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Semantic segmentation is a significant research topic for decades and has been employed in several applications. In recent years,
semantic segmentation has been focused on different deep learning approaches in the area of computer vision, which has aimed
for getting superior efficiency while analyzing the aerial and remote-sensing images. )e main aim of this review is to provide a
clear algorithmic categorization and analysis of the diverse contribution of semantic segmentation of aerial images and expects to
give the comprehensive details associated with the recent developments. In addition, the emerged deep learning methods
demonstrated much improved performance measures on several public datasets and incredible efforts have been dedicated to
advancing pixel-level accuracy. Hence, the analysis on diverse datasets of each contribution is studied, and also, the best
performance measures achieved by the existing semantic segmentation models are evaluated. )us, this survey can facilitate
researchers in understanding the development of semantic segmentation in a shorter time, simplify understanding of its latest
advancements, research gaps, and challenges to be used as a reference for developing the new semantic image segmentation
models in the future.

1. Introduction

Semantic segmentation is an image analysis task, which
assigns a label for each pixel in input images for describing
the class of its encircled region [1]. Semantic segmentation of
aerial images represents the assignment of one land cover
category to each pixel, which is a complex task owing to the
huge variations in the appearances of ground objects. Several
works have been presented in recent years [2]. )e state-of-
the-art approaches in semantic segmentation are focused on
the hand-crafted features, which fail to get the satisfactory
performances and are restricted through the depiction
ability of features [3]. When compared with object detection
and image classification, semantic segmentation is used as
the highest level of the image analysis process, which permits
complete scene information of the complete input image [4].
In several remote-sensing tasks, semantic segmentation is

considered as pixel-wise classification [5]. Semantic seg-
mentation of aerial imagery has been employed in diverse
applications such as hazard identification and avoidance,
traffic management and evaluation, and urban area planning
and monitoring [6]. However, the growth of semantic
segmentation techniques was stopped years ago due to the
lower accuracy rate of existing image analysis methods fo-
cused on the extraction of hand-crafted features [7].

Aerial and satellite imagery have been utilized in dif-
ferent applications such as regional planning, cartography,
landscaping, and agriculture [8]. In 2020, Maddikunta et al.
[9] have focused on applications, requirements, and chal-
lenges of UAV images which were captured from UAV
vehicles for smart agriculture system. Multirotor UAVs are
usually used for airborne surveillance, photography, and
other similar tasks.)ese are the simplest to produce and the
least expensive of all types of UAVs. )ese images have
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different visible colors and other spectra. )ere is also el-
evation imagery, which is generally prepared through light
detection and ranging (LiDAR) and radar images [10].
Moreover, along with the emergence of satellite and aerial
images, remote sensing is also implemented. Remote-
sensing images are gathered from the remote object through
a device, which cannot be physically contacted the object
[11]. In recent years, the data analysis and interpretation are
still performed by human experts. Although, semantic
segmentation offers superior abilities in object detection, it
suffers from implementing it into the real use cases [12]. In
2020, Ch et al. [13] have suggested the security and privacy of
UAV data using blockchain technology. )e value of virtual
circuit (VC)-based devices—UAVs, drones, and similar
other IoT-based devices—has grown tremendously in recent
years. )ese gadgets are mostly utilized for aerial surveying
in sensitive and isolated locations. )e object detection in
aerial images is complex due to the bird’s-eye view of aerial
images, which have huge variations in orientation, high
nonuniform object densities, large aspect ratios, and scale
variations of objects. Moreover, several challenges are
presented in the detection of objects using aerial images,
which are low GPUmemory capacity, downsampling a large
image, and lack of inference on large images [14]. In aerial
images, several sensor and resolution are considered as the
factors for producing the dataset biases [15]. )e standard
dataset is prepared by collecting the images from different
platforms and sensors through several resolutions including
aerial images, satellite images, Gaofen-2 (GF-2) Satellite, and
Google Earth [16].

Currently, many DL applications are being used all over
the world. Healthcare, social network analysis, audio and
speech processing (such as recognition and enhancement),
visual data processing methods (such as multimedia data
analysis and computer vision), and NLP (translation and
sentence classification) are examples of these applications.
)ese applications are divided into five groups: classifica-
tion, localization, detection, segmentation, and registration.
Although each of these jobs has its own aim, as seen in
Figure 1, there is significant overlap in the pipeline
implementation of these applications.

)e semantic segmentation is adopted by deep learning
approaches in recent years, which has attained high effi-
ciency in diverse conventional computer vision applications
and consists of detection and classification of objects and
semantic segmentation [15]. )ese approaches have auto-
matically derived features, which are customized for clas-
sification tasks that create these approaches to offer suitable
options for managing complex cases [17]. )e huge
achievement in other fields makes the extension and
adoption of deep learning approaches for solving the
challenges in remote-sensing fields. Although, deep learning
offers noteworthy performance, it suffers from allocating
significant labels to the components of remote-sensing
image [18]. Due to the large number and enormous quantity
of modalities of the remote-sensing data, the deep neural
network has been facilitated for feature extraction [19]. It has
also offered great benefits to practitioners and researchers,
which require less programming intensive tools for high-

level data analysis and are understandable in geosciences
[20]. In 2021, Kumar et al. [21] have given a secured privacy
preserving framework for smart agriculture unmanned
aerial vehicles for both blockchain and nonblockchain
frameworks. Balamurugan et al. [22] have given a direction-
of-arrival (DOA) tracking for seamless connectivity in
beamformed IoT-based drones, and their communication
and beamformed performances were increased.

)e primary and significant deep learning approach
consists of restricted Boltzmann machines, autoencoders,
and convolutional neural networks (CNNs) which have
focused on understanding the satellite imagery or aerial
imagery [23]. Hence, this study has reviewed several se-
mantic segmentation models with diverse deep learning
algorithms for future works.

)e major contribution of this survey is (i) to design a
detailed survey on existing semantic segmentation models
on diverse imaging modalities in recent years by gathering
the noteworthy information from each and every semantic
segmentation model along with diverse algorithms on
machine learning and deep learning, (ii) to present a
comprehensive study about datasets, simulation platforms,
chronological review, performance metrics, features, and
challenges of the conventional semantic segmentation
models and their algorithms focused, and (iii) to give the
appropriate research gap with the limitations present in
existing semantic segmentation systems for motivating the
researchers to design a new semantic segmentation model.

)e remaining sections of this survey are depicted here.
Section 2 discusses the literature review on state-of-the-art
semantic segmentation models. Section 3 presents the al-
gorithmic categorization and features and challenges of
existing semantic segmentation models. Section 4 describes
the simulation platforms and dataset description for con-
ventional semantic segmentation models. Section 5 dem-
onstrates the performance measures and best accuracy rate
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Figure 1: Examples of DL applications.
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attained by the conventional semantic segmentation models.
Section 6 gives the research gaps and challenges. Section 7
concludes this survey.

2. Literature Review on State-of-the-Art
Semantic Segmentation Models

2.1. Literature Survey. In 2015, Saito et al. [24] have utilized
CNN for training the pixel labeling to get the extracted
building areas for determining the semantic segmentation of
aerial images. )en, they have used Dijkstra’s algorithm for
discovering the optimal seam line to get shortest path on the
map. In 2016, Marmanis et al. [25] have described the se-
mantic segmentation model using high-resolution aerial
images and using ENSEMBLE OF CNNS named FCN and
modified CNNs to show the superior efficiency on standard
dataset. In 2017, Holliday et al. [26] have addressed the
semantic segmentation model by applying the model
compression techniques for getting the superior segmen-
tation accuracy, which has also used ConvNet to determine
the significance of segmentation.

In 2018, Chen et al. [27] have suggested shuffling CNNs
for realizing the aerial images for semantic segmentation in a
periodic way, which has also proposed a field-of-view im-
provement for improving the predictions. )is model has
attained effective and promising results for two datasets. In
2018, Yu et al. [28] have designed an end-to-end scheme for
semantically segmenting the high-resolution aerial images
by considering the CNN structure with pyramid pooling
phase for extracting the feature maps at diverse scales. In
2018, Chen et al. [29] have presented the digital surface
models (DSMS). )ey have presented the deeply supervised
shuffling convolutional neural network (DSCNN) for effi-
cient upsampling of feature maps, and furthermore, the
multiscale features were attained. In 2018, Volpia and Tuia
[30] have suggested a semantic segmentation model using
aerial images for leaning the shallow-to-deep visual features,
semantic boundaries across classes, and semantic class
likelihoods through a multitask CNN. Here, the top-down
and bottom-up information were combined and encoded
with a conditional random field model. In 2018, Sun et al.
[31] have implemented a new semantic segmentation model
from LIDAR data and high-resolution aerial images through
a multifilter CNN for offering multiresolution segmentation.
It has also delineated the object boundaries to reduce the salt
and pepper artifacts. In 2018, Kemker et al. [32] have
designed a semantic segmentation method using DCNNs
from multispectral remote-sensing images for getting the
efficient performance on RIT-18 dataset. In 2018, Marmanis
et al. [33] have designed a semantic segmentation model
from high-resolution aerial images by applying DCNN for
representing and extracting the boundaries among the re-
gions of diverse semantic classes. In 2018, Vo and Woong
[34] have designed a semantic segmentation method
through investigating the effects of deep network and cas-
caded framework of dilated convolutions, which has im-
proved the localization efficiency. )is model has trained
efficiently.

