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Abstract 
 

Synchronous computing models provided by real-time synchrony protocols, such as TTA [1] 

and PALS [2], greatly simplify the design, implementation, and verification of real-time 

distributed systems. However, their application to real systems has been limited since their 

assumptions on underlying systems are hard to satisfy. In particular, most previous real-time 

synchrony protocols hypothesize the existence of underlying fault tolerant real-time networks. 

This, however, might not be true in most soft real-time applications. In this paper, we propose 

a practical approach to a synchrony protocol, called Quality-Aware PALS (qPALS), which 

provides the benefits of a synchronous computing model in environments where no 

fault-tolerant real-time network is available. qPALS supports two flexible global 

synchronization protocols: one tailored for the performance and the other for the correctness 

of synchronization. Hence, applications can make a negotiation flexibly between performance 

and correctness. In qPALS, the Quality-of-Service (QoS) on synchronization and consistency 

is specified in a probabilistic manner, and the specified QoS is supported under dynamic and 

unpredictable network environments via a control-theoretic approach. Our simulation results 

show that qPALS supports highly reliable synchronization for critical events while still 

supporting the efficiency and performance even when the underlying network is not stable. 
 

 

Keywords: Synchrony protocol, middleware, quality-of-service, QoS, cyber physical 

systems, real-time systems, feedback control, globally asynchronous locally synchronous, 

GALS 
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1. Introduction 

Most cyber-physical systems (CPS) are distributed real-time systems having various scales 

of interacting entities in the cyber-physical world. One of the major challenges of such 

distributed systems lies in the complexity resulting from the asynchronous exchanges of data 

and control messages. The state-explosion problem due to the complex interleaving of data 

and control makes the systems hard to verify and, hence, vulnerable to potential safety hazards 

[3]. It has been well understood that synchronous computing models of distributed entities can 

significantly reduce the state-space and simplify the design, implementation and verification 

of distributed systems [4][5]. For this reason, synchronous models have gotten a great deal of 

attention as a promising paradigm to conquer the complexity of distributed systems [6][1].      

Currently, however, the application of synchronous paradigms has been limited since 

synchronous paradigms assume all distributed entities are driven by a common clock, which is 

hard to achieve in loosely-coupled distributed systems. Physically Asynchronous Logically 

Synchronous (PALS) [2] has been proposed to make synchronous paradigms feasible in 

distributed systems in the absence of a common physical clock as long as several conditions 

and rules are observed. For example, PALS can guarantee (virtual) global synchrony as long 

as the worst-case local clock skews, task execution time, and network latency are bounded. 

These are feasible properties in some systems such as avionics flight control systems that have 

fault-tolerant and real-time communication mechanisms [2].  

However, unfortunately, synchrony protocols including PALS still manifest challenges 

and problems when applied to most CPS. In particular, for most CPS end-to-end network 

latency is dynamic and it is hard, if not impossible, to provide a firm worst-case bound without 

significantly compromising the performance. Further, since the operating environment of CPS 

are highly dynamic, a synchrony protocol for CPS needs to provide a flexible mechanism to 

control the level of synchronization and its overhead in a predictable manner. For instance, in 

an integrated medical environment [7], the synchronized feeds from medical sensors can give 

better understanding of a patient’s state, e.g., cause and effect relation between events, but 

missing a few events are still tolerable as far as the ratio is bounded and controlled. However, 

in the same system, some medical devices, e.g., oxygen ventilator and airway laser, have 

interlocks and should be coordinated in synchronous manner to guarantee the safety of the 

surgery [8]. In this situation, the synchronization of the interlocking devices should be highly 

reliable. As this example shows, many CPS require a synchrony protocol that can meet these 

different synchronization requirements efficiently and in a controlled manner.  

In this paper, we propose a synchrony protocol, called Quality-Aware PALS, or qPALS, to 

support flexible synchronous computing for dynamic CPS. In qPALS, the Quality-of-Service 

(QoS) is quantified as the ratio of successful synchronization. The primary goal of qPALS is to 

make the synchrony protocol of PALS more adaptable and flexible, rendering asynchronous 

distributed systems to take advantage of the synchronous paradigm in a computing 

environment where firm real-time guarantees are not easily achievable.  

