precision.
It calculates distance values as described in Sect. 3.2. The exact calculation is too slow,
especially for a large number of target vectors and a large α. Method (3) strikes a balance
between both extremes and therefore represents the default distance function. In the first
place it calculates the approximated distance values using product quantization for k · α
targets. Second, it refines the k · pvf best candidates with the exact method to obtain the
final top-k. Here, the post-verification factor pvf is the major factor which influences the
precision of the kNN computation. By adjusting it the user can control the trade-off between
precision and runtime as desired in Challenge 3 of Sect. 2. For further details see the
evaluation in Sect. 5.2.

4.5 Flexible Product Quantization

The product quantization index provides two parameters: the number of subvectors m and
the number of centroids per quantizer |C |. The optimal setting of both parameters depends
on the desired precision and response time as well as on the typical number of distance
calculations α · k which are performed for every query vector. In general, higher values of
m and |C | correspond to higher precision and higher response times.
If the target set size α · k is large, the computation of the distances (Line 18) is the most
time-consuming step whereas for small target sets, the computation time of the preprocessing
step (Line 3) becomes more and more prevalent. Since a low value for m, i.e. a low number
of subvectors, corresponds to a faster distance calculation, the product quantization speed
for large target sets depends mainly on m. However, with a decreasing number of vectors
α · k, the preprocessing step (Line 3) has also a high computational effort which is mainly
influenced by |C |. A decreasing number |C | corresponds to a faster search process.
To be efficient in both situations, we introduce a flexible product quantization search
procedure. For product quantization search with a small number of distance calculations
α · k < Thflex an index is created with a large number of subvectors m = 2 · m′ but only a
small number of centroids |C | (see 4). This is called the LONG_CODES mode, since the pq
sequences consist of a larger number m of ids. For a larger number of distance calculations,
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the number of distances to sum up for each distance calculation (see Eq. (2)) can be reduced
by precalculating squared distances for pairs of centroids 〈cj, cj+1〉 and pairs of subvectors
〈u j (r), u j+1(r)〉 (Sect. 4.2):

d(〈u j (r), u j+1(r)〉, 〈cj, cj+1〉)2 = d
(
u j (r), qj (u j (y))

)2
+ d

(
u j (r), qj+1(u j+1(y))

)2 (7)
where : cj = qj (u j (y)), cj+1 = qj+1(u j+1(y)), j ∈ {2 · i |i ∈ N}

The distance calculation can then be expressed by the following equation:

d̂(r, y)2 =

m′∑

j=1
d(〈u2j−1(r), u2j (r)〉, 〈c2j−1, c2j〉)2 (8)

To efficiently calculate this, the product quantization sequences consisting of m numbers
can be transformed into sequences of m′ = m

2 numbers. Therefore, all centroid id pairs
〈id(cj), id(cj+1)〉 can be transformed into single ids:

id(cj, cj+1) = id(cj) · |C | + id(cj+1) (9)

This is called the SHORT_CODES mode. For a kNN-Join, this transformation process has to be
done only once irrespective of the number of queries (see Fig. 4b Line 3 to 6). Optimal
settings for the threshold Thflex are discussed in Sect. 5.4.

4.6 Optimizations

Target List for Product Quantization Search A naïve way of doing the distance calculation
via product quantization might be to calculate the distances directly by iterating through
the targets instead of collecting the targets as it is done in Fig. 4b in Line 13. However, to
execute product quantization efficiently it is important that the precomputed distances stay
in the cache. Since the precomputed distances are specific for the query, it is necessary to
collect all product quantization sequences and assign them to the query vectors in the first
place. Afterward, the distance computation can be done query-wise. So, all precomputed
distances specific for a query can stay in the cache. Moreover, the approach of [AKLS15]
could be used to further improve memory locality to speed up the product quantization
search. Thereby, product quantization sequences are compressed to fit into SIMD cache
lines.
Prefetching As stated in Sect. 4.4, we collect the targets in Line 13 of the search algorithm
(Fig. 4b) and assign them to the query vectors they should be compared to. This requires a
lot of random memory accesses to the lists of targets. To speed up this step, we prefetch
the target list entries which has to be updated next from time to time. We tested the effect
of the prefetching with our algorithm on a query with 10,000 queries and 100,000 targets
(300-dimensional vectors) and α = 100 and k = 10. For this query the construction time
of the target list could be reduced by ≈ 35%, from 1.4 seconds to 0.9 seconds. For more
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details about that one can take a look at the code3.)
Fast Top-K Update In Line 19 of the algorithm in Fig. 4b the topk gets updated after every
distance calculation. If the distance value is lower than every other index entry, the new
index entry has to be inserted into this array of current nearest neighbors. However, this can
be time-consuming since every other array element with a larger distance has to be moved.
For a large topk , the updates can be accelerated by first adding new candidates in a buffer. If
this buffer gets full or all distance calculations are done, all candidates are added to the topk
in one run. This is in particular useful if post verification (see Sect. 4.4) should be done
and thus a large set of candidates is required in the first place. Alternatively, one can use a
linked list instead of an array for the topk . However, linked lists are space consuming which
could become a problem for large query sets.

