
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 7, NO. 8, Aug. 2013 1911

Copyright ⓒ 2013 KSII

This research is supported by National Science Foundation of China (61125201 and 61202126).

http://dx.doi.org/10.3837/tiis.2013.08.010

From WiFi to WiMAX: Efficient GPU-based
Parameterized Transceiver across Different

OFDM Protocols

Rongchun Li, Yong Dou, Jie Zhou, Baofeng Li and Jinbo Xu
National Laboratory for Parallel and Distributed Processing,

National University of Defense Technology, Changsha 410073 - China

[e-mail: {rongchunli,yongdou,zhoujie,baofengli,jinboxu}@nudt.edu.cn]

*Corresponding author: Rongchun Li

Received May 24, 2013; revised July 14, 2013; accepted August 11, 2013; published August 30, 2013

Abstract

Orthogonal frequency-division multiplexing (OFDM) has become a popular modulation

scheme for wireless protocols because of its spectral efficiency and robustness against

multipath interference. Although the components of various OFDM protocols are functionally

similar, they remain distinct because of the characteristics of the environment. Recently,

graphics processing units (GPUs) have been used to accelerate the signal processing of the

physical layer (PHY) because of their great computational power, high development

efficiency, and flexibility. In this paper, we describe the implementation of parameterized

baseband modules using GPUs for two different OFDM protocols, namely, 802.11a and

802.16. First, we introduce various modules in the modulator/demodulator parts of the

transmitter and receiver and analyze the computational complexity of each module. We then

describe the integration of the GPU-based baseband modules of the two protocols using the

parameterized method. GPU-based implementations are addressed to explain how to

accelerate the baseband processing to archive real-time throughput. Finally, the performance

results of each signal processing module are evaluated and analyzed. The experiments show

that the GPU-based 802.11a and 802.16 PHY meet the real-time requirement and demonstrate

good bit error ratio (BER) performance. The performance comparison indicates that our

GPU-based implemented modules have better flexibility and throughput to the current ones.

Keywords: GPU, SDR, OFDM, WiFi, WiMAX.

1912 Li et al.: From WiFi to WiMAX: Efficient GPU-based Parameterized Transceiver

1. Introduction

Software-defined radio (SDR) technology is designed to support various communication

standards through software configuration without altering hardware platforms. SDR

technology, which is exploited in wireless communication, has two important characteristics.

First, terminals should have high throughput and high computing ability to support high-rate

real-time communication. Second, terminals should be flexible enough to support various

communication standards. However, the realization of SDR platforms is hindered by the

problem of tradeoff between performance and efficiency.

Many SDR platforms are currently based on digital signal processors (DSPs) and field

programmable gate arrays (FPGAs). Although DSPs have good code flexibility, their

arithmetic operation capability is not sufficient to meet the demand of real time

communication. The required rate for next generation network continues to increase as

wireless communication continues to undergo radio development. For example, the long-term

evolution (LTE) standard in 4G communication requires the rate of several hundred Mbps.

However, DSPs cannot meet the increasing speed requirement. By contrast, FPGAs provide

high computation power that is required in wireless communication. However, developing

FPGAs is highly complicated; developers must learn hardware description languages and gain

familiarity with the development of programming and debugging tools. Although Verilog or

VHDL supports parameterized designs in adherence to multiple standards, the standard

practice is at the RTL level, which cannot be configured in real-time manner to apply for the

SDR technology.

The SDR platform based on GPUs can overcome the problem of tradeoff between

performance and efficiency. GPUs are extensively used in the fields of image processing,

numeric computing, signal processing, and others. The development trend of GPUs matches

Moore's Law, and peak performance can reach up to 4.58 tera floating operations per second.

GPUs are inherently integrated with large on-chip memory that can run up to 6 GB, which

differs from the memory capacity of commodity PCs. In signal processing, SDR algorithms

require math-intensive vector operations, which are appropriate for the parallel execution

mode of single instruction multiple data (SIMD) on the GPU platform. GPUs are integrated

with numerous floating arithmetic units that converting floating point algorithms into

corresponding fixed-point ones become unnecessary for real-time communication. Many

GPU manufacturers have proposed their own programming models. For instance, the NVIDIA

Corporation presents compute unified device architecture (CUDA) [1], which provides a

software environment that enables developers to use C as a high-level programming language

that facilitates the development of high-performance applications. SDR applications

implemented on GPUs can be easily configured in real time using the parameterized method.

Although GPUs are widely used in many fields [2]-[4], such as in numeric computation,

graphic processing, and data mining, their adoption in wireless communication is still at the

infancy stage. Recently, studies [5]-[8] on GPU-based wireless communication systems have

increased. These works have revealed that wireless communication systems based on GPUs

can meet the real-time requirement of corresponding protocols and eliminate the difficulty in

development using traditional hardware platforms, such as FPGAs and DSPs, because of the

application of C-like language. GPUs can serve as an alternative to traditional hardware

platforms based on many aspects. Nowadays, several protocols exploit OFDM as their

modulation schemes, including wireless fidelity (WiFi), worldwide interoperability for

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 7, NO. 8, Aug. 2013 1913

Copyright ⓒ 2013 KSII

microwave access (WiMAX), and LTE. However, no study has focused on how to

systematically develop the transceiver blocks in OFDM protocols on the GPU platform. In this

paper, we present the generic strategy of mapping OFDM modules to GPU platforms. This

strategy can be used to develop OFDM protocols on GPU-based wireless communication

systems.

However, presenting this mapping strategy is challenging. First, different OFDM protocols

have different physical layers. Thus, finding the common characteristic of the PHY modules

of different OFDM protocols can be difficult. Second, utilizing the discovered characteristic to

present the strategy is also a challenge. Finally, the throughput of these PHY modules should

meet the real-time requirement of OFDM protocols. Creating a throughput for all PHY

modules that exceeds real-time performance can be complicated.

This paper aims to present an efficient parallel strategy to map the PHY modules of OFDM

protocols to the GPU platform. In applying this strategy, the GPU-based PHY transceiver can

fulfill the following requirements. First, all OFDM-based protocols can exploit the strategy to

generate the corresponding efficient GPU-based PHY modules. Second, the generated PHY

modules can meet the required real-time performance.

The main contributions of this paper are as follows:

 After analyzing the complexity and commonality of the generic OFDM baseband

transceiver, we introduce the parameterized implementation to allow for the reuse and

customization of the baseband module across protocols, namely, IEEE 802.11a and

802.16. The proposed OFDM transceiver can be configured to realize the

corresponding PHY of various protocols by altering the parameters.

 According to the dependence of multiple OFDM symbols, the modules in the OFDM

baseband transceiver are originally divided into two categories: the blocked modules

and the consecutive modules. Considering the memory resources on the GPU, we set

the grid configuration on the GPU through the parameters and hardware resource of the

specified GPU platform. When the modules in an OFDM baseband transceiver are

mapped to GPUs, the developer simply needs to take the grid configuration by applying

the corresponding parameters in the OFDM protocol and the corresponding GPU

resource configuration.

 We present corresponding parallel strategies for the two types of modules (i.e., blocked

and consecutive modules) to efficiently map the modules to the GPU platform with grid

configuration. In doing so, the throughput of all modules in the OFDM protocols (i.e.,

IEEE 802.11a and 802.16) meets the required real-time performance.

The rest of the paper is organized as follows. Section 2 describes related works, and

Sections 3 and 4 provide a background on CUDA and the generic OFDM baseband transceiver.

Section 5 presents the parameterized method to integrate the baseband modules in the 802.11a

and 802.16 protocols. Section 6 describes the GPU-based implementation of the OFDM

transceiver. Section 7 discusses the performance evaluation of the processing modules.

Section 8 concludes the paper.

2. Related Work

SDR applications, particularly wireless communication, are usually implemented on DSPs

[9]-[11] or FPGAs [12]-[14]. Few studies have been devoted to SDR applications

implemented on GPUs [5]-[8], [15]-[21], which can be classified into two categories.

In the first category, studies merely implement part of the PHY, which presents low

practical value because a complete communication system is not achieved. For example,

1914 Li et al.: From WiFi to WiMAX: Efficient GPU-based Parameterized Transceiver

Nylanden et al. [15] and Michael et al. [16] implemented MIMO detectors on a GPU. In

[17]-[19] LDPC decoders were realized on GPUs. Michael et al. [20] presented a GPU-based

turbo decoder and Lin et al. [21] proposed a parallel GPU-based Viterbi decoding algorithm.