In 2019, Peng et al. [35] have presented a new archi-
tecture by combining the “dense connection and fully
convolutional networks (FCN)” for providing the fine-
grained semantic segmented maps for remote-sensing im-
ages. )e suggested model has achieved the traditional ef-
ficiency on two datasets without any postprocessing and
pretraining. In 2019, Luo et al. [36] have proposed a new
deep FCN with channel attention mechanism (CAM-
DFCN) for semantic segmentation using high-resolution
aerial images, which has included encoder-decoder archi-
tecture. )e integration of multilevel feature maps has also
facilitated. It has also offered accurate segmentation for
offering spatial location information and weight semantic
information. In 2019, Li et al. [37] have designed a road
segmentation system with the combination of “adversarial
networks with multiscale context aggregation.” )is study
has focused on extracting the road by utilising the UAV
remote-sensing images. )is model has used morphological
techniques for getting the results with the elimination of
small independent patches. In 2019, Azimi et al. [38] have
designed a symmetric FCN improved with wavelet trans-
form for doing the segmentation of lane marking from aerial
imagery. )is model has used a customized loss function for
improving the accuracy of pixel-wise localization. In 2019,
Wang et al. [39] have designed a semantic segmentation
from UAV-taken images for generating the defect detection
outcomes through applying matrix operations with segment
connection technique for connecting the segment features of
objects. It has also used an artificial contour segment feature
generator with a background filter which was used for line
accessory detection that has enhanced the detection effi-
ciency. In 2019, Cao et al. [40] have suggested a digital
surface fusion models (DSMF) for improving the semantic
segmentation results along with four end-to-end networks
named DSMFNets to get the overall accuracy on segmenting
the high-resolution aerial images. In 2019, Nguyen et al. [41]
have suggested a MAVNet for semantic segmentation with
the use of deep neural network on microaerial vehicles
(MAVs). It has demonstrated the superior efficiency on
standard datasets. In 2019, Guo et al. [42] have integrated the
super-resolution approaches for improving the segmenta-
tion efficiency using “efficient subpixel convolutional neural
network (ESPCN) and UNet” using remote-sensing imag-
ery. It has significantly attained more precise and high ac-
curate segmentation results. In 2019, Igonina and
Tiumentseva [43] have focused on identifying the known
neuroarchitectures to solve the problems persists in remote
sensing of Earth’s surface, which has also focused on se-
mantic segmentation of UAV images. In 2019, Wu et al. [44]
have studied attention dilation-linknet (AD-linknet) neural
network by adopting the encoder-decoder framework along
with pretrained encoder, channel-wise attention scheme,
and serial-parallel integrated dilated convolution for se-
mantic segmentation of high-resolution satellite images. In
2019, Masouleh and Shah-Hosseini [45] have presented a
Gaussian–Bernoulli restricted Boltzmann machine (GB-
RBM) for the semantic segmentation of UAV-based thermal
infrared images, which has evaluated the efficiency on av-
erage processing time and average precision concerning with
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the extraction of ground vehicles in road. In 2019, Audebert
et al. [46] have introduced a regression-based semantic
segmentation regularization model through a distance
transform, in which the FCN was trained for both contin-
uous and discrete spaces through learning the distance re-
gression and joint classification. In 2019, Mohammadi et al.
[47] have implemented a semantic segmentation model
from polarimetric synthetic aperture radar images using
FCN architecture, which has extracted the discriminative
polarimetric features for finding the wetland on complex
land cover ecosystem. In 2019, Hua et al. [48] have presented
a CNN for processing the extracted features for enhancing
the efficiency of semantic segmentation of aerial images,
which has used two modules such as patch attention module
and attention embedding module for getting the significant
information of low level features. In 2019, Panboonyuen
et al. [49] have designed a global convolutional network
(GCN) for semantic segmentation of remotely sensed im-
ages for extracting the multiscale features from diverse
phases of the network.

In 2020, Liu et al. [50] have proposed a semantic seg-
mentation model for high-resolution remote-sensing images
using a multichannel segmentation network termed DAPN
that has completely extracted the multiscale features of the
images and retained the spatial features of the object. In
2020, Mou et al. [51] have considered two efficient networks
called channel and spatial relation module for learning and
reasoning about the global correlations among the feature
maps or positions. )e suggested model was termed as
relation module-equipped FCN. In 2020, Wang et al. [52]
have designed a “context and semantic enhanced high-
resolution network (CSE-HRNet)” with two comprehensive
processes for tackling the intraclass heterogeneity problem
and for enhancing the representational ability of multiscale
contexts. In 2020, Martinez-Soltero et al. [53] have utilized
CNN for terrain detection using aerial images, which has
aimed for solving the navigation tasks and robot mapping
along with the pixel-level segmentation for generating a high
detailed map. In 2020, Jiawe et al. [54] have proposed a real-
time semantic segmentation model by designing a new
“asymmetric depth-wise separable convolution network
(ADSCNet)” for offering the better prediction efficiency. In
2020, Deng et al. [55] have developed a semantic segmen-
tation network from UAV images for real-time weed
mapping for reducing the time gap among the herbicide
treatment and image collection. )is model has focused on
implementing a hardware system with combined processes.
In 2020, Niu et al. [56] have designed a new “hybrid multiple
attention network (HMANET)” for adaptive capturing of
global relationships, which has computed the category-based
relationship and recalibrated the class level details. )is
study has introduced an efficient region shuffle attention
(RSA) module for enhancing the effectiveness of semantic
segmentation. In 2020, Chai et al. [57] have proposed the
semantic segmentation model from high-resolution aerial
images that has addressed the problem of learning spatial
context through Deep CNNs (DCNNs). )is model has
predicted the distance map rather than the score map for
every class that has enhanced the segmentation efficiency. In

2020, Song et al. [58] have offered the sunflower lodging
detection method from remote-sensing images by consid-
ering the deep semantic segmentation and image fusion
fromUAV, which has attained by improved SegNet. In 2020,
Diakogiannis et al. [59] have suggested a reliable framework
with “ResUNet-a” for semantic segmentation of high-res-
olution aerial images along with dice loss function through
UNet encoder-decoder network. In 2020, Ye et al. [60] have
introduced Uavid dataset for semantic segmentation of
urban scenes through ensemble learning including multi-
spectral dilation with feature space optimization (FSO). In
2020, Bianco et al. [61] have suggested a semantic seg-
mentation model for detecting the road participants and
road lane through a multitask instance segmentation neural
network. )is model has developed an ad-hoc training
process for composing the final annotations utilized to train
the suggested model by applying the CNN. In 2020, Mi and
Chen [62] have introduced “superpixel-enhanced deep
neural forest (SDNF)” for improving the classification ca-
pability from remote-sensing images along with the se-
mantic segmentation, which has also designed a “superpixel-
enhanced regionmodule (SRM)” for reducing the noises and
improves the edges of ground objects. In 2020, Zhang et al.
[63] have proposed a new fused network with the model-
agnostic metalearning (MAML) and FCNN for semantic
segmentation of remote sensing based on RGB images along
with the optimization algorithm, particle swarm optimiza-
tion (PSO) algorithm. In 2020, Boonpook et al. [64] have
proposed amultifeature semantic segmentation from images
of UAV photogrammetry using the deep learningmethod, in
which the accuracy of building extraction has improved with
help of SegNet. In 2020, Yang et al. [65] have focused on
understanding the pixel-level information from high-spatial
resolution remote-sensing images using end-to-end network
called residual network (ResNet), which has also considered
several additional losses for enhancing the suggested model
with optimization of multilevel features. In 2020, Mehra
et al. [66] have suggested a semantic segmentation method
for classifying the land cover through “six deep learning
architectures such as pyramid scene parsing, UNet, and
deeplabv3, path aggregation network, encoder-decoder
network, and feature pyramid network,” which has attained
superior results. In 2020, Tasar et al. [67] had proposed a
semantic segmentation method by using color mapping
GAN named ColorMAPGAN, which has also used element-
wise matrix manipulation to learn the transformation of
colors in the training data to the colors of the test data. In
2020, Venugopal [68] has suggested “a feature learning
method named deep lab dilated CNN (DL-DCNN)” for
automatic semantic segmentation for determining the
correlation among two images, which has shown the su-
perior efficiency over existing methods.

In 2021, Girisha et al. [69] have an improved encoder-
decoder-based CNN architecture termed Uvid-Net for se-
mantic segmentation from UAV video frames. )is archi-
tecture was used to incorporate the temporal smoothness,
which has captured the correlation among the sequence of
frames using multibranch CNNs. In 2021, Huang et al. [70]
have suggested an attention-guided label refinement
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network (ALRNet) to enhance the semantic labeling of very
high-resolution remote-sensing images with the encoder-
decoder framework. Here, attention-guided feature fusion
(AGFF) module was significantly developed for declining
the semantic gap among diverse levels of features. In 2021,
Abdollahi et al. [71] have suggested a GAN for segmenting
the roads from high-resolution aerial imagery. )is model
has also used a modified UNet model (MUNet) for attaining
the suitable results. In 2021, Alam et al. [72] have suggested
an integrated framework using CNN with enhanced UNet
and “encoder-decoder CNN structure SegNet with index
pooling” for semantic segmentation of remote-sensing
images, which has attained appropriate segmentation results
on multitargets. In 2021, Anagnostis et al. [73] have sug-
gested a semantic segmentation approach for obtaining the
orchard trees from aerial images, which has used UNet for
improving the efficient performance in terms of accuracy.
)is designed model has focused on automatic localization
and detection of the canopy of orchard tress on different
constraints. In 2021, Li et al. [74] have proposed a semantic
segmentation model for analyzing the properties of pho-
tovoltaic, which has also enhanced the recommendations of
segmenting the PV. It has revealed the high nonconcentrated
and class imbalance distribution of photovoltaic panel image
data through hard sampling and soft sampling. In 2021,
Wang et al. [75] have designed a real-time semantic seg-
mentation of high-resolution aerial images named an aerial
bilateral segmentation network (Aerial-BiseNet) for offering
superior accuracy. )is suggested model has used two
modules termed “feature attention module (FAM) and
channel attention-based feature fusion module (CAFFM)”
for analyzing the features. In 2021, Vasquez-Espinoza et al.
[76] have suggested a semantic segmentation scheme using
indoor imagery through the exploitation of details offered
with the metadata utilized in the training stage of UNet. In
2021, Chen et al. [77] have considered different existing
approaches such as “deeplabv3, generative adversarial net-
work Pix2Pix, and UNet” for semantic segmentation of
partially occluded apple trees, which has provided more
details on branch paths, where the recovery of finer details
from occlusions was offered. In 2021, Tasar et al. [78] have
suggested a coined DAugNet for the semantic segmentation
of satellite images, including a data augmentor and classifier,
which have performed on life-long, multitarget, multisource,
single-source, and single-target problems. In 2021, Li et al.
[79] have recommended a “dual attention deep fusion se-
mantic segmentation network of large-scale satellite remote-
sensing images (DASSN_RSI)” for getting the significant
results which have also analyzed the challenges of con-
ventional semantic segmentation approaches using remote-
sensing images. In 2021, Jiang [80] has suggested a semantic
segmentation model using high-resolution remote-sensing
images through CNN andmask generation, in which the NN
architecture was intended for obtaining a precise mask. In
2021, Liu et al. [81] have designed a new semantic seg-
mentation model using remote-sensing images using
Inceptionv-4 network for getting the enhanced classified
information. )is model has introduced the fusion of fea-
tures for solving the classification of edge of objects. In 2021,

Zheng et al. [82] have implemented an “end-to-end CNN
network named GAMNet” for balancing the controversies
among the local and global information, which has also
realized the boundary recovery and multiscale feature ex-
traction. In 2021, Ouyang and Li [83] have offered a new
DSSN called attention residual U-shaped network (AttRe-
sUNet) for encoding the feature maps and refining of fea-
tures through attention module, which has also used GCN
for classification.

