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Abstract: Currently, the classification accuracy of surface electromyography (SEMG) signals is high
in literature, but the conventional recognition system may classify untrained movements or the
trained movements of low reliability to one of its target classes by mistake. If such a system is used
for prosthetic control, sometimes it may cause a disaster. A two-layer classifier that fuses the Gauss-
ian mixture model (GMM) and k-nearest neighbor (kNN) in a sequential structure is proposed in
this study. The proposed algorithm can reject the trained movements with low reliability and is
efficient in rejecting the untrained movements, thus enhancing the reliability of the myoelectric con-
trol system. The results show that the proposed algorithm can produce 95.7% active accuracy in
recognizing 12 trained movements and a 30.3% error rate for rejecting 12 untrained movements.
When the movement number is six, the active accuracy for trained movements can reach 99.2%, and
the error rate of untrained movement is only 17.4%, which is much better than previous studies.
Therefore, the proposed classifier can accurately recognize the trained movements and reject un-
trained movement patterns effectively.

Keywords: myoelectric signal; pattern recognition; machine learning; SEMG; reject option; GMM,;
kNN

1. Introduction

Movement recognition with a surface electromyography (SEMG) signal has been inves-
tigated for many years. sSEMG signal decoding with pattern recognition (PR) methods has at-
tracted a lot of attention due to the rapid development of sensing technology and machine
learning. Various feature extraction [1-3] and pattern recognition methods [4] have been de-
veloped to improve classification accuracy. An 89% classification accuracy can currently be
obtained for as many as 52 hand movements [5]. When the number of movements is eight,
the classification accuracy can reach 97% [6]. Though high classification accuracy has been
achieved in the laboratory, the practical application of PR-based myoelectric control is limited
due to the relatively low robustness of the PR-based control strategy [7,8].

One problem of conventional PR algorithms is that they are built on the assumption that
the statistical feature of test samples is close to the samples used for training. However, the
sEMG signals are affected by lots of factors, such as muscle fatigue, limb position [9], electrode
shifting [10], and within/between day factor [11], leading to performance degradation of the
PR system after prolonged use. It is hoped that the PR system can only make confident pre-
dictions. Otherwise, the PR system should avoid making predictions. This problem is known
as ambiguity rejection in some studies [12,13], which is the first research question in this study.

Another problem of conventional PR algorithms is that they can only recognize a limited
number of target movements. They always make a prediction for an input, which can be con-
sidered a drawback when the input is from an untrained movement class [14]. Suppose such
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a system is utilized for prostheses control. In this case, the system will classify the untrained
movements as one of the target movements by mistake [15], resulting in an unexpected acti-
vation of prostheses, which will significantly reduce the usability and reliability of the myoe-
lectric control system [16]. It may also frustrate the users and make them refuse to use the
device again. Hence, the rejection of untrained movements (novelty rejection), which is the
second research question in this study, is also essential.

As for prostheses control, it is believed that the error that causes accidental activations of
the prostheses is more “costly” than those that cause a pause in motion [17]. A PR system with
a rejection option to the sSEMG signals with low similarities to training samples would reduce
the potential risk due to uncertain decisions. Those sEMG signals can either be signals from
trained movements or novel movements. The study aims to improve the reliability of the
SsEMG recognition system by increasing the accuracy of recognized samples and reducing the
influence of untrained/unknown movement patterns [18] so that the system can be used for
practical applications. An efficient two-layer classifier is proposed in this study. The proposed
classifier predicts the test sample firstly by a time-efficient Gaussian mixture model (GMM)
with a reject option (GMM-R) classifier. Then, the test sample will either be rejected or passed
to the second-layer k-nearest neighbor (kNN) with a reject option (kNN-R) classifier based on
the prediction result of the GMM-R classifier. Suppose the first layer classifier rejects the test
sample. In that case, it is up to the second layer classifier to determine whether it gives a pre-
diction or rejects the current decision. The advantage of the proposed classifier is that it takes
advantage of GMM for its fast calculation and the kNN classifier for its high accuracy. So, it
outperforms GMM and kNN in accuracy and is much more computationally efficient than
kNN. With the proposed algorithm, objectives of this study can be achieved: 1) increasing the
recognition accuracy of labeled samples while reducing their rejection rate and 2) enhancing
the rejection rate of novel samples. Besides, the algorithm is computationally efficient for both
model training and test sample recognition.

