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Abstract

In the literature, it is well explored that machine learning algorithms trained on image classes are highly vulnerable against
adversarial examples. However, very limited attention has been given to other sets of inputs such as speech, text, and tabular
data. One such application where little work has been done towards adversarial examples generation is financial systems.
Despite processing sensitive information such as credit fraud detection and default payment prediction, a low depiction of
the robustness of the financial machine learning algorithms can be dangerous. One possible reason for such limited work is
the challenge of crafting adversarial examples on the financial databases. The financial databases are heterogeneous where
features might have a strong dependency on each other. Whereas image databases are homogeneous, and hence several
existing works have shown it is easy to attack the classifiers trained on them. In this paper, for the first, we have analyzed the
vulnerability of several traditional machine learning classifiers trained on financial tabular databases. To check the robustness
of these classifiers, ‘black-box and classifier agnostic’ adversarial attack is proposed through mathematical operations on the
features. In brief, the proposed research for the first time presents a detailed analysis that reflects which classifier is robust
against minute perturbation in the tabular features. Apart from that through the perturbation on individual features, it is

shown which column feature is more or less sensitive for the incorrect classification of the classifier.
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1. Introduction

The recent research articles claim that in the last decade
from 2010 to 2020, people with the personal loan double
from $11 million to $21 million [3]. At the same time,
the amount of loan debt increase by three times from
$55 billion to $162 billion. The processing of such a large
number of loan applications and identifying any possible
fraud is a tedious and time-consuming task for a human
being. The possible solution to overcome the load is to
utilize the power of machine learning (ML) algorithms.
In the past, machine learning algorithms have shown
tremendous success in solving variety of tasks ranging
from object recognition [4, 5] to person identification
[6,7, 8] and solving complex medical problems [9, 10, 11].
While the machine algorithms are here to ease the hu-
man and perform the task with near perfection. How-
ever, recent research indicates that the machine learning
algorithms are highly susceptible against the minute per-
turbation in the input data.

Imagine a scenario, where a corrupt individual came
into the bank for credit card approval and the issue of a
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lump sum amount of money. Due to the processing of
multiple applications which might be in huge numbers
and the time required for handling an application, ma-
chine learning algorithms are ideal for decision making.
Machine learning generally requires a significant number
of feature components, which in the case of credit appli-
cation can be such as age, property available, and amount
paid in the previous loan if any. The corrupt personal can
minutely change one or more feature components which
can easily be ignored in the application by the system
due to no drastic change in the feature space and hence
can accept the fraud application. Apart from difficultly
observing the feature space, the heterogeneous nature of
the tabular databases requires expert opinion in identify-
ing small modifications. The severity of the credit fraud
or loan fraud can be seen from the recent news articles
[1,2, 12]. As per the statistics, in 2018, $24.26 Billion was
lost due to payment card fraud worldwide. Among all the
amount, the United Stated is one of the largest contribu-
tors with almost 38.6% reported credit card fraud cases.
The sensitivity of machine learning algorithms towards
minute perturbations in other domains [13] requires that
ML algorithms used for tabular databases are secure to
ensures the correct decision. Figure 1 shows the impact
of credit card fraud in the worldwide community. There-
fore, it is extremely important to extensively examine
the vulnerability of machine learning algorithms before
trusting their decision in the financial domain.

In this research, for the first time, we have extensively
evaluated several machine learning models and their vul-
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Figure 1: Reflecting the impact of credit card fraud worldwide and demand of secure deployment of automated machine
learning (ML) systems. The statistics are taken from the multiple Internet sources [1, 2].

nerability against minute perturbations in the feature
space (or input space). The credit card default prediction
databases contain multiple features such as age, gender,
payment status, and education. The individual feature
can affect the classification decision due to any reason
such as bias and mislabelling. For example, it might
be believed that the highly educated individual might
not perform fraud. Therefore, in this research, we have
identified the sensitivity of various machine learning clas-
sifiers against individual features both in their raw form
and under minute perturbation. While the features play
an important role, the optimization function of different
classifiers play an important role in learning decision
boundaries. Hence, the detailed experimental evaluation
of multiple machine learning classifiers has been per-
formed to showcase which classifier is more robust or
sensitive against imperceptible perturbations. In brief,
the contributions of this research are:

« first-ever black-box inference time imperceptible
adversarial attack on credit-card default predic-
tion is performed,;

« extensive ablation studies are conducted to find
out the importance of individual feature value
towards decision making;

« sensitivity analysis of multiple machine learning
classifiers are presented to help in building a ro-
bust finance system utilizing robust classifier(s);

« comprehensive survey of the existing adversarial
attacks developed in other data domains show-
case the needs of the development of adversary
to identify the vulnerabilities in the finance space
as well.