In the second category, studies present an SDR communication system based on the GPU

platform. In [5]-[7] real-time communication with several standards, such as DVB-T2 [5] and

WiMAX [6]-[7] , was realized. Ahn et al. [7] implemented a 2x2 MIMO WiMAX system on a

GPU-based platform. Recently, Ahn et al. proposed a wireless system for WiMAX and LTE

standards using a GPU cluster with three nodes, archiving an average speedup of 2.6x

compared with the system with only one GPU node [8]. However, the modules in each

protocol are realized independently and cannot be reused in other standards, thereby extending

the development cycle. The performance of these works can be improved. For example,

throughput of the Viterbi decoder in one node of GPU is only 16 Mbps, which does not match

the increasing speed requirements of wireless communication.

In the present study, we propose a GPU-based full configuration for wireless

communication system based on two OFDM protocols, namely, 802.11a and 802.16. The

system can be configured by only altering the parameters. In addition, we propose a new

parallel strategy to achieve high throughput and short frame duration.

3. CUDA

The framework of CUDA comprises the logical hierarchy and the physical hierarchy, which

are depicted in Fig. 1. In the logical hierarchy, the CUDA structure consists of a kernel, a grid,

blocks, and threads. The CUDA kernel is a device program to be executed on the GPU, and it

is hierarchically governed by the thread-block-grid step. Once a kernel is called by the C

program on the CPU, a grid is generated on the GPU, which is concurrently executed by thread

blocks with multiple parallel threads. GPU is a SIMD architecture in which multiple threads

can perform a single instruction with an independent set of data. The GPU provides an

identifier to distinguish each thread that should be precisely controlled by developers in SIMD

processing.

Host

Global Memory

Constant Memory

Texture Memory

…… … …

SM SM SM

SP

SFU
SP

SP

SP

SP

SP

SP

SP

SFU

Shared Memory

kernel

Logical

hierarchy

Physical

hierarchy

C code on CPU
Serial

computing

Serial

computing

Parallel

computing

Kernel code on GPU

Grid Thread

(0,0)

Thread

(1,0)

Thread

(2,0)
Thread

(0,1)

Thread

(1,1)

Thread

(2,1)

Block

(0,0)

Block

(1,0)

Block

(2,0)

Block

(0,1)

Block

(1,1)

Block

(2,1)

Block(2,0)

Fig. 1. CUDA Architecture

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 7, NO. 8, Aug. 2013 1915

Copyright ⓒ 2013 KSII

In the physical hierarchy, the CUDA structure consists of several types of memory as well

as multiple stream multiprocessors (SM) with several integrated stream processors (SPs) and a

few special-function units (SFUs). Four types of memory are found in the GPU as described in

Fig. 1: global memory, constant memory, texture memory, and shared memory. Each kind of

memory has its own hardware, access speed, and programming scopes. Global memory, which

connects the host computer and the GPU accelerator, can be read or written by all blocks with

an access latency of more than 400 cycles. Constant and texture memories are read-only

memories with no latency. In a block, the most essential component is shared memory, the

latency of which is four cycles. Shared memory enables threads to communicate with one

another, thereby reducing the overhead incurred by accessing global memory because the

registers are instantaneously used by only one thread. CUDA provides a programming

interface to exploit the high parallelism of GPUs and to eliminate the complexity of

controlling GPUs. CUDA bridges the logical and physical hierarchies in the manner by which

the thread blocks are automatically mapped to the idle SMs.

4. Generic OFDM Baseband Transceiver

With the development of wireless communication, protocols will require high data rate.

OFDM [22] offers a solution to spread data to the overlapping sub-carriers. The sub-carriers

are placed orthogonal to one another, thereby producing zero cross-talk among them. Hence,

OFDM provides high data rate as well as low self-symbol and inter symbol interference

because of its high spectral efficiency and robustness against multipath interference. Many

wireless protocols, such as WiFi and WiMAX, exploit OFDM as their modulation mode. The

structure of a generic OFDM baseband transceiver is depicted in Fig. 2. All modules in the

PHY are sequentially executed, with a buffer between each module. In the transmitter, the data

received from the medium access control (MAC) layer are processed by baseband modules

and then converted to analog signal by the digital-to-analog (D/A) converter; this signal is

transmitted over air. In the receiver, the OFDM signal is formed through the analog-to-digital

(A/D) converter and processed by the various processing modules. Finally, the data are sent to

the MAC. In this study, we only focus on the parameterized implementation of the OFDM

baseband processing modules on GPUs. The radio-front (RF), MAC and A/D or D/A will not

be discussed due to their different issues.

From MAC

To MAC

Pilot/Guard

Insertion
IFFT

CP

Insertion

Channel

Estimator
FFT CP removal Snchronizer

To RF

From RF

D/A

A/D

Mapper Interleaver
FEC

Encoder
Scrambler

Demapper
De-

interleaver

FEC

Decoder

De-

scrambler

Fig. 2. Block diagram of generic OFDM baseband transceiver modules

The fundamental processing unit in the OFDM modulation is an OFDM symbol, which

consists of multiple bits or samples. The samples are represented as complex numbers. In

various OFDM protocols, the size of the OFDM symbol is determined by the number of

sub-carriers defined in each protocol. Aside from data sub-carriers, pilot sub-carriers are used

1916 Li et al.: From WiFi to WiMAX: Efficient GPU-based Parameterized Transceiver

by the estimator to achieve the frequency fading in the symbols, whereas guard sub-carriers

are used to avoid interference with other carriers. In the following sections, we describe the

function modules in two specific OFDM protocols, namely, 802.11a [23] and 802.16 [24]. The

functions of the receiver modules are exact opposite of that of the corresponding modules of

the transmitter, excluding the frequency domain modules. Thus, we mainly focus on the

modules in the transmitter, except for the synchronizer, channel estimator and the forward

error correction (FEC) decoder. Table 1 shows the meaning of the clipped words used in this

paper.
Table 1. Meaning of various clipped words in this article

Abbreviation Meaning Abbreviation Meaning

S number of data bits per subcarrier NB number of blocks

N number of the OFDM symbols IS input signal

RCC code rate of convolutional code OS output signal

RRS code rate of RS code SC scrambler

NT number of threads per block CE convolutional encoder

NSM number of SMs in the GPU SY synchronizer

NTR NT limited by register count VD Viterbi decoder

NTS NT limited by shared memory DS descrambler

NTM maximum threads per block XOR exclusive or

M
number of coded bits in each

sub-carrier

Scrambler: The scrambler randomizes the data bit stream to avoid long sequences of zeros

and ones, thus ensuring superior results for FEC.

FEC encoder: The FEC encoder encodes the bit stream by adding redundancy to enable the

decoder to detect and correct errors. In the 802.11a protocol, the coding scheme is the

convolutional code. The protocol exploits the puncturing technique to archive at a high

transmission rate. The 802.16 protocol has an additional FEC encoder called, the

Reed-Solomon (RS) encoder, which is processed before the convolutional encoder.

Interleaver: The interleaver permutes the blocks of bits by mapping the adjacent bits into

non-adjacent sub-carriers to resist burst errors. The size of the interleaving block is S × M.

Mapper: The mapper maps bits to separate sub-carriers and encodes each sample by

frequency, amplitude, and phase. The size of the mapper block is S; one mapper can produce S

samples. The values of S in 802.11a and 802.16 are 48 and 192, respectively.

Pilot/guard (P/G) insertion: The P/G insertion inserts the pilot and guard sub-carriers. The

802.11a protocol uses a scrambler to generate a value for the pilots and a null value for the

guard sample.

IFFT: The IFFT converts the OFDM symbols from the frequency domain to the time

domain. The processing size of IFFT is 4/3 × S. The processing sizes in 802.11a and 802.16 are

64 and 256, respectively.

Cyclic prefix (CP) addition: The CP addition copy several samples from the end of the

symbol to the front. The copied samples are called as CP. The copying process avoids

inter-symbol interference caused by the multipath propagation. In this paper, the processing

size of the CP addition is set to 5/3 × S. The size in 802.11a and 802.16 are 80 and 320,

respectively. The size can be altered through parameter configuration.

Synchronizer: The synchronizer detects the beginning position of a packet based on

preambles and corrects carrier frequency offset caused by the Doppler Effect. The

auto-correlation algorithm is adopted to perform timing and frequency synchronization.