For flexibility, qPALS supports two synchronization protocols: p-synchrony and 

c-synchrony. In p-synchrony, which is tailored for performance, individual incidents of 

synchrony violation are not reported to the applications, but only the ratio of synchrony 

violations is known to the applications. Therefore, a task using p-synchrony class should 

handle synchrony violations using application-specific semantics. In contrast, for applications, 

in which each incident of synchrony violation is critical for maintaining the consistency, 
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c-synchrony protocol provides a group management protocol. The group management scheme 

of c-synchrony provides the consistency among group members by excluding a member 

process as soon as it violates synchrony and potentially breaks the consistency. The desired 

QoS of c-synchrony is enforced by exploiting spatial and temporal redundancy of 

communication messages, which incurs additional overheads for synchronization. Since 

p-synchrony has a low communication overhead and latency, it is appropriate for exchanging 

real-time sensor readings, which has inherent uncertainty. In contrast, c-synchrony of qPALS 

is appropriate for exchanging critical control messages. By composing the two proposed 

synchrony protocols together in one synchronization group, the group can support highly 

assured consistency while still maintaining the efficiency. Further, qPALS provides the 

adaptiveness and robustness against dynamic network environments to support the specified 

QoS of synchronization. Previous synchrony protocols cannot provide synchronization under 

unstable networks since most of them have been designed and implemented assuming firm 

real-time guarantees. To address this problem, qPALS takes a controlt-heoretic approach to 

providing the robustness against unpredictable networks. qPALS adjusts its parameters 

autonomously to support the specified level of synchronization.  

Through a simulation study, we show that qPALS supports a highly-assured 

synchronization, while still supporting efficient synchronization for frequent, but less 

strictly-synchronized events. Our simulation results also demonstrate that qPALS can 

maintain these desirable properties even when the underlying network is not stable.  

The rest of this paper is organized as follows. In Section 2, we place qPALS in context by 

examinging relevant works. Section3 presents the background on the PALS synchrony 

protocol. The details of qPALS protocol is discussed in Section 4. In Section 5, we present the 

simulation results in the context of an example application. Section 6 concludes the paper and 

discusses future work. 

2. Related Work 

Distributed middleware, such as real-time CORBA [15] and Data Distriubtion Service (DDS) 

[13], provide a virtualized platform for distributed tasks to collaborate. However, with these 

middleware, the developers should be aware of the asynchronous nature of the distributed 

interactions. In contrast, the middleware based on PALS protocol provides a synchronous 

computing platform that hides the physical asynchrony and simplifies the distributed 

algorithms. PALSware [11] is one of such middewares based on PALS protocol. In this paper, 

we extend PALSware to support PALS protocol even if the environment does not provide 

fault-tolerant real-time communication.  

Providing distributed processes with consistent views has been actively investigated in the 

general-purpose computing [20]. For example, Pereira et al. [24] proposed a low-cost virtual 

synchrony, in which a group management protocol is integrated into the multicast subsystem. 

However, these virtual synchrony approaches focus on ensuring consistent views of the global 

state without the notion of physical time. In contrast, real-time synchrony protocols such as 

qPALS exploit the existence of a global system clock and have a firm timing bound of 

synchronization.  

Synchronous models of computation have been applied in most digital circuit designs due 

to the complexity of asynchronous abstraction. In software, there have emerged various 

synchronous programming languages, such as Esterel [4] and PRET-C [5], to take advantages 

of the model’s simplicity [21]. They assume that there exist underlying frameworks to support 
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synchronous semantics. For instance, PRET-C extends a general processor with a hardware 

accelerator for predictable execution of synchronous tasks. In qPALS, unlike PRET-C, 

software middleware is responsible for supporting predictable execution of distributed 

synchronous tasks. In this paper, we propose a middleware-based approach to predictable 

execution of distributed synchronous tasks. 

