
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 10, Oct. 2014 3361

Copyright ⓒ 2014 KSII

This work was supported by the Incheon National University Research Grant in 2014.

http://dx.doi.org/10.3837/tiis.2014.10.004

qPALS: Quality-Aware Synchrony Protocol
for Distributed Real-Time Systems

Woochul Kang

1
, and Lui Sha

2

1 School of Information Technology, Incheon National University

Incheon, South Korea

[e-mail: wchkang@incheon.ac.kr]
2 Computer Science Department, University of Illinois at Urbana-Champaign

Urbana, IL, 61801, USA

[e-mail:lrs@illinois.edu]

*Corresponding author: Woochul Kang

Received June 7, 2014; revised August 12, 2014; accepted August 22, 2014; published October 31, 2014

Abstract

Synchronous computing models provided by real-time synchrony protocols, such as TTA [1]

and PALS [2], greatly simplify the design, implementation, and verification of real-time

distributed systems. However, their application to real systems has been limited since their

assumptions on underlying systems are hard to satisfy. In particular, most previous real-time

synchrony protocols hypothesize the existence of underlying fault tolerant real-time networks.

This, however, might not be true in most soft real-time applications. In this paper, we propose

a practical approach to a synchrony protocol, called Quality-Aware PALS (qPALS), which

provides the benefits of a synchronous computing model in environments where no

fault-tolerant real-time network is available. qPALS supports two flexible global

synchronization protocols: one tailored for the performance and the other for the correctness

of synchronization. Hence, applications can make a negotiation flexibly between performance

and correctness. In qPALS, the Quality-of-Service (QoS) on synchronization and consistency

is specified in a probabilistic manner, and the specified QoS is supported under dynamic and

unpredictable network environments via a control-theoretic approach. Our simulation results

show that qPALS supports highly reliable synchronization for critical events while still

supporting the efficiency and performance even when the underlying network is not stable.

Keywords: Synchrony protocol, middleware, quality-of-service, QoS, cyber physical

systems, real-time systems, feedback control, globally asynchronous locally synchronous,

GALS

3362 Kang et al.: Quality-Aware Synchrony Protocol for Distributed Ral-Time Systems

1. Introduction

Most cyber-physical systems (CPS) are distributed real-time systems having various scales

of interacting entities in the cyber-physical world. One of the major challenges of such

distributed systems lies in the complexity resulting from the asynchronous exchanges of data

and control messages. The state-explosion problem due to the complex interleaving of data

and control makes the systems hard to verify and, hence, vulnerable to potential safety hazards

[3]. It has been well understood that synchronous computing models of distributed entities can

significantly reduce the state-space and simplify the design, implementation and verification

of distributed systems [4][5]. For this reason, synchronous models have gotten a great deal of

attention as a promising paradigm to conquer the complexity of distributed systems [6][1].

Currently, however, the application of synchronous paradigms has been limited since

synchronous paradigms assume all distributed entities are driven by a common clock, which is

hard to achieve in loosely-coupled distributed systems. Physically Asynchronous Logically

Synchronous (PALS) [2] has been proposed to make synchronous paradigms feasible in

distributed systems in the absence of a common physical clock as long as several conditions

and rules are observed. For example, PALS can guarantee (virtual) global synchrony as long

as the worst-case local clock skews, task execution time, and network latency are bounded.

These are feasible properties in some systems such as avionics flight control systems that have

fault-tolerant and real-time communication mechanisms [2].

However, unfortunately, synchrony protocols including PALS still manifest challenges

and problems when applied to most CPS. In particular, for most CPS end-to-end network

latency is dynamic and it is hard, if not impossible, to provide a firm worst-case bound without

significantly compromising the performance. Further, since the operating environment of CPS

are highly dynamic, a synchrony protocol for CPS needs to provide a flexible mechanism to

control the level of synchronization and its overhead in a predictable manner. For instance, in

an integrated medical environment [7], the synchronized feeds from medical sensors can give

better understanding of a patient’s state, e.g., cause and effect relation between events, but

missing a few events are still tolerable as far as the ratio is bounded and controlled. However,

in the same system, some medical devices, e.g., oxygen ventilator and airway laser, have

interlocks and should be coordinated in synchronous manner to guarantee the safety of the

surgery [8]. In this situation, the synchronization of the interlocking devices should be highly

reliable. As this example shows, many CPS require a synchrony protocol that can meet these

different synchronization requirements efficiently and in a controlled manner.

In this paper, we propose a synchrony protocol, called Quality-Aware PALS, or qPALS, to

support flexible synchronous computing for dynamic CPS. In qPALS, the Quality-of-Service

(QoS) is quantified as the ratio of successful synchronization. The primary goal of qPALS is to

make the synchrony protocol of PALS more adaptable and flexible, rendering asynchronous

distributed systems to take advantage of the synchronous paradigm in a computing

environment where firm real-time guarantees are not easily achievable.