2.2. Chronological Review. )e chronological review on
semantic segmentation models through deep learning ap-
proaches in the past years is given in Figure 2. )e semantic
segmentation is emerged as a major research area after 2015,
and thus, this survey is prepared by gathering a set of re-
search works from the year of 2015 to 2021. In the years of
2015, 2016, and 2017, the total number contributions is taken
as 1.67% for each. Similarly, at 2018, 13.3% of the research
works are gathered for analysis. In the year of 2020, 31.6% of
the contributions are considered for evaluation. Likewise,
while considering the 2019 and 2021, the number of research
works is taken as 25%, respectively.

2.3. Security and Privacy Issues in Deep Learning. Many
applications of deep learning in everyday life are self-driving
cars, biometric security, health prediction, speech process-
ing, financial technology, and retail [84]. Depending on the
nature of the data and the user’s intent, each application has
its own set of requirements. Many models were offered by
the researchers to fit the application needs, users, and fea-
tures of each sort of application, including LeNet, VGG,
GoogleNet, Inception, and ResNet. Despite the fact that
many studies on both attacking and safeguarding users’
privacy and security measures have been published, they
remain fragmented. Tramèr evaluated different attack
strategies based on FGSM and GAN before proposing the
R-FGSM algorithm [85]. Xiaoyong Yuan also discusses
security vulnerabilities in the deep learning approach. [86].
)e preceding research has solely focused on the security of
the deep learningmodel and does not provide an overview of
preserving privacy in the deep learning model [87, 88].

In this work, we cover current studies on model security
and data privacy that have led to the development of a secure
and private artificial intelligence (SPAI). To address the
demand for strong artificial intelligence (AI) systems, we
compiled fragmented results and methodologies with the
goal of delivering insights important to future study.

To conclude, we examine current research on privacy
and security problems related to DL in the areas listed below.

(1) DL model attacks: the two primary forms of DL
attacks are evasion and poisoning attacks, with
evasion attacks involving the inference phase and
poisoning attacks involving the training phase

(2) Defense of DL models: the different defense mech-
anisms presented may be divided into two broad
categories based on the kind of attack, evasion and
poisoning; tactics applied against evasion assaults
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can be further divided into empirical (e.g., gradient
masking, robustness, and detection) and certified
approaches

(3) Privacy attacks on AI systems: the potential privacy
threats to DL-based systems arising from service
providers, information silos and users

(4) Defense against a privacy breach: the most modern
cryptographic protection approaches, such as ho-
momorphic encryption, safe multiparty computing,
and differential privacy

According to training and testing stages in deep
learning model security, attack techniques are categorized.
)is research emphasises on threats at the testing. Fur-
thermore, the categorization is based on the attacker’s
expertise as well as the attacker’s pattern of assaulting black
boxes and white boxes. Attack strategies are classed in
order to safeguard user privacy based on the system design
and the attacker’s knowledge. Attack strategies are divided
into two categories in system architecture: centralized and
distributed. According to the information, the attacker is
also split into white box and black box attacks. Based on the
stages of the deep learning model, defensive techniques are
classified.

)e assumptions for implementing certain threats in
deep learning security are based on situations. )e threat
models are classified depending on the adversary’s knowl-
edge, the goal of the attacker, and the frequency of attacks.

2.3.1. )e Adversary’s Knowledge. A black box attack occurs
when the attacker lacks knowledge of the system, in case of
which the attacker submits input and receives output
without understanding the system parameters. In contrast,
in the event of a white box attack, the attacker has access to
all system information, including the model’s structure and
parameter values.

2.3.2. Attacker’s Target. Targeted attacks detect certain data
or object types that misclassify this data collection. )ese
types of attacks are common when categorization systems
are used. In face recognition or authentication systems, for
example, an attacker selects a certain face, one of which is
misclassified among hostile samples. Nontargeted attacks,
on the contrary, choose arbitrary data and are simpler to
execute than targeted attacks.

2.3.3. Frequency of Attacks. One-time attacks require only
one hostile example to be created. Otherwise, repeated at-
tacks build adversarial instances through multiple updates.
Iterative attacks outperform one-time attacks every time, but
they need more queries to the deep learning system and take
longer.

Deep learning security threats are classified into two
types: adversarial and poisoning. We will concentrate on
adversarial assaults in this research. During a system query,
an adversarial attack introduces noise to the usual data.
When the attacker receives the reported results, he or she
utilizes this information to generate adversarial instances.
)is type of assault may be found in image processing, audio
processing, and virus detection. It can trick deep learning
machines, but not humans, particularly in the field of image
processing. )e gap between the source data and the
adversarial example is represented by the noise value.

2.4. Limitations and Alternate Solutions of Deep Learning.
Several challenges are frequently taken into account when
adopting DL. )ose that are more difficult are mentioned
next, with various viable solutions supplied.

2.4.1. Training Data. Because it also requires representation
learning, DL is tremendously data-hungry. To produce a
well-behaved performance model, DL necessitates a massive
quantity of data, i.e., as the data accumulates, an even more
well-behaved performance model may be achieved. Most of
the time, the supplied data are adequate to generate a solid
performance model. However, there are situations when
there is insufficient data to use DL directly. )ere are three
proposed techniques for dealing with this issue. )e first
entails using the transfer-learning idea after collecting data
from similar activities. While the transmitted data will not
directly enhance the real data, it will aid in improving both
the original input data representation and its mapping
function. )e model’s performance is improved as a result.
Another method is to use a well-trained model from a
comparable assignment and fine-tune the end of two layers,
or even one layer, depending on the limited original data.
)e second option involves data augmentation. Because
picture translation, mirroring, and rotation frequently do
not modify the image label, this activity is extremely useful
for supplementing image data. In contrast, it is critical to
exercise caution while using this approach in some cir-
cumstances, such as with bioinformatics data. When mir-
roring an enzyme sequence, for example, the resulting data
may not represent the real enzyme sequence. In the third
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way, simulated data may be used to increase the size of the
training set. If the problem is sufficiently understood, it is
sometimes possible to construct simulators based on the
physical process. As a result, the end product will comprise
the simulation of as much data as is required.

2.4.2. Transfer Learning. Deep CNNs, which provide
ground-breaking help for solving numerous classification
issues, have been widely used in recent research. Deep CNN
models, in general, need a large amount of data in order to
function well. )e most prevalent problem with employing
such models is a lack of training data. Gathering a big
number of data is a demanding task, and no viable solution is
currently available. As a result, the undersized dataset
problem is now being addressed utilising the TL approach,
which is very efficient in handling the lack of training data
issue.)e TL technique entails training the CNNmodel with
vast amounts of data. )e model is then fine-tuned for
training on a small request dataset.

)e student-teacher interaction is an effective method
for explaining TL.)e first step is to learn everything there is
to know about the subject. )e teacher then gives a “course”
by imparting the material over time through a “lecture
series.” Simply put that the instructor transmits information
to the pupil. More specifically, the expert (teacher) imparts
knowledge (information) to the learner (student). Similarly,
the DL network is trained using a large amount of data and
learns the bias and weights during training. )ese weights
are then transmitted to several networks in order to retrain
or test a comparable unique model. As a result, the inno-
vative approach can pretrain weights rather than requiring
training from beginning.

2.4.3. Data Augmentation Techniques. Data augmentation
techniques are one viable answer if the aim is to expand the
quantity of accessible data while avoiding overfitting. )ese
strategies are data-space solutions to any problem with little
data. Data augmentation refers to a set of approaches for
improving the properties and quantity of training datasets.
As a result, when these strategies are used, DL networks
perform better. Following that, we will go through some
other data augmentation solutions.

(i) Flipping: vertical axis flipping is a less prevalent
procedure than horizontal axis flipping. On datasets
such as ImageNet and CIFAR10, flipping has been
shown to be beneficial. Furthermore, it is really
simple to implement. Furthermore, it is not a label
conserving transformation on datasets involving
text recognition (such as SVHN and MNIST).

(ii) Color space: as a dimension tensor, encoding digital
picture data is often utilized (height xwidth x colour
channels). Performing enhancements in the colour
space of the channels is an alternate method that is
particularly practical for implementation. Color
augmentation is as simple as isolating a channel of a
certain colour, such as red, green, or blue. By di-
viding that matrix and introducing extra double

zeros from the remaining two colour channels, you
may quickly transform a picture utilising a single-
color channel. Furthermore, the picture brightness
may be increased or decreased by utilising simple
matrix operations to modify the RGB values. Ad-
ditional better colour augmentations can be ac-
quired by generating a colour histogram that
represents the image. Lighting changes can also be
done by altering the intensity values in histograms
similar to those used in photo-editing software.

(iii) Cropping: cropping a prominent region of every
single image is a technique used as a specialised
processing step for image data with combined di-
mensions of height and width. Furthermore, ran-
dom cropping can be used to achieve the same effect
as translations. )e distinction between translations
and random cropping is that translations preserve
the image’s spatial dimensions, but random crop-
ping decreases the input size. )e label-preserving
transformation may not be addressed because to the
cropping reduction threshold that was chosen.

(iv) Rotation: rotation augmentations are created by
rotating a picture left or right from 0 to 360° around
the axis. )e rotation degree parameter has a sig-
nificant impact on the applicability of rotation
augmentations. Small rotations (from 0 to 20°) are
quite useful in digit identification tasks. When the
rotation degree rises, however, the data label cannot
be kept post-transformation.