5 Evaluation

In this section, we first evaluate our adaptive kNN-Join implementation for varying post-
verification factors and α values and compare them to the basic batch-wise product
quantization approach (see Sect. 5.2). Moreover, we provide a detailed runtime investigation
for the different sub-routines of the kNN-Join given different query and target set sizes
(Sect. 5.3). The impact of short and long code sizes on the precomputation and distance
calculation is shown in Sect. 5.4. In Sect. 5.5, we finally evaluate the accuracy of the target
size estimator that was presented in Sect. 4.3.

5.1 Experimental Setup

We use two different datasets of word embeddings to evaluate our approach, the popular
Google News dataset4 which is trained with the word2vec [Mi13] skip gram model and a
dataset trained on data from Twitter5 with GloVe [PSM14]. We use python scripts to create
the index structures for these datasets as shown in Tab. 1. The kNN-Join, that can be used
for queries similar to the example in Fig. 1, is implemented as a user-defined function.
The index consists of entries with an entry_id and a product quantization sequence as
well as a codebook storing the centroids. As a baseline, we use the exhaustive product
quantization search as described in [JDS11], which can easily generalized to a kNN-Join
operation. Basically, it makes no use of inverted indexing and thus calculates approximated
distance values between any query vector in R and any target vector in T to determine
the kNN results. The method can simply reuse the index data table and the codebook of
our adaptive index (Page 6 Fig. 3) while ignoring the Coarse ID column. To make the
comparison fair we implemented a batch-wise search algorithm as UDF, like it is done for the

3 https://github.com/guenthermi/postgres-word2vec/blob/master/freddy_extension/ivpq_search_in.c

4 https://drive.google.com/file/d/0B7XkCwpI5KDYNlNUTTlSS21pQmM/edit?usp=sharing, last access: 15.08.18
5 https://nlp.stanford.edu/projects/glove/, last access: 15.08.18
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Google News (GN) Twitter (TW)
Size 3, 000, 000 1, 193, 514
Dimensionality 300 100
Coarse Centroids 2 · 32 2 · 20
Product Quantization m = 30, |C |∗ = 32 m = 10, |C |∗ = 32
Confidence Pconf = 0.8 Pconf = 0.8
Threshold (For Flexible Product Quantization) Thflex = 15, 000 Thflex = 15, 000
∗ number of centroids for each quantizer

Tab. 1: Dataset and Index Characteristics

(a) Google News (b) Twitter

Fig. 7: Evaluation of Execution Time and Precision

adaptive search algorithm. To enable repeatability we have published the implementation6.
The machine we run the evaluation on is a Lenovo ThinkPad 480s with 24GB main memory,
an Intel i5-8250U CPU (1.6GHz) and a 512GB SSD. The computation runs only on a single
core in a PostgreSQL instance on a Ubuntu 16.04 Linux System.

5.2 Influence of Index Parameters on Precision and Execution Time

In Fig. 7, the execution time and precision curves for different α values and increasing pvf
values are shown. All the kNN-Joins are executed on 5,000 query and 100,000 target vectors
with k = 5. The post verification factors used for the computation are 10, 20, . . . , 100. The
precision is determined by calculating the amount of nearest neighbor results of a query
vector which concur with the exact results relative to the number of k. Since doing the exact