For flexibility, qPALS supports two synchronization protocols: p-synchrony and

c-synchrony. In p-synchrony, which is tailored for performance, individual incidents of

synchrony violation are not reported to the applications, but only the ratio of synchrony

violations is known to the applications. Therefore, a task using p-synchrony class should

handle synchrony violations using application-specific semantics. In contrast, for applications,

in which each incident of synchrony violation is critical for maintaining the consistency,

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 10, October 2014 3363

c-synchrony protocol provides a group management protocol. The group management scheme

of c-synchrony provides the consistency among group members by excluding a member

process as soon as it violates synchrony and potentially breaks the consistency. The desired

QoS of c-synchrony is enforced by exploiting spatial and temporal redundancy of

communication messages, which incurs additional overheads for synchronization. Since

p-synchrony has a low communication overhead and latency, it is appropriate for exchanging

real-time sensor readings, which has inherent uncertainty. In contrast, c-synchrony of qPALS

is appropriate for exchanging critical control messages. By composing the two proposed

synchrony protocols together in one synchronization group, the group can support highly

assured consistency while still maintaining the efficiency. Further, qPALS provides the

adaptiveness and robustness against dynamic network environments to support the specified

QoS of synchronization. Previous synchrony protocols cannot provide synchronization under

unstable networks since most of them have been designed and implemented assuming firm

real-time guarantees. To address this problem, qPALS takes a controlt-heoretic approach to

providing the robustness against unpredictable networks. qPALS adjusts its parameters

autonomously to support the specified level of synchronization.

Through a simulation study, we show that qPALS supports a highly-assured

synchronization, while still supporting efficient synchronization for frequent, but less

strictly-synchronized events. Our simulation results also demonstrate that qPALS can

maintain these desirable properties even when the underlying network is not stable.

The rest of this paper is organized as follows. In Section 2, we place qPALS in context by

examinging relevant works. Section3 presents the background on the PALS synchrony

protocol. The details of qPALS protocol is discussed in Section 4. In Section 5, we present the

simulation results in the context of an example application. Section 6 concludes the paper and

discusses future work.

2. Related Work

Distributed middleware, such as real-time CORBA [15] and Data Distriubtion Service (DDS)

[13], provide a virtualized platform for distributed tasks to collaborate. However, with these

middleware, the developers should be aware of the asynchronous nature of the distributed

interactions. In contrast, the middleware based on PALS protocol provides a synchronous

computing platform that hides the physical asynchrony and simplifies the distributed

algorithms. PALSware [11] is one of such middewares based on PALS protocol. In this paper,

we extend PALSware to support PALS protocol even if the environment does not provide

fault-tolerant real-time communication.

Providing distributed processes with consistent views has been actively investigated in the

general-purpose computing [20]. For example, Pereira et al. [24] proposed a low-cost virtual

synchrony, in which a group management protocol is integrated into the multicast subsystem.

However, these virtual synchrony approaches focus on ensuring consistent views of the global

state without the notion of physical time. In contrast, real-time synchrony protocols such as

qPALS exploit the existence of a global system clock and have a firm timing bound of

synchronization.

Synchronous models of computation have been applied in most digital circuit designs due

to the complexity of asynchronous abstraction. In software, there have emerged various

synchronous programming languages, such as Esterel [4] and PRET-C [5], to take advantages

of the model’s simplicity [21]. They assume that there exist underlying frameworks to support

3364 Kang et al.: Quality-Aware Synchrony Protocol for Distributed Ral-Time Systems

synchronous semantics. For instance, PRET-C extends a general processor with a hardware

accelerator for predictable execution of synchronous tasks. In qPALS, unlike PRET-C,

software middleware is responsible for supporting predictable execution of distributed

synchronous tasks. In this paper, we propose a middleware-based approach to predictable

execution of distributed synchronous tasks.

Time Triggered Architecture (TTA) [1] is one of the earliest system architectures that

introduced distributed real-time clock sources and has been actively investigated for industrial

applications [18]. Both TTA and PALS have been designed for safety-critical systems, and,

hence, they are both formally verified [19]. TTA achieves global state synchronization by

introducing a single global clock implemented in the system bus. Unlike TTA, PALS achieves

global synchrony without specific hardware support as long as the PALS protocol assumptions,

such as the communication bound , are satisfied. The schemes of qPALS, introduced in

this paper, make these PALS assumptions more feasible in environments where a

fault-tolerant real-time network is not available.

Probabilistic approaches to reliable multicasts and broadcasts have been considered as a

viable alternative to traditional deterministic reliable approaches [22][23]. However, the

primary goal of these probabilistic approaches has been in achieving a higher scalability in

large-scale distributed systems. In contrast, the probabilistic approach of qPALS is to provide

reliable synchronization, not scalability, with real-time guarantees.

3. The PALS Protocol Background

This section introduces original PALS protocol, and discusses the assumptions and constraints

that must be satisfied to provide the global synchrony for cooperating distributed

asynchronous entities. These assumptions are relaxed in the following sections on qPALS.

Fig. 1. A synchronous computing model with a global clock source.

Fig. 1 depicts a synchronous model of computation. In the synchronous model of

computation, distributed nodes perform computation and communicate in coordination

according to common clock ticks. In the model, the computation is chunked into series of

rounds in time. In each PALS round, computation of every node is performed simultaneously,

hence computation of one node cannot influence another node’s at the same round. After a

node finishes its computation at a round, it packages the result into packets and distributes

them to other nodes. The messages are delivered and used as inputs at the next round. In most

implementations of the model, such as digital circuits, the distributed computation is triggered

by a global clock source, which generates monotonical increasing clock ticks.