(v) Translation: shifting the picture up, down, left, or
right is a highly important transformation for
avoiding positional bias in image data. For example,
it is typical for all of the photos in a dataset to be
centred; also, the tested dataset should be fully
composed of centred images in order to test the
model. It is worth noting that, after translating the
starting pictures in a certain direction, the
remaining space should be filled with Gaussian or
random noise, or a constant value such as 255 s or
0 s. Using this padding, the spatial dimensions of the
picture after augmentation are kept.

(vi) Noise injection: this method entails introducing a
matrix of arbitrary values. A Gaussian distribution
is typically used to generate such a matrix. Injecting
noise into photos allows the CNN to learn more
robust features.

2.4.4. Interpretability of Data. DL approaches are occa-
sionally studied to serve as a black box. )ey can, in fact, be
interpreted. Many areas, such as bioinformatics, have a
requirement for a way of interpreting DL, which is utilized to
acquire the valuable motifs and patterns detected by the
network. It is necessary not only to understand just the
illness diagnosis or prediction findings of a trained DL
model but also how to improve the certainty of the pre-
diction outcomes, as the model bases its choices on these
verifications. To do this, each section of the specific example
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can be assigned a weighted score. Backpropagation-based
techniques or perturbation-based approaches are employed
in this solution. A fraction of the input is altered in the
perturbation-based techniques, and the effect of this mod-
ification on the model output is monitored.)is notion has a
high computational complexity, yet it is easy to grasp. With
contrast, in backpropagation-based approaches, the signal
from the output propagates back to the input layer to verify
the score of the relevance of distinct input sections.

2.4.5. Overfitting. Because of the large number of parame-
ters involved, which are complexly interrelated, DL models
have an extremely high risk of resulting in data overfitting
during the training stage. Such circumstances limit the
model’s capacity to perform well on the tested data. )is
issue is not just restricted to a single field, but also en-
compasses a variety of duties. As a result, while proposing
DL approaches, this issue should be thoroughly examined
and handled correctly. According to current research, the
inherent bias of the training process helps the model to
overcome critical overfitting concerns in DL. Nonetheless,
strategies for dealing with the overfitting problem must be
developed. An examination of the various DL algorithms for
easing the overfitting problem may be divided into three
categories. )e first class contains the most well-known
methods, such as weight decay, batch normalisation, and
dropout, and it operates on both the model architecture and
model parameters. Weight decay is the default approach in
DL, and it is used widely as a universal regularizer in
practically all ML algorithms. )e second class is concerned
with model inputs such as data corruption and data aug-
mentation. One cause of overfitting is a paucity of training
data, which causes the learnt distribution to differ from the
true distribution. Data augmentation increases the size of the
training data. In contrast, marginalised data corruption
improves the solution solely through data augmentation.
)e last class is concerned with the model’s output. For
regularising the model, a recently developed method pe-
nalises overconfident outputs. )is approach has been
shown to be capable of regularising RNNs and CNNs.

2.4.6. Vanishing Gradient Problem. In general, when uti-
lising backpropagation- and gradient-based learning ap-
proaches with ANNs, an issue known as the vanishing
gradient problem emerges, particularly, during the training
stage. In further detail, during each training iteration, each
weight of the neural network is updated depending on the
current weight and is proportionately relevant to the partial
derivative of the error function. However, owing to a
vanishingly tiny gradient, this weight update may not occur
in some situations, implying that no more training is feasible
and the neural network would cease entirely. In contrast, the
sigmoid function, such as other activation functions,
compresses a huge input space to a compact input region. As
a result of the huge fluctuation at the input resulting in a little
variation at the output, the derivative of the sigmoid
function will be small. Only a few layers in a shallow network
employ these activations, which is not a big deal. While

having additional layers causes the gradient to become very
tiny during the training stage, the network operates effec-
tively in this scenario. )e gradients of neural networks are
determined using the backpropagation approach. Initially,
this approach identifies the network derivatives of each layer
in reverse order, beginning with the most recent layer and
moving back to the first. )e next step is to multiply the
derivatives of each layer along the network in the same way
that the previous step was done. When there are N hidden
layers, for example, multiplying N small derivatives together
requires an activation function such as the sigmoid function.
As a result, the gradient decreases exponentially as it
propagates back to the first layer. Because the gradient is
modest, the biases and weights of the initial layers cannot be
updated efficiently during the training stage. Furthermore,
because these early layers are typically vital in detecting the
main aspects of the input data, this circumstance reduces
total network accuracy. However, by using activation
functions, such an issue may be avoided. )ese functions
lack the squishing attribute, which allows them to squish the
input space to a tiny space. )e ReLU is the most preferred
choice for mapping X to max since it does not provide a
modest derivative that is useful in the field. Another option is
to use the batch normalisation layer. As previously stated,
the difficulty arises when a huge input space is squeezed into
a tiny space, resulting in vanishing the derivative. Using
batch normalisation mitigates this problem by simply
normalising the input, i.e., the expression |x| does not
achieve the sigmoid function’s outside borders. )e nor-
malisation procedure causes the majority of it to fall into the
green region, ensuring that the derivative is large enough for
future activities. Furthermore, faster hardware, such as that
supplied by GPUs, can address the above issue. In com-
parison to the time necessary to notice the vanishing gra-
dient problem, this enables normal backpropagation over
many deeper levels of the network.

2.4.7. Exploding Gradient Problem. )e gradient problem is
the inverse of the vanishing problem. Specifically, during
backpropagation, huge error-gradients accrue.)e latter will
result in extraordinarily big modifications to the network’s
weights, causing the system to become shaky. As a result, the
model’s capacity to learn successfully will deteriorate.
Moving backward in the network during backpropagation
causes the gradient to expand exponentially by repeatedly
compounding gradients. As a result, the weight values may
get extremely big and may overflow to produce a not-a-
number (NaN) value. Some potential solutions include

(1) Using different weight regularization techniques
(2) Redesigning the architecture of the network model

2.4.8. Underspecification. In 2020, a Google team of com-
puter scientists found a new difficulty known as under-
specification. When evaluated in real-world applications
such as computer vision, medical imaging, natural language
processing, and medical genomics, machine learning
models, particularly, deep learning models, frequently
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exhibit startlingly low performance. Underspecification is to
blame for the poor performance. It has been demonstrated
that modest changes may push a model to an entirely new
solution and result in different predictions in deployment
domains. )ere are several methods for dealing with the
issue of underspecification. One of them is to create “stress
tests” to see how well a model performs on real-world data
and to identify potential problems. Nonetheless, this ne-
cessitates a solid grasp of the process, as the model can
perform incorrectly. “Designing stress tests that are well-
matched to application criteria and that give adequate
“covering” of probable failure modes is a huge problem,” the
researchers concluded. Underspecification severely limits
the trustworthiness of ML predictions and may necessitate
some reconsideration of some applications. Because ML is
tied to humans through applications such as medical im-
aging and self-driving automobiles, it will necessitate careful
consideration of this issue.

2.5. Computational Approaches and Comparison between
Different Aspects Related to Devices. Complex ML and DL
algorithms have quickly emerged as the most significant
techniques for computationally exhausting applications, and
they are widely applied in a variety of domains. )e creation
and refinement of algorithms, together with the capabilities
of well-behaved computational performance and massive
datasets, allow for the successful execution of various ap-
plications that were previously either impossible or difficult
to conceive.

2.5.1. CPU-Based Approach. )e CPU nodes’ well-behaved
performance frequently aids robust network connectivity,
storage capabilities, and huge memory. Although CPU
nodes are more general purpose than FPGA or GPU nodes,
they lack the ability to compete in raw compute facilities
since this demands improved network capability and a
bigger memory capacity.

2.5.2. GPU-Based Approach. GPUs are exceptionally effec-
tive for various fundamental DL primitives, including highly
parallel-computing operations such as activation functions,
matrix multiplication, and convolutions. Incorporating
HBM-stacked memory onto modern GPU models dra-
matically improves bandwidth. )is enhancement enables a
wide range of primitives to make efficient use of all available
computational resources on GPUs. In the case of dense
linear algebra computations, the boost in GPU performance
over CPU performance is typically 10–20 :1.

2.5.3. FPGA-Based Approach. FPGA is widely used in a
variety of functions, including deep learning. FPGA is widely
used to create inference accelerators. )e FPGA can be
effectively configured to reduce the number of unnecessary
or overhead functions in GPU systems. )e FPGA, in
comparison to the GPU, is limited to both poor-behaved
floating-point performance and integer inference. )e key
FPGA feature is the ability to dynamically modify the array

characteristics (at run-time), as well as to configure the array
using effective design with little or no overhead. Table 1 [89]
represents the comparison between different aspects related
to the devices.

3. Algorithmic Categorization and Features and
Challenges of Existing Semantic
Segmentation Models

3.1. Algorithmic Classification. )is section presents differ-
ent deep learning approaches utilized for developing a se-
mantic segmentation model as given in Figure 3.

)e semantic segmentation models mostly use deep
learning algorithms for getting superior accuracy with better
quality. )e techniques have been categorized into two
sections, namely, deep learning and miscellaneous ap-
proaches. In deep learning, CNN architectures play a major
role for semantic segmentation, which is extended by
adopting different convolutional layers or other frameworks.

Supervised learning: in this model, training data consist
of both input and desired results. )ese supervised learning
algorithms are often accurate and fast. It has the ability of
generalization that gives the precise results while processing
new data without knowing a priori about the target.