In the next section, the review of the existing adver-
sarial examples is presented followed by the descrip-
tion of credit card default prediction databases. In
the next, exploratory database analysis has been per-
formed to effectively examine the characteristics of

the databases. Later, the machine learning classifiers
chosen to perform the vulnerability analysis are de-
scribed. The experimental results along with analysis
are presented to showcase the impact of the proposed
‘black-box and classifier agnostic’ adversarial perturba-
tion.

2. Existing Adversarial Examples
Research

Since the finding of adversarial examples [14], several
adversarial attack algorithms are presented in the liter-
ature. The existing adversarial attacks can be divided
based on the following two criteria: (i) intention and (ii)
type of learning. The type of learning can be described
how much knowledge of the machine learning classi-
fier is needed to fool it and it can be categorized into
white-box and black-box. In the white-box setting, an
attacker assumes the complete knowledge of the system
such as its parameters and classification probabilities. On
the other hand, the black-box attacks do not utilize any
ML network information in creating adversarial exam-
ples. In the real world, it is extremely difficult to acquire
the knowledge of the machine learning classifiers due
to their security and the existence of a wide variety of
machine learning algorithms. For example, Goel et al.
[15, 16, 17] have utilized the concept of blockchain and
cryptography to either change the structure of the net-
works or encrypt them to make it difficult to identify the
exact parameters of the networks. Similarly, there exists
a humongous number of machine learning algorithms
such as supervised, unsupervised, and ensemble learning,
hence, assuming the knowledge of the system an attacker
wants to fool is difficult [18, 19]. Due to the above obser-
vations, a black-box attack is practical in the real world
and at the same difficult to achieve. On the other hand,
intention-based attacks are divided into targeted attacks
and untargeted attacks. The targeted attacks aim the



input data to be misclassified by the network into one of
the desired classes. For example, a credit card defaulter
would like to be classified as genuine by the machine
learning classifier. Whereas, the untargeted attacks aim
the input data to be misclassified into ‘any’ class except
the true class.

In the literature, several adversarial attacks are pro-
posed. The majority of the attacks are proposed for visual
object classification and limited work has been done so
far for other kinds of input information such as speech
and tabular data, and machine learning classifiers such
as reinforcement learning. The gradient is one of the
most essential information in deep network learning and
utilizing this information several attacks are proposed.
For example, PGD attack [20] is one of the strongest
attacks for visual image classifiers. The attack is per-
formed in multiple iterations by projecting the gradient
in the direction that leads to the strong adversary. Other
image-based attacks such as DeepFool [21], add the per-
turbation in the image iteratively so that the image can
pass its corresponding class decision boundary learned
by the network. The above attacks learn the manipu-
lation for each image separately, while it is possible to
learn a unique noise vector to apply on multiple images
and fool the network [22, 23]. The above-described at-
tacks are performed in the white-box setting utilizing the
complete knowledge of the classifier. Another disadvan-
tage of the white-box attack is the transferability against
multiple models. As the attacks are generated utilizing
the knowledge of the classifier which can be significantly
different from the other unseen models, hence, leads to a
poor success rate against unseen models [24, 25].