Time Triggered Architecture (TTA) [1] is one of the earliest system architectures that 

introduced distributed real-time clock sources and has been actively investigated for industrial 

applications [18]. Both TTA and PALS have been designed for safety-critical systems, and, 

hence, they are both formally verified [19]. TTA achieves global state synchronization by 

introducing a single global clock implemented in the system bus. Unlike TTA, PALS achieves 

global synchrony without specific hardware support as long as the PALS protocol assumptions, 

such as the communication bound     , are satisfied. The schemes of qPALS, introduced in 

this paper, make these PALS assumptions more feasible in environments where a 

fault-tolerant real-time network is not available.  

Probabilistic approaches to reliable multicasts and broadcasts have been considered as a 

viable alternative to traditional deterministic reliable approaches [22][23]. However, the 

primary goal of these probabilistic approaches has been in achieving a higher scalability in 

large-scale distributed systems. In contrast, the probabilistic approach of qPALS is to provide 

reliable synchronization, not scalability, with real-time guarantees.  

3. The PALS Protocol Background 

This section introduces original PALS protocol, and discusses the assumptions and constraints 

that must be satisfied to provide the global synchrony for cooperating distributed 

asynchronous entities. These assumptions are relaxed in the following sections on qPALS. 
 

 
Fig. 1. A synchronous computing model with a global clock source. 

 

Fig. 1 depicts a synchronous model of computation. In the synchronous model of 

computation, distributed nodes perform computation and communicate in coordination 

according to common clock ticks. In the model, the computation is chunked into series of 

rounds in time. In each PALS round, computation of every node is performed simultaneously, 

hence computation of one node cannot influence another node’s at the same round. After a 

node finishes its computation at a round, it packages the result into packets and distributes 

them to other nodes. The messages are delivered and used as inputs at the next round. In most 

implementations of the model, such as digital circuits, the distributed computation is triggered 

by a global clock source, which generates monotonical increasing clock ticks. 

PALS protocol is designed for software systems that cannot employ a physical global clock 

source. Instead, the distributed computation in the PALS protocol is initiated by the local 
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clocks at each node. The following are assumed about the environment for PALS protocol: 

 

1) Maximum clock skew  of a local clock is bounded with respect to a global clock. 

2) Network communication latency   is bounded, i.e. 
min max    . 

3) Computation time   at each node is bounded, i.e., 
min max    . 

Since local clocks are not perfectly synchronized, the following two PALS protocol rules must 

be satisfied to guarantee the synchronization among the participating nodes: 

 

R1: PALS clock period - PALS period T should be long enough, as shown in Equation 1, to 

ensure that a message sent in round i by a node arrive in round i of different nodes. The arrived 

message is consumed by the different nodes in round i + 1. 

 

2 ( ,2 )max max maxmaT x                                       (1) 

 

R2: PALS causality - To prevent a message from arriving too early, a node should have a 

minimal delay H after a PALS clock tick before sending a message. 

 

min(2 ,0)H max                                                 (2) 

 

Meseguer et al. formally proved that the PALS system preserves the logical equivalence 

with a globally-clocked synchronous system as long as above assumptions and rules are 

observed [9]. However, the 2nd assumption on the communication bound      is feasible 

only if a fault-tolerant real-time network is available. In this paper, we assume a network 

environment, in which the communication bound      is not deterministic but can be 

described only probabilistically. Accordingly, qPALS assumes the following characteristics of 

the underlying communication network: 

 

Failure model: Messages can be lost for any reason, e.g., transient link failures. 

Communication links do not have firm communication bounds. In qPALS, messages with 

latency longer than      are considered being lost. Nodes, or tasks fail by crashing. Task 

failures are detected only when a message loss is detected. For the detection of task failures, 

qPALS can be combined with preferred mechanisms of detecting task failures [10]. The 

implementation details to detect node failures using end-markers is discussed in [11].  