PALS protocol is designed for software systems that cannot employ a physical global clock

source. Instead, the distributed computation in the PALS protocol is initiated by the local

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 10, October 2014 3365

clocks at each node. The following are assumed about the environment for PALS protocol:

1) Maximum clock skew  of a local clock is bounded with respect to a global clock.

2) Network communication latency  is bounded, i.e.
min max    .

3) Computation time  at each node is bounded, i.e.,
min max    .

Since local clocks are not perfectly synchronized, the following two PALS protocol rules must

be satisfied to guarantee the synchronization among the participating nodes:

R1: PALS clock period - PALS period T should be long enough, as shown in Equation 1, to

ensure that a message sent in round i by a node arrive in round i of different nodes. The arrived

message is consumed by the different nodes in round i + 1.

2 (,2)max max maxmaT x       (1)

R2: PALS causality - To prevent a message from arriving too early, a node should have a

minimal delay H after a PALS clock tick before sending a message.

min(2 ,0)H max    (2)

Meseguer et al. formally proved that the PALS system preserves the logical equivalence

with a globally-clocked synchronous system as long as above assumptions and rules are

observed [9]. However, the 2nd assumption on the communication bound is feasible

only if a fault-tolerant real-time network is available. In this paper, we assume a network

environment, in which the communication bound is not deterministic but can be

described only probabilistically. Accordingly, qPALS assumes the following characteristics of

the underlying communication network:

Failure model: Messages can be lost for any reason, e.g., transient link failures.

Communication links do not have firm communication bounds. In qPALS, messages with

latency longer than are considered being lost. Nodes, or tasks fail by crashing. Task

failures are detected only when a message loss is detected. For the detection of task failures,

qPALS can be combined with preferred mechanisms of detecting task failures [10]. The

implementation details to detect node failures using end-markers is discussed in [11].

4. Quality-Aware PALS Protocol

4.1 Overview

The primary goal of qPALS is to provide flexibility and adaptability to the original PALS

protocol. To this end, qPALS supports two distinctive synchronization protocols: p-synchrony

and c-synchrony. The two synchronization protocols can be composed into a single

synchronization group while preserving the benefits of the synchronous computing model.

p-synchrony is a basic building block, in which the communication latency bound

and according PALS period T are determined to meet the QoS requirements. In this paper, we

define synchronization ratio (SR) as the primary QoS metric of qPALS. The synchronization

3366 Kang et al.: Quality-Aware Synchrony Protocol for Distributed Ral-Time Systems

ratio is defined as follows:

(%)
#

#
100

#

Shnchronized

Synchronized Violat
SR

ed



 , (3)

where #Synchronized and #Violated represent the number of synchronization rounds that

synchronized and violated the communication bound , respectively. For instance, if any

message misses , the synchrony of that round is violated. In p-synchrony, the specified

synchronization ratio is supported, but individual violations of synchrony are not reported to

the applications. Hence, the synchronization using p-synchrony is probabilistic. The adaption

manager of p-synchrony is a key component, which is responsible for maintaining the

specified synchronization ratio under unstable networks. A control-theoretic approach, which

is lightweight in computation, is taken to address this problem.

c-synchrony is built on top of the p-synchrony to provide a higher level of assurance on the

synchronization and consistency. Unlike p-synchrony, c-synchrony maintains a

synchronization group, in which only synchronized and consistent member entities are

included. The reliable multicast exploits the redundancy to make all members of the

synchronization group to maintain consistent states in a synchronous manner. Omissions of

messages and potential inconsistency are detected during the reliable multicast, and the group

is maintained to keep the consistency among the members. A synchrony round of c-synchrony

is called a hyper cycle that is composed of a few successive p-synchrony rounds. The length of

the hyper cycles is determined by the desired QoS level of applications.

4.2 P-synchrony

As discussed in Section 3, the benefits of synchronous computing model are preserved as long

as the constraints of PALS protocol are observed. In particular, we are interested in

guaranteeing the communication bound in non-fault tolerant and non-real-time

networks. When the probability of breaking the communication bound is given as

follows

)(max pP    , (4)

the QoS level of the p-synchrony can be stated as follows:

 (1) 100(%)n

psyncS pR    , (5)

where n is the number of tasks, or nodes, in the synchronization group. For example, if
310p  and n = 10, approximately 1 out of 100 synchronous state transitions fails because

several messages cannot not arrive within the communication bound . We can increase

the QoS level by setting a longer communication bound , and PALS period T, but

increasing SR compromises the performance of synchronization. Since the rate of

synchronous communication should be decreased. If highly assured synchronizations are

required infrequently, using c-synchrony is desired, rather than increasing the communication

bound of p-synchrony. It should be noted that this probabilistic and loose synchronization is

sufficient in many distributed computing jobs of CPS [12]. For instance, in many CPS, sensors

have inherent uncertainties and the freshness of sensor data is more important than exact

synchronization. Since the semantics of a physical situation observed by sensors can be

exploited by the applications to tolerate the lost messages as far as the level of message loss

and delay is bounded. For example, Fig. 2 shows that sensor readings are replicated to

multiple tasks, and each task changes its state accordingly. During the state transitions,

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 10, October 2014 3367

Kalman filters are used to overcome the inherent uncertainty of sensor measurements and

communications [13]. In the synchronous computing model of original PALS, the message

omission at the task_2 in the 2nd PALS round breaks the synchronization and consistency.