6 https://github.com/guenthermi/postgres-word2vec
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calculation for all query vectors of a kNN-Join is very time-consuming, we draw bootstrap
samples of the query vectors of size 100 to derive an estimation of the actual precision
value by determining the precision of the samples results. The measurements for every
configuration are done 20 times and the median values are determined. The value of α · k is
always lower than Thflex. Thus, the LONG_CODES method is used.
As one can see, for most of the chosen values of pvf and α the adaptive search with
PQ distance calculation has the shortest execution time and also outperforms the product
quantization baseline method in terms of precision and runtime. Join operations with
exact distance calculation have significantly longer execution times than the other methods,
however achieving the highest precision value. Nevertheless, the post verification might be
the better choice in most of the cases, since it achieves high precision values while being
much faster than the exact computation. For increasing values of pvf the execution time, but
also the precision generally increases. Regarding the α values, one can also observe that
higher values lead to higher precision values at the expense of execution time.
The post verification method is significantly slower than the product quantization method,
even though pvf has a low value. This is the case since the use of post verification requires
to at least calculate k exact distance values for each query vector. Furthermore, it needs to
retrieve the raw vector data for every target vector which has to be considered for distance
calculation. Moreover, it is necessary to hold these vectors in memory until the distance
computation starts. During the distance computation, the vectors of the currently best
candidates have to be stored together with the product quantization sequences in a separate
TopK list to apply the post verification step later. For high values of pvf , on one hand, the
post verification step gets time-consuming while on the other hand more updates of the
TopK lists are required during the distance calculation step.

5.3 Performance Measurements

We evaluate the performance of the search algorithm by measuring the execution time of
certain subroutines of the algorithm denoted by numbers 1 to 4 in Fig. 4a. This is done
for different cardinalities of query sets R and target sets T . The query and target vectors
are sampled from the whole set of word embeddings of the Google News dataset. The
results of our measurements are shown in Fig. 8 for different values of |R| and |T |. For
the measurements we set α = 100, pvf = 10 and used a fixed target set size of 10, 000
while increasing |R| and a query set size of 10, 000 while increasing |T |. All measurements
are done five times and the average value is determined. The distance computation time
increases with the query set size as well as with the number of target vectors. The query
construction time only increases with an increasing query set size. If the query set size is
fixed the query construction time slightly decreases with increasing target set size because a
higher number of partitions has to be determined for every query vector in case the number
of targets is very low. The main effort during the query construction is the calculation of
the coarse quantization for every query vector. Since this process does not change with
the number of target vectors, the execution time is rather constant. The data retrieval time
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Fig. 8: Time Measurement for increasing sizes of query set R and target set T

effort is nearly constant for an increasing number of query vectors while its execution time
increases if the target vector set grows. The preprocessing has to be done per query vector.
Therefore only the query set size influences its execution time.

5.4 Flexible Product Quantization

Flexible product quantization (Sect. 4.5) can adjust the product quantization distance
calculation to smaller or bigger sets of vectors. The product quantization sequences in our
index structure for the Google News dataset consist of codes ci ∈ {0, . . . , 31} of length 30
which can be combined to shorter codes c′i ∈ {0, . . . , 1023} with length 15. The overall
execution time of a kNN-Join with product quantization distance calculation is shown
for both methods in Fig. 9a. Fig. 9b shows the execution times for the precomputation
and distance calculation step. We use query sets of size 5, 000. The target set size |T | is
shown on the x axis. The value α is set to |T |

2·k . The measurements are done 10 times with
randomly sampled query and target vectors and average values are determined. For small
target sizes with |T | ≤ 20, 000 the computation via long codes is faster. For larger target
sets the overhead of the distance calculation for long codes becomes prevalent such that the
calculation with short codes is faster.

5.5 Accuracy of the Target Size Estimation

The number of targets determined in the retrieval step of the algorithm before the distance
calculation can be estimated. For this purpose we leverage an approximation of the
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(a) Execution Times of Both Methods (b) Precomputation and Distance Computation
Fig. 9: Evaluation of Short and Long Codes Calculation