The other class of attack is the black-box attacks which
are more practical in the real world and can fool multiple
classifiers. The black-box attack can be further divided
into query-based and generic manipulation-based. In
the query-based attack, some knowledge of the system
is assumed such as the decision of the classifier. By uti-
lizing the decision of the classifier on the given input,
the noise is modified leading to the desired intent of
misclassification, i.e., targeted or untargeted. While the
query-based attacks are more successful for unseen mod-
els whose knowledge is not available but still bounded
by the number of queries that can be sent for the noise
generation. Therefore, this limitation restricts the practi-
cal deployment at multiple places. Another category of
attack which is general manipulation is one of the most
successful attacks because not utilization of any classifier
knowledge makes them agnostic to classifiers and can
fool multiple classifiers. Goswami et al. [26, 27] have
proposed several image manipulations for fooling face
recognition networks. The manipulations are somewhat
inspired by the domain knowledge of face recognition
and therefore, modified the landmark features of a face
image which were able to fool the recognition networks

Table 1
Characteristics of the Credit Card databases.

Default Credit Australian Credit
Feature | Name Type Feature | Type

1 1D Continuous Al Binary

Limit-Bal Continuous A2 Continuous
3 Sex Binary A3 Continuous
4 Education Categorical A4 Categorical
5 Marriage Categorical A5 Categorical
6 Age Continuous A6 Categorical
7 Pay 0 Continuous A7 Continuous
8 Pay_2 Continuous A8 Binary
9 Pay_3 Continuous A9 Binary
10 Pay 4 Continuous A10 Continuous
11 Pay 5 Continuous Al1 Binary
12 Pay 6 Continuous A12 Categorical
13 Bill_Amt1 Continuous A13 Continuous
14 Bill_Amt2 Continuous Al4 Continuous
15 Bill_Amt3 Continuous A15 Binary
16 Bill_Amt4 Continuous
17 Bill_Amt5 Continuous
18 Bill_Amt6 Continuous
19 Pay Amt1 Continuous
20 Pay_Amt2 Continuous
21 Pay_Amt3 Continuous
22 Pay_Amt4 Continuous
23 Pay_Amt5 Continuous
24 Pay_Amt6 Continuous
25 Default Payment | Binary

effectively. Agarwal et al. [28] have not utilized any exter-
nal knowledge including perturbation vector but extract
the noise inherently present in an image. The authors use
an intelligent observation that due to several factors such
as camera preprocessing steps, environmental factors,
the noise inherently present in an image. The authors
extract those noise pattern and used as an adversarial
pattern. The above-mentioned attacks are performed in
the image space. Limited attacks are also proposed in
other categories of networks or input such as generative
models [29], reinforcement learning [30], and cyberspace
[31].

While on the one hand, adversarial attacks on machine
learning classifiers especially deep learning classifiers
are prevalent, the defense against them is also getting
significant attention. Several defense algorithms based
on the following two motives are proposed: (i) segrega-
tion of the adversarial examples from the clean examples
[32] and (ii) mitigating the impact of adversarial noise
[27]. The defense algorithms have shown tremendous
success in countering the adversarial attacks on the im-
age domain and show generalizability even in complex
situations such as an unseen attack, unseen database,
and unseen model [33, 34]. The survey of the existing
research on adversarial examples can be further referred
from the survey papers [35, 36, 37].

It is interesting to observe from the above discussion
that adversarial machine learning is one of the fasted
growing communities; however, only a few works ex-
ist towards the robustness in the financial domain. The
prime reason for such low existence can bethink from
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Figure 2: Correlation matrix among the individual features of the Default Credit database.

the point of the type of input. The financial data espe-
cially tabular databases are heterogeneous as compared
to homogeneous image databases. Tabular features are
not interchangeable in contrast to the pixels of an image.
Apart from that, the images are rich in visual informa-
tion and hence humans can predict the information by
looking at them and easy to identify whether any manip-
ulation has been performed. Whereas tabular data are
less interpretative and it is complex to identify the minor
modification in individual value. In the literature, few re-
search works are proposed for crafting adversarial noise
on tabular databases. Ballet et al. [38] and Levy et al.
[39] have proposed an imperceptible adversarial attack
by minimizing the norm of the perturbation. The criti-
cal drawback of the attacks is that the attacker assumes
the complete knowledge of the classifier for learning the
perturbation and hence less practical for real-world de-
ployment. Another drawback is that the norm-based
perturbation on the tabular features can yield unrealistic
transformations [40]. Apart from that, the above attacks
on tabular data are evaluated on a single classifier, i.e., a
shallow neural network or decision forest.