However, since missed sensor readings can be estimated locally from task_2’s filter, the

consistency among the tasks can still be maintained with high accuracy. Readers are referred

to [14][13] for more information on how broken synchronization can be handled using

application-specific semantics.

Fig. 2. Probabilistic synchrony with filters.

4.2.1 Robustness under Unstable Networks

The p-synchrony depends on the assumption that the probability p in Equation 4 is stable.

However, in many networking environments, p typically manifests instability. Without

considering those instability of p, the QoS of synchronization given in
psyncSR and

csyncSR

cannot be supported. Therefore, the adaptation manager of qPALS is responsible for adjusting

 , and according T, dynamically at runtime to assure that Equation 4 remains valid. A

statistical approach might be considered, but statistical approaches that need extensive

historical data are less applicable to CPS due to potential runtime overheads. Instead, we take

a control-theoretic approach to maintaining the validity of the original probabilistic

assumptions of qPALS.

Fig. 3. Pseudo-deadline d and slack time s.

First, as shown in Fig. 3, while we set initial and T in Equation 4, we also set a pseudo

(relative) deadline d such that the following is satisfied:

)(pdP d p   , (6)

where d = c × T (c < 1; c is a constant) and
pdp is a target probability, e.g., 0.9. The

3368 Kang et al.: Quality-Aware Synchrony Protocol for Distributed Ral-Time Systems

pseudo-deadline d is not a real deadline, but it is to probe the changes in the communication

latency. For instance, the message
3m in Fig. 3 missed the pseudo-deadline d, but still satisfies

the real communication bound . Intuitively, if the ratio of messages violating the

pseudo-deadline, such as
3m in Fig. 3, is greater than

pdp , the current and T are too

short to guarantee the initially made probabilistic guarantees. Conversely, if the ratio of

messages arriving earlier than the pseudo-deadline is greater than 1 −
pdp , then this indicates

that the current , and T, is too long. At runtime, to measure these changes in the

communication latency, we define deadline miss ratio MR as follows:

#
100(%)

#

tardy

tardy timely

m

m
MR

m



, (7)

where # timelym and # tardym are the total number of timely messages and tardy messages (with

respect to the pseudo-deadline), respectively. By maintaining MR close to
targetMR (=

pdp

×100(%)), we can guarantee the validity of the probabilistic assumption in Equation 4. The

overall feedback control procedure is as follows:

1) At each task, # timelym and # tardym are measured on every monitoring cycle, and MR

is computed.

2) Based on | |targetMR MR , the adaptation manager of qPALS computes the control

signal .

3) each task unicasts its to a designated coordinator task. The coordinator

conservatively takes the maximum of them, MAX().

4) ' ()max max maxMAX    is a new PALS communication bound. The

coordinator (reliably) multicasts to group members.

5) new PALS period T and pseudo-deadline d are calculated using and it is

applied in all group members from the next PALS round aligned to the next hyper

cycle.

One valid criticism of the presented adaption algorithm is that it treats message losses and

delays equally. Our assumption here is that packet losses and delays are highly correlated, and,

hence, controlling one can also effectively control the other. However, this may not always

true. In such situation, we should consider using more reliable transport mechanisms. With a

reliable transport like TCP, we can effectively convert packet losses to end-to-end

communication delays.

4.3 C-synchrony

In c-synchrony, the consistency among distributed entities is maintained by the group

management protocol. For example, a new PALS period T determined by the adaptation

manager is multicast using c-synchrony. Unlike p-synchrony, a member node of a

synchronization group is excluded from the group if it does not get a multicast message. To

this end, synchronous communication of c-synchrony occurs in 2-phases, called hyper cycle.

In the 1st phase, called MULTICAST phase, messages are multicast to the group members.

During the MULTICAST phase, inconsistent tasks, who lost the multicast message, are

marked. In the following MEMBERSHIP_CHANGE phase, the inconsistent tasks, who lost

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 10, October 2014 3369

multicast messages, are excluded from the group. Fig. 4 shows an example of one hyper cycle,

in which 6 PALS rounds are performed.

Fig. 4. Two phases of c-synchrony.

The propagation of a multicast message at the MULTICAST phase is similar to gossip-based

protocols [16]. Algorithm 1 shows the message handler at the MULTICAST phase, which is

invoked at each PALS round. Two parameters f and k determine the assurance level and the

latency of the reliable multicast; f is the fan-out and k is the number of PALS rounds. Fig. 4

shows an example of a reliable multicast with f = 3 and k = 3. A control message from task

task_1 is propagated to other group members. The redundancy level at each task after k rounds

is given as follows:

redundancy level)((1)fk logf n    (8)

Equation 8 indicates that each task gets the same message () 1)(fk log nf    times in

average during the hyper cycle. Hence, the synchronization ratio of c-synchrony with n tasks is

estimated as follows:
() 1

() 100(S 1 %)R ff k log n n

csync p
  

  , (9)

where p is the probability given in Equation 4. As we increase k, the higher probabilistic

assurance on correct synchronization can be achieved. However, it should be noted that the

cost also increases accordingly. For example, the latency of c-synchronization is proportional

to PALS rounds, k. Since the maximum number of messages in inQueue at line 1 is m(n-1), the

time complex of Algorithm 1 becomes O(m(n-1)), where m is the number of distinctive

messages at the PALS round and n is the number of group members. Since the multicast

handler in Algorithm 1 is invoked once at each PALS round, the total computational

complexity of MULTICAST phase is O(k·m(n-1)).

