Optimistic Parallel Discrete Relaxation

*

Kinson Ho and Paul N. Hilfinger
Computer Science Division
University of California at Berkeley, U. S. A.
Hans W. Guesgen
Computer Science Department
University of Auckland, New Zealand
{ho,hilfingr}@cs.berkeley.edu, hans@cs.auckland.ac.nz

Abstract

Discrete relaxation is frequently used to com-
pute the fixed point of a discrete system
X = f(X), where / is monotonic with respect
to some partial order €. Given an appropriate
initial value for X, discrete relaxation repeats
the assignment X « f(A) until a fixed point
for / is found. Monotonicity of / with respect
to < is a sufficient (but in general not neces-
sary) condition for iterative, hill-climbing tech-
niques such as discrete relaxation to find the
fixed point of /.

In this paper we introduce monotonic asyn-
chronous iteration as a novel way of imple-
menting parallel discrete relaxation in prob-
lem domains for which monotonicity is a neces-
sary condition. This is an optimistic technique
that maintains monotonicity without limiting
concurrency, resulting in good parallel perfor-
mance. We illustrate this technique with the
parallel implementation of a constraint satisfac-
tion system that computes globally consistent
solutions, and present performance numbers for
experiments on a shared-memory implementa-
tion. The performance numbers show that it is
indeed possible to obtain a reasonable speedup
when parallelizing global constraint satisfac-
tion. We believe that monotonic asynchronous
iteration is applicable to parallel discrete relax-
ation in general.

1 Introduction

Discrete relaxation is frequently used to compute the
fixed point of a discrete system X = f(X), where / is
monotonic with respect to some partial order <. Given

*Ho and Hilfinger are supported by NSF Grant CCR-84-
51213. Guesgen performed part of this work while at the Ger-
man National Research Center for Computer Science (GMD).
in St. Augustin, Germany, and the International Computer
Science Institute in Berkekey, California. At the GMD he
was supported by the German Federal Ministry for Research
and Technology (BMFT) within the joint projects TEX-B
(grant ITW8506D) and TASSO (grant ITW8900A7).

268 Constraint Satisfaction Problems

an appropriate initial value for X, discrete relaxation re-
peats the assignment X « f{X) until a fixed point for
/ is found. Monotonicity of / with respect to < is a suf-
ficient (but in general not necessary) condition for itera-
tive, hill-climbing techniques such as discrete relaxation
to find the fixed point of / [Parker, 1987].

Discrete relaxation is widely used in the solution of
constraint satisfaction problems (CSPs), and many par-
allel implementations of discrete relaxation for CSPs
have been reported [Kasif and Rosenfeld, 1983; Rosen-
feld et a/., 1976]. These attempts have all focused on
CSP solvers that compute locally consistent (arc con-
sistent) solutions, which are relatively straightforward
to parallelize as the computations are inherently mono-
tonic. On the other hand, discrete relaxation algorithms
used in CSP solvers that compute globally consistent so-
lutions are very difficult to parallelize because for this
class of problems, monotonicity is a necessary correct-
ness condition that is not automatically satisfied. The
need to maintain monotonicity (for correctness) often
limits the amount of concurrency available in a paral-
lel implementation, degrading the performance signifi-
cantly.

In this paper we introduce monotonic asynchronous
iteration as a novel way of implementing parallel dis-
crete relaxation in problem domains for which mono-
tonicity is a necessary condition. This is an optimistic
technique that maintains monotonicity without limiting
concurrency, resulting in good parallel performance. We
illustrate this technique with the parallel implementa-
tion of CONSAT [Guesgen, 1989], a constraint satisfac-
tion system that computes globally consistent solutions,
and describes an experiment on a shared-memory im-
plementation. The performance numbers show that it is
indeed possible to obtain a reasonable speedup when par-
allelizing global constraint satisfaction, and thus proving
that Kasif's conjecture is correct [1990]. We believe that
monotonic asynchronous iteration is applicable to paral-
lel discrete relaxation in general.