The paper is organized as follows. A literature review on classification with reject options
is introduced in Section 2. Section 3 describes the dataset used in this study, signal processing
and feature extraction method, and the model evaluation method. The description of the pro-
posed model is introduced in Section 4. Then, the experimental results are presented in Section
5. A discussion on proposed algorithms and comparison with other studies are conducted in
Section 6. Finally, the conclusion is drawn in Section 7.

2. Literature Review

Classification with a rejection option has been applied in many areas, such as optical
character recognition [19,20], medical diagnosis [21], and engineering [22]. Despite the differ-
ence in their application background, the algorithms have something in common. Though
ambiguity rejection and novelty rejection are two different rejection types, and they are both
concerned in this study, the algorithms developed for one can be applied for another in most
cases. So, we do not differentiate them on purpose when conducting the literature review but
focus more on the algorithm itself.

A common algorithm used in related research is linear discriminant analysis (LDA). The
authors of [17,23] proposed a multiple binary LDA classifier with “1-vs.-all” and “1-vs.-1” to-
pology for the rejection of motions when the multiple binary classifiers cannot reach an agree-
ment. Though it effectively limits the number of active movements, [23] could be problematic
as the increase of motions and [17] suffer from too frequent rejections. The authors of [24] pro-
posed a confidence-based rejection scheme based on the outputs of LDA. It generates a confi-
dence score for each observation, and the observation with a confidence score lower than the
predefined threshold will be rejected. A similar method is followed in [25], except that the
class-specific threshold is automatically determined using receiver operating characteristic
(ROC) curves.

The reject option can also be used with neural networks. The researchers of [26] devel-
oped a method for defining a reject option by estimating the classification reliability as meas-
ured by a reliability evaluator and applied the method to three neural network paradigms. A
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post-processing algorithm for a multiple layer perceptron (MLP) neural network was pro-
posed in [27] to detect and remove possible misclassifications from LDA. Deep neural net-
works (DNNss) have also been used for novelty detection in [28,29]. Although these algorithms
have demonstrated their effectiveness through experimental results, the training of neural net-
works is time consuming.

Previous publications have shown that combing classifiers will improve the accuracy of
individual classifiers; [30-32] analyzed the error-reject trade-off in three linearly combined
classifiers. The experiments showed that the linear combination of the classifiers might im-
prove the error-reject trade-off of the individual classifiers; still, the improvement depends on
the type of combination and level of rejection rate. An adaptive hybrid classifier consisting of
one-class support vector descriptors (SVDDs) and a multi-class LDA was proposed in [33] to
reduce the impact of interference on myoelectric pattern recognition. The LDA classifier will
be adopted for classification if the test observation is not detected as an outlier by SVDD. A
similar strategy has been adopted in [18]. In both studies, the classification accuracy of the
identified active movements is mainly dependent on the selected classifier, and SVDD works
as an outlier filter [12,34]. Besides, SVDD may result in a large run-time complexity as the
increase of training set, which may introduce time delays to the control system.

Unlike studies above, a training strategy was proposed in [16] to categorize all the un-
wanted movements (UMs) into a new movement class (UMs-combined motion class) to re-
duce the impact of unwanted movements. Since the LDA classifier is trained by the sSEMG
signals from both target classes and the UMS-combined motion class, the usability of the pro-
posed strategy is limited in practical applications because the unwanted movements are usu-
ally unknown in advance.

The studies mentioned above provide a good reference for developing classifiers with
reject options. It can be noticed that many related studies developed algorithms based on an
LDA classifier. Though an LDA classifier can be extended to have a rejection option conven-
iently and is computationally efficient, its classification accuracy is limited compared with
other classifiers [35,36]. The other algorithms, such as neural networks, SVDD, and binary-
type classifiers, may have significant problems in high computational costs. A classification
scheme based on boosting and random forest classifiers is proposed in [37]. It was shown that
the proposed classifier has good error distribution among the classes. A 92% accuracy can be
obtained in recognizing trained movements and 20% for untrained movements. A compari-
son between the classifier proposed in [37] and the classifier proposed in this study has been
conducted.

3. Methods
3.1. Dataset

The dataset applied in this study is from Ninapro database 1, Exercise A [35,36,38], which
consists of 12 basic hand movements. The sSEMG signals are collected using 10 active double-
differential OttoBock MyoBock 13E200 electrodes. Eight electrodes are uniformly placed
around the forearm. Additionally, two electrodes are placed on the flexor and extensor mus-
cles of the forearm. The sampling rate of the SEMG signals is 100 Hz. The total number of
subjects in the database is 27, which are all intact subjects. The movements used in this study
are 12 finger movements, which are index flexion/extension, middle flexion/extension, ring
flexion/extension, little finger flexion/extension, thumb adduction/abduction, thumb flex-
ion/extension [36]. To evaluate the classifier's performance on trained movements, the first
five repetitions of the 12 movements are used for classifier training, and the left five repeti-
tions are used for testing.