To overcome the limitations of the existing adversarial
study on the tabular databases, we have proposed an
adversarial manipulation method based on mathematical

operators. The proposed attacks work in the black-box
setting and do not utilize any information of a classifier.
Therefore, the proposed attack is classifier agnostic and
can be applied against ‘any’ classifier. In contrast to the
existing research reported on the limited classifier, the
proposed research study the adversarial strength against
multiple classifiers and shows that the proposed attack
can fool each of them. Apart from this, the proposed
manipulation also aims to reveal the role of individual
tabular features in the classification.

3. Finance Databases

In this research, we have used two popular credit
card default prediction databases namely Default Credit
Database [41, 42] ad Australian Credit Database [12]. The
default credit database is one of the largest databases for
the binary prediction of the default payment category.
The database contains 30,000 data points belonging to
two categories of default payment, i.e., yes or no. In
total, the database consists of 24 features belonging to
multiple types such as binary (0 or 1), categorical (1 to
n), and continuous. The ID is a feature to represent an
individual in the database and hence no role in the clas-
sification of the data point. Therefore, the ID feature is
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Card database.

discarded from the Default Credit database. It is clear
from the description that each feature has a different
scale and hence, it is important to bring each feature
into the same range, such as between 0 to 1. We have
performed the min-max normalization to bring the scale
of each feature to the same range. The Australian Credit
database contains 14 features aiming to classify the data
into binary categories of default payment. Similar to the
Default Credit database, the Australian database consists
of the features of different scales and hence normalized
using min-max scaling. The characteristics of both the
databases are given in Table 1. Contrary to few available
pieces of research [38] which drops few features for ad-
versarial learning on credit database, we have utilized
each feature in the database and analyze their impact on
adversary generation.

4. Exploratory Data Analysis

Before performing the adversarial attack on the input
features of the Credit Card databases, we have performed
the exploration studies on the features such as correlation
among the features and relevance of the features.

4.1. Correlation Analysis

Figure 2 shows the correlation heatmap among each fea-
ture in the Default Credit Card database. It is clear from
the heatmap that, no feature exhibits a strong correlation
with the class variable (default payment). Whereas, the
features that belong to the same category such as ‘Pay_’
and ‘BILL_AMT’ show a strong correlation among them-
selves. For example, ‘Pay_0’ have the positive correlation
value of 0.67 with variable ‘Pay_1". ‘Pay_0’ feature rep-
resents the repayment status in September 2005 and the
value of the feature ranges between -1 to 9. Other pay
features represent the repayment status between April
to August 2005. The correlation among them shows the
repayment status of the current month and in turn, the
credit default payment is somewhat dependent on the
status of the last month. However, as compared to re-
payment status, ‘BILL_AMT’ features have very strong
correlation values among themselves. The correlation
value of at least 0.8 is observed between different features.
‘BILL_AMT’ represents the amount of bill statement be-
tween April 2005 to September 2005.
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4.2. Feature Importance

Another data exploratory analysis has been performed
by examining the importance of individual features con-
cerning the class label. For that two feature selection or
feature weight assignment algorithms namely Univari-
ate Feature Ranking (UFR) and Minimum Redundancy
Maximum Relevance (MRMR) [43], are utilized. The
advantage of both the algorithm is that they accept cat-
egorical and continuous features for the classification
problem. The UFR algorithm measures the independence
of each feature concerning the class variable using the
chi-square test between them. The smaller the p-value on
a particular feature represents the higher the dependence
between the feature and class label and the importance
of the feature for classification. MRMR algorithm itera-
tively examines the features to find the features which
are mutually and maximally dissimilar to each other but
effective for decision making. The algorithm achieves its

goal of selecting the important features by reducing the
redundancy among the features and weighting the rele-
vant features. For that, the MRMR algorithm computes
the mutual information among the features and between
feature and class label. The MRMR algorithm selects the
best feature set (S) for classification by maximizing the
relevance score |V,| between feature x and class label y.
At the same time, the algorithm aims to minimize the
redundancy score |Ws| between two feature values x and
z. The |Vs| and [Wg| can be defined using the following

equations:
LY 1t y)

Vs =
|S| x€S
Ws=— ZI(x z)
|S| x€S

where, |S| represents the number of features in the opti-
mal subset S. Finally, mutual information quotient (MIQ)



Table 2

Adversarial vulnerability of multiple machine learning classifiers against the proposed perturbation defined in Equation 1
on Australian Credit Card Database. Colored box represents the sensitive features and drop in accuracy of classifier on the

corresponding feature.