2 Discrete Relaxation

Consider the problem of finding the fixed point of a dis-
crete system .X = f(X). For our purposes, the system
has the following properties:

¢ f: Dx D, for some domain D, is a relation. We shall
notate it as & non-deterministic function, writing,
for example, Y «— f(X) to mean “set Y to some
value standing in relation f with X.” An equation
Y = f(X) means that Y is a value satisfying the
relation.

¢ Values in D are structured, so that for any X € D,
X = (X;,...,X,.), where X; € D; and D = D, x
v+ x Dp.

e I ={1,...,n} is the inder set.

o There exist functions f. (¢ C I} such that a solution
of X = f(X) is a solution of a system of equations
X =f(X)Tlorall ¢ C I, where each f.: D — D is
deterministic. Each relaxation step X «— f{X) is
equivalent to X «— f.(X) forsomecC ! Foriel

and e C I, f.(X) = {Y1,...,Y,), where
X; ifigce
Y"z{,vf,()() Eri-ﬁ..-

The new value of any such component i (i € ¢) is
given by i fo(X) (;fo : D — D;). f.(X) only differs
from X at the indices in c.

¢ f is monotonic with respect toc some partial order
<, i.e, X < f(X) for any X € D. Consequently,
X <€ fAX) for any ¢C I, and X; <; ;f.(X) for
i€l For XY € D, where X = (X,,..., X,,) and
Y=M.. . . Yo, X<YHIX; & Y forallic]

Assumption We assume that domain-specific knowl-
edge has been used to ensure that f has a fixed point
that can be computed in a finite number of steps us-
ing discrete relaxation. The precise conditions for this
may be found in the lattice theory literature {Stoy, 1977;
Schmidt, 19886).

Notation Let X’ denote the value of X computed in
the jth iteration of a discrete relaxation, and let X° be
the initial value of X,

Sequential Iterations Given an appropriate X°, dis-
crete relaxation repeats the assignment X — f(X) until
a fixed point for f is found. In a sequential implementa-
tion of discrete relaxation, X «— f(X) becomes X7 =
(X" 0r X2 = f(X? ') forsomecC 1.

Forie !l and j=1,2,..., a sequential ileration has
the following form:

[xi! ifige
X = { JAXIZY) ifiee

where ¢ C I is not fixed for successive values of j. X?
only depends on X7~!, and not on other (clder) values
of X.

Asynchronous Iterations We would like to compute
the fixed point of f in parallel by computing f. for dif-
ferent values of ¢ (¢ C I) concurrently. For example, f,
and fa (c,d C I) should be allowed to proceed in parallel
if ¢ and d do not intersect. This is not possible under
sequential iterations, because X7 is computed using the
value of X from the most recent iteration (X’~!) only,

serializing the computations for f, and fy. Intuitively,
Je and f; may be computed in paraliel if the restriction
that X7 is computed using the value from the most re-
cent iteration (X7-1) is relaxed so that values from some
relatively recent iterations may be used instead.

Following Baudet {1978), we define asynchronows
slerations by removing the restriction imposed by
sequential iterations. =~ An asynchronous iteration
X} = pi(Xerelitn) X3-1) i defined as follows:

; -1
xi= { X

] ifige
.'fc(X'ch'l‘""))

ifiece

where Xlrc(j,l...n) = (X;PC(}'.I)’ e, X;re(j.n)>, and
sre(f, k) € {0,...,5 — 1}. The function sre(j, k) deter-
mines what past value of X is used in the computation.
Forany k € 1, X:"’U'” is the value of X, used by ; f. to
compute X!. We make two observations:

e arc(j, k) is not a function of i. For any value of
k€1,], (i € c) uses the value of X; computed in
iteration src(j, k), X2m Vb,

e For a given value of j, sre(j, k) ie a function of k.
Consequently, the value of X3 (k € I) used to com-

pute X/ may have been computed in different it-
erations. This freedom reduces the amount of syn-
chronization required in a paralle] implementation
of asynchronous iterations significantly.

For example,

X; ?.r{i.a} ((X"c(?.l)‘ x;rt(?.:), x;'¢(7.3)))
2f{2'3}((xl ' X?, X;))' and
Xg 31’{2.3} ((Xlre('?,l)‘ X;rc(?.?)‘ A-;rc(?,a)))

3f{2.8}((xl * xg' X;))
For sequential iterations sre{j, k) = j — 1.