CNN [24, 48, 53, 61, 80] inspires the researchers because
of the superior efficiency in the area of computer vision,
which has been adopted in diverse applications such as
object detection, image recognition, and other fields. Fig-
ure 4 represents the architecture of convolutional neural
network )is architecture enhances accuracy of prediction
or classification due to the large number of training samples
along with building neural networks with several layers.
CNN is a hierarchical system, which takes the input data as
raw data through stacking a set of operations such as
mapping of nonlinear activation functions, convolution, and
pooling operations. )is procedure is named as “feedfor-
ward operation.” Due to this effective operation of CNN, it
has attained superior results in the data mining and natural
processing tasks when compared with the deep neural
networks. Owing to the efficiency of CNN architectures,
multiple CNN-based approaches are designed by integrating
many ideas or integration of FCN architecture. )is
adoption of several networks into one framework is named
as ensemble learning [60, 66, 77], which has attained su-
perior results compared to single architecture because of the
utilization of multiple layers. Ensemble of CNNs [25] is
adopted by utilising several layers of CNN architecture to
reduce the computational cost and avoids aliasing problem.
It provides promising performance when compared to the
existing models. DP-DCN [35] focuses on extracting the
significant features from DSM data and spectral channels for
fusing them through an encoder-decoder framework. )e
extended version of CNN consists of Shuffling CNNs [27],
DSMFNets [28], UVid-Net [69], ESPCN [42], neuro-
architectures [72], ensemble of CNNs [25], ADSCNet [54],
DSCNN [29], DCNN [32, 33, 57], multitask CNN [30],
multifilter CNN [31], ConvNet [26], GAMNet [82], DL-
DCNN [68], and GCN [49, 83]. )is modified or integrated
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concept of CNN is designed for efficient semantic
segmentation.

FCN (see [38, 46, 47, 51]): the basic idea of FCN includes
processes such as “multilayer convolution, deconvolution,
and fusion,” where the convolutional layers are replaced
with the fully connected layers. )e image score is computed
by using pixel-wise convolution. UNet [42, 73, 76] is a type
of FCN that is efficient for small training dataset, which
includes convolution and deconvolution layers with filters
along with ReLU activation function. )e modified versions
of FCN are given here as integrated algorithm [71], ResU-
Net-a [59], CAM-DFCN [36], relation module-equipped
FCN [52], FCN-Alexnet model [55], and AD-LinkNet [44].
Improved SegNet [58] and SegNet [64] follow a FCN
structure with encoder and decoder network. SegNet saves
the element index in the upsampling process of the decoder
network for solving the ambiguous spatial information in
the resultant of deeper layers. Figure 5 depicts the archi-
tecture of fully connected Network.

FCN introduces many significant ideas: (i) end-to-end
learning of the upsampling algorithm via an encoder/de-
coder structure that first downsamples the size of the ac-
tivations and then upsamples it again, (ii) using fully
convolutional architecture allows the network to take images
of arbitrary size as input since there is no fully connected
layer at the end that requires a specific size of the activations,
and (iii) introducing skip connections as a way of fusing
information from different depths in the network for
multiscale inference.

GAN (see [37, 71]): generative adversarial network
(GAN) model considers a softmax layer, in which the dis-
criminator of the GAN produces label types for efficient
classification of unlabeled samples and labeled examples.
)e architecture of generative adversarial network is shown
in Figure 6.)emodified version of ColorMapGAN [67] has
aimed at minimizing the computational complexity and
improving the accuracy.

DNN: deep neural networks (DNN) focus on semantic
segmentation of high-resolution images which consist of
several parameters that need a large number of labeled

examples for training. A general scheme for constructing a
deep network to process a rich dataset is complex. )e
improved DNN models are modified inceptionV-4 network
[50], NDRB [52], ResNet101-v2 [39], ALRNet [70],
HMANET [56], ResNet [65], inceptionV-4 network [81],
MAVNet [41], and SDNF [61], which are aimed to enhance
the superior accuracy on segmentation.

Unsupervised learning: this model is not offered with the
precise results during training, which can be employed for
clustering the input data in classes through statistical
properties.

DAugNet [78]: DAugNet generates the precise maps
and has provided life-long adaptation settings for giving the
superior semantic segmentation results. GB-RBM [73] is
introduced for enhancing the segmentation results and
improving the speed and accuracy. Figure 7 gives the
training procedure of data augmentation network.

3.2. Features and Challenges. )e features and challenges of
the conventional semantic segmentation model using deep
learning techniques are listed in Table 2. )is description
provides the researchers for focusing on a new semantic
segmentation model on aerial images for solving the existing
challenges through adopting deep learning techniques.

4. Simulation Platforms and Dataset
Description for Conventional Semantic
Segmentation Models

4.1. Simulation Platforms. )e simulation environments
used for implementing a semantic segmentation model with
different imaging modality is presented in Figure 8. Here,
some of the tools such as CUDA version 8.0, Edge Detection
and Image Segmentation (EDISON) library, MXNet, Ten-
sorRT, and two-fold validation tool are used in 1.7% of the
contributions, respectively. MATLAB and Tesla use 3.3% of
the contributions for implementation and Pascal and Keras
utilize 8.3% of the research works with the TensorFlow as a
platform, respectively. TensorFlow is used as the simulation

Table 1: A comparison between different aspects related to the devices.

Feature Assessment Leader
Development CPU is the easiest to program, then GPU, and then FPGA CPU

Size Both FPGA and CPU have smaller volume solutions due to their lower power consumption FPGA-
CPU

Customization Broader flexibility is provided by FPGA FPGA
Ease of change Easier way to vary application functionality is provided by GPU and CPU GPU-CPU
Backward
compatibility

Transferring RTL to novel FPGA requires additional work; furthermore, GPU has a less stable
architecture than CPU CPU

Interfaces Several varieties of interfaces can be implemented using FPGA FPGA

Processing/$ FPGA configurability assists utilization in wider acceleration space; due to the considerable processing
abilities, GPU wins

FPGA-
GPU

Processing/watt Customized designs can be optimized FPGA
Timing latency Implemented FPGA algorithm offers deterministic timing, which is in turn much faster than GPU FPGA

Large data analysis FPGA performs well for inline processing, while CPU supports storage capabilities and the largest
memory

FPGA-
GPU

DCNN interference FPGA has lower latency and can be customized FPGA
DCNN training Greater float-point capabilities provided by GPU GPU
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environment for 18.3% of the works and NVIDIA is con-
sidered in 5% of the contributions. Finally, the python tool is
used in 6.6% of the research works and other platform
environments are taken in 20% of the contributions.

4.2. Dataset Description and Imaging Modalities Focused.
)e dataset used for implementing the semantic segmentation
model along with different imaging modalities is given in
tabular forms (Tables 3–7). Most of the contributions are

considered aerial images for semantic segmentation, which is
used in 23.3% of the work, s, and high-resolution aerial imagery
is taken in 16.6% of the contributions. Similarly, the remote-
sensing and high-resolution remote-sensing images are taken
in 25% of the research works. Unoccupied aerial vehicles’
(UAVs) images are gathered in 11.7% of the contributions.

Multiscale and multispatial resolution images are included
in 1.7% of the research papers, respectively, and satellite images
are taken in 5% of the contributions. Other high-resolution
images are taken in 13.4% of the research works.

Semantic Segmentation Models

Miscellaneous Techniques Deep Learning

Supervised Unsupervised

DNN GAN [37] [71] CNN [24] [53]
[61] [80] [48]

FCN [38] [51]
[46] [47]

ColorMapGAN [67]

DAugNet [78]
GB-RBM [45]

CAM-DFCN [36]
Relation Module Equipped
FCN [52]
FCN-AlexNet Module [55]
Improved-SegNet [58]
SegNet [64]
AD-LinkNet [44]
U-Net [42] [73]
Optimized U-Net [76]
Integrated Algorithm [71]
ResUNET-a [59]

DP-DCN [35]
Shuffling CNNs [27]
DSMFNets [28]
Uvid-Net [69]
ESPCN [42]
Neroarchitectures [72]
Ensemble of CNNs [25]
ADSCNet [54]
DSCNN [29]
Ensemble Learning [77]
[60] [66]
DCNN [57] [32] [33]
Multi-task CNN [30]
Multi-filter CNN [31]
ConvNet [26]
GAMNet [82]
DL-DCNN [68]
GCN [49] [83]

Modified InceptionV-4
Network [50]
Nested Dilated
Residual Block
(NDRB) [52]
ResNet101-V2 [39]
ALRNet [70]
HMANET [56]
ResNet [65]
Inception V-4 Network
[81]
MAVNet [41]
SDNF [61]

Segment Connection
Algorithm [39]
DSMFNets [40]
Hard Sampling and
Soft Sampling [74]
Aerial-BiSeNet [75]
MAML-PSO [63]
DASSN-RSI [79]
Cascaded Framework
[34]

Figure 3: Algorithmic categorization of existing semantic segmentation models.
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Figure 7: )e training procedure of DAugNet that comprises a data augmentor and a classifier. In each training iteration, the classifier
learns from the diversified batch generated by the data augmentor [78].

Table 2: Merits and demerits of existing semantic segmentation model using deep learning approaches.

Citation
number Methodology Features Challenges

[24] CNN It accurately extracts the round objects
using CNN

It requires more cost for getting pixel
intensities on shadow regions

[25] Ensemble of CNNs

It reduces the computational cost and
avoids aliasing problems; it provides

promising performance when compared to
the existing models

Conversely, multicore parallelization over
diverse scenes is complex

[26] ConvNet It gets efficient segmentation performance
with better sophistication

)is model is not suitable for unlabeled
data

[27] Shuffling CNNs )is model is limited to use ensemble
approaches

)is model is limited to use ensemble
approaches

[28] ResNet101-v2 and a pyramid
pooling module

It has offered an effective network
framework with superior performance

However, the segmentation accuracy is
limited while considering the large spectral
similarities among imperious surfaces and

buildings

[29] DSCNN It provides enhanced and smoother
identifications for different objects

It does not offer superior numerical
outcomes

[30] Multitask CNN
It has offered a principled and flexible
structure for providing the efficient

segmentation results

It does not preserve the geometrical
features and complex for segmentation

[31] Multifilter CNN It has achieved the highest overall accuracy
and removed the noise

)is paper does not investigate how diverse
data sources from other sensors are

integrated in deep CNN

[32] DCNN
)is model gets superior efficiency with
discriminative frameworks; it avoids

overfitting problems

However, this model does not fully remove
the salt and pepper noise

[33] DCNN )e DCNN achieves superior effectiveness
on a standard dataset

However, it is a tedious and small problem
that affects the segmentation quality

[34] Cascaded framework
It has improved the prediction with object
boundaries and removed the isolated false

positives
It has high computational costs

[35] Dual-path densely convolutional
networks (DP-DCN)

It avoids the vanishing gradient problem
and strengthens the information flow

among the layers by a dense connection

However, it requires less test time and
training time

[36] CAM-DFCN

)is model has attained mainstream
performance; it also promotes the

segmentation results with efficient feature
selection

)e performance of the suggested CAM-
DFCN was not improved significantly

while comparing to the CNN+RF+CRF

[37] GANs with multi-scale context
aggregation

)is network has improved the accuracy of
road extraction and offered superior visual

effects

It is a computationally inefficient one,
which has to enhance the segmentation

precision
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Table 2: Continued.