Perturb | SVM Logistic Naive | Binary | Neural Network KNN | DAC

Feature | Linear | RBF Regression | Bayes | Trees Shallow | Deep
1 86.13 85.55 84.39 79.77 84.97 83.81 87.28 82.08 86.13
2 86.13 82.66 84.39 77.46 83.81 77.46 81.50 78.61 86.13
3 86.13 84.39 83.81 71.67 79.77 80.35 84.97 80.35 84.97
4 86.13 85.55 64.16 74.57 41.04 43.93 63.00 82.10 80.92
5 86.13 86.13 70.52 83.81 79.77 72.25 71.10 78.61 82.08
6 86.13 86.13 84.97 83.81 82.10 78.61 86.13 72.83 85.55
7 86.13 84.97 84.39 41.62 84.39 75.14 83.24 | 50.87 | 85.55
8 13.88 32.27 40.46 67.63 38.73 37.57 39.30 44.51 24.28
9 86.13 84.39 85.55 79.19 76.88 83.24 83.24 80.35 86.70
10 86.13 85.55 41.62 41.62 83.23 63.58 87.28 41.62 50.29
11 86.13 87.28 86.70 78.61 83.23 85.55 82.66 82.66 85.29
12 86.13 85.55 84.39 63.00 83.23 70.52 83.81 58.96 86.13
13 86.13 83.24 80.92 79.19 79.19 78.61 82.66 77.46 84.97
14 86.13 84.97 41.62 41.62 84.39 50.29 86.13 | 41.62 | 41.62

is calculated to select the subset of features using the 1. Support vector machine (SVM) [44]: It is one of

following equation:

MI Vx
0=
where, V, and W, are the relevance and redundancy value
of a feature x, respectively.

The earlier adversarial studies discarded few features
and hence do not provide the complete picture on the
credit card domain. We want to highlight that the pro-
posed research is the first work explaining detailed anal-
ysis helpful both crafting the attack and mitigating it by
protecting the important features. Figure 3 and Figure
4 show the score plot of the features from the Default
Credit and Australian Credit Card database, respectively.
On the Default Credit database, feature 6 (i.e., Age as
shown in Table 1) shows the highest importance irrespec-
tive of the feature selection algorithm. Feature 8 is found
most relevant in the Australian database using both UFR
and MRMR feature selection algorithms.

5. Vulnerable Machine Learning
Algorithms

In this research, we have used several machine learning
algorithms to carefully investigate the impact of adver-
sarial manipulation on the feature space of Credit Card
databases. To present a first-ever detailed study, in total,
nine different classifiers are used for extensively investi-
gating the adversarial fraud in the finance domain. Fur-
ther, we describe each of the algorithms used for binary
classification on clean and manipulated features:

the most popular machine learning classifier be-
cause of strong mathematical foundation. SVM
learns the decision hyperplanes by maximizing
the distance between the nearest points of each
class. SVM classifier have significant success in
the binary classification tasks such as presenta-
tion attack detection [45, 46] and adversarial ex-
amples detection [34, 33]. Based on its success on
binary classification tasks, SVM is an ideal choice
to be used for credit card default prediction as
well. SVM works on the following optimization
function:

minimize||w|| such that y(WTx, —b) > 1
foriel,.,n

where, wis the vector on the separating hyper-
plane and b is the bias term. x; and y; are the
it data point and label, respectively. n repre-
sents the total training data points. Upon solv-
ing the above equation, the classifier obtained is:
X > sign(wa + b). In this research, we have
used two variants of SVM referring to basically
two kernels namely ‘linear’ and ‘radial basis func-
tion’ (RBF) used for learning the separating hy-
perplane.