 

4. Quality-Aware PALS Protocol 

4.1 Overview 

The primary goal of qPALS is to provide flexibility and adaptability to the original PALS 

protocol. To this end, qPALS supports two distinctive synchronization protocols: p-synchrony 

and c-synchrony. The two synchronization protocols can be composed into a single 

synchronization group while preserving the benefits of the synchronous computing model. 

p-synchrony is a basic building block, in which the communication latency bound      

and according PALS period T are determined to meet the QoS requirements. In this paper, we 

define synchronization ratio (SR) as the primary QoS metric of qPALS. The synchronization 
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ratio is defined as follows: 

(%)
#

#
100

#

Shnchronized

Synchronized Violat
SR

ed



 ,                                         (3) 

 

where #Synchronized and #Violated represent the number of synchronization rounds that 

synchronized and violated the communication bound     , respectively. For instance, if any 

message misses     , the synchrony of that round is violated. In p-synchrony, the specified 

synchronization ratio is supported, but individual violations of synchrony are not reported to 

the applications. Hence, the synchronization using p-synchrony is probabilistic. The adaption 

manager of p-synchrony is a key component, which is responsible for maintaining the 

specified synchronization ratio under unstable networks. A control-theoretic approach, which 

is lightweight in computation, is taken to address this problem.  

c-synchrony is built on top of the p-synchrony to provide a higher level of assurance on the 

synchronization and consistency. Unlike p-synchrony, c-synchrony maintains a 

synchronization group, in which only synchronized and consistent member entities are 

included. The reliable multicast exploits the redundancy to make all members of the 

synchronization group to maintain consistent states in a synchronous manner. Omissions of 

messages and potential inconsistency are detected during the reliable multicast, and the group 

is maintained to keep the consistency among the members. A synchrony round of c-synchrony 

is called a hyper cycle that is composed of a few successive p-synchrony rounds. The length of 

the hyper cycles is determined by the desired QoS level of applications. 

4.2 P-synchrony 

As discussed in Section 3, the benefits of synchronous computing model are preserved as long 

as the constraints of PALS protocol are observed. In particular, we are interested in 

guaranteeing the communication bound      in non-fault tolerant and non-real-time 

networks. When the probability of breaking the communication bound      is given as 

follows 

    )( max pP    ,                                                                        (4) 
 

the QoS level of the p-synchrony can be stated as follows: 
 

        (1 ) 100(%)n

psyncS pR    ,                                                               (5) 
 

where n is the number of tasks, or nodes, in the synchronization group. For example, if  
310p  and n = 10, approximately 1 out of 100 synchronous state transitions fails because 

several messages cannot not arrive within the communication bound     . We can increase 

the QoS level by setting a longer communication bound     , and PALS period T, but 

increasing SR compromises the performance of synchronization. Since the rate of 

synchronous communication should be decreased. If highly assured synchronizations are 

required infrequently, using c-synchrony is desired, rather than increasing the communication 

bound of p-synchrony. It should be noted that this probabilistic and loose synchronization is 

sufficient in many distributed computing jobs of CPS [12]. For instance, in many CPS, sensors 

have inherent uncertainties and the freshness of sensor data is more important than exact 

synchronization. Since the semantics of a physical situation observed by sensors can be 

exploited by the applications to tolerate the lost messages as far as the level of message loss 

and delay is bounded. For example, Fig. 2 shows that sensor readings are replicated to 

multiple tasks, and each task changes its state accordingly. During the state transitions, 
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Kalman filters are used to overcome the inherent uncertainty of sensor measurements and 

communications [13]. In the synchronous computing model of original PALS, the message 

omission at the task_2 in the 2nd PALS round breaks the synchronization and consistency. 

However, since missed sensor readings can be estimated locally from task_2’s filter, the 

consistency among the tasks can still be maintained with high accuracy. Readers are referred 

to [14][13] for more information on how broken  synchronization can be handled using 

application-specific semantics. 

 

 
Fig. 2. Probabilistic synchrony with filters. 

 

4.2.1 Robustness under Unstable Networks 

The p-synchrony depends on the assumption that the probability p in Equation 4 is stable. 

However, in many networking environments, p typically manifests instability. Without 

considering those instability of p, the QoS of synchronization given in 
psyncSR  and 

csyncSR  

cannot be supported. Therefore, the adaptation manager of qPALS is responsible for adjusting 

    , and according T, dynamically at runtime to assure that Equation 4 remains valid. A 

statistical approach might be considered, but statistical approaches that need extensive 

historical data are less applicable to CPS due to potential runtime overheads. Instead, we take 

a control-theoretic approach to maintaining the validity of the original probabilistic 

assumptions of qPALS. 
 