Citation
number Methodology Features Challenges

[38] FCN )is model has recovered the lost data to
get high robustness and accuracy

)is model is not applicable for processing
the shadow areas

[39] Segment connection algorithm
It enhances the detection efficiency that

enhances the applicability of the
framework

)e precision rate of lost vibration damper
identification is less which gives a lower F1

score

[40] DSMFNets It shows superior fusion results using
DSMFNets with efficient performance

However, the effectiveness can be affected
due to the restriction on the feature

extraction module

[41] MAVNet It has shown a better tradeoff between
performance and inference time

)is model is not applicable to apply
modestly sized networks

[42] ESPCN and UNet It enhances the segmentation and
improves the robustness It suffers from insufficient training samples

[43] Neuroarchitectures including (a)
MultiNet, (b) SegNet, and (c) UNet

)is model has improved the quality of
object segmentation However, the implementation is restricted

[44] AD-LinkNet )e suggested AD-LinkNet boosts the
efficiency on segmentation

)e designed model does not show the
better performance on different road

interruptions

[45] GB-RBM It enhances the segmentation results; it has
improved the speed and accuracy

)is model is restricted on high spatial
resolution thermal infrared images

[46] FCN
)e segmentation efficiency is improved
while comparing with the conventional

approaches; it gets less overhead

)e multitask degrades the efficiency of
segmentation

[47] FCN
It efficiently discriminates the nonwetland
classes from wetland classes; It enhances
the accuracy of semantic segmentation

However, processing the restricted
availability of ground truth data in large-

scale remote-sensing applications is
challenging

[48] CNN

)is model has enriched the semantic
information, which has focused on
attaining the representative extracted

features

It lacks in performance due to the
processing of high-level features

[49] GCN
It has shown superior performance with
capturing of complex features; it solves the

scarcity problem

It has to enhance the accuracy by adopting
different approaches such as optimization

and semantic labeling

[50] Modified InceptionV-4 network
called DAPN

)is technique has robust generalization
ability

Although the potsdam dataset has offered
consistent performance, there is a

considerable reduction in the vaihingen
IR-R-G dataset concerning IOU scores

[51] Relation module-equipped FCN
)e performance of semantic

segmentation is enhanced with the use of a
network using aerial scenes

However, the suggested relation modules
regarding segmentation are basic one, and
thus, it does not offer superior efficiency

[52] Nested dilated residual block
(NDRB)

It offers precise object boundaries and
labeling for complex scenes

)e per-class accuracy is not evaluated
which does not estimate the efficiency

[53] CNN

)is model has offered the best tradeoff
with the fewer number of parameters along
with less memory utilization; it gives the

suitable mapping of terrain

)e considered images do not have a fixed
shape or resolution, and thus, the training

may be affected

[54] ADSCNet

)is model has reduced the network
complexity because of the depth-wise

convolution; it improves the performance
along with better information flow

)is model does not evaluate the actual
inference speed

[55] FCN-AlexNet model )is model has maintained reasonable
accuracy and inference speed

)e limited dataset is used for validation,
which has to be rectified
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Table 2: Continued.

Citation
number Methodology Features Challenges

[56] HMANet

)is model captures the global contextual
details for efficient segmentation; it

enhances the efficiency of the self-attention
scheme and reduces feature redundancy

It takes huge consumption of memory

[57] DCNN It has shown better smoothing effects; it
has extracted the multilevel features

It does not consider the complementary
and orthogonal technical progressions

[58] Improved SegNet

It increases the accuracy and speed of
sunflower lodging; it efficiently monitors
the lodging in equivalent low canopy

density crops

)e complexity of the identification is
increased due to the growth and status of
sunflow which is varied through spatial

distribution changes

[59] ResUNet-a
It has offered better convergence
properties; the superior F1 score is

observed

It shows slow operation due to the GPU
synchronization that makes it impractical

for future processes

[60] Ensemble learning
It extracts multiscale features; the manual
dataset offers superior performance with

temporal consistency

However, this dataset has different
challenges such as number of types in
scenes, dataset size and large-scale
differentiation for several objects

[61] CNN It reduces the computational constraints; it
provides real-time performance

However, the weak labeling stage is
observed that affects the performance

[62] Superpixel-enhanced deep neural
forest (SDNF)

It shows superior classification ability with
reduced noises; it gives robust results

However, for some of the classes, the
accuracy is reduced

[63] MAML-PSO

)e misclassification of objects with
specific height variance can be effectively
minimized by introducing LIDAR data; it

increases the testing accuracy

In this model, the overall accuracy is not
very good

[64] SegNet
It shows the superior building extraction
for medium- and high-sized buildings; it
also enhances the classification accuracy

However, the small size buildings are
complex for identification

[65] ResNet
It has efficiently extracted the global and

local deep features that offer better
semantic segmentation results

)is study does not consider the digital
surface models on both datasets

[66] Ensemble learning )e semantic segmentation is improved
due to the extracted features

)e suggested model is limited on dataset
size

[67] ColorMapGAN
)e suggested model has minimized

computational complexity and improved
accuracy

)ough, the results’ quality for
nonlearning-based approaches is

inefficient

[68] DL-DCNN

It has achieved better convergence rate and
accelerated network training; it obtains

enhanced results with efficient
identification of changes

Conversely, it gets overfitting and low
accuracy rate

[69] UVid-net
It reduces the computational complexity
and provides superior segmentation results

on aerial videos

However, it is a laborious and time-
consuming task

[70] ALRNet
)is model chooses the most

nonredundant and representative features
to offer outstanding efficiency

ALRNet has higher computational
inefficiency

[71] GAN
)is model efficiently preserves the edge
information and gets a better accuracy rate

on segmenting the maps

)is model lacks accuracy and also it
suffers from extracting the continuous

road parts or complex regions

[72]
Integrated algorithm (encoder-
decoder CNN structures SegNet
with index pooling and UNet)

)is integrated technique has offered
superior features of both CNN and UNet
to offer better semantic segmentation of

images

For some classes, the suggested integrated
model has attained less performance than

other algorithms
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Table 2: Continued.

Citation
number Methodology Features Challenges

[73] UNet

)is approach has the capability of precise
segmentation of tree canopies; it also solves
complex problems in environments such

as agricultural production

Although the designed model shows
superior performance on detection, it does
not solve the issue of densely merged and

located false positives

[74] Hard sampling and soft sampling
)is model explores the heterogeneous
colour feature and texture feature of the

PV panel

On the contrary, the uncertainties have
remained

[75] Aerial-BiSeNet
A superior balance among the speed and
accuracy is offered; it has shown better
efficiency and accuracy on both datasets

It suffers from weak representation ability
and high model complexity

[76] Optimized UNet It solves the computational complexity; it
improves the overall performance

Conversely, some of the images attain the
worst results because of the estimation

problem

[77] Ensemble learning
)e accuracy and practical

implementation is superior to other
existing approaches

)e efficiency can be affected due to the
noise present in images

[78] DAugNet )e precise maps are generated and have
provided life-long adaptation settings

)is model does not apply on sentinel and
aerial images

[79] DASSN_RSI

It has reduced the training loss and
enhanced the convergence rate; it verifies
the advancement and efficiency of the

suggested method

It lacks in robustness, which does not focus
on low-shot learning methods

[80] CNN
)e segmentation and overall training time
have been reduced; it also improves the

overall precision

)is model does not consider low-
resolution images

[81] InceptionV-4 network It has attained superior segmentation
efficiency and training efficiency It shows poor generalization ability

[82] GAMNet

)e efficiency of the integration module is
improved; the accurate results has attained
with precise boundaries even for small

objects

)e confusing problem is occurred and
suffered from misclassification problem in

shaded areas

[83] GCN It restores the boundaries of ground
objects and reduced the pixel-level noises

However, it does not utilize the spatial
correlation details for interpreting remote-

sensing images
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Figure 8: Simulation platforms used for implementing the semantic segmentation models.
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4.3.Datasets for Image Segmentation. In this section, we give
a synopsis of a portion of the most generally utilized datasets
for image segmentation. We combine these datasets into 3
classifications is 2-dimensional images, 2.5-dimensional
RGB-D (complexity + colour) images, and 3-dimensional

images and give subtle ties with regards to the attributes of
each dataset. )e recorded datasets have pixel-wise marks,
which can be utilized for assessing model execution.

It is worth focusing on that a portion of these works, use
augmentation of data to expand the quantity of marked

Table 3: Dataset description based on modality of aerial imagery.

Citation
number Dataset description

[38] Aeriallanes18 dataset
[52] )e potsdam dataset and the vaihingen dataset
[27] ISPRS vaihingen and potsdam datasets
[24] Manual dataset that includes 127 aerial images
[41] Mavnet
[73] Manual dataset
[53] )e dataset can be accessed at https://github.com/gabrielmtzsoltero/ssegfor_aerial_mapping/
[56] ISPRS 2D semantic labeling challenging for vaihingen and potsdam
[29] Use the vaihingen dataset
[77] Commercial apple orchard in northeastern melbourne
[61] Vaihingen dataset and potsdam dataset
[46] ISPRS 2D semantic labeling and data fusion contest 2015

[30] Dataset is composed of 33 orthorectified image tiles acquired by a near infrared (NIR)-green (G)-red (R) aerial camera,
over the town of vaihingen (Germany)

[48] ISPRS Benchmarks1, deepglobe contest2, and spacenet competition3

Table 4: Dataset description based on modality of high-resolution aerial images.

Citation number Dataset description
[51] ISPRS vaihingen and potsdam
[70] Potsdam dataset, vaihingen dataset, and whu dataset
[71] Massachusetts dataset
[25] Vaihingen dataset
[75] Potsdam and vaihingen datasets
[59] ISPRS 2D potsdam dataset
[31] ISPRS 2D semantic labeling contest of potsdam and an area of guangzhou in China
[33] ISPRS vaihingen 2D semantic labeling challenge
[82] ISPRS 2D semantic labeling datasets

Table 5: Dataset description based on remote-sensing images.