. Logistic Regression [47]: It is another simple and

popular classifier for the task of binary classifi-
cation problem. It uses the logistic function to
model the probabilities of the binary classes. The
class of the input is predicted by taking the maxi-
mum of the probabilities of the classes output by
the model. The probability of each class can be



computed using the following logistic formula:

2(X) = exp fo + fixg + e + Brxy
1+ exp fo + Pix) + oo + i

where, fs are the parameters of the classifier and
xs are the feature values.

. Naive Bayes Classifier: It is based on the popular
Bayes theorem which can be written as follows:

P(A/B)P(B)
P(A)

where A and B are two independent events and
P(A) = 0. It assumes the features are indepen-
dent from each other and observation follows
multivariate distribution.

. Binary Trees: It works on segregating the classes
based on the features at each level of the tree.
At each level, data is partitioned into classes and
the features for level are selected based on the
impurity function such as Gini impurity. The
classifier works iteratively and stops when either
all the data points are exhausted or leaf nodes
arrive. As the name suggested, at each level of
the tree, only two nodes are allowed at most.

. Neural Network [48]: It is another most success-
ful machine-learning architecture that works on
mapping the input features to the output classes
through multiple layers in between. The interme-
diate layers are popularly referred to as hidden
layers and they can vary from 1 to any number. In
this research, we use shallow NN (S-NNet) with
one hidden layer and deep NN (D-NNet) with 2
hidden layers each having the neurons equal to
half of the size of the neurons in the previous
layer. Both NNs are trained using a stochastic
gradient descent algorithm.

. K Nearest Neighbor (KNN) [49]: It is the simplest
and training-free classifier that works on the mea-
surement of the distance between test points and
training data points. The test point is classified
into the class from which it has the lowest dis-
tance. In this research, we have used the K = 5
nearest data points to find the closes class using
the "Euclidean’ distance.

. Discriminant Analysis Classifier (DAC): It is
based on the assumption that the data points of
different classes contain different parameters of
the Gaussian distribution. For classification, the
Gaussian parameters of each class are found out
using the training set. To identify the class, the
posterior probability of point belonging to each
class is calculated as follows:

P(B/A) =

P(x|k) = exp(_?l(x — IS !

(x = ")

1
(@)

where, P(x, k) is the probability of the point x
belonging to class k. p and Xy are the Gaussian
parameters of class k.

6. Proposed Adversarial Attack
and Experimental Results

In this research, we have studies the impact of manipula-
tion on individual features for credit default prediction.
We have applied several mathematical operations to ob-
tain the manipulated features. Broadly, the proposed
classifier agnostic and black-box attack can be defined
using the following equation:

Xpert = {XOR(Xcteans 1), if Xelean is binary

Xelean + 1 if Xelean is continuous}

where, X, is the perturbed variant of the clean fea-
ture Xjeq,. 1 is defined using several function such as:
n = C, where C is a constant value between 0 to 1.
Other mathematical function which are explored for n
are ex p(max(Xgjean) — Min(Xjean) and log(max(xciean) —
min(Xgjeqn). Apart from that, another simple mathemati-
cal attack on the feature value termed as ‘feature dropout’
here can be defined as:

Xpert = Xclean * 0

In this section, we describe the adversarial manipula-
tion results and analysis using the constant value mod-
ification as the attack. The databases are divided into
training and testing, where the training set contains ran-
domly selected 75% of the total data point. The remaining
25% data points are used for the evaluation of each of the
classifiers trained on the training set.

The analysis of the results can be divided into the
following parts: @ accuracy on the clean images, @
robustness of a classifier, and @) sensitive features for
adversarial goal. The credit card default payment results
of each classifier on a clean test of both the databases
are reported in Figure 5. On the Australian database, as
compared to the non-linear classifiers such as RBF SVM
and Neural Network, the linear classifier such as linear
SVM performs better. Whereas, on the default credit
card database, the RBF SVM performs best as compared
to other linear and non-linear classifiers. It is interesting
to note from going shallow to a deep neural network,
no significant improvement in accuracy notices on both
the databases. In another observation, the Naive Bayes
classifier performs the worst on the Australian credit
card database and second-worst on the default credit
card database.