 
Fig. 3. Pseudo-deadline d and slack time s. 

 

First, as shown in Fig. 3, while we set initial      and T in Equation 4, we also set a pseudo 

(relative) deadline d such that the following is satisfied: 
 
 

)( pdP d p   ,                         (6) 

 
 

where d = c ×  T (c < 1; c is a constant) and 
pdp  is a target probability, e.g., 0.9. The 
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pseudo-deadline d is not a real deadline, but it is to probe the changes in the communication 

latency. For instance, the message 
3m  in Fig. 3 missed the pseudo-deadline d, but still satisfies 

the real communication bound     . Intuitively, if the ratio of messages violating the 

pseudo-deadline, such as 
3m  in Fig. 3, is greater than 

pdp , the current      and T are too 

short to guarantee the initially made probabilistic guarantees. Conversely, if the ratio of 

messages arriving earlier than the pseudo-deadline is greater than 1 −
pdp , then this indicates 

that the current     , and T, is too long. At runtime, to measure these changes in the 

communication latency, we define deadline miss ratio MR as follows: 
 

#
100(%)

# #

tardy

tardy timely

m

m
MR

m



,    (7) 

 

where # timelym  and # tardym  are the total number of timely messages and tardy messages (with 

respect to the pseudo-deadline), respectively. By maintaining MR close to 
targetMR  (=

pdp  

×100(%)), we can guarantee the validity of the probabilistic assumption in Equation 4. The 

overall feedback control procedure is as follows: 

1) At each task, # timelym  and # tardym  are measured on every monitoring cycle, and MR 

is computed. 

2) Based on | |targetMR MR , the adaptation manager of qPALS computes the control 

signal      . 

3) each task unicasts its       to a designated coordinator task. The coordinator 

conservatively takes the maximum of them, MAX(     ). 

4) ' ( )max max maxMAX     is a new PALS communication bound. The 

coordinator (reliably) multicasts       to group members. 

5) new PALS period T and pseudo-deadline d are calculated using       and it is 

applied in all group members from the next PALS round aligned to the next hyper 

cycle. 

 

One valid criticism of the presented adaption algorithm is that it treats message losses and 

delays equally. Our assumption here is that packet losses and delays are highly correlated, and, 

hence, controlling one can also effectively control the other. However, this may not always 

true. In such situation, we should consider using more reliable transport mechanisms. With a 

reliable transport like TCP, we can effectively convert packet losses to end-to-end 

communication delays. 

 

4.3 C-synchrony 

In c-synchrony, the consistency among distributed entities is maintained by the group 

management protocol. For example, a new PALS period T determined by the adaptation 

manager is multicast using c-synchrony. Unlike p-synchrony, a member node of a 

synchronization group is excluded from the group if it does not get a multicast message. To 

this end, synchronous communication of c-synchrony occurs in 2-phases, called hyper cycle. 

In the 1st phase, called MULTICAST phase, messages are multicast to the group members. 

During the MULTICAST phase, inconsistent tasks, who lost the multicast message, are 

marked. In the following MEMBERSHIP_CHANGE phase, the inconsistent tasks, who lost 
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multicast messages, are excluded from the group. Fig. 4 shows an example of one hyper cycle, 

in which 6 PALS rounds are performed. 
 

 
Fig. 4. Two phases of c-synchrony. 

 

The propagation of a multicast message at the MULTICAST phase is similar to gossip-based 

protocols [16]. Algorithm 1 shows the message handler at the MULTICAST phase, which is 

invoked at each PALS round. Two parameters f and k determine the assurance level and the 

latency of the reliable multicast; f is the fan-out and k is the number of PALS rounds. Fig. 4 

shows an example of a reliable multicast with f = 3 and k = 3. A control message from task 

task_1 is propagated to other group members. The redundancy level at each task after k rounds 

is given as follows: 

redundancy level )( ( 1)fk logf n                              (8) 

 