3.2. Signal Processing And Feature Extraction

The sEMG signals of Ninapro database 1 have already been amplified, band pass-
filtered, and rectified. So, there is no signal preprocessing further applied to the sSEMG
signals in this study. The signals have been labeled so that the movement-related signals
could be directly obtained. For feature extraction, a sliding window method is applied.
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The width of the window is 200 ms, and the increment is 20 ms. For each sliding window,
two time-domain feature extraction methods, root mean square (RMS) and waveform
length (WL), have been applied due to their computational simplicity and relatively better
performance than the other features from my previous study [5]. The definitions of the
feature extraction algorithms RMS and WL are described below.

e RMS
RMS; = lﬁ“xz (1)
! Ni:l !
e WL

N
WL= Zi:ll Xi = Xita) | @)

where j is the column; N is the number of observations in the current window; and X,

represents the data point.

3.3. Evaluation

Accuracy is usually used to evaluate the performance of a classifier. For classifiers
with rejection options, their performance depends not only on accuracy but also on rejec-
tion rate. To differentiate the accuracy defined in conventional classifiers and the one with
a rejection option, total classification accuracy (tAcc), active classification accuracy (aAcc)
[27], and rejection rate [16] are used to evaluate the performance of proposed algorithms,
and they are defined as follows.

number of correct classifications
tAcc=

— x100% 3)
total number of classifications

number of correct active classification
aAcc= - — x100% 4)
total number of active classification

number of rejected classifications

rejection rate= x100% (5)

total number of classifications
where active decisions are the decisions that would lead to prostheses moves when the
algorithm is applied for prostheses control. If the classifier does not reject any observa-
tions, tAcc and aAcc will be the conventional classification accuracy, and the rejection rate
will be zero. When a classifier tends to reject all of the observations, tAcc will be approach-
ing 0%, aAcc will tend to 100%, and the rejection rate will be 100%. So tAcc, aAcc, and
rejection rate should be used together [39] to evaluate the performance of a classifier with
a reject option. A method for comparing classifiers with reject options by sketching an
accuracy rejection curve (ARC) was proposed in [40] . The ARC plots the accuracy of a
classifier against its rejection rate. Given the acceptable rejection rate, the best available
classifier can be selected from the ARC curve with the highest classification accuracy.
Therefore, the ARC curve is also sketched when the performance of the classifier is com-
pared.

The method mentioned above is used to evaluate the performance of the classifier to
discriminate between trained classes. To assess the ability of the classifier to reject un-
trained movements, leave-one-out error analysis (LEA) [37] is applied in this study. The
error rate of the untrained movements is defined as follows.
number of active decisions

error rate = — x100% (6)
number of total decisions

For each untrained movement, if the classifier assigns a known class label to it, the
decision is an active decision, which means it is an error. So, this index can be used to
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evaluate the capability of the classifier to reject unknown movement patterns. Each of the
12 movements is sequentially omitted during classifier training but sent to the classifier
for prediction.

4. Proposed Methods

As mentioned above, ambiguity rejection and novelty rejection are two concerns of
this study. Though complex models, such as DNNs [29], may produce highly confident
predictions, they are more computationally expensive to train and require more data to
learn the model [14]. Therefore, two simpler models are preferred in this study.

4.1. GMM Classifier with a Reject Option

GMM is a parameter-based classifier, and it makes an assumption about the samples.
Our previous study shows that GMM has an excellent performance in sSEMG signal-based
movement recognition [5] for high accuracy and fast responses. Therefore, the GMM clas-
sifier is used as a baseline classifier in this study.

Theoretically, GMM can be seen as the weighted sum of several Gaussian compo-
nents that best approximate the input. It can be modeled as follows.

N
P(X|®)=ZW,-N(X|H,-,>:,-) (7)

i=1

2w =1 8)

where w, represents the prior probability of the it component; and N(x|w;,Z;)is the
Gaussian distribution of the i component defined by mean vector W, and covariance
matrix Z,. Then, given an observation x with dimension d, the conditional probability
density of x obtained from the cth category can be written as follows.