Channel Estimator: The channel estimator uses the pilots to estimate and compensate for

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 7, NO. 8, Aug. 2013 1917

Copyright ⓒ 2013 KSII

the frequency-dependent signal degradation. Among the several algorithms used for channel

estimation, the two-dimensional linear interpolation was adopted.

FEC Decoder: The FEC decoder is used in decoding FEC codes. Both the 802.11a and

802.16 protocols exploit the Viterbi algorithm to decode the convolutional code. The 802.16

protocol also uses the RS decoder to decode the RS code.

In order to analyze the computational complexity of each module, we estimate the number

of arithmetic logic unit (ALU) operations in each function module in the OFDM transceiver,

which is shown in Table 2. Note that n and k are the encoding profile symbols in RS(n,k) and

Polyi is the polynomial in the Galois Field. The table shows that a large percentage of the ALU

operations are centralized on the modules of the synchronizer and Viterbi decoder.

Table 2. The estimated number of ALU operations in each module of 802.11a and 802.16 protocol

ALU operation Sum/Subtract Multiplication/Division logic/others

Scrambler 0 0 2× S× M× RRS× RCC× N

RS Encoder
S× M× RCC× N× (n-k)/8

+(n-k)
0

S× M× RCC× N/8× (n-k+1)

× (2+4× log2(ΣPolyi))

Convolutional

Encoder
0 0 4× S× M× N

Interleaver 4× S× M× N 7× S× M× N 2× S× M× N

Mapper S× M× N S× M× N 0

P/G Insertion 0 14/3× S× N 1/3× S× N

IFFT 4× S× N× log2N 20/3× S× N× log2N 4/3× S× N× log2N

CP Insertion 0 0 0

Synchronizer 1285/3× S× N 5× S× N log2(80× N)+5/3× S× N

CP Removal 0 0 0

FFT 4× S× N× log2N 20/3× S× N× log2N 4/3× S× N× log2N

Channel

Estimator
12× S× N 80/3× S× N 4× S× N

Demapper 8× S× M× N 8× S× M× N 9× S× M× N

Deinterleaver 3× S× M× N 8× S× M× N S× M× N

Viterbi Decoder 128× S× M× N 128× S× M× N 192× S× M× N

RS Decoder
S× M× RCC× N× (n-k)/8

+(n-k)
0

S× M× RCC× N/8× (n-k+1)

× (2+4× log2(ΣPolyi))

Descrambler 0 0 2× S× M× RRS× RCC× N

5. Parameterized Implementations on GPUs

In this section, we introduce parameterized implementation to allow for the reuse and

customization of the baseband module across different protocols. The baseband modules are

implemented as kernels, which are serially processed on GPUs. The buffer between modules

is realized by the global memory on GPUs; the transmitter or receiver only allows two data

transmissions between the host computer and the GPUs. The first is the data transmission

between the MAC and the PHY. The second is the data transmission between the PHY and

A/D or D/A. Each module is mapped on the GPUs to perform SIMD parallel computing, the

critical issue of which is mapping the algorithm to multiple threads. The programmer should

therefore clarify NT and NB on GPUs. The reused modules should consider the parameters of

each module to support different protocols. In the following subsections, we introduce the grid

configuration and the parameter setup for each module.

1918 Li et al.: From WiFi to WiMAX: Efficient GPU-based Parameterized Transceiver

5.1 Grid Configuration

For most of PHY modules in OFDM protocols, the N OFDM symbols have no data

dependence and can be parallel computed; examples of N OFDM symbols include the RS

encoder / decoder, interleaver / deinterleaver, mapper / demapper, P/G insertion, IFFT / FFT,

CP insertion / removal, and channel estimator. We call this type of module the blocked module.

The parallelism potential of GPUs can be fully utilized by setting the NB blocked modules to N;

thus, each thread-block on the GPU processes an OFDM symbol. The reason is described as

follows. In block-wise modules, dependence exists on the bits or samples within an OFDM

symbol, thereby enabling memory access between these bits or samples. If the multiple bits or

samples in a symbol are mapped to several thread-blocks on GPUs, global memory must be

used to realize the crossing access between two thread-blocks. As mentioned above, access

latency to global memory is considerably larger than that to shared memory or registers within

an SM. The shared memory and registers in an SM can be adopted to enhance overall

performance. Thus, reducing access latency necessitates distribution of multiple bits or

samples to a thread-block. Furthermore, computations in an OFDM symbol require

synchronization to ensure that all the bits or samples have been processed. However, the

synchronization between multiple thread-blocks costs several hundred cycles. By contrast, the

synchronization among threads in one thread-block is a lightweight operation that does not

influence performance. Based on the above reasons, setting NB to N is suitable regardless of

the GPU resource, such as the registers or shared memory. Such setting is deemed appropriate

because the two operations require more GPU cycles than the shortage of memory resource.

As for the left modules in the baseband transceiver, data dependence exists among the N

symbols so that it is not suitable to directly map the algorithms on the GPU. We call this type

of module the consecutive module. In the baseband modules, the scrambler / descrambler,

convolutional encoder / decoder and synchronizer are the consecutive modules. In the next

section, we propose a fully truncated parallel strategy to eliminate the dependence among the

OFDM symbols in consecutive modules. As for the consecutive modules, grid configuration

must be performed with consideration of the hardware resources on the GPU, including the

registers, shared memory in each SM, maximum active threads per block and feasible SMs in

GPUs. NTR and NTS can be obtained as:

shared memory per SM

used shared memory per thread
TSN  (1)

number of registers per SM

number of used registers per thread
TSN  (2)

After calculating NTR, NTS, and NTM, NT can be obtained by the following formula:

 T TR TS TMN min N ,N ,N (3)

However, it is critical to ensure that the grid configuration can fully utilize all feasible SMs

in the GPU. Thus, NB can be obtained as:

number of processed bits or samples
T TS

T

N min N
N


 
 
 

, (4)

If the NB calculated by NT is smaller than NSM , NB must be set to NSM , and NT should be

computed by NB.

Table 3 provides a list of the grid configuration of each PHY module in the 802.11a and

802.16 protocols. The NT and NB of blocked modules are clearly listed. The independent N

OFDM symbols can be mapped to N thread-blocks. NB of several modules is set to N+6

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 7, NO. 8, Aug. 2013 1919

Copyright ⓒ 2013 KSII

because of the inserted short and long preambles used for synchronization and channel

estimation. By contrast, consecutive modules should consider parallel granularity and GPU

resource for the reason mentioned above.

Table 3. Grid configuration of OFDM baseband modules on GPUs

Module NT NT Module NT NT

Scrambler NT(SC) NB(SC) Synchronizer NT(SY) NB(SY)

RS Encoder S× M× RCC N CP Removal 4/3× S N+6

Convolutional

Encoder

NT(CE) NB(CE)
FFT

4/3× S N+6

Interleaver
S× M N Channel

Estimator

S N+6

Mapper S N Demapper S N

P/G Insertion 4/3× S N Deinterleaver S× M N

IFFT
4/3× S N Viterbi

Decoder

NT(VD) NB(VD)

CP Insertion 5/3× S N+6 RS Decoder S× M× RCC N

 Descrambler NT(DS) NB(DS)

Table 4. Parameters setup of OFDM baseband modules on GPUs

Module parameter 802.11a 802.16

Scrambler
shift register size 7 15

linear function x
7
+x

4
+1 X

15
+x

14
+1

RS Encoder encoder profile N/A

(12,12,0), (32,24,4),

(40,36,2), (64,48,8),

(80,72,4), (108,96,6),

(120,108,6), (255,239,8)

Convolutional

Encoder

constraint length 7

code rate RCC 1/2, 2/3, 3/4 1/2, 2/3, 3/4, 5/6

polynomials (133,171) (171,133)

Interleaver block size 48, 96, 192, 288 192, 384, 768, 1152

Mapper modulation type BPSK, QPSK, 16QAM, 64QAM

P/G Insertion

pilot indices -21, -7, 7, 21
-88, -63, -38, 13, 13, 38,

63, 88

guard indices -32 to -27, 0, 27 to 31
-128 to -101, 0, 101 to

127

IFFT size 64 256

CP Insertion

CP size 16 64

short preamble 4 16-sample symbols 4 64-sample symbols

long preamble 2 64-sample symbols 2 128-sample symbols

5.2 Module Parameters Setup

To allow for the reuse and customization of the baseband module across different protocols,

the modules should be parameterized to support various protocols. For the 802.11a and 802.16

protocols, each baseband module should have its own parameters. Table 4 shows the

parameters for the configuration of each module in the OFDM PHY transmitter. As the

function of the receiver modules is exact opposite of that of the corresponding modules of the

transmitter, the parameter setting of the modules in the receiver is the same as that of the

1920 Li et al.: From WiFi to WiMAX: Efficient GPU-based Parameterized Transceiver

transmitter. In each module, most of the input parameters, such as the S, the FFT size, CP size,

and RCC, can be identified by the threads through grid configuration. The configuration of

some parameters, including those mentioned preciously, requires minor operation. For

example, in the convolutional encoder, the polynomial determines the positions of the XOR

registers. Note that the polynomials in the 802.11a protocol are reverse to those in the 802.16

protocol. Therefore, configuring the parameter of the polynomial only requires the

interchanging operation at the end of the encoder. Finally, the remaining parameters in the

specific modules can be configured using the if-else clauses of the C language. This method is

convenient for the programmer. Using the parameter configuration, each module implemented

in CUDA can easily support both the 802.11a and 802.16 protocols.