Group management of qPALS is bundled with each c-synchrony multicast, and it tells

which tasks have lost multicast messages, and are not consistent with other tasks in the group.

3370 Kang et al.: Quality-Aware Synchrony Protocol for Distributed Ral-Time Systems

Algorithm 1. c-synchrony MULTICAST phase handler.

Algorithm 2. c-synchrony MEMBERSHIP_CHANGE phase handler.

To detect failed tasks, each multicast message msg at the MULTICAST phase is appended

with information msg.haveSeen that tells who have seen the message. Further, each task also

maintains a haveSeen list for each message. Hence, when a multicast message is received by a

task, the task updates its msg.haveSeen list and also updates the message’s haveSeen list before

replicating the message to other tasks. For example, when a message with haveSeen = {task_0,

task_1} is delivered from task_0 to task_2 with have_seen = {task_2, task_3}, the task_2

updates its haveSeen list to {task_0, task_1, task_2, task_3} and modifies the message’s

haveSeen list too before sending it out. After the MULTICAST phase, each task can determine

if any task in the synchronization group have missed the multicast message by checking its

haveSeen list. At the MEMBERSHIP_CHANGE phase, each task multicast its haveSeen list

to other memers. Algorithms 2 shows the message handler at the MEMBERSHIP_CHANGE

phase, which is invked once at each PALS round. Since the maximum number of message in

inQueue at line 1 is n-1, the total time complexity of the handler is O(n-1). Further, since the

hander is invoked once at each PALS round, the total computational complexity of

MEMBERSHIP_CHANGE is O(k(n-1)).

4.4 Composition of P- and C-synchrony

In qPALS, we have two synchrony protocols operating in different timing boundaries. In our

earlier work, we showed that the composition of two proposed synchrony protocols, which are

operating in different timing boundaries, can be done without breaking the semantics of the

original synchronization [17]. When two synchrony protocols are composed in a single

synchronization group, their interaction should be coordinated to ensure that the intended

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 10, October 2014 3371

consistency is not broken. To this end, the following rule is added to the original PALS

protocol:

R3: Composition - A message delivered by a multicast of c-synchrony is visible to other

group members at the final PALS round of the hyper cycle.

Fig. 5. Composition of p- and c-synchrony.

As an example, consider a hierarchical control system in Fig. 5, where a supervisor controller

controls 3 underlying controllers by multicasting its commands periodically. The underlying

controllers also periodically report their status to the supervisor, which in turn makes a higher

level control decisions at the next hyper cycle. The supervisor controller performs a multicast

in every c-synchrony hyper cycle, and the underlying controllers report their status with

p-synchrony. In Fig. 5, even though the actual command from the supervisor is delivered to

the controllers in the 1st or 2nd PALS rounds of the c-synchrony hyper cycles, and replicated

several times during the hyper cycle, they are not visible to the controllers until the final round

of the hyper cycle; hence, R3 is enforced. This rule makes the controllers #1-#3 react to the

command from the supervisor synchronously. Otherwise, some controllers react early, and the

others react lately, making subtle inconsistency.

5. Evaluation

In this section, we use an active standby architecture shown in Fig. 6 as an example to show

the performance and correctness of synchronization in qPALS. The active standby system has

two physically separated controllers, controller_1 and controller_2. These two controllers are

analytically redundant, and, hence, they are not exact replicas to each other. The sensor input

synchronizer multicasts a stream of sensor data to both controllers. Only one of them is active

while the other stays standby. The supervisory controller multicasts commands such as

‘switching the active controller’. The commands from the supervisory controller should be

strictly synchronized. Otherwise, non-deterministic interleaving of sensing and control on

asynchronous architecture can create critical problems such as deadlocks and race conditions.

Miller et. al. [2] showed that synchrony protocols such as PALS can significantly, e.g., several

orders of magnitude, simplify the verification of the system given in this example. This

significant reduction of complexity is possible only if the assumed synchronization is

guaranteed. In the following simulations, we demonstrate that qPALS can effectively

guarantee the synchronization without significantly compromising performance.

3372 Kang et al.: Quality-Aware Synchrony Protocol for Distributed Ral-Time Systems

Fig. 6. Active standby architecture.

Table 1. Tested Approaches.

Approaches Explanation

O-PALS Original PALS with a fixed communication bound (
max)

qPALS
PALS supporting dynamic communication bounds and flexible

synchrony protocols

5.1 Baselines and Evaluation Goals

In the simulation, we compare our approach, qPALS, with the original PALS protocol,

O-PALS. O-PALS has a fixed communication bound, , while qPALS supports both

dynamic adaptation of and the composition of p- and c-synchrony protocols.