N
p(x|®c):Z”i;lEXpL_%(x_uf)rzi_l(x_ui)j )
= (Zﬂ)d/z |zi|5

where O, ={m,1,Z} represents the parameter set of the Gaussian mixture model of the ct
category, obtained from model training using the Expectation-Maximization (EM) algo-
rithm. According to Bayes’ theory, the probability of x belonging to class c is proportional
to the conditional probability density if each class’s prior probability is the same. There-
fore, the class label of x can be determined by finding the category of the maximum con-
ditional probability as long as the conditional probability densities of x from each class
are obtained.

The test sample X of sSEMG signals collected from contracting muscles for each dis-
crete movement consists of many observations x, ..., X, , where N is the number of obser-

vations. Therefore, the prediction on the discrete movement by using (10) is a series of
class labels. To extend the GMM to have a rejection option (GMM-R), we introduce a ma-
jority voting (MV) scheme to the series of class labels obtained in this study. We tabulate
these class labels into a 2-column table, where the first column contains the unique values
of class labels, and the second column contains the percentage of each class label. The
GMM-R makes its decision based on the maximum percentage value. Suppose the per-
centage of each class labelis G,,...,G., and

g:arcgeTcax G, (10)
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Then given a predefined threshold §,, the decision of GMM-R can be expressed as fol-

lows.

{ f; G. >,
g(X)= s 7 (11)
W, otherwise

where @ represents that the prediction is in doubt, and a further judgment should be
made. In the GMM classifier, the number of mixture components plays a vital role in its
performance. We have conducted a preliminary study on the influence of the number of
mixture components on the performance of GMM [41], and it was found that when the
number is three, a trade-off between classification accuracy and computational complex-
ity can be obtained [5]. Therefore, the number of mixture components will be three in the
following study.

4.2. GMM-kNN Fusion with a Reject Option

As a nonparametric method, kNN is one of the most widely adopted classification
algorithms. Though it is simple to implement, it is shown that kNN can produce classifiers
with performance close to the optimal Bayes classifier [42,43,44]. KNN does not make any
assumptions about the data, and it can be used on many occasions. The limitation of kNN
is that it compares the test sample with the training data each time a decision on the test
sample is demanded, so it requires a lot of memory and is computationally expensive [45].
We have conducted a study on recognizing the 12 hand movements of 10 repetitions with
sEMG signals collected from 27 subjects using GMM and kNN classifiers. When the first
five repetitions are used as training samples, and the rest five are used as test samples, the
result is shown in Figure 1. It can be observed from Figure 1 (a) that the classification
accuracy of kNN is superior to GMM in both its higher accuracy and lower standard de-
viation. However, the computational cost of kNN is much higher than GMM. The analysis
shows that the average computational time for recognizing the sEMG signals for one
movement by kNN is nearly 260 ms, almost 80 times more than GMM.

0.4

Time cost (s)

0.3
0.2
. 0.1
0
kNN GMM

(a) (b)

Figure 1. Comparison of k-nearest neighbor (kNN) and Gaussian mixture model (GMM) for movement
recognizing. (a) Comparison of classification accuracy. The K in kNN is six, and the number of Gaussian
components in GMM is three; (b) Comparison of average time cost for recognizing one movement.

kNN GMM

Considering the characteristics of KNN and GMM, we propose a two-layer classifi-
cation scheme, which may take advantage of the two classifiers to improve the classifica-
tion performance efficiently. The classifier is named GMM-kNN fusion with a reject op-
tion (GK-R). The proposed model consists of two layers, as shown in Figure 2. The first
layer is a GMM-R classifier. The test sample will be sent to the GMM-R classifier for deci-
sion at first. If the maximum percentage is larger than the predefined threshold, the class
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label corresponding to the maximum percentage will be assigned to the test samples. Oth-
erwise, the decision on the test sample is up to the second layer, which is a kNN with a
reject option (kNN-R) classifier. The kKNN-R classifier conducts a similar post-processing
method on the class labels of each observation to what GMM does. Suppose the percent-
age of each class label obtained by kNN is K,,..., K ; the predicted class label can be deter-

mined as follows.

I?:argmax K, (12)
cel:C

Suppose 9, isa predefined threshold used to evaluate the validity of the prediction
by the second-layer classifier. Then the decision on the test sample X will be determined
by two factors: the maximum percentage obtained by kNN and the predicted class label
by the GMM-R and kNN-R classifier. When the two classifiers make the same prediction,
or the maximum percentage obtained by kNN is higher than the predefined threshold,
the predicted class label will be assigned to the test sample. Otherwise, the test sample
will be labeled as “no motion”. The final decision can be expressed as follows.

A~

k, ifK. 25, or g=k

13
®, otherwise (13

o

where (© represents the prediction is rejected, and the movement will be labeled as “no
motion”. The corresponding class label is 0.