Analysis concerning classifiers: In terms of the sensi-
tivity of the classifier, it is found that the SVM classifier is
the least robust in terms of the magnitude of the accuracy



Table 3
Adversarial vulnerability of multiple

ML classifiers against the proposed perturbation defined in Equation 1 on

Default Credit Card Database. Colored box represents the sensitive features and drop in accuracy of classifier on the corre-

sponding feature.

Perturb | SVM Logistic Naive | Binary | Neural Network KNN | DAC
Feature | Linear | RBF Regression | Bayes | Trees Shallow | Deep
1 81.19 78.45 78.55 80.10 69.25 78.60 80.30 78.69 78.95
2 81.19 81.16 81.81 64.17 7313 81.58 82.47 79.29 81.92
3 81.19 78.76 78.61 81.10 69.27 79.48 81.68 78.43 79.04
4 81.19 79.88 79.13 75.76 71.61 81.44 81.89 80.33 79.47
5 81.19 80.21 82.32 34.41 66.40 77.79 81.35 77.57 81.81
6 22.11 2213 22.50 25.40 43.35 77.15 2217 48.01 2217
7 41.76 77.91 81.36 25.96 61.28 81.63 3299 | 57.56 | 79.05
8 81.19 80.10 82.40 26.10 72.10 54.41 31.95 74.22 | 82.07
9 81.19 80.00 81.89 25.77 71.60 29.39 75.21 74.36 | 81.99
10 81.19 82.69 82.17 25.37 64.24 79.79 80.81 70.03 | 82.28
11 81.19 81.61 81.35 25.75 69.63 74.36 80.91 72.25 81.48
12 81.19 81.65 77.89 38.68 60.20 78.67 81.31 77.91 77.88
13 81.19 82.15 30.83 33.40 68.25 42.83 40.40 61.17 | 71.67
14 81.19 81.61 25.37 81.10 67.71 42.97 27.89 | 77.88 | 53.25
15 81.19 82.12 79.28 42.78 67.93 80.61 78.15 78.17 79.19
16 81.19 82.10 80.84 30.78 71.11 78.17 79.09 78.91 80.05
17 81.19 81.93 81.41 63.55 66.99 78.85 30.00 79.80 81.41
18 81.19 78.35 77.89 77.89 71.35 77.89 77.91 77.89 77.89
19 81.19 79.10 77.89 77.89 71.30 76.23 80.36 77.89 77.90
20 81.19 80.55 77.91 77.89 7313 71.79 56.09 77.89 80.31
21 81.19 78.61 78.11 77.89 69.38 82.33 78.11 77.89 | 78.83
22 81.19 78.65 77.89 77.89 69.23 77.95 78.35 77.91 78.59
23 81.19 78.48 77.96 77.89 68.47 7791 79.85 77.89 79.33

drop on both Australian credit card and default credit
card databases. On the Australian database, the accuracy
of the linear SVM drops from 86.13% to 13.88%. The rela-
tive drop in the accuracy is 72.25% which is the highest
among all the classifiers used for credit default predic-
tion. On the other hand, the Naive Bayes classifier which
performs the worst on the Australian database shows the
least drop in accuracy when the features are perturbed
using the proposed black-box and model agnostic attack.
In other words, the Naive Bayes classifier is found most
effective in handling the perturbation. The accuracy of
each classifier on the clean images, least accuracy ob-
tained under perturbation, and difference reflecting a
maximum drop in the accuracy is reported in Figure 6
(left) on the Australian database. On the default credit
card database, the non-linear RBF classifier found the
highest vulnerable and the relative drop in the perfor-
mance is went to 60.3%. KNN classifier is found most
robust in terms of the relative drop in the performance
when the features are compared as compared to the ac-
curacy on the clean features. It is interesting to note
that, even on the Australian database, KNN shows the
second-best robustness on the perturbed features. Figure
6 (right) shows the maximum sensitivity of each classifier
on the default credit card database.