The two objectives of the evaluation are 1) to assess the effectiveness of p-synchrony of

qPALS under diverse communication environments and 2) to test if qPALS can still meet the

QoS specification when the network environment is not stable. For the first objective, in

Experiment #1, we investigate how many synchronizations are violated while the

configuration parameters of the simulation is varied. In experiment #1, the adaptation manager

of qPALS is disabled to test the effectiveness of c-synchrony’s redundant multicast

mechanism alone. For the second objective, in Experiment #2, we investigate the transient

behavior of qPALS while the communication environment is changed dynamically during the

execution. In this experiment, the adaptation manager is activated for qPALS.

5.2 Experiment #1: Average Synchronization Performance

In this experiment, the supervisor send commands periodically to the two controllers on every

200ms and the number of synchronization violations is observed under varying

communication environments. In qPALS, the commands from the supervisory controller are

multicast redundantly using c-synchrony while the level of redundancy k is varied. When k=1,

qPALS and O-PALS are equivalent. Commands are sent 100,000 times from the supervisor.

The violated synchronization means that either commands from the supervisory controller is

lost or delayed during the multicast. In such situation, the correctness and the safety of the

system cannot be guaranteed. For example, one controller can become active while the other is

still active. Such situation must not happen in an ideal synchronous computing model.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 10, October 2014 3373

In the simulation, the communication latency is assumed to follow Pareto distribution with

the mean latency of 10ms. We simulate two representative network environments by assigning

two different sets of parameters. In the first configuration, the communication latency
distribution’s shape parameter α and the minimum parameter Xm are set to 20 and 9.5,

respectively. This configuration represents communication networks with very low variances
in latency. In the next configuration, we set α=10, rendering a longer tail in the communication

latency. This configuration represents non-real-time network with larger variances in

communication latency.

Fig. 7-(a) shows the result when α=20 and Xm=9.5. The z-axis shows the number of

synchronization violoations out of 100,000 commands while k and are varied. When

k=1, zero synchronization violations is achieved only at =20ms. In contrast, when k=3

zero synchronization violations is achieved at = 12ms. This demonstrate that qPALS can

achieve reliable synchronization performance with shorter . For example, qPALS with

k=3 can operate maximally at about 80Hz (=1 sec/12 ms) for sensor data communicaiton while

still achieving reliable communication using c-synchrony. In contrast, in O-PALS, both sensor

data and commands are delivered at the same rate, which is about 50Hz (=1 sec/20ms), to

achieve reliable syncrhonization.

(a) α = 20, Xm=9.5

(b) α = 10, Xm=9

Fig. 7. Number of sychronization violations.

3374 Kang et al.: Quality-Aware Synchrony Protocol for Distributed Ral-Time Systems

As the distribution of communicatino latency has longer tail, this performance gap
becomes more evident. Fig. 7-(b) shows the result when α =10 and Xm=9. In Fig. 7-(b), when

k=1, zero synchronization violations is achieved only when is greater than 30ms. In

contrast, when k=4, c-synchrony of qPALS can achieve zero synchronization violations at

max = 12ms. This means that, for reliable synchronization, qPALS can still operate maximally

at 80Hz while O-PALS needs to operate at 33Hz (=1sec/30ms).

5.3 Experiment #2: Transient Performance

(a) Synchronization violations

(b) Communication bound (max)

Fig. 8. Transient behavior of qPALS.

In this experiment, we observe the transient behavior of both qPALS and O-PALS for 100

monitoring periods, and suddenly increase the average communication latency to test the

robustness of qPALS against unstable network environments. In the beginning, the

communication latency follows Pareto distribution with α=20 and Xm=9.5. At 30th

monitoring period, we intentionally increase the average communication latency by 50% for

the next 30 periods. Initially, the communication bounds, , of qPALS and O-PALS are

set to 20ms and 60ms, respectively. We give a longer to O-PALS since it cannot make

reliable synchronization at = 20ms. One monitoring interval corresponds to 10,000

PALS periods and we set the redundancy level k of c-synchrony to 3.

Fig. 8 shows the transient behavior of qPALS for 100 monitoring cycles. In Fig. 8-(a), the

number of synchronization violation in the p-synchrony multicasts is depicted in y-axis. In Fig.

8-(b), the changes of the communication bound is shown in the same experiment. Until

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 10, October 2014 3375

30th monitoring period, the communication bound is quite stable, staying at 20ms. This

indicates that the ratio of messages taking longer than the pseudo-deadline d remains almost

constant at each monitoring cycle. Hence, the adaptation manager of qPALS is not actively

involved. At the 30th monitoring period, the network latency changes suddenly, and, in

consequence, a significant number of probabilistic multicasts violate synchronization.

However, the number of violations drops and stabilizes within 10 monitoring cycles. This is

because the adaptation manager of qPALS is actively involved and adjusted adaptively

to around 30ms as shown in Fig. 8-(b).

Fig. 9. Transient behavior of O-PALS (=60ms).

It should be noted that the reliable multicasts of qPALS using c-synchrony does not suffer

from synchrony violations even when the network latency changes suddenly. Fig. 8-(a) shows

that the number of synchronization violations in the reliable multicasts remains zero during

this upheaval. This result demonstrates that qPALS is highly robust against the network

changes by combining the redundancy-based reliable synchrony protocol and the adaptive

communication bounds.