The value of X/ computed by an asynchronous itera-
tion

I

nH

Xi = f;(Xlrc(j,l...n)!Xj—l)

depends on multiple previous states. The components
of X not modified by f. come from the most recent
state, X/~!, while the components of X modified by
f! come from X* <U:.1-") Ag X7 is not computed using
a single (consistent) state of X, f! is not monotonic in
general, and so X7=1 £ fi(Xx*relhrn) Xi-1). Conse
quently, asynchronous iterations may lead to incorrect
results for parallel discrete relaxations.

Monotonic Asynchronous Iterations Given an ar-
bitrary discrete, monotonic and non-deterministic func-
tion f with functions f, (c C I), it is relatively diffi-
cult to derive a condition such that the corresponding
J{ functions defined by an asyanchronocus iteration are
monotonic. To use asynchronous iteration for parallel
discrete relaxation, we apply an application-specific test
for monotonicity to the result computed by f} such that
if X3-1 < fi(xeretdilmd Xi-1) then X7 is updated us-
ing this value of f!. Otherwise, f! is re-computed {ueing
more recent values of X'). We call this optimistic scheme
monolonic asynchronous ileraiion:

Ho, Hilfinger, and Guesgen 269

iJ(XmeU3-m)) ificecand Va € e,
X:i-l < afe(X"cu'lmn))
otherwise

X! =

If f! and f} (¢,d C I) are computed concurrently, a
race occurs if X is modified by f after the values of
X*reU:1-m) yged to compute ; f.(X*7U-1»)) have been
read, but before X is modified by f.. Monotonic asyn-
chronous iteration only detects (and rejects) races that
would violate monotonicity. Races that maintain mono-
tonicity are allowed, so AX7~! and X*r<(/.1--P} 4o not
have to be equal. In fact, these legal races provide a
source of concurrency not found in other parallel relax-
ation schemes, and lead to improved performance. lntu-
itively, f. and f; may be computed concurrently if they
modify disjoint components of X, or if they modify com-
mon components of X in such a way that monotonicity
between successive values of X Is maintained.

We do not have a general way of deriving the
application-specific test for monotonicity for a given sys-
temn. Instead, we expect the programmer to provide this
test by using high-level knowledge about the problem do-
main. In the context of CSP solvers that compute glob-
ally consistent solutions, this test reduces to a subset test
between successive sets of value combinations that may
be associated with the variables of a constraint network
{(see Section 3).

Parallel Implementation of Monotonic Asyn-
chronous Iterationg A step of a monotonic asyn-
chronous iteration X/ = f/(X*relit-n} X131y with par-
tial order < may be implemented in paraliel in the fol-
lowing way:

1. Read current value of X,

Xere(il on} _ (X;"—'(.fu” ‘X""-'(J'-ﬂ))

n
(Xi¢s may come from different iterations.)

2. Compute , f(X*"U.L-m) forall i€ ¢
3. Lock X

4. ifYiee X;?"l < if (XUl o)y
then for each i € ¢,
update X:X] =, f(Xred.1.-n)y

else schedule f! for re-execution
5. Unlock X

X is not locked while the ;f.(X* 1)} values are
computed in step 2. If these computations are tirne
consuming, this implementation can lead to much better
parallel performance than a naive alternative that locks
X for the entire step of the monotonic asynchronous iter-
ation. Nevertheless, the maximum speedup is bounded
by 1 4 (Th + T2)/T, where T; is the time for step i. For
example, if Ty is 10% of (T} + T), the speedup limit is
11.

Practical Considerations Monotonic asynchronous
iteration does not specify how a function f! (¢ C) is
chosen for execution in any iteration j, or whether f!
and f,; (c,d C I) should be executed concurrently in a
parallel implementation for optimal performance. There

270 Constraint Satisfaction Problems

is considerable freedom in applying application-specific
scheduling strategies for good performance.