GMM-kNN fusion with a reject
option (GK-R) Classifier

Raw surface : ; .
e | gt | [ o | L[ eimar | e o
(sEMG) signals Segmentation Extraction Classifier

Accept
+—— | Class label

Qualified?

Reject

Second Layer kNN with a reject option
Classifier (kNN-R) Classifier

Accept
Qualified? ——> | Class label

Reject

No Motion

Figure 2. Workflow of proposed classifier.

The following classifiers are applied to prove the effectiveness of the proposed clas-
sification scheme.

¢ LDA-R(LDA with majority voting and a reject option). LDA-R is an extension to LDA.
For each observation in test samples, the conventional LDA will assign a class label
to it. Unlike the study in [24], a majority voting is performed to the series of class
labels. The percentages of observations that fall into each class are obtained. Thresh-
olding is performed on the maximum percentages. Additionally, for the one that is
higher than the threshold, the corresponding class label will be assigned to it. Other-
wise, the prediction will be rejected.
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e  GMM-R (GMM with a reject option). Since the proposed classifier is built on a GMM-
R classifier, the effectiveness of the proposed algorithm will be compared with the
GMM-R classifier.

e KNN-R (kNN with a reject option). Similar to LDA-R and GMM-R, kNN-R can reject
a low-reliability decision. Although high computational requirements may prevent
real-time application when the number of classes is large, its high classification accu-
racy is still attractive.

e GK-R (GMM and kNN fusion with a reject option). There are two parameters in the
GK-R classifier; the parameters are tuned, and the performance of GK-R for different
parameters will be presented.

5. Results
5.1. Classifiers with a Reject Option

The LDA, kNN, and GMM classifiers can be extended to classifiers with a reject op-
tion. The kNN and GMM classifiers with reject options have been presented before. The
LDA classifier with a rejection option (LDAR) proposed in [24] gives a predicted proba-
bility for each observation. The probability was compared with a predefined threshold. If
it is below the threshold, the prediction will be rejected. Otherwise, it will be accepted.
The optimal threshold reported in [24] is 0.97, and the same value was used in [27]. Unlike
the study in [24], the test sample of each movement applied in this study consists of mul-
tiple observations, so [24] cannot be used directly. To use LDA as a baseline classifier, we
extend it by thresholding the percentage of the majority voting results. Additionally, the
final prediction decision for the test sample is based on the thresholding result.

The classifier performance of LDA-R, kNN-R, and GMM-R on recognizing 12 trained
hand movements with features extracted by using RMS and WL is shown in Figure 3. It
can be observed in Figure 3 (a) that the tAcc of KNN-R is the highest of all. The tAcc and
aAcc of kKNN-R and GMM-R are much higher than the LDA-R at the same rejection rate
level. The performance of the classifiers with different features is different. GMM-R and
LDA-R have a higher aAcc with WL feature than the RMS feature. However, for kKNN-R,
the RMS feature produces a higher accuracy than the WL feature at a low rejection rate,
and then the aAccs of the two features tend to overlap at a high rejection rate. Therefore,
for different classifiers, the more appropriate features are varied. For practical application,
it is desired that the system has a low rejection rate and high accuracy. Considering the
performance of kKNN-R and GMM-R with the two features, the feature adopted by kNN
is RMS, and the features used by GMM is WL in this study.

100 105
—O—kNN-R RMS
—-O-—kNN-R WL
80 —O—GMM-RRMS | 4
—-O-—GMM-R WL
—O—LDA-RRMS
—-0-—LDA-RWL —~
;\; 60 S
o o
< <
= 40 ®© —O— kNN-R RMS
85 —-O-—KNN-R WL
—<O— GMM-R RMS
20 80 —-O-—GMM-R WL
—0O—LDA-RRMS
—-0-—LDA-RWL
0 75
0 20 40 60 80 100 0 20 40 60 80 100
Rejection rate (%) Rejection rate (%)

(@) (b)

Figure 3. Comparison of classifier performance in recognizing 12 trained movements with different
features. (a) Average total classification accuracy (tAcc) versus rejection rate. The features applied
by different classifiers are root mean square (RMS) and waveform length (WL). (b) Average active
classification accuracy (aAcc) versus rejection rate.
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5.2. Performance of Proposed Classifier on Trained Movements

The accuracy-rejection curve proposed in [40] can be used to evaluate the perfor-
mance of classifiers with rejection options. On the accuracy-rejection plot, accuracy is
plotted against the rejection rate. The curve starts from a point (0, a%), where a% is the
accuracy of the classifier when there is no rejection. A system with accuracy and rejection
rates in the top left quadrant is the most desirable.