6. Efficient GPU-based Parallel Strategy

As discussed above, data dependence exists among the N OFDM symbols of the consecutive

modules. These symbols cannot be parallel computed by the multiple thread-blocks in GPUs.

In this section, we propose a fully truncated parallel strategy to excavate the parallelism

potential of the consecutive modules. The fully truncated parallel strategy divides the signal

sequence into several chunks, each of which can be processed independently. In the following

subsections, we expound on several modules, such as the scrambler, convolutional encoder,

synchronizer and the Viterbi decoder to illustrate the proposed strategy. In our implementation,

the GPU type is GTX580, which comprises 16 SMs, 512 CUDA cores, 49kB shared memory,

and 32 k registers. The maximum number of threads per block is 1024.

6.1 Scrambler

Both the scrambler and descrambler XOR each input bit with a pseudo-random binary

sequence to randomize the input bit stream. Linear feedback shift registers (LFSR) defined by

the linear function serially generates the pseudo-random binary sequence (Table 4). For

example, in the 802.11a protocol, the scrambler XORs the 1
st
 input bit with the 4

th
 and 7

th
 bits

of the LFSR to obtain the output bit. Subsequently, the new LFSR is computed by shifting the

feedback bit of the LFSR in the right direction. The next output bit of the new LFSR is

calculated by XORing the 2
nd

 bit and the 4
th
 and 7

th
 bits. Thus, the scrambler / descrambler

cannot be parallel computed directly due to the data dependence of LFSR. For the purpose to

map the (de)scrambler to the GPUs, we present truncated (de)scrambler to touch the aim. The

input bit stream of scrambler is divided into multiple chunks, each of which can process a short

scramble operation. With regard to the descrambler, the same partition is applied to recover

the bit stream. The length of each chunk is set as the length of LFSR, and labeled as L. Each

thread requires L registers. Based on Equations 3 and 4, NB is set to 16.

6.2 Convolutional Encoder

Both protocols exploit convolutional coding as the code scheme, which has a constraint of 7

and a code rate of 1/2. The encoded code words are punctured into a higher code rate to

achieve a higher data rate. Each input bit produces two output bits through a modulo-2

operation that involves six shift registers, which depend on the input bit and consequently

affect the output bits. Every coded bit output is relevant to seven bits, six of which are shift

registers and the remaining one is the input bit. The input signal sequence is parallel organized

into multiple chunks. Each chunk, comprising seven bits, is assigned to a thread that functions

as a sub-encoder of the seven bits and produces two coded bits. The threads can be parallel

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 7, NO. 8, Aug. 2013 1921

Copyright ⓒ 2013 KSII

executed because of data independence. Finally, the coded bits produced by the threads are

stored in the correct addresses in the global memory, which is fed for the next module in the

PHY. Algorithm 1 provides the parallel computation of the convolutional encoder on the GPU.

In this algorithm, each thread does not require shared memory or registers. Thus, NT(CE) can

be set directly to NT(TM).

Initialization:

IS is parallel organized into S × M × N chunks,

each chunk comprises 7 bits, having 6 bits overlapped with the next one

Iteration:

1: for thread-block b 0 to S× M× N / NT (TM)−1 parallel do

2: for thread t 0 to NT (TM) − 1 parallel do

3: i = b × N + t;

4: Load ISi,0 to ISi,6 from the global memory;

5: OSi,0 = ISi,0 ∧ ISi,2 ∧ ISi,3 ∧ ISi,5 ∧ ISi,6;

6: OSi,1 = ISi,0 ∧ ISi,1 ∧ ISi,2 ∧ ISi,3 ∧ ISi,6;

7: if WiMAX then

8: Exchange(OSi,0,OSi,1);

9: end if

10: Store the final result OSi,0 and OSi,1 in the global memory;

11: end for

12: end for

Algorithm 1 GPU-based convolutional encoding algorithm

6.3 Synchronizer

Synchronization pertains to the detection of the initial frame to acquire the start point and

frequency offset of the initial frame. The initial frame is used to maintain the time and

frequency synchronization for every frame. In the initial frame detection, the autocorrelation

algorithm is used to calculate the frequency offset. Fig. 3 shows the course of the

autocorrelation algorithm. On the one hand, a window with a length that corresponds to the

number of FFT points passes through the input signal. On the other hand, a similar window

with a fixed distance to the first window moves forward through the input signal. The

correlation between the two windows is calculated in each step. The correlation achieves it’s

the maximum value when the two windows move in the entire frame interval. With the

maximum value, the start point and the frequency offset can be obtained.

window 1 window 2
delay

move forward move forward

Preamble location in a frame

FFT size

Input Singal

FFT size

Fig. 3. The autocorrelation algorithm used to frame detection

The primary purpose of the autocorrelation algorithm is to compute the correlation between

the two windows at each sample time interval as well as to extract the maximum value for the

frequency offset calculation. The input signal sequence is parallel organized into multiple

chunks, each of which comprises bits in two windows. Each chunk is assigned to a thread that

1922 Li et al.: From WiFi to WiMAX: Efficient GPU-based Parameterized Transceiver

calculated the correlation at a sample time interval. The threads can be parallel executed

because of data independence. After computing correlation for each thread, a parallel

reduction mode of an inverse binary tree is employed to calculate the maximum value as

described in Fig. 4. At each comparison step, lightweight synchronization occurs among the

threads, which does not influence performance. The temporary results are stored in the threads

with sequential identifiers. To avoid the bank conflict in the shared memory in each SM,

parallel reduction with sequential addresses is performed. Parallel reduction minimizes the

complexity of the maximum calculation from O(n) to O(log2n). After the maximum value of

each thread-block is obtained, the values are stored in sequential addresses in the global

memory. Subsequently, the same parallel reduction is performed to compute the global

maximum value, which can generate the frequency offset for the next module in the PHY. To

perform the parallel reduction mode of the inverse binary tree, each thread requires 64 bits of

shared memory and three registers. Based on Equation 3, NT(SY) can be set to 512.

thread 0thread 0thread 0

max value

and

position 1

Correlation Value caculation

thread 0

…

…

…

block 0

block

n*/256-1

block 1

…

thread

0

thread

1

thread

2

thread

1

thread

2

thread

126

thread

127

thread

128

thread

129

thread

130

thread

131
…

thread

0

thread

3

thread

254

thread

255
…

thread

3
…

thread

126

thread

127…

thread

1

thread

0

thread

0

Sync

Sync

max value

and

position 0

max value

and

position…

Input bit sequence

n…

thread 0chunk 0

64 65 66631 2

chunk 1

chunk 2

chunk n-1

thread 1

thread 2

thread n-1

64 790

… …

…

… …

65 801 … …

…

63

64

66 812 … …65

… …n+63 n+79n

0

max value

and

position

n*/256-1

thread 0thread 0thread 0

…

…

…

thread 0thread 0thread 0

…

…

…

thread 256

thread

n*-256

256 threads

256 threads

256 threads

Note

n=5/3× S× (N+6)

n*=n+256-n%256

Fig. 4. Conceptual diagram of parallelizing synchronization algorithm

0,0BM
0

t
PM

1

t
PM

2

t
PM

3

t
PM

1 2 3 4 50

0

1

2

3

states

time

…

8K-1

…

8K 6K

…

8K-1

…

8K

0

1

2

3

states

…

6K+1 6K+2 6K+3

merge state

decoding phase D0 traceback phase T0forward computing phase F0

decoded bit sequence

1 20 time

(a) forward computing trellis (b) traceback and decoding computing trellis

Fig. 5. Trellis diagram of Viterbi decoder

6.4 Viterbi Decoder

The Viterbi decoding process can be expressed as a trellis diagram (Fig. 5). The state

transition diagram is repeated from left to right for a number of time stages equal to the

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 7, NO. 8, Aug. 2013 1923

Copyright ⓒ 2013 KSII

number of information bits. The procedure of the Viterbi algorithm can be classified into two

directions: the forward procedure and the trace-back procedure. The trace-back procedure is

used to identify the maximum likelihood path through the trellis. For this purpose, a metric

called path metric (PM) is maintained for each possible path through the trellis. For each time

stage, at each state, only the path with the minimum PM is retained and transferred to its

consumer in the next stage. This action requires an add-compare-select (ACS) operation for

each state in the trellis. The survived bits (SBs) are determined for the trace-back procedure

using the ACS operation. After the forward creation of the trellis, the algorithm begins to trace

backward to identify the maximum likelihood path using SBs. The SBs along this path are

given as decoded bits (DBs).