Equation 8 indicates that each task gets the same message ( ) 1)( fk log nf     times in 

average during the hyper cycle. Hence, the synchronization ratio of c-synchrony with n tasks is 

estimated as follows: 
( ) 1

( ) 100(S 1 % )R ff k log n n

csync p
  

  ,                                       (9) 

 

where p is the probability given in Equation 4. As we increase k, the higher probabilistic 

assurance on correct synchronization can be achieved. However, it should be noted that the 

cost also increases accordingly. For example, the latency of c-synchronization is proportional 

to PALS rounds, k. Since the maximum number of messages in inQueue at line 1 is m(n-1), the 

time complex of Algorithm 1 becomes O(m(n-1)), where m is the number of distinctive 

messages at the PALS round and n is the number of group members. Since the multicast 

handler in Algorithm 1 is invoked once at each PALS round, the total computational 

complexity of MULTICAST phase is O(k·m(n-1)). 

Group management of qPALS is bundled with each c-synchrony multicast, and it tells 

which tasks have lost multicast messages, and are not consistent with other tasks in the group.  
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Algorithm 1. c-synchrony MULTICAST phase handler. 

 

 
 

Algorithm 2. c-synchrony MEMBERSHIP_CHANGE phase handler. 

 

To detect failed tasks, each multicast message msg at the MULTICAST phase is appended 

with information msg.haveSeen that tells who have seen the message. Further, each task also 

maintains a haveSeen list for each message. Hence, when a multicast message is received by a 

task, the task updates its msg.haveSeen list and also updates the message’s haveSeen list before 

replicating the message to other tasks. For example, when a message with haveSeen = {task_0, 

task_1} is delivered from task_0 to task_2 with have_seen = {task_2, task_3}, the task_2 

updates its haveSeen list to {task_0, task_1, task_2, task_3} and modifies the message’s 

haveSeen list too before sending it out. After the MULTICAST phase, each task can determine 

if any task in the synchronization group have missed the multicast message by checking its 

haveSeen list. At the MEMBERSHIP_CHANGE phase, each task multicast its haveSeen list 

to other memers. Algorithms 2 shows the message handler at the MEMBERSHIP_CHANGE 

phase, which is invked once at each PALS round. Since the maximum number of message in 

inQueue at line 1 is n-1, the total time complexity of the handler is O(n-1). Further, since the 

hander is invoked once at each PALS round, the total computational complexity of 

MEMBERSHIP_CHANGE is O(k(n-1)). 

 

4.4 Composition of P- and C-synchrony 

In qPALS, we have two synchrony protocols operating in different timing boundaries. In our 

earlier work, we showed that the composition of two proposed synchrony protocols, which are 

operating in different timing boundaries, can be done without breaking the semantics of the 

original synchronization [17]. When two synchrony protocols are composed in a single 

synchronization group, their interaction should be coordinated to ensure that the intended 
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consistency is not broken. To this end, the following rule is added to the original PALS 

protocol: 

 

R3: Composition - A message delivered by a multicast of c-synchrony is visible to other 

group members at the final PALS round of the hyper cycle. 

 

 
Fig. 5. Composition of p- and c-synchrony. 

 

As an example, consider a hierarchical control system in Fig. 5, where a supervisor controller 

controls 3 underlying controllers by multicasting its commands periodically. The underlying 

controllers also periodically report their status to the supervisor, which in turn makes a higher 

level control decisions at the next hyper cycle. The supervisor controller performs a multicast 

in every c-synchrony hyper cycle, and the underlying controllers report their status with 

p-synchrony. In Fig. 5, even though the actual command from the supervisor is delivered to 

the controllers in the 1st or 2nd PALS rounds of the c-synchrony hyper cycles, and replicated 

several times during the hyper cycle, they are not visible to the controllers until the final round 

of the hyper cycle; hence, R3 is enforced. This rule makes the controllers #1-#3 react to the 

command from the supervisor synchronously. Otherwise, some controllers react early, and the 

others react lately, making subtle inconsistency. 