Fig. 9 shows the result when the same experiment was performed for O-PALS. The result

shows that O-PALS cannot adapt to the changes of the network latency. O-PALS breaks the

synchronization several times during the unexpected surge of the network latency. Again,

these synchronization failures can be a source of subtle problems such as race conditions.

Hence, the integrity of the system cannot be guaranteed.

6. Conclusions and Future Work

Even though real-time synchrony protocols significantly reduce the design and verification

complexity of distributed real-time systems, they have not been widely applied to real systems

due to their limiting conditions. To address this problem, in this paper, we proposed the

Quality-Aware PALS (qPALS) protocol that makes synchronous computing models more

feasible in a loosely coupled distributed systems without a fault-tolerant real-time network.

qPALS supports flexible synchronization semantics, allowing each synchrony class serving

different purposes: performance and correctness of synchronization. Further, they can be

composed in a single synchronization group to achieve both performance and strict

consistency. Through the simulation, we showed that qPALS can maintain these benefits even

when the underlying network environment is not stable.

3376 Kang et al.: Quality-Aware Synchrony Protocol for Distributed Ral-Time Systems

qPALS is being implemented as an extension of PRISM middleware [11] that is the first

prototype implementation of PALS protocol. We plan to apply the extended PRISM

middleware to other CPS, such as Medical Device Plug-and-Play [7], in which distributed

consistency is required for safety, but no fault-tolerant real-time network is available.

References

[1] H. Kopetz and G. Bauer, “The time-triggered architecture,” Proceedings of the IEEE, vol. 91, no. 1,

pp. 112–126, Jan 2003. Article (CrossRef Link)

[2] S. Miller, D. Cofer, L. Sha, J. Meseguer, and A. Al-Nayeem, “Implementing logical synchrony in

integrated modular avionics,” in Proc. of Digital Avionics Systems Conference, 2009. DASC ’09.

IEEE/AIAA 28th, pp. 1.A.3–1 –1.A.3–12, oct.2009. Article (CrossRef Link)

[3] N. Leveson and C. Turner, “An investigation of the therac-25 accidents,” Computer, vol. 26, no. 7,

pp. 18 –41, July 1993. Article (CrossRef Link)

[4] G. Berry and G. Gonthier, “The esterel synchronous programming language: design, semantics,

implementation,” Sci. Comput. Program., vol. 19, no. 2, pp. 87–152, Nov. 1992.

Article (CrossRef Link)
[5] S. Andalam, P.S. Roop, A. Girault, “Deterministic, predictable and light-weight multithreading

using PRET-C,” Design, Automation & Test in Europe Conference & Exhibition (DATE), 2010,

pp. 1653-1656, IEEE, 2010 Article (CrossRef Link)

[6] L. Sha, A. Al-Nayeem, M. Sun, J. Meseguer, and P. C. Olveczky, “PALS: Physically

Asynchronous Logically Synchronous Systems,” University of Illinois at Urbana-Champaign,

http://www.ideals.illinois.edu/handle/2142/11897, Tech. Rep., 2009.

[7] “MD PnP Project: Getting connected for patient safety, http://www.mdpnp.org,” 2012.

[8] C. Kim, M. Sun, S. Mohan, H. Yun, L. Sha, and T. F. Abdelzaher, “A framework for the safe

interoperability of medical devices in the presence of network failures,” in Proc. of Proceedings of

the 1st ACM/IEEE International Conference on Cyber-Physical Systems, ICCPS ’10. ACM, pp.

149–158, 2010. Article (CrossRef Link)

[9] J. Meseguer and P. C. ̈ Olveczky, “Formalization and correctness of the PALS architectural pattern

for distributed real-time systems,” in Proc. of Proceedings of the 12th international conference on

Formal engineering methods and software engineering, ICFEM’10. Berlin, Heidelberg:

Springer-Verlag, pp. 303–320, 2010. Article (CrossRef Link)

[10] S. Ranganathan, A. D. George, R. W. Todd, and M. C. Chidester, “Gossip-style failure detection

and distributed consensus for scalable heterogeneous clusters,” Cluster Computing, vol. 4, no. 3,

pp. 197–209, Jul. 2001. Article (CrossRef Link)

[11] A. Al-Nayeem, C. Kim, W. Kang, P.-L. Wu, and L. Sha, “Middleware design for

physically-asynchronous logically-synchronous (pals) systems,” in Proc. of Proceedings of the

13th ACM international conference on Embedded software (Emsoft’13), 2013.

Article (CrossRef Link)
[12] N. Kottenstette, X. Koutsoukos, J. Hall, J. Sztipanovits, and P. Antsaklis, “Passivity-based design

of wireless networked control systems for robustness to time-varying delays,” in Proc. of

Proceedings of the 2008 Real-Time Systems Symposium, RTSS ’08, 2008. Article (CrossRef Link)

[13] W. Kang, K. Kapitanova, and S. H. Son, “RDDS: A real-time data distribution service for

cyber-physical systems,” IEEE Trans. Industrial Informatics, vol. 8, no. 2, pp. 393–405, 2012.

Article (CrossRef Link)
[14] A. Jain, E. Y. Chang, and Y.-F. Wang, “Adaptive stream resource management using kalman

filters,” in Proc. of SIGMOD ’04: Proceedings of the 2004 ACM SIGMOD international

conference on Management of data. New York, NY, USA: ACM Press, pp. 11–22, 2004.