In forward computing in the trellis depicted in Fig. 5(a), the ACS operations among the

states exhibit no dependence along the state-axis; hence, these operations can be parallel

processed. However, along the time axis, the PM at time t depends on the PM at time t-1.

Fortunately, all survivor paths merge into one state after a suitable truncation length. We can

then trace back from the merging state to obtain the decoded sequences. Fig. 5(b) illustrates

the procedure in the trellis. This procedure is knows as three-point Viterbi algorithm [25]. The

Viterbi decoder can thus be implemented through the truncation method, which partitions the

trellis along the time axis. Each sub-trellis overlaps with the adjacent sub-trellis for the Lt

symbols, which are the tail sequence used to perform the track-back phase, in which the

merging state is produced. Each sub-trellis can be divided into two phases, namely, the

forward computing phase and the trace-back and decoding (TD) phase

Fig. 6 depicts the conceptual diagram of parallelizing the Viterbi algorithm. Fi denotes the

forward computing phase of the i
th
 truncation sub-trellis. TDi represents the trace-back and

decoding phase of the i
th
 truncation sub-trellis. To decode the bits precisely, the partition

length of Fi is set to 2(Ld+Lt), where Ld and Lt are the lengths of the decoding phase and the

trace-back phase, respectively.

In the forward computing phase, each ACS operation is assigned to each thread, where the

values of BM, PM, and SB are calculated. The network between successive time stages is

achieved in the shared memory in each thread-block. Each thread writes the PM and SB values

into the corresponding address in the shared memory. Subsequently, lightweight

synchronization is carried out among the threads to ensure that all the threads complete the

computing and writing operations in a time stage. The correct input PM value can be fetched

from the shared memory after synchronization.

FpF1

Ld+Lt

Fn

Ld+Lt

F1

t (0,63)

t (0,1)

…

n×Ld

Ld+Lt

t (0,0)… … ……

F0

Ld+Lt

… …

t (1,63)

t (1,1)

…

t (1,0)

t (p,63)

t (p,1)

…

t (p,0)

F0

thread-block 0
thread-block 1
thread-block n/p……

…

LtLd
LtLd

F1F0

TDp

GPU
…

…

…
Viterbi trellis sub-trellises partition

TD0 TD1

… …… … ……… …… ……

Fig. 6. Conceptual diagram of parallelizing Viterbi algorithm

After the completion of the forward computing phase, the trace-back and decoding phase

of the i
th
 truncation sub-trellis is conducted in the first thread of TDi. A divide-and-conquer

method is employed to select the minimum PM value in the final states in each Fi as the

trace-back state. After tracing Lt bits, the merging state is determined. Finally, the left Ld bits

1924 Li et al.: From WiFi to WiMAX: Efficient GPU-based Parameterized Transceiver

are the decoded bits of the i
th
 truncation sub-trellis. The input signal is partitioned into S× M ×

N / Ld chunks, each of which has 2(Ld+Lt) bits. Each thread requires 64 bits of shared memory

and 8 registers. Based on Equation 3, NT is set to 512 in the GTX580 implementation, wherein

8-way parallel Fi computing can be performed.

7. Performance Evaluation

7.1 Experiment Setup

We adopt four modulation types for the 802.11a and 802.16 protocols. For each modulation

type, we use high code rates as examples. The RRS, RCC, M and S of each modulation are listed

in Table 5. The maximum frame length is 12694 bits, which comprise 12672 data bits, 16

service parameter bits, and 6 encoding tail bits. The transmitter and receiver of the OFDM

PHY are implemented in two segregated GPUs. The GPU type used is GTX580. A total of 16

SMs, each with 32 SPs, form the architecture of 512 CUDA cores. The GTX580 has a

frequency of 1.54 GHz and a global memory size of 1.5 GB. Each thread-block can support

1024 threads for parallel execution. After the signal processing of the transmitter, the signal is

sent back to the host computer and then sent to the simulated additive white Gaussian noise

(AWGN) channel. The signal added noise is transmitted to the GPU in the receiver for the

baseband processing.

Table 5. Parameters of modulation and coding in 802.11a and 802.16 standard

Protocol Modulation RRS RCC M S

802.11a

BPSK N/A 3/4 1 48

QPSK N/A 3/4 2 96

16QAM N/A 3/4 4 192

64QAM N/A 3/4 6 288

802.16

BPSK 24/32 3/4 1 192

QPSK 48/64 3/4 2 384

16QAM 96/108 3/4 4 768

64QAM 239/255 5/6 6 1152

7.2 Data Throughput

To measure the processing time of the PHY algorithms on GPUs, we use the profiler provided

by NVIDIA Corporation. We decompose the algorithm modules in both the transmitter and

the receiver and measure the time cost by each module. Table 6 shows the processing times

and throughput of the modules in the 802.11a and 802.16 PHY for preforming one frame

transmission on the GPU. The throughput is calculated by dividing the number of processed

bits or samples per module by the processing time. Note that the IFFT and FFT modules are

implemented by the CUBLAS function library [26] presented by CUDA.

In Table 6, we can find that in a protocol, the processing time of each module with four

modulation types is equivalent, except for the synchronizer. This result can be attributed to the

fact that the total amount of processed signal is equivalent and that data dependence among the

thread-blocks is eliminated. All input OFDM symbols can be distributed to idle blocks for

parallel computing, in which the bits or samples are mapped to multiple threads. When the

CUDA cores are sufficient, the processing time of all bits or samples is equal to that of a single

bit or sample. As for the blocked modules, the number of symbols is equal to the required

number of thread-blocks, when the CUDA cores are not enough to process all the symbols for

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 7, NO. 8, Aug. 2013 1925

Copyright ⓒ 2013 KSII

parallel computing, the processing time increases. Therefore, the decrease in the number of

symbols results in the decrease in the processing time of each blocked module.

In other cases, some modules still demonstrate data dependence among the thread-blocks.

For example, the synchronizer fetches the maximum value from all the samples within a given

frame. The thread-blocks in the synchronizer should wait for all values to be processed

completely. The maximum value is then fetched from the multiple thread-blocks. Thus, a

decrease in the number of symbols results in a decrease in the number of thread blocks that

require synchronizing by the GPU, thereby shortening the processing time.

The memory copy time shown in Table 6 is the memory copy time between the GPU and

the CPU. the memory copy time ranges from 64 to 82 us per frame, depending on the data size.

The memory copy time occupies about 4% to 9% of the total time. The processing time for one

frame in the PHY decreases with the increase in the transmitter rate, thus shortening the

processing time of the synchronizer.