Figure 4 shows the classification results on the 12 hand movements with the classifi-
ers mentioned above. The 0 parameter of GK-R classifier varies from 35 to 75 with a step
of 5, and dx = dg— 10:10:05 + 10. From Figure 4(a) and Figure 4(b), it can be seen that the
tAcc and aAcc of GK-R are the highest, followed by kNN-R when the rejection rate is
equal. Additionally, the accuracy of GMM-R is the lowest of all.

Figure 4(b) shows that although the aAcc of the GK-R classifier is lower than GMM-
R with the same parameter g, its rejection rate has been significantly reduced. It can be
inferred from Figure 4(a) and Figure 4(b) that the tAcc and aAcc of the GK-R classifier are
much higher than GMM-R and kNN-R when their rejection rates are equal. Therefore, the
second layer effectively enhances the accuracy in recognizing samples rejected by the first
layer. For the same tAcc and aAcc, the rejection rate of GK-R is much lower than that of
GMM-R, showing the advantage of GK-R in reducing the rejection rate and increasing
recognition accuracy.

90 98
X o
$ O GMMR 0o “°
85 9 O KNNR | T 96 %
o) o)
$ GK-R o
80T 94 o
< <> o <>
s o s o
g5 o g 92 o
< o < <
70 o 90 (O
o) O GMM-R
65 f o 88t O KNN-R
o GK-R
60 o 86
0 10 20 30 40 0 10 20 30 40

Rejection rate (%) Rejection rate (%)

(a) (b)

Figure 4. Comparison of movement recognition with GMM-R, kKNN-R and GK-R with varying pa-
rameters. (a) Average tAcc versus rejection rate. (b) Average aAcc versus rejection rate.

A grid search method has been applied to compare the performance of the three clas-
sifiers in Figure 4 at the same rejection rate level. When the rejection rate is 13.0% = 0.5%,
the tAcc and aAcc obtained by the classifiers are shown in Figure 5. It can be seen that the
average tAcc and aAcc obtained from GK-R (dg = 65%, dx = 75%) are much higher than
those results obtained by the LDA-R, GMM-R, and kNN-R classifiers. The improvements
of GK-R in tAcc over LDA-R, GMM-R, and kNN-R are 9.0%, 2.9%, and 1.8%, respectively,
and the improvements in aAcc are 11.2%, 3.7%, and 2.0%, respectively.
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100

T
I e

95

90

85

Accuracy (%)

80

75

70
LDA-R GMM-R kNN-R GK-R

Figure 5. Comparison of classifier performance on 12 hand movements when the rejection rate is
13.0% + 0.5%. The features used in LDA-R, GMM-R, kNN-R are WL, WL, and RMS, respectively.

Figure 6 shows movement prediction using GMM, GK-R, and the first layer classifier
(GMM-R) of GK-R for one subject performing 12 hand movements with five repetitions.
It can be observed from Figure 6(a) that most of the test samples can be correctly recog-
nized by the GMM classifier. Those samples that are wrongly predicted by the GMM clas-
sifier are all rejected by the first layer (GMM-R) classifier, although some samples that are
correctly predicted by the GMM classifier but rejected by GMM-R. Figure 6(b) shows the
prediction results with the proposed GK-R classifier. It can be found that the proposed
model is effective in reducing the number of misclassifications in GMM with the help of
the second layer classifier at the cost of increasing the number of rejections. However,
misclassification is a much more severe problem than rejections for practical applications,
especially when the rejection rate is limited.

Class Label
Class Label

0 10 20 30 40 50 60 0 10 20 30 40 50 60
Movement sequence Movement sequence

(a) (b)

Figure 6. Movement recognition by proposed algorithms. (a) Comparison of GMM classifier and
GMM-R classifier. (b) Result of GK-R classifier.
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5.3. Time Cost

As shown above, the accuracy of GK-R is much higher than GMM-R and kNN-R.
Meanwhile, for the 1620 test samples collected from 12 hand movements of 27 subjects,
the decisions on 52.7% of samples are made directly by the first layer GMM-R classifier,
and the rest are then sent to the second layer KNN-R classifier. The percentage of decisions
made by GMM-R determines the computational efficiency of the proposed classifier. It is
said in [46] that a delay no larger than 300 ms will not be perceived by the user and can
be used for prosthetic control. However, it is stated in [47] that delays greater than 200 ms
are not acceptable, but the values were changed to 100 ms-300 ms in the later paper [48].
A similar study in [49] showed that the maximum allowable time delays are 300 ms-400
ms, so the user cannot notice the delay. Tests on different levels of controller delay ranging
from 0 ms to 300 ms were conducted in [50] and it was found that the optimal controller
delay lies between 100 ms and 175 ms. Though the conclusion on optimal controller delay
varied in different studies, the less the delay, the better.