Article (CrossRef Link)
[15] V. Fay-Wolfe, L. C. DiPippo, G. Cooper, R. Johnson, P. Kortmann, and B. Thuraisingham.

“Real-time CORBA,” Parallel and Distributed Systems, IEEE Transactions on, vol. 11, no. 10, pp.

1073-1089, 2000. Article (CrossRef Link)

http://dx.doi.org/10.1109/JPROC.2002.805821
http://dx.doi.org/10.1109/DASC.2009.5347579
http://dx.doi.org/10.1109/MC.1993.274940
http://dx.doi.org/10.1016/0167-6423(92)90005-V
http://dx.doi.org/10.1109/DATE.2010.5457078
http://www.ideals.illinois.edu/handle/2142/11897
http://dx.doi.org/10.1145/1795194.1795215
http://10.0.3.239/978-3-642-16901-4_21
http://dx.doi.org/10.1023/A:1011494323443
http://dx.doi.org/10.1109/EMSOFT.2013.6658583
http://dx.doi.org/10.1109/RTSS.2008.14
http://dx.doi.org/10.1109/TII.2012.2183878
http://dx.doi.org/10.1145/1007568.1007573
http://dx.doi.org/10.1109/71.888646

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 10, October 2014 3377

[16] K. P. Birman, M. Hayden, O. Ozkasap, Z. Xiao, M. Budiu, and Y. Minsky, “Bimodal multicast,”

ACM Trans. Comput. Syst., vol. 17, no. 2, pp. 41–88, May 1999. Article (CrossRef Link)

[17] A. Al-Nayeem, L. Sha, D. D. Cofer, and S. P. Miller, “Pattern-based composition and analysis of

virtually synchronized real-time distributed systems,” in Proc. of Proceedings of 3rd International

Conference on Cyber-Physical Systems (ICCPS), 2012. Article (CrossRef Link)

[18] R. Obermaisser, “Reuse of can-based legacy applications in time triggered architectures,” IEEE

Transactions on Industrial Informatics, vol. 2, no. 4, pp. 255–268, 2006. Article (CrossRef Link)

[19] W. Steiner and J. Rushby, “TTA and PALS: Formally verified design patterns for distributed

cyber-physical systems,” in Proc. of Digital Avionics Systems Conference (DASC), 2011

IEEE/AIAA 30th, oct. 2011, pp. 79-86, 2011. Article (CrossRef Link)

[20] K. P. Birman, “Replication and fault-tolerance in the ISIS system,” ACM SIGOPS Operating

Systems Review, vol. 19, no. 5, pp. 79–86, 1985. Article (CrossRef Link)

[21] A. Benveniste, P. Caspi, S.A. Edwards, N. Halbwachs, P. Le Guernic, and R. De Simone, “The

synchronous languages 12 years later,” Proceedings of the IEEE, vol. 91, no. 1, pp. 64-83. 2003.

Article (CrossRef Link)
[22] P. T. Eugster, R. Guerraoui, S. B. Handurukande, P. Kouznetsov, and A.-M. Kermarrec,

“Lightweight probabilistic broadcast,” ACM Trans. Comput. Syst., vol. 21, no. 4, pp. 341–374,

Nov. 2003. Article (CrossRef Link)

[23] A. Kermarrec and M. Steen. “Gossiping in distributed systems,” SIGOPS Oper. Syst. Rev. vol. 41,

no. 5, pp. 2-7, October 2007. Article (CrossRef Link)

[24] J. Pereira, R. Luís, and O. Rui. “Semantically reliable multicast: Definition, implementation, and

performance evaluation,” Computers, IEEE Transactions on, vol. 52, no.2, pp. 150-165, 2003.

Article (CrossRef Link)

Woochul Kang received his PhD degree in computer science from the University of

Virginia in 2009. He joined Incheon National University as an assistant professor in 2013. His

research interests include cyber-physical systems, real-time embedded systems, large-scale

distributed systems, and feedback control of computing systems. He was a senior researcher at

Electronics and Telecommunications Research Institute (South Korea, 2000-2004,

2009-2012), and post-doc research associate at the University of Illinois at

Urbana-Champaign (USA, 2012-2013).

Lui Sha received the Ph.D. degree from Carnegie Mellon University, Pittsburgh, PA, in

1985. He is currently a Donald B. Gillies Chair Professor of computer science at the

University of Illinois at Urbana Champaign. His work on real-time computing is supported by

most of the open standards in real-time computing and has been cited as a key element to the

success ofmany national high-technology projects including GPS upgrade, the Mars

Pathfinder, and the International Space Station. Dr. Sha is a Fellow of the Association for

Computing Machinery (ACM).

http://dx.doi.org/10.1145/312203.312207
http://dx.doi.org/10.1109/ICCPS.2012.15
http://dx.doi.org/10.1109/TII.2006.885920
http://dx.doi.org/10.1109/DASC.2011.6096120
http://dx.doi.org/10.1145/323627.323636
http://dx.doi.org/10.1109/JPROC.2002.805826
http://dx.doi.org/10.1145/945506.945507
http://dx.doi.org/10.1145/1317379.1317381
http://dx.doi.org/10.1109/TC.2003.1176983