Analysis concerning features: The default payment
database contains 23 features by removing the ID fea-
ture which is simply a sequence reflecting the obser-
vation number and class variable, i.e., default payment.
Whereas, the Australian database contains 14 features for
classification. We want to mention that in this research,
we have shown the adversarial strength by perturbing
a single feature only. On the Australian database, fea-
ture 8 is found most sensitive feature, and perturbing
that feature affects the performance of each classifier
significantly. Apart from affecting the performance of
each classifier, feature 8 shows the highest reduction in
the accuracy of each classifier. Feature 8 contains the
binary values and we have modified the binary values
through the “XOR’ operator as shown in the proposed
attack equation 1. The second worst feature is the fea-
ture 14 which contains the continuous values. However,
interesting both linear and non-linear SVM, binary trees,
and deep neural networks are found robust against the
slight modification on it.

On the default credit card database, feature 6 found
the weakest point of each classifier except for shallow
neural network (S-NNet). The perturbation of the fea-
ture 6 significantly dropped the accuracy of the affected
classifiers. The RBF SVM classifier is found sensitive



against feature 6 only. We want to highlight that both
the feature selection algorithms give the highest score to
the features 6 as shown in Figure 3 on the default credit
card database. Similarly, on the Australian database, each
classifier has been found highly sensitive to the highest
relevance features reported by the feature selection al-
gorithms as shown in Figure 4. The detailed analysis on
the sensitivity of individual features is given in Tables 2
and 3.

Other Manipulations: We want to highlight that the
other mathematical operations such as exp and log men-
tioned in Section 6 yield similar adversarial phenomena
are observed on each classifier.

6.1. Unwanted Phenomena for Attacker

It is interesting to observe that the adversarial perturba-
tion does not always reduce the performance of a clas-
sifier. Apart from that, another interesting point is that
the features which are least important for classification,
perturbing them can inversely affect the goal of an at-
tacker. The importance of the features can be calculated
using the feature selection algorithm. For example, on
the Australian database, the feature 11 was found least
relevant by both UFR and MRMR feature selection algo-
rithm. Interestingly, perturbing this feature significantly
improves the performance of multiple classifiers. For
example, the performance of the RBF SVM, logistic re-
gression, and shallow neural network (S-NNet) improves
by 2.89%, 1.73%, and 2.31%, respectively. Similarly, the
features which are found less relevant by the feature se-
lection algorithms on the default database, perturbing
them shows the performance improvement. For example,
features 1 and 14 are among the least important feature in
the default payment database. However, perturbing them
drastically increased the performance of the Naive Bayes
classifier. The performance of Naive Bayes shows at
least 5.55% jump in the classification performance when
perturbing these features. From the above analysis, we
suggest careful attention is required while perturbing a
feature, a random perturbation of any feature set might
not be fruitful for an attacker. Although further analysis
can reveal future directions to improve the performance
of a classifier by securing only the relevant features.

7. Conclusion

Adversarial vulnerability of the visual classifiers is exten-
sively explored and paves the way for improving their
robustness for secure real-world deployment. However,
limited work has been done on financial databases es-
pecially tabular databases. The probable reason might
be the heterogeneous nature of the databases and the
low degree of freedom for perturbation. The degree of

perturbation can be defined in the terms of the num-
ber of values available for manipulation. For example,
an image contains a significantly large number of val-
ues (pixels) available for manipulation and is easily in-
terchangeable. Whereas, the tabular finance databases
contain a low number of features and can not be easily in-
terchanged with each other. Few works exist to identify
the vulnerability of ML algorithms on tabular databases.
However, limitations of the existing attacks are that they
require white-box access of the classifiers and result in
unwanted transformations of the features. In this re-
search, we have proposed a first-ever black-box attack
on the tabular credit card default prediction databases.
We have evaluated a broad number of machine learning
classifiers as compared to a few classifier vulnerability
assessments in the existing works. The proposed attack
proves its classifier agnostic strength by fooling each clas-
sifier. Apart from the evaluation of multiple classifiers,
we have also studied the sensitivity concerning individ-
ual features of the databases. Interestingly, it is observed
that perturbation of every feature might hurt the aim
of an attack, and therefore, intelligent consideration is
required. We hope the proposed research opens multiple
research threads both towards finding the vulnerabilities
of tabular classifiers and improving their robustness.
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