The comparison of average time cost for recognizing one movement by kNN-R,
GMM-R, and GK-R is shown in Figure 7. In Figure 7, the values that deviate from the
mean of the data by more than three standard deviations are considered outliers and are
removed. The width of the bin in the histogram of Figure 7 is set to 75 ms. From Figure
7(a), it can be found that the average time cost for recognizing one movement by GMM-R
is much less than kNN-R, which is actually around five milliseconds. For kKNN-R, about
12.5% of samples need less than 150 ms; 57.8% of samples need 150 ms-300 ms; and the
rest need more than 300 milliseconds to be recognized. GMM-R is much more time effi-
cient compared with kNN-R. From Figure 7(b), it can be found that the samples recog-
nized within 150 ms are 57.5% by GK-R; it is only 12.5% by kNN-R, meaning more than
half of the samples need less than 150 ms to be recognized by the GK-R classifier. Mean-
while, the percentage of samples recognized with more than 300 ms by kNN-R is 14.4%
and is reduced to 8.7% by GK-R. So, the proposed GK-R classifier is much more time effi-
cient than kNN-R.

[ eMm-R (| G-R
08 [ aN-R 08 R
Z 06 Z 06
ey ey
© ©
e} e}
2 04 2 04
a a
0 0
0 75 150 225 300 375 450 525 600 0 75 150 225 300 375 450 525 600
Time (millisecond) Time (millisecond)
(a) (b)

Figure 7. The average time cost of recognizing one movement by each classifier. Each histogram is
normalized so that the summation of the height of the bins is one. (a) Comparison of the time cost
of GMM-R and kNN-R. (b) Comparison of the time cost of GK-R and kNN-R.

5.4. Performance of Proposed Classifier on Untrained Movements

The leave-one-out error analysis (LEA) can be used to evaluate the reject ability of
the classifier for untrained movements. If the classifier does not reject any untrained/un-
known movements, it will result in an active decision, which is an error. So, LEA can be
used to evaluate the ability of the classifier to decline untrained/unknown movement pat-
terns. To assess the performance of the proposed classifier on unknown movements, each
of the 12 hand movements is selected as an unknown movement sequentially, and the
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chosen unknown movement will not be used for training but used to test the trained clas-
sifiers. The classification result using the algorithms mentioned above is shown in Figure
8, obtained using the same parameters as Figure 5. From Figure 8, it can be observed that
LDA-R and GMM-R classifiers have much higher error rates than GK-R in rejecting the
untrained movements. The overall error rates of the LDA-R and GMM-R classifier are
78.3% + 5.9% and 51.2% + 6.7%, respectively, meaning they have unsatisfactory perfor-
mances in rejecting the unknown movements. However, for GK-R, the error rate is re-
duced to 30.9% + 7.6%, which shows a significant improvement.

100 T T T T T T T T T T T T
80 - 4
S
§ 60 | E
c
S 40} ]
20 | | I LDA-R
N GMM-R
[ GkR
0
1 2 3 4 5 6 7 8 9 100 11 12

Label of untrained movements

Figure 8. Classification performance on 12 untrained movements. The parameters of the classifiers
are the same as in Figure 5.

6. Discussion

The proposed algorithm can enhance the classification accuracy by rejecting the
movement with low reliability and unknown movement patterns. A classification scheme
derived from the multi-class problem and through the linear programming boosting al-
gorithm (MCLPBoost) was proposed in [37] to enhance the classifier’s robustness against
untrained classes. We have compared the performance of the proposed algorithm with
the one in [37]. Six most-similar hand movements were selected from Exercise B, Ninapro
database 1 as t used in [37]. The six movements were wrist flexion, wrist extension, wrist
pronation, wrist supination, fingers flexed together in a fist, and abduction of all fingers
(corresponds to hand open) [35,36], where the total number of subjects was also 27.
Though a different dataset was applied, it is shown that with the same classifier parame-
ters used above, the average error rate of the six untrained movements obtained is 23.7%,
which is comparable to the one obtained in [37]. The proposed GK-R classifier is trained
with the first five repetitions of the six movements and tested with the left five for trained
hand movements. It is shown that the total accuracy of the trained movements obtained
is 95.6%, and the aAcc is 99.2%, which is much higher than the reported 80% accuracy,
showing a significant improvement in rejecting unknown movements and high accuracy
for trained movement patterns.