Table 6. The execution time and throughput of modules in 802.11a and 802.16 PHY on GTX580

GPU, measure format:time(us)[throughput(Mbps or Msps)]

Module 802.11a 802.16

BPSK QPSK 16QAM 64QAM BPSK QPSK 16QAM 64QAM

Scrambler
8.9

[1424]

8.8

[1440]

8.7

[1457]

8.9

[1432]

9.3

[1370]

8.5

[1499]

8.6

[1488]

9.0

[1500]

RS Encoder N/A N/A N/A N/A
130.2

[131]

145.8

[117]

152.2

[95]

164.5

[88]

Convolutional

Encoder

48.1

[527]

47.2

[537]

47.0

[539]

46.8

[545]

52.4

[649]

52.5

[647]

51.2

[563]

50.5

[570]

Interleaver
10.2

[1656]

9.5

[1779]

10.2

[1656]

10.1

[1682]

10.1

[2243]

10.6

[2137]

10.6

[1811]

10.6

[1631]

Mapper
8.4

[2011]

7.8

[1083]

7.9

[535]

8.2

[345]

8.4

[2697]

7.9

[1434]

7.7

[623]

9.7

[297]

P/G Insertion
28.0

[984]

26.4

[514]

24.8

[234]

23.8

[170]

28.3

[1213]

25.4

[637]

24.5

[243]

24.2

[225]

IFFT
22.9

[525]

21.9

[269]

24.1

[128]

22.2

[89]

24.9

[673]

23.7

[346]

26.3

[138]

17.1

[225]

CP Insertion
12.7

[2217]

12.7

[1164]

10.4

[677]

10.4

[454]

12.9

[2927]

11.6

[1628]

10.7

[748]

12.8

[375]

Synchronizer
163.4

[172]

98.6

[143]

57.5

[122]

54.0

[87]

712.8

[53]

385.0

[49]

170.7

[47]

145.1

[33]

CP Removal
10.9

[2583]

10.1

[1394]

8.7

[809]

8.7

[543]

11.0

[3433]

10.1

[1869]

9.3

[860]

9.2

[522]

FFT
24.1

[935]

22.6

[498]

23.1

[244]

23.1

[163]

24.5

[1233]

24.5

[616]

24.4

[262]

18.9

[203]

Channel Estimator
48.3

[466]

40.4

[257]

40.4

[139]

40.0

[94]

48.5

[623]

42.3

[357]

39.5

[162]

39.0

[98]

Demapper
10.3

[1640]

12.6

[880]

12.6

[335]

12.4

[228]

9.9

[2288]

9.5

[1192]

10.0

[480]

12.9

[223]

Deinterleaver
10.7

[1579]

10.5

[1724]

10.5

[1609]

10.6

[1603]

10.1

[2243]

10.4

[2178]

11.2

[1714]

13.3

[1300]

Viterbi Decoder
225.1

[113]

219.5

[115]

201.7

[126]

198.4

[128]

343.4

[99]

332.3

[102]

325.9

[88]

310.3

[93]

RS Decoder N/A N/A N/A N/A
131.4

[129]

143.6

[118]

153.2

[94]

161.5

[89]

1926 Li et al.: From WiFi to WiMAX: Efficient GPU-based Parameterized Transceiver

Descrambler
9.1

[1393]

8.3

[1527]

8.8

[1440]

9.2

[1385]

9.2

[1385]

8.4

[1517]

8.7

[1471]

9.1

[1484]

N 352 176 88 59 118 59 25 15

Memcpy time(us) 64.4 64.0 64.1 64.6 81.8 80.7 71.7 68.7

Frame time(us) 705.5 620.1 559.5 551.4 1659.1 1332.8 1116.4 1086.4

FTWS(us) 542.1 521.5 502.0 497.4 946.3 947.8 945.7 941.3

By contrast, the frame time without synchronizer (FTWS) in Table 6 is somehow equal for

all modulation modes. As we known, the synchronizer only works in the first frame of a

transmitting packet. After the first frame, the frame processing time will thus be less than 1ms,

falling within the frame duration of the 802.11a and 802.16 protocols. Fig. 7 and Fig. 8 show

the module throughput relative to the required throughput for real-time performance in the

802.11a and 802.16 protocols, respectively. Some modules can archive more than 477 times

throughput to the requirement throughput in the 802.16 protocol. The slowest block is the

Viterbi decoder, with 178% of the target data rate in the 64QAM modulation mode, and with

the code rate of 3/4 in the 802.11a protocol. Thus, all processing modules can meet the

real-time requirement. Furthermore, Fig. 7 and Fig. 8 show that the speedup for the required

throughput in each module decreases along with the increase in the transmitting rate

configuration. This result can be attributed to the fact that the processing throughput of each

module is steady as the required throughput increases.

1x

sc
ra

m
bl

er

co
nv

ol
ut

io
na

l

en
co

de
r

in
te

rle
av

er

m
ap

pe
r

pi
lo

t/g
ua

rd

in
se

rti
on IF

FT
C
P

in
se

rti
on

sy
nc

hr
on

iz
er

C
P re

m
ov

al

FFT

ch
an

ne
l

es
tim

at
er

de
in

te
rle

av
er

Vite
rb

i

de
co

de
r

de
sc

ra
m

bl
er

10x

100x

S
p

e
e

d
u

p
 t
o

 r
e

a
lt
im

e
 p

e
rf

o
rm

a
n

c
e

Modules in 802.11a physical layer

de
m

ap
pe

r

Fig. 7. 802.11a Module throughput relative to required throughput for real-time performance

sc
ra

m
bl

er

co
nv

ol
ut

io
na

l

en
co

de
r

in
te

rle
av

er

m
ap

pe
r

pi
lo

t/g
ua

rd

in
se

rti
on IF

FT
C
P

in
se

rti
on

sy
nc

hr
on

iz
er

C
P re

m
ov

al

FFT

ch
an

ne
l

es
tim

at
er

de
in

te
rle

av
er

Vite
rb

i

de
co

de
r

de
sc

ra
m

bl
er

Modules in 802.16 physical layer

de
m

ap
pe

r

1x

10x

100x

S
p

e
e

d
u

p
 t
o

 r
e

a
lti

m
e

 p
e

rf
o

rm
a

n
ce

R
S e

nc
od

er

R
S d

ec
od

er

Fig. 8. 802.16 Module throughput relative to required throughput for real-time performance

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 7, NO. 8, Aug. 2013 1927

Copyright ⓒ 2013 KSII

7.3 BER performance

To evaluate the BER performance of the GPU-based PHY modules, we measure the BER of

our 802.11a and 802.16 PHY under the AWGN channel in the simulation, which is shown in

Fig. 9. The BER of proposed GPU-based PHY is close to the theoretical BER performance in

the Matlab simulation. This result proves the practicality of the GPU-based 802.11a and

802.16 PHY.

7.4 Performance Comparison

In this section, we will compare the performance of our GPU-based algorithms with the

current GPU, DSP and FPGA-based implementations. We also discuss the different

characteristics among the various platforms and the reason of the performance gap of them.

(a) 802.11a BER performance (b) 802.16 BER performance

0 2 4 6 8 10 12 14 16 18 20
10

-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

B
E

R

Eb/No (dB)

 BPSK

 QPSK

 16QAM

 64QAM

 BPSK,GPU

 QPSK,GPU

 16QAM,GPU

 64QAM,GPU

0 2 4 6 8 10 12 14 16 18 20
10

-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

B
E

R

Eb/No (dB)

 BPSK

 QPSK

 16QAM

 64QAM

 BPSK,GPU

 QPSK,GPU

 16QAM,GPU

 64QAM,GPU

Fig. 9. BER performance of GPU-based 802.11a and 802.16 PHY under AWGN channel

7.4.1 Comparison with Other GPU-based Implementations

In order to compare the performance of the algorithms in this study with that of other

GPU-based implementations, we list the performance of the modules in the 802.16 PHY

described in [7]. In [7], the modules with 16QAM modulation and 1/2 code rate were

implemented. Table 7 provides a comparison of the performance of the GPU-based modules

in [7] and those in the current study in 16QAM modulation of the 802.16 protocol.

Table 7. Performance comparison between different GPU-based implementation of SDR algorithms

Throughput(Mbps/Msps) Speedup

[7] Ours Ours Ours vs.[7] Ours vs.[7]

platform GTX275 GTX275 GTX580 GTX275 GTX580

Conv. Encoder 24.5 270.1 562.5 11.0 23.0

Interleaver 97.7 862.5 1811.3 8.8 18.5

Mapper 98.8 301.2 623.4 3.0 6.3

P/G Insertion 139.5 172.4 261.2 1.2 1.9

IFFT 72.4 73.3 243.3 1.0 3.4

Synchronizer 7.7 23.8 46.9 3.1 6.1

FFT 74.1 74.2 262.3 1.0 3.5

Cha.Estimator 43.2 76.9 162.0 1.8 3.8

Deinterleaver 92.4 810.3 1714.3 8.8 18.6

Viterbi Decoder 16.2 45.5 88.4 2.8 5.5

1928 Li et al.: From WiFi to WiMAX: Efficient GPU-based Parameterized Transceiver

For a fair comparison of the result, we also implement our modules on the GTX275 GPU,

which has 240 CUDA cores. On the same GPU platform, our modules archive a speedup of

about 1.8x-11.0x compared with the modules in [7], except for the following three modules.