Citation
number Dataset description

[35] Vaihingen and potsdam

[50] International society for photogrammetry and remote-sensing (ISPRS) 2D semantic labeling contest potsdam and inria
aerial image labeling dataset

[28] ISPRS
[42] Manual dataset on Tokyo
[72] Big data and computing intelligence contest (BDCI)
[54] Cityscapes
[58] )e remote-sensing data collected from field 1
[62] ISPRS 2D semantic labeling benchmark dataset
[63] 2015 igrss data fusion competition
[32] Rit-18
[79] Gaofen image dataset (GID) datasets
[80] Potsdam and vaihingen datasets
[67] Luxcarta dataset
[81] ISPRS 2D semantic labeling contest vaihingen dataset and Massachusetts building dataset
[68] Ottawa dataset, stone gate dataset, sardinia dataset, yellow river estuary dataset, barbara dataset, and USGS dataset
[49] Landsat-8 satellite and ISPRS vaihingen challenge dataset
[83] UCM dataset and the deepglobe dataset
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samples, uncommonly the ones which manage little datasets
such as in the medical domain. Augmentation of data serves
to expand the quantity of preparing tests by applying a set of
changes either in the information space, or element space, or
now and again both to the images, i.e., both the input image
and the segmentation map. Some normal changes incor-
porate interpretation, reflection, pivot, twisting, scaling,
colour space shifting, trimming, and projections onto
principal components. Augmentation of data has demon-
strated to work on the presentation of the models, partic-
ularly when gaining from restricted datasets, like those in
medical image investigation.

)e common image segmentation research has con-
centrated on 2-dimensional images. From Figure 9 [91],
pink, green, and yellow blocks mention semantic occurrence
and panoptic segmentation algorithms, respectively.
)erefore, several 2-dimensional image segmentation
datasets are existing, and they are PASCAL Visual Object
Classes (VOC) [92], PASCAL Context [93], Microsoft
Common Objects in Context (MS COCO) [94], Cityscapes
[95], ADE20K/MIT Scene Parsing (SceneParse150) [96],
SiftFlow [97], Stanford background [98], Berkeley Seg-
mentation dataset [99], Youtube-Objects [100], KITTI [101],
Semantic Boundaries Dataset (SBD) [102], PASCAL Part
[103], SYNTHIA [104], Dobe’s Portrait Segmentation [105],
etc., With the obtainability of reasonable range scanners,
RGB-D images have become standard in both research and
industrial applications. Some of the most standard 2.5-di-
mensional RGB-D datasets are NYU-D V2 [106], SUN-3D
[107], SUN RGB-D[108], UW RGB-D Object Dataset [109],
ScanNet [110], etc., )ree-dimensional image datasets are
standard in robotic, medical image analysis, 3D scene
analysis, and construction applications. )ree-dimensional
images are generally provided via meshes or other

volumetric illustrations, such as point clouds. Some of the
standard 3-dimensional datasets are Stanford 2D-3D [111],
ShapeNet Core [112], Sydney Urban Objects Dataset [113],
etc.

4.4. Frameworks and Benchmark Datasets Employed for
Different DL Tasks. Several deep learning frameworks and
datasets have been developed in the last few years. Various
frameworks and libraries have also been used in order to
expedite the work with good results. )rough their use, the
training process has become easier. Tables 8 and 9 [89] list
the most utilized frameworks and libraries and Benchmark
datasets.

4.5. Algorithms Comparison Based on Different Datasets.
Comparison of different algorithmic features and their re-
sults obtained based on clustering methods, conditional
random field, PASCAL VOC2012 dataset, CamVid dataset,
and MS COCO dataset are tabulated (Tables 10–14).

5. Performance Measures and Best Accuracy
Rate Attained by the Conventional Semantic
Segmentation Models

5.1. PerformanceMetrics. An exemplary ought to preferably
remain assessed in an assortment of ways, including
quantitative precision, speed, and capacity necessities. )e
majority of previous research has concentrated on param-
eters for assessing model accuracy. )e most commonly
used parametric for evaluating the accuracy of segmentation
algorithms is summarized below [91, 136]. On benchmarks,
to analyze various models, quantitative measurements are

Table 6: Dataset description based on modality OF UN-OCCUPIED aerial vehicles (UAVS) images.

Citation
number Dataset description

[37] UAV images of three regions (Baoxing, Jiaxing, and Chengyang)
[39] China southern power grid company
[69] Manual Uavid dataset and cityscape dataset
[43] Worldview-3
[55] Rice field located in southern China
[60] Manual Uavid dataset

[45] UAV-based thermal infrared imagery named NPU_CS_UAV_IR_DATA that was collected from some streets of China
by using FLIR TAU2

[64] RGB-D UAV dataset

Table 7: Dataset description based on multiscale, multispatial resolution, satellite images, and other high-resolution images.

Citation number Dataset description
[76] Lsun dataset
[44] CVPR2018 deepglobe challenge
[78] Dataset consists of pleiades images collected over five cities in Austria
[42] Polarimetric RADARSAT-2
[66] High-resolution images from LANDSAT-8 datasets of Google Earth engine
[34] Challenging PASCAL VOC2012 database
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utilized, and the visual nature of the model yields signifi-
cance in figuring out.

(i) Pixel accuracy (PA): basically, pixel accuracy states
the ratio of correctly classified pixels to the total
quantity of pixels. Pixel accuracy is known for N +
1 classes as

PA �
􏽐

n
i�0 aii

􏽐
n
i�0 􏽐

n
j�0 aij

, (1)

where aij is the quantity of pixels of class I pre-
dicted as belonging to class j.

(ii) Average/mean pixel accuracy (MPA): mean pixel
accuracy has marginally further developed, in

which the ratio of correct pixels is computed in a
per-class basis and then averaged over the total
number of classes:

MPA �
1

N + 1
􏽘

n

i�0

aii

􏽐
n
j�0 aij

. (2)

(iii) Intersection over union (IoU): this is quite possibly
the most generally utilized measurement in se-
mantic segmentation. It is determined as the area
of intersection of the predicted division map and
the ground truth divided by the area of the union
of the predicted segmentation map and the ground
truth:
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Figure 9: )e evolution of deep learning-based segmentation algorithms for 2-dimensional images from 2014 to 2020 [91].

Table 8: LIST of most common frameworks and libraries.

Framework License Core language Year of release Homepages
TensorFlow Apache 2.0 C++ and python 2015 https://www.tensorflow.org/
Keras MIT Python 2015 https://keras.io/
Caffe BSD C++ 2015 http://caffe.berkelyvision.org/
MatConvNet Oxford MATLAB 2014 http:/www.vlfeat.org/matconvnet/
MXNet Apache 2.0 C++ 2015 https://github.com/dmic/mxnet
CNTK MIT C++ 2016 https://github.com/Microsoft/CNTK
)eano BSD Python 2008 http://deeplearning.net/software/theano/
Torch BSD C and lua 2002 http://torch.ch/
DL4j Apache 2.0 Java 2014 https://deeplearning4j.org/
Gluon AWS microsoft C++ 2017 https://github.com/gluon-api/gluon-api/
OpenDeep MIT Python 2017 http://www.opendeep.org/
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Table 9: Benchmark datasets.

Dataset No. of
classes Applications Link to dataset

ImageNet 1000 Image classification, object localization, object
detection, etc. http://www.image-net.org/

CIFAR10/100 10/100 Image classification https://www.cs.toronto.edu/∼kriz/cifar.html
MNIST 10 Classification of handwritten digits http://yann.lecun.com/exdb/mnist/

Pascal VOC 20 Image classification, segmentation, and object
detection

http://host.robots.ox.ac.uk/pascal/VOC/
voc2012/

Microsoft COCO 80 Object detection and semantic segmentation https://cocodataset.org/#home
YFCC100M 8M Video and image understanding http://projects.dfki.unikl.de/yfcc100m/
YouTube-8M 4716 Video classification https://research.google.com/youtube8m/
UCF-101 101 Human action detection https://www.crcv.ucfedu/data/UCF101.php

Kinetics 400 Human action detection https://deepmind.com/research/open-source/
kinetics

Google open images 350 Image classification, segmentation, and object
detection

https://storage.googleapis.com/openimages/
web/index.html

CalTech101 101 Classification http://www.vision.caltech.edu/Image_Datasets/
Caltech101/

Labeled faces in the
wild – Face recognition http://vis-www.cs.umass.edu/lfw/

MIT-67 scene dataset 67 Indoor scene recognition http://web.mit.edu/torralba/www/indoor.htm

Table 10: Comparison of algorithms based on clustering methods (%).

Citations Algorithm features Datasets Segmentation results
[114] Weak supervision, spectral clustering, and discriminative clustering MSRC-21 70 (mA)

[115] Weak supervision and double-end clustering MSRC-21 52.9 (mIoU)
LABLEME 26 (mA)

[116] FCM algorithm and grouping algorithm Self-built dataset 2.2 (mError)

Table 11: Comparison of algorithms based on conditional random field (%).

Citations Algorithm features Datasets Segmentation results
[117] CRF, dense features, and high-order potential energy MSRC-21 75.8 (mA)
[118] CRF and joint-boosting algorithm MSRC-21 71.6 (mA)
[119] CRF and interactive Self-built dataset 95.3 (mA)
[120] CRF and high-order energy items MSRC-21 72.2 (PA)
[121] CRF and maximum flow-minimum cut MSRC-21 0.7 s (time)

Table 12: Comparison of algorithms based on PASCAL VOC2012 dataset (%).

Citations Algorithm features Datasets Segmentation results
[122] Convolution and deconvolution neural networks PASCAL VOC2012 63.6 (mIoU)
[123] Deconvolution networks PASCAL VOC2012 72.5 (mIoU)
[124] PSPNet PASCAL VOC2012 82.6 (mIoU)
[125] RefineNet PASCAL VOC2012 83.4 (mIoU)
[126] Decoupled deep neural networks PASCAL VOC2012 66.6 (mIoU)

Table 13: Comparison of algorithms based on CAMVID dataset (%).