5. Evaluation 

In this section, we use an active standby architecture shown in Fig. 6 as an example to show 

the performance and correctness of synchronization in qPALS. The active standby system has 

two physically separated controllers, controller_1 and controller_2. These two controllers are 

analytically redundant, and, hence, they are not exact replicas to each other. The sensor input 

synchronizer multicasts a stream of sensor data to both controllers. Only one of them is active 

while the other stays standby. The supervisory controller multicasts commands such as 

‘switching the active controller’. The commands from the supervisory controller should be 

strictly synchronized. Otherwise, non-deterministic interleaving of sensing and control on 

asynchronous architecture can create critical problems such as deadlocks and race conditions. 

Miller et. al. [2] showed that synchrony protocols such as PALS can significantly, e.g., several 

orders of magnitude, simplify the verification of the system given in this example. This 

significant reduction of complexity is possible only if the assumed synchronization is 

guaranteed. In the following simulations, we demonstrate that qPALS can effectively 

guarantee the synchronization without significantly compromising performance.  
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Fig. 6. Active standby architecture. 

 
Table 1. Tested Approaches. 

Approaches Explanation 

O-PALS Original PALS with a fixed communication bound (
max ) 

qPALS 
PALS supporting dynamic communication bounds and flexible 

synchrony protocols 

 

5.1 Baselines and Evaluation Goals 

In the simulation, we compare our approach, qPALS, with the original PALS protocol, 

O-PALS. O-PALS has a fixed communication bound,      , while qPALS supports both 

dynamic adaptation of      and the composition of p- and c-synchrony protocols.  

The two objectives of the evaluation are 1) to assess the effectiveness of p-synchrony of 

qPALS under diverse communication environments and 2) to test if qPALS can still meet the 

QoS specification when the network environment is not stable. For the first objective, in 

Experiment #1, we investigate how many synchronizations are violated while the 

configuration parameters of the simulation is varied. In experiment #1, the adaptation manager 

of qPALS is disabled to test the effectiveness of c-synchrony’s redundant multicast 

mechanism alone. For the second objective, in Experiment #2, we investigate the transient 

behavior of qPALS while the communication environment is changed dynamically during the 

execution. In this experiment, the adaptation manager is activated for qPALS.  
 

5.2 Experiment #1: Average Synchronization Performance 

In this experiment, the supervisor send commands periodically to the two controllers on every 

200ms and the number of synchronization violations is observed under varying 

communication environments. In qPALS, the commands from the supervisory controller are 

multicast redundantly using c-synchrony while the level of redundancy k is varied. When k=1, 

qPALS and O-PALS are equivalent. Commands are sent 100,000 times from the supervisor. 

The violated synchronization means that either commands from the supervisory controller is 

lost or delayed during the multicast. In such situation, the correctness and the safety of the 

system cannot be guaranteed. For example, one controller can become active while the other is 

still active. Such situation must not happen in an ideal synchronous computing model.  
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In the simulation, the communication latency is assumed to follow Pareto distribution with 

the mean latency of 10ms. We simulate two representative network environments by assigning 

two different sets of parameters. In the first configuration, the communication latency 
distribution’s shape parameter α and the minimum parameter Xm are set to 20 and 9.5, 

respectively. This configuration represents communication networks with very low variances 
in latency. In the next configuration, we set α=10, rendering a longer tail in the communication 

latency. This configuration represents non-real-time network with larger variances in 

communication latency.  

Fig. 7-(a) shows the result when α=20 and Xm=9.5. The z-axis shows the number of 

synchronization violoations out of 100,000 commands while k and      are varied. When 

k=1, zero synchronization violations is achieved only at     =20ms. In contrast, when k=3 

zero synchronization violations is achieved at     = 12ms. This demonstrate that qPALS can 

achieve reliable synchronization performance with shorter     . For example, qPALS with 

k=3 can operate maximally at about 80Hz (=1 sec/12 ms) for sensor data communicaiton while 

still achieving reliable communication using c-synchrony. In contrast, in O-PALS, both sensor 

data and commands are delivered at the same rate, which is about 50Hz (=1 sec/20ms), to 

achieve reliable syncrhonization.  
 