The FFT/IFFT modules have approximately the same performance because similar to [7], both

are implemented by the CUBLAS function library. The module of P/G insertion attains only a

speedup of 1.2x because it involves a serial operation, which has low parallel potentiality. Our

modules obtain better throughput than that in [7] because we fully exploit the parallelism of

the algorithms. T For instance, the Viterbi decoding algorithm proposed in the current study is

a fully parallel truncated Viterbi algorithm. Hence, the entire trellis is partitioned to form

multiple sub-trellises, and the forward and track-back phases of each sub-trellis are executed

independently. By contrast, the Viterbi algorithm in [7] only adopts one thread-block for the

forward computing phase, wherein each thread calculates one ACS operation. In addition, the

trace-back procedure is performed in a thread. Compared with that in [7], the degree of

parallelism in our modules is larger, and can produce a speedup of 2.8x. On the GTX580 GPU,

we can archive an improved speedup of about 1.9x to 23.0x because of the large number of

CUDA cores. Based on the information listed on Table 7, we can conclude that our

implementation is superior to that in [7].

7.4.2 Comparison with DSP Implementations

In this section, we discuss the differences between the GPU and DSP implementations of SDR

algorithms. As an example, in [10] the receiver of 802.11a protocol was implemented at

AsAP2 platform, which is a DSP chip multiprocessor with a clock frequency of 590MHz. The

performance comparison of each module under DSP and GPU implementations is shown in

Table 8. The throughput of our GPU-based modules can archive an improved speedup of 2.5x

to 31.3x compared with that in [10], except for the FFT module, which is realized by the DSP

library [27]. Although the DSP has a high clock frequency, the number of concurrent

instructions is limited and depends on the architecture of the DSPs. Some modules with great

parallelism potential, such as the channel estimator, demapper, or deinterleaver, cannot be

totally parallel executed in the DSP platform. Meanwhile, many CUDA cores in the GPU

facilitate the parallel computation of the OFDM symbols; such computation may result in an

enhanced throughput.

Table 8. Performance comparison between DSP and GPU implementation of modules for the 54Mbps

mode in 802.11a receiver

Module
Throughput(Mbps/Msps) Speedup

DSP[10] GPU[Ours] Ours vs.[10]

Synchronizer 6 87 14.5

CP Removal 214 543 2.5

FFT 184 163 0.9

Cha.Estimator 3 94 31.3

Demapper 12 228 19.0

Deinterleaver 85 1603 18.9

Viterbi Decoder 43 128 3.0

Descrambler 59 1385 23.5

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 7, NO. 8, Aug. 2013 1929

Copyright ⓒ 2013 KSII

7.4.3 Comparison with FPGA Implementations

In this section, we discuss the differences between the GPU and FPGA implementations of

SDR algorithms. As a representative example [12] realized the 802.11a transmitter on the

Xilinx Virtex-II Pro XC2VP50 FPGA, using the multi-clock pipelined scheme. In the 54Mbps

mode, modules in the PHY can be divided into four stages of clock area, each of which has

independent clock frequency. The throughput of the modules of the transmitter both in [12]

and in our implementation is shown in the Table 9. Compared with the FPGA implementation,

GPU-based modules can achieve superior throughput with a speedup ranging from 2.0x to

14.4x. However, the FPGA can adopt the pipelined technology due to its architecture. The

latency of transmitting one bit or sample through all the modules is only 57us. Meanwhile, the

entire signal in a GPU-based module should be processed completely before being passed to

the next module. This requirement results in latency that is equal to the processing time for a

whole frame. Table 9 shows that the latency of the GPU-based transmitter is 2.3 times that of

the FPGA implementation.

Table 9. Performance comparison between DSP and GPU implementation of modules for the

54Mbps mode in 802.11a receiver

Module
Throughput(Mbps/Msps) Speedup

FPGA[12] GPU[Ours] Ours vs.[12]

Scrambler 126 1432 11.4

Conv. encoder 126 545 4.3

Interleaver 117 1682 14.4

Mapper 117 345 2.9

P/G insertion 57 159 2.8

IFFT 57 170 3.0

CP Insertion 226 454 2.0

latency(us) 57 130 2.3

8. Conclusion

In this study, generic baseband modules are implemented using GPUs for two different OFDM

protocols, namely, 802.11a and 802.16. An efficient strategy is presented to map the PHY

modules of two OFDM protocols to the GPU platform. A parameterized method is employed

to allow for the reuse and customization of the baseband module across different protocols.

The modules are distributed on the numerous CUDA cores of the GPU. To ensure the

flexibility of the modules, the grid configuration of each module is set according to the

parameters and the hardware resource of the specified GPU platform. According to the

dependence of multiple OFDM symbols, the modules in the OFDM baseband transceiver are

initially divided into two categories: the blocked module and the consecutive module. To

eliminate data dependence among the OFDM symbols, a fully truncated parallel strategy is

presented. Through the efficient strategy, the OFDM-based protocols can generate the

corresponding efficient GPU-based PHY modules. Finally, the 802.11a and 802.16 PHY are

implemented in all modulation configurations and the performance of the GPU-based modules

is evaluated. The experiments show that the modules implemented on the GPUs can attain

throughput that exceeds the real-time requirement and satisfactory BER performance. The

performance comparison of various algorithms shows that our GPU-based parallel algorithm

for each module is superior to other GPU-based implementations. The GPU can thus serve as

1930 Li et al.: From WiFi to WiMAX: Efficient GPU-based Parameterized Transceiver

an alternative to the traditional DSP and FPGA solutions for wireless applications, particularly

in simulations and software-defined wireless test beds.

References

[1] NVIDIA Corporation, “NVIDIA CUDA Compute Unified Device Architecture Programming

Guide version 4.0,” 2011.

[2] C. Yang, Q. Wu, T. Tang, F. Wang, and J. Xue, “Programming for scientific computing on

peta-scale heterogeneous parallel systems,” Journal of Central South University, vol. 20, no. 5, pp.

1189-1203, May, 2013. Article (CrossRef Link).

[3] X. Yang, T. Tang, G. Wang, J. Jia, and X. Xu, “MPtostream: an OpenMP compiler for CPU-GPU

heterogeneous parallel systems,” Science China-information Sciences, vol. 55, no. 9, pp.

1961-1971, September, 2012. Article (CrossRef Link).

[4] C. Yang, Q. Wu, H. Hu, Z. Shi, J. Chen, and T. Tang, “Fast weighting method for plasma PIC

simulation on GPU-accelerated heterogeneous systems,” Journal of Central South University, vol.

20, no. 6, pp. 1527-1535 , June, 2013. Article (CrossRef Link).

[5] S. Gronroos, K. Nybom and J. Bjorkqvist, “Complexity analysis of software defined DVB-T2

physical layer,” Analog Integrated Circuits and Signal Processing, vol. 69, no. 2-3, pp. 131-142,

December, 2011. Article (CrossRef Link).

[6] J. Kim, H. Seungheon and C. Seungwon, “Implementation of an SDR system using graphics

processing unit,” IEEE Communication Magazine, vol. 48, no. 3, pp. 156-162, March, 2010.

Article (CrossRef Link).

[7] C. Ahn, J. Kim, J. Ju, J. Choi, B. Choi and S. Choi, “Implementation of an SDR platform using

GPU and its application to a 2x2 MIMO WiMAX system,” Analog Integrated Circuits and Signal

Processing, vol. 69, no. 2, pp. 107-117, December, 2011. Article (CrossRef Link).

[8] C. Ahn, S. Bang, H. Kim, S. Lee, J. Kim, S. Choi, and J. Glossner, “Implementation of an SDR

system using an MPI-based GPU cluster for WiMAX and LTE,” Analog Integrated Circuits and

Signal Processing, vol. 73, no. 2, pp. 569-582, November, 2012. Article (CrossRef Link).

[9] Z. Yu, M. J. Meeuwsen, R. W. Apperson, O. Sattari, M. A. Lai, J. W. Webb, E. W. Work, T.

Mohsenin, and B. M. Baas, “Architecture and evaluation of an asynchronous array of simple

processors,” Journal of Signal Processing Systems, vol. 53, no. 3, pp. 243-259, December, 2008.