Citations Algorithm features Datasets Segmentation results
[127] SegNet CamVid 60.1 (mIoU)
[128] Densely connected convolutional networks CamVid 66.9 (mIoU)
[129] ENet CamVid 51.3 (mIoU)
[130] Gated feedback refinement networks CamVid 68.0 (mIoU)
[131] Generative adversarial networks CamVid 58.2 (mIoU)
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IoU � J(P, Q) �
|P∩Q|

|P∪Q|
, (3)

where P� true segmentation map and
Q� predicted segmentation maps.
)e value of intersection over union lies between 0
and 1.

(iv) Mean-IoU: mean intersection over union is an
alternative standard metric defined by average
intersection over union across entire modules. It is
commonly used in reporting the performance of
contemporary segmentation algorithms [91].

(v) Precision/recall: for numerous classical image
segmentation models, precision and recall are the
standard metrics for recording. Definition for
precision and recall for every class is as follows:

Precision �
TP Fraction

TP Fraction + FP Fraction
,

Recall �
TP Fraction

TP Fraction + FN Fraction
,

(4)

where TP�True Positive, FP� False Positive, and
FN� False Negative. Usually, we are attentive in a
united form of precision and recall rates.

(vi) F1 score: F1 score is also the standard metric and
defined by the harmonic mean of precision and
recall:

F1 − Score �
2Precision xRecall

Precision + Recall
. (5)

(vii) Dice coefficient: Dice coefficient is an alternative
standard metric used in medical image analysis for
image segmentation, defined by “twice the overlap
area of predicted and ground truth maps, divided
by the total number of pixels in both images. )e
Dice coefficient is very identical to the IoU” [91]:

Dice �
2|P∩Q|

|P| + |Q|
. (6)

While practical to Boolean data, the Dice coeffi-
cient is nearly equal to the F1 score:

Dice �
2TP

2TP + FP + FN
� F1score, (7)

where TP indicates True Positive Fraction, FP
indicates False Positive Fraction, and FN indicates
False Negative Fraction.

(viii) Frequency weighted mIoU: over the raw mIoU,
frequency weighted mean intersection over union
is an improved which weights each class impor-
tance depending on their appearance frequency
[136]:

FWmIoU �
1

􏽐
K
i�0 􏽐

K
j�0 aij

􏽘

K

i�0

􏽐
K
j�0 aij aii

􏽐
K
j�0 aij + 􏽐

K
j�0 aji − aii

.

(8)

(ix) Jaccard index: the Jaccard index, commonly
known as the Jaccard similarity coefficient, is a
statistic used to assess the similarity between
sample sets. )e measurement stresses similarity
between finite sample sets and is officially defined
as the intersection size divided by the sample set
union size. )e mathematical representation of the
index is written as

J(A, B) �
|A∩B|

|A∪B|
�

|A∩B|

|A| +|B| − |A∩B|
. (9)

(x) Confusion matrix: a Confusion matrix is an N x N
matrix that is used to assess the effectiveness of a
classification model, where N is the number of
target classes. Figure 10 represents the confusion
matrix. )e matrix compares the actual goal values
to the machine learning model’s predictions. )is
provides us with a comprehensive picture of how
well our classification model is working and the
kind of errors it is producing. For a binary clas-
sification task, we would have a 2× 2 matrix with
four values, as illustrated in figure [137].
Let us decode the matrix. )e target variable has
two values: positive or negative. )e columns
represent the actual values of the target variable.
)e rows represent the predicted values of the
target variable.

(xi) Kappa coefficient: it is used to assess the level of
agreement between two human evaluators or
raters (for example, psychologists) when
assessing topics (patients). )e machine learning
community then “appropriated” it to quantify
categorization performance. )e kappa score,
also known as Cohen’s kappa coefficient [138], is
named after Jacob Cohen, an American statis-
tician and psychologist who produced the
foundational study on the subject. )is measure
is also known as Cohen’s kappa and the kappa
statistic. To compute the kappa score, it is

Table 14: Comparison of algorithms based on MS COCO dataset (%).

Citations Algorithm features Datasets Segmentation results
[132] Mask R-CNN MS COCO 37.1 (PA)
[133] FCIS MS COCO 59.9 (PA)
[134] Multitask network cascades MS COCO 51.5 (PA)
[135] Residual networks MS COCO 48.4 (PA)
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convenient to first summarize the ratings in a
matrix shown in Figure 11.

)e columns show the ratings by professor A. )e rows
show the ratings by Professor B. )e value in each cell is the
number of candidates with the corresponding ratings by the
two professors.

)e performance metrics employed for analyzing the
diverse semantic segmentation models through deep
learning is given in Table 15. From the set of research works,
63.3% of the works use OA, 48.3% of the contributions use
F1 score, and 25% of the works consider recall and precision
measures, respectively. mIoU metric is taken in 28.3% of the
research works, 5% of the papers use Jaccard index, kappa
coefficient, and dice coefficient the performance metric,

confusion matrix, and PA are considered in 4% of the re-
search works, respectively, and 23.3% of the contributions
consider IoU measure. Furthermore, some of the additional
measures are also taken for evaluating the efficiency of se-
mantic segmentation, which are FWIoU, MCC, average
accuracy, etc.

5.2. Best Performance Measures. )e best performance
measures obtained by diverse semantic segmentation
models are depicted in Figure 12. From this comprehensive
survey, Figure 8(a) represents contributions such as [32, 64]
to get 97% as the highest accuracy rate than others. Secondly,
the work in [50] obtains 94.49%, and the research works
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Figure 11: Summarization of ratings for kappa coefficient [138].

Table 15: )e best performances were obtained by diverse semantic segmentation models.

Citations Performance metric Best performance in percentage
[64] Overall accuracy 97.00
[68] F1 score 99.41
[62] Intersection over union 96.50
[24] Recall 99.84
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Figure 12: Best performancemeasures obtained by state-of-the-art semantic segmentationmodels: (a) best accuracy vs. citations; (b) best F1
score vs. citations, (c) best IoU vs. citations, and (d) best recall vs. citations.
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such as [26, 43, 47, 56, 59, 81] attain 92.63% accuracy rate
when compared with other works.)e best performances for
some of the metrics such as overall accuracy, F1 score,
intersection over union, and recall were noted and tabulated
as shown in Table 16.

5.3. ResearchGaps andChallenges. In recent decades, several
semantic segmentation approaches have been designed for
different applications such as surveillance systems, traffic
monitoring, and analysis on environmental changes.
However, manual segmentation methods are time tedious
and complex one. )us, an automated semantic segmen-
tation of aerial images is emerged as the recent hot topic
[139]. On the contrary, the semantic segmentation of aerial
images is a complex task due to several constraints such as
demand for pixel-level accuracy, nonconventional data, and
lack of training examples. Each object in the remote-sensing
images specifies important information, which requires to be
precisely categorized from the neighboring ones. Numerous
works have been proposed for solving this problem, which
has been focused on improving regularization and FCN such
as object boundary details. More numbers of public datasets
have been considered for evaluating the performance of the
deep learning approaches. Here, infrared and colour satellite
images have gained noteworthy performance that is more
equivalent to image sets utilized in the portrait and scenic
computer vision tasks. From the comprehensive review, the
public datasets such as ISPRS datasets get more importance
that has guaranteed the implementation of deep learning
approaches for facilitating the semantic segmentation [140].
)ough, the semantic segmentation on different data or
imaging modality and analysis metrics make evaluation
complex. Moreover, handling of different modality of re-
mote-sensing images such as UAV, hyperspectral images,
and infrared and RGB images are complex to process. It
results in lack of accuracy to estimate the nonconventional
data.

Sometimes, a large volume of data and a lack of training
examples pose complexities in aerial imaging applications.
Conversely, it is much more challenging due to the non-
conventional data sources such as LiDAR, hyperspectral
images, and synthetic aperture radar images [141]. When the
deep learning techniques are utilized for processing the
nonconventional remote-sensing datasets with labels, it
creates complexities. )ese deep learning methods suffer
from the lack of training dataset. Any deep learning model
may need a huge set of training images due to the number of
classes and complications of the problem [142]. Moreover,
the utilization of deep learning is more complicated while
considering the expensive and additional remote-sensing
data collection [143]. )us, different augmentation ap-
proaches are mostly employed for increasing the variation
and number of the dataset. Consequently, the most common
datasets called “ISPRS’s 2D labeling dataset and IEEE’S
GRRS dataset” have been attempted for addressing the data
inefficiency through offering the very high-resolution re-
mote-sensing images gathered from UAVs [141].

An additional limitation of deep learning-based se-
mantic segmentation is the necessity of a high number of
label dataset, which generally requires manual annotation.
)is issue has also considerably been solved through public
datasets through offering the annotations [142]. However,
it is still tedious while taking the own or manual datasets.
Existing research works have utilized conventional ap-
proaches for producing the annotations. Similarly, the label
dataset can be created with the feature of pretrained
models. From the meta-analysis results, the deep learning
provides enhanced efficiency and shows the superior
performance when compared to conventional approaches
[143]. Many challenges of deep learning-adopted tech-
niques have been solved and reduced in recent decades,
which have to increase the performance. )e future re-
search areas in the semantic segmentation of aerial images
can integrate the well-known deep learning models with
hybrid or new variant metaheuristic approaches. As the
deep learning-based semantic segmentation models have
emerged their future prospects, it has to create a new future
scope on different applications using intelligent algorithms
for increasing the accuracy rate [144]. In the future, it has to
solve the nonconventional data and labeling problems
while preparing a new datasets. )us, this research helps
the researchers to understand the semantic segmentation
model with several other possibilities for coming up with
new future research perspectives.

6. Conclusion

)is study has presented a comprehensive review on con-
ventional semantic segmentation models through deep
learning approaches. For this purpose, a set of research
works has been taken from recent years.)is study has given
the information regarding different machine learning or
deep learning techniques used, simulation tools, perfor-
mance metrics, features and challenges of conventional
semantic segmentation models, different imaging modali-
ties, and the datasets utilized. Finally, the research gaps and
limitations were analyzed for exploring a future research
perspective of semantic segmentation systems. On the
whole, this study has offered the detailed information on
semantic segmentation models, which are helpful for
assisting the researchers to present a semantic segmentation
model in the upcoming years.
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