hypergeometric distribution as described in Sect. 4.3. The estimated number of targets
derived from the index is µ as defined in Eq. (3). In Fig. 10a, a scatter plot of the estimated
and actually derived number of targets is shown. For these measurements, kNN-Joins with
a single randomly sampled query vector are executed and the number of targets obtained in
the first retrieval step is determined inside the user-defined function. This was done for all
α ∈ {1, . . . , 100}, k = 5 and target sets of size |T | = 1, 000. For each α value 10 queries are
executed. The divergence of the estimation is higher if the desired number of targets per
query vector gets higher. This can be noticed in the 4th-grade polynomial regression curve
of the sample points in Fig. 10b. However, if the number of desired targets is near to |T | it is
apparently decreasing.
To prevent the system from executing a lot of database queries, one can adjust the confidence
value Pconf . It represents how likely it is that only one database request is sufficient to
derive the desired number of targets from the index. This was also evaluated by single query
kNN-Joins with α = 10 and the same search parameters as in the last experiment. The
amount of queries where the condition is true (only one request was required) in relation to
Pconf is shown in Fig. 10c. For each confidence value Pconf ∈ {0.05 · i |i = 1, . . . , 20} 1, 000
queries are executed. As desired, the amount of queries where the condition is true rises up
to 100%, if the confidence value increases up to 1. However, the actual confidence is quite
higher than Pconf , since the confidence can only be increased step-wise by incrementing ω.

6 Related Work

There is already limited work done in integrating kNN operations in database systems.
For instance, PostgreSQL can be extended by PostGIS [Po18] which allows running kNN
queries for low dimensional (geographical) data. Index structures can be created with
GiST (Generalized Search Trees) to speed up such operations. An integration of vector
similarity search for high dimensional data into Spark has been done by [BBS17] for
word embeddings. Here, LSH [Ch02] or spherical k-means [DM01] is used to partition
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(a) Estimated Size Values (b) Divergence (Absolute) (c) Confidence
Fig. 10: Estimation of Target Set Size

vectors for filtering. However, the actual distance calculation might be done with exact
methods. We proposed FREDDY [Gü18] which supports approximated kNN queries
for high dimensional data, however, can not efficiently execute kNN-Join operations. A
system called ADAMpro [GAKS14] adds approximated kNN-Search techniques on top of
a database system for multimedia retrieval. Furthermore, also approximated kNN-Joins
are already integrated into a relational database system by [YLK10]. However, this is only
applicable for low dimensional data. This work differs from previous work in the way that
it employs state-of-the-art approximated nearest neighbor search techniques to support
approximated kNN-Joins also for high dimensional data. To do so several modifications and
optimization specific for kNN-Joins in RDBMSs have been done.

Approximated Nearest Neighbor Search The difficulty to find the nearest neigh-
bors especially in high dimensional vector spaces has led to the development of several
kinds of approaches for approximated nearest neighbor (ANN) search. However, not
all of them are applicable for kNN-Join operations in RDBMSs. On one hand, recently
graph-based methods are developed [Ha11] which are fast, however, do not allow online
index updates. On the other hand, there are so-called cell probe methods which divide the
search space into several cells. One of the most popular ones E2LSH [Da04] applies locality
sensitive hashes (LSH) to achieve such a partitioning. Jegou et al. [JDS11] employ product
quantization for partitioning. Additionally, their approach can be combined with inverted
indexing similar to [SZ03] for even faster search. One advantage of product quantization
is, that it is easy to add vectors during runtime in an online update manner which is
particularly useful for the application in relational database systems. Thus, we based our
index on such quantization techniques. In the context of word embeddings, vectors for text
values of multiple tokens can be added during runtime by an averaging method [CJ15]. For
such updates, the quantizations of the new vectors have to be calculated. Vectors can be
removed by simply deleting the quantization entries from the index. For frequent inserts
and deletions, the online product quantization approach proposed by [XTZ18] suggests
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updating the centroids of the quantizer functions. In this way, the index can react to context
drifts of its containing data.

7 Conclusion

We propose a novel index structure for approximated kNN-Joins on high dimensional data
which is flexible enough to deliver good performance on different cardinalities for query
and target vector set. It enables non-exhaustive search for different target sets. We have
shown that the proposed index structure can achieve faster response times than product
quantization as an instance of a state-of-the-art exhaustive search method. We provide a
practical implementation of the operator and our optimizations in PostgreSQL.

Future Work By adjusting the post verification factor pvf one can influence the
precision and response time of the kNN-Join. However, there are further search parameters,
in particular α, which have an influence here. It might be hard for a user to find out
which parameter configuration leads to a specific precision and response time. Thus, an
oracle which can provide the optimal parameters to achieve a good precision by fulfilling
constraints regarding the execution time would improve the usability of the system.
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