Article (CrossRef Link).

[10] A. T. Tran, D. N. Truong, and B. M. Baas, “A complete real-time 802.11a baseband receiver

implemented on an array of programmable processors,” in Proc. of 42nd Asilomar Conference

Signals, Systems and Computer, pp. 165-170, October 26-29, 2008. Article (CrossRef Link).

[11] H. Lee, C. Chakrabarti, and T. Mudge, “A low-power DSP for wireless communications,” IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, vol. 18, no. 9, pp. 1310-1322,

September, 2010. Article (CrossRef Link).

[12] M. Mizani, and D. Rakhmatov, “Multi-clock pipelined design of an IEEE 802.11a physical layer

transmitter,” in Proc. of 20th International Parallel and Distributed Processing Symposium, pp.

21-27, April 25-29, 2006. Article (CrossRef Link).

[13] J. S. Park and T. Ogunfunmi, “Efficient FPGA-Based Implementations of MIMO-OFDM Physical

Layer,” Circuits Systems and Signal Processing, vol. 31, no. 4, pp. 1487-1511, August, 2012.

Article (CrossRef Link).

[14] M. J. Canet, J. Valls, V. Almenar and J. Marin-Roig, “FPGA implementation of an OFDM-based

WLAN receiver,” Microprocessors and Microsystems, vol. 36, no. 3, pp. 232-244, May, 2012.

Article (CrossRef Link).

[15] T. Nylanden, J. Janhunen, O. Silven and M. Juntti, “A GPU implementation for two

MIMO-OFDM detectors,” in Proc. of International Conf. Embedded Computer Systems:

Architectures, Modeling and Simulation, pp. 293-300, July 19-22, 2010. Article (CrossRef Link).

http://dx.doi.org/doi:10.1007/s11771-013-1602-z
http://dx.doi.org/doi:10.1007/s11432-011-4342-4
http://apps.webofknowledge.com/full_record.do?product=WOS&search_mode=GeneralSearch&qid=6&SID=X2baoueyTWtIn7WLrFa&page=1&doc=2
http://apps.webofknowledge.com/full_record.do?product=WOS&search_mode=GeneralSearch&qid=6&SID=X2baoueyTWtIn7WLrFa&page=1&doc=2
http://dx.doi.org/doi:10.1007/s11771-013-1644-2
http://dx.doi.org/doi:10.1007/s10470-011-9724-4
http://dx.doi.org/doi:10.1109/MCOM.2010.5434388
http://dx.doi.org/doi:10.1007/s10470-011-9764-9
http://dx.doi.org/doi:10.1007/s10470-012-9941-5
http://dx.doi.org/doi:10.1007/s11265-008-0162-1
http://dx.doi.org/doi:10.1109/ACSSC.2008.5074384
http://dx.doi.org/doi:10.1109/TVLSI.2009.2023547
http://dx.doi.org/doi:10.1109/IPDPS.2006.1639463
http://dx.doi.org/doi:10.1007/s00034-012-9411-4
http://dx.doi.org/doi:10.1016/j.micpro.2011.11.004
http://dx.doi.org/doi:10.1109/ICSAMOS.2010.5642054

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 7, NO. 8, Aug. 2013 1931

Copyright ⓒ 2013 KSII

[16] M. Wu, Y. Sun, S. Gupta and J. R. Cavallaro, “Implementation of a high throughput soft MIMO

detector on GPU,” Journal of Signal Processing Systems, vol. 64, no. 1, pp. 123-136, July, 2011.

Article (CrossRef Link).

[17] G. Falcao, L. Sousa and V. Silva, ”Massively LDPC decoding on multicore architectures,” IEEE

Transactions on Parallel and Distributed Systems, vol. 22, no. 2, pp. 309-322, February, 2011.

Article (CrossRef Link).

[18] H. Ji, J. Cho and W. Sung, “Memory access optimized implementation of cyclic and quasi-cyclic

LDPC codes on a GPGPU,” Journal of Signal Processing System, vol. 64, no. 1, pp. 149-159, July

2011. Article (CrossRef Link).

[19] F. J. Martinez-Zaldivar, A. M. Vidal-Macia, A. Gonzalez and V. Almenar, “Tridimensional block

multiword LDPC decoding on GPUs,” Journal of Supercomputing, vol. 58, no. 3, pp. 314-322,

December, 2011. Article (CrossRef Link).

[20] M. Wu, Y. Sun, and J. R. Cavallaro, “Implementation of a 3GPP LTE turbo decoder accelerator on

GPU,” in Proc. of IEEE Workshop Signal Processing Systems, pp. 192-197, October, 2010. Article

(CrossRef Link).

[21] C. Lin, W. Liu, W. Yeh, L. Chang, W. Hwu, S. Chen, and P. Hsiung, “A Tiling-Scheme Viterbi

Decoder in Software Defined Radio for GPUs,” in Proc. of 2011 7th International Conf. Wireless

Communications, Networking and Mobile Computing, pp. 1-4, September 23-25, 2011. Article

(CrossRef Link).

[22] R. W. Chang, “Symthesis of band-limited orthogonal signals for mulltichannel data transmission,”

Bell System Technical Kournal, vol. 45, pp. 1775-1796, 1966. Article (CrossRef Link)

[23] IEEE, “Std 802.11a-1999, Part 11: wireless LAN, medium access control (MAC) and physical

layer (PHY) specifications: high-speed physical layer in the 5 GHz band, supplement to IEEE

802.11 Standard,” 1999.

[24] IEEE, “IEEE standard 802.16. Air interface for fixed broadband wireless access systems,” 2004.

[25] S. Choi, K. Kang and S. Choi, “A two-stage radix-4 Viterbi decoder for multiband OFDM UWB

system,” ETRI Journal, vol. 30, no. 6, pp. 850-852, December, 2008. Article (CrossRef Link).

[26] NVIDIA Corporation, “CUBLAS Library version 4.0,” 2011.

[27] Texas Instruments, “TMS320C64x DSP Library Programmer’s Reference,” 2002.

Rongchun Li received the B.S. in Computer Science and Technology from Wuhan

University, Wuhan, China, in 2007, and M.S. in Computer Science and Technology

from National University of Defense Technology, Changsha, China, in 2009.

Currently, he is a Ph.D. candidate in the National Laboratory for Parallel and

Distributed Processing, National University of Defense Technology. His research

interests include wireless algorithms on GPU and reconfigurable architectures, and

high performance wireless transceiver designs.

Yong Dou received his B.S., M.S., and Ph.D. degrees in Computer Science and

Technology at National University of Defense Technology in 1995. Now he is a

professor and Ph.D. supervisor in the National Laboratory for Parallel and

Distributed Processing, National University of Defense Technology. He is senior

membership of China Computer Federation and a member of the IEEE and ACM.

His research interests include high performance computer architecture, high

performance embedded microprocessor, reconfigurable computing, and software

defined radio.

http://dx.doi.org/doi:10.1007/s11265-010-0523-4
http://dx.doi.org/doi:10.1109/TPDS.2010.66
http://dx.doi.org/doi:10.1007/s11265-010-0547-9
http://dx.doi.org/doi:10.1007/s11227-011-0587-3
http://dx.doi.org/doi:10.1007/s11265-010-0547-9
http://dx.doi.org/doi:10.1007/s11265-010-0547-9
http://dx.doi.org/doi:10.1109/wicom.2011.603668
http://dx.doi.org/doi:10.1109/wicom.2011.603668
http://dx.doi.org/doi:10.1002/j.1538-7305.1966.tb02435.x
http://dx.doi.org/doi:10.4218/etrij.08.0208.0196

1932 Li et al.: From WiFi to WiMAX: Efficient GPU-based Parameterized Transceiver

Jie Zhou received his D.S. degree in Computer Science and Technology at National

University of Defense Technology in 2011, and now he is an assistant professor at

National University of Defense Technology. His research interests include

Software-defined Radio, MIMO, and high performance computer architecture.

Baofeng Li received his D.S. degree in Computer Science and Technology at

National University of Defense Technology in 2009, and now he is an assistant

professor at National University of Defense Technology. His research interests

include design of supercomputer, reconfigurable computing and high performance

computer architecture.

Jinbo Xu received his D.S. degree in Computer Science and Technology at National

University of Defense Technology in 2009, and now he is an assistant professor at

National University of Defense Technology. His research interests include DSP

processing, reconfigurable computing and high performance computer architecture.