 
(a) α = 20, Xm=9.5 

 

 

 
(b) α = 10, Xm=9 

 

  

Fig. 7. Number of sychronization violations. 
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As the distribution of communicatino latency has longer tail, this performance gap 
becomes more evident. Fig. 7-(b) shows the result when α =10 and Xm=9. In Fig. 7-(b), when 

k=1, zero synchronization violations is achieved only when      is greater than 30ms. In 

contrast, when k=4, c-synchrony of qPALS can achieve zero synchronization violations at 

max = 12ms. This means that, for reliable synchronization, qPALS can still operate maximally 

at 80Hz while O-PALS needs to operate at 33Hz (=1sec/30ms). 
 

5.3 Experiment #2: Transient Performance 

 

(a) Synchronization violations 

 

 

(b) Communication bound ( max ) 

 

Fig. 8. Transient behavior of qPALS. 

 

In this experiment, we observe the transient behavior of both qPALS and O-PALS for 100 

monitoring periods, and suddenly increase the average communication latency to test the 

robustness of qPALS against unstable network environments. In the beginning, the 

communication latency follows Pareto distribution with α=20 and Xm=9.5. At 30th 

monitoring period, we intentionally increase the average communication latency by 50% for 

the next 30 periods. Initially, the communication bounds,     , of qPALS and O-PALS are 

set to 20ms and 60ms, respectively. We give a longer      to O-PALS since it cannot make 

reliable synchronization at     = 20ms. One monitoring interval corresponds to 10,000 

PALS periods and we set the redundancy level k of c-synchrony to 3.  

Fig. 8 shows the transient behavior of qPALS for 100 monitoring cycles. In Fig. 8-(a), the 

number of synchronization violation in the p-synchrony multicasts is depicted in y-axis. In Fig. 

8-(b), the changes of the communication bound      is shown in the same experiment. Until 
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30th monitoring period, the communication bound      is quite stable, staying at 20ms. This 

indicates that the ratio of messages taking longer than the pseudo-deadline d remains almost 

constant at each monitoring cycle. Hence, the adaptation manager of qPALS is not actively 

involved. At the 30th monitoring period, the network latency changes suddenly, and, in 

consequence, a significant number of probabilistic multicasts violate synchronization. 

However, the number of violations drops and stabilizes within 10 monitoring cycles. This is 

because the adaptation manager of qPALS is actively involved and adjusted      adaptively 

to around 30ms as shown in Fig. 8-(b).  

 

Fig. 9. Transient behavior of O-PALS (    =60ms). 
 

It should be noted that the reliable multicasts of qPALS using c-synchrony does not suffer 

from synchrony violations even when the network latency changes suddenly. Fig. 8-(a) shows 

that the number of synchronization violations in the reliable multicasts remains zero during 

this upheaval. This result demonstrates that qPALS is highly robust against the network 

changes by combining the redundancy-based reliable synchrony protocol and the adaptive 

communication bounds.  

Fig. 9 shows the result when the same experiment was performed for O-PALS. The result 

shows that O-PALS cannot adapt to the changes of the network latency. O-PALS breaks the 

synchronization several times during the unexpected surge of the network latency. Again, 

these synchronization failures can be a source of subtle problems such as race conditions. 

Hence, the integrity of the system cannot be guaranteed. 

6. Conclusions and Future Work 

Even though real-time synchrony protocols significantly reduce the design and verification 

complexity of distributed real-time systems, they have not been widely applied to real systems 

due to their limiting conditions. To address this problem, in this paper, we proposed the 

Quality-Aware PALS (qPALS) protocol that makes synchronous computing models more 

feasible in a loosely coupled distributed systems without a fault-tolerant real-time network. 

qPALS supports flexible synchronization semantics, allowing each synchrony class serving 

different purposes: performance and correctness of synchronization. Further, they can be 

composed in a single synchronization group to achieve both performance and strict 

consistency. Through the simulation, we showed that qPALS can maintain these benefits even 

when the underlying network environment is not stable.  
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qPALS is being implemented as an extension of PRISM middleware [11] that is the first 

prototype implementation of PALS protocol. We plan to apply the extended PRISM 

middleware to other CPS, such as Medical Device Plug-and-Play [7], in which distributed 

consistency is required for safety, but no fault-tolerant real-time network is available.  
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