The GK-R classifier proposed in this study consists of two layers. The first layer clas-
sifier GMM gives a preliminary judgment on the test samples. If its threshold is too large,
then more test samples will be passed to the second layer classifier kNN for a final deci-
sion, which may help to increase classification accuracy but at a higher computational
cost. In contrast, if the threshold is small, the classification accuracy is dependent mainly
on the GMM classifier. In the extreme case, when the threshold is small enough, the clas-
sifier’s performance is entirely determined by the GMM classifier, and no test samples
will be rejected. So delicately choosing the value of 0 is kind of important. The value of
Og determines which index is more valued, computational cost or classification accuracy.
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For a fixed O, the parameter 0« of the second layer classifier determines the rejection ratio
to some extent.

Figure 9 shows the performance of the proposed classifier on the six trained and un-
trained movements. The parameter d; varies from 55% to 65% with an increment of 5%, and
Ok increases from 65% to 95% with an increment of 5%. From Figure 9(a), it can be found
that the aAccs of different values of dg overlap with each other, and they are all 99.2%.
Though the tAccs have different values, they show a similar tendency toward the increase
of dx. For a smaller g, more decisions are made by the first layer classifier, and fewer sam-
ples are rejected, which will result in a higher tAcc, as shown in Figure 9(a). However, the
side effect of a smaller dg is that the error rate of untrained movements will increase, as
shown in Figure 9(b). Therefore, when choosing the value of ds and dx, a compromise should
be made between the accuracy of trained movements and the error rate of untrained move-
ments. From Figure 9(a) and 9(b), it can also be found that when the error rate of the un-
trained movements is 20.9%, the tAcc and aAcc of the trained movements are 95.6% and
99.2%, respectively. If we further increase the second parameter, the error rate of the un-
trained movements can reach 17.4%, while the aAcc will not be affected, and tAcc will de-
crease by 0.3%. The results have been much improved compared with [37].

99.5 T T T 55
.l tAcc § =55 _ 01 e 5;55
—O—tAcco = —O— & =60
98.5 1 — — —aAcc 5& =55 | | 45 s
g —O— 5g=65
;\-; 98 1 —0— tl;cc (;g:(is(; g 40
gl — — — aAcCC =
39757 g 3
© —O— tAcc § =65 © 357
3 97 aAcc 5g =65 S
B> - g T30
96.5 | wi
9 I O\O\o—o\o\o_o o
95.5 | M 21
95 : - : 15 : ' :
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0, [v)
5, (%) 5, (%)
(a) Result of trained movements (b) Result of untrained movements

Figure 9. Average classification results of the six hand movements from Exercise B, Ninapro data-
base 1 for different values of dg and dx of GK-R classifier. (a) Accuracy versus 0k for different values
of dg. (b) Error rate versus Ok for different values of Og.

7. Conclusions

A two-layer classifier has been proposed to enhance the reliability of the myoelectric
control system in this study. Unlike the conventional classifier, the proposed classifier in-
troduces a rejection option to decline the test samples that are not reliable enough. We
have compared the proposed classifier with the LDA classifier with a reject option, the
GMM classifier with a reject option, and the kNN classifier with a reject option on 12 hand
movements. The proposed classifier produces much higher classification accuracy for test
samples from trained movements than the other classifiers at the same rejection rate level.
The improvement of proposed classifier over the other classifiers in terms of tAcc and
aAcc are 9.0%, 2.9%, and 1.8% and 11.2%, 3.7%, and 2.0%, respectively. Though the im-
provement of the proposed classifier over the kNN classifier is limited compared with the
other classifiers, the proposed classifier is much more computationally efficient than the
kNN classifier, showing the effectiveness of the proposed model in ambiguity rejection.
For test samples from untrained movements, the proposed classifier has a much lower
error rate than the other classifiers, proving the effectiveness of the proposed classifier in
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novelty rejection. The proposed classifier has also been applied to recognize six hand
movements. The results show that the tAcc and aAcc of the proposed classifier on trained
movements can reach 95.6% and 99.2% when the error rate of untrained movement is
20.9%. The tAcc and aAcc of trained movements can be 95.3% and 99.2% by adjusting the
threshold. The error rate of untrained movement is only 17.4%, showing a significant im-
provement in recognizing trained movements and rejecting the untrained movements
compared with previous studies.
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