3 Example: CONSAT

CONSAT is a system for the definition and satisfaction
of constraints in arbitrary finite discrete domains. A
constraint consists of a set of variables and a relation
among the variables, and a constraint network is a set
of constraints connected by common variables. A glob-
ally consistent solution of a constraint network is a tuple
of values, one per variable of the network, that satisfies
all the constraints of the network simultaneously. CON-
SAT is a global CSP solver whose constraint satisfaction
technique is based on filtering [Waltz, 1972], i.e., on the
successive deletion of inconsistent values from the set
of potential values for the variables. Unlike traditional
filtering algorithms, CONSAT uses values that are asso-
ciated with some additional information (called tags) for
maintaining interrelationships among values (of different
variables). In the following we give an informal explana-
tion of how CONSAT modifies local constraint propaga-
tion, a technique commonly used to compute locally con-
sistent solutions, with tagging to compute the globally
consistent solutions of a constraint network. As global
constraint satisfaction problems over finite domains are
generally NP-complete, the algorithm used by CONSAT
is exponential in the worst case. A more formal treat-
ment of CONSAT is given elsewhere [Guesgen, 1989].

Constraint Network Example Figure 1 defines con-
straint network A, which will be used in the examples
throughout this paper. There are three variables (Va,
Vb, Vc) and six constraints (C1-C6). For example, con-
straint C1 restricts the possible values of Va to R or Y,
and constraint C4 restricts the values of (Va,Vb) to one
of the combinations (R,G) or (R,B). Va and Vb are called
the adjacent variables of constraint C4. (A constraint
may be adjacent to more than two variables, i.e., we do
not restrict ourselves to binary constraints.) The steps
of CONSAT as it computes the global solutions of con-
straint network A are shown in Figure 2. Details of the
algorithm used may be found elsewhere [Guesgen, 1989].

C1(va) ={R,Y} c1]
c2(vb) ={G,Y,B} @
C3(ve) ={B, 1.6}
)¢ o4 o

C4(Va,Vb)={ (R,G),(R,B
€5{Vb,¥c)={ (G,B),(B,G

) }
)}
c6(Va.vo)={ (R.B).(R.G) } [C2F—(vo)}~{cs}—(vc)—{c3)

Figure 1: Constraint Network A: Variables are repre-
sented by circles and constraints by rectangles. An edge
between a circle and a rectangle means that the corre-
sponding variable belongs to the constraint represented
by the rectangle.

Tagged Values For any variable of a constraint net-
work, the potential values are associated with additional
information called tags, and tagged values (of different
variables) with the same full tag form a global solution
of the constraint network. For a constraint network of

Initial: Step
¥Ya = Vb = V¢ = UnConetrained]
Cl: ¥Ya= { R(1,~,=,=-,-,=), Y(2,~,=,-,=,7) } 1
€2: vb = { G(-,1,~,~,~,7), Y(-,2,~,-,~,"), 2
B(-lat'n—o-'-
C3: Ve = { B(‘-', + l-l—) Y(-i-lzl-l-i-)l 3
G(~,-,3,=-,-,=) }
Ca: va = { R(2,1,~,1,~,-), R(1,3,-,2,~,~} } 4
Vb = { G(inlv'v p't"). B(l!ai-i !'u') }
¢5: vo=» { Gg(1,1,1,1,1,-), B(1,3,3,2,2,~) } b
Vo= { B(lplvlullll->’ G(llaislzizl_) }
C6: Va = { R(1,1,1,1,1,1), R(1,3,3,2,2,2) } 6
Yo = { B{1,1,1,1,1,1), G{1,3,3,2,2,.2) }
C4: Va = { R(1,1,1,1,1,1), BR(1,3,3,2,2,2))} = 7
vb = { G(1,1,1,1,1,1), B(1,3,3,2,2,2) }
C5: ¥b = { G(1,1,1,1,1,1), B(1,3,3,2,2,2) } » 8
Vo= { B(1,1,1,1,1,1), 6(1,3,3,2,2,2) } »
Ci: va = { R(1,1,1,1,1,%), R(1,3,3,2,2,2) } » 9
c2: Vb = { G(1,1,1,1,1,1}, B(1,3,3,2,2,2) } » 10

C3: Ve = { B(1,1,1,1,1,1), 6(1,3,3,2,2,2) } »« 11

Solution(Va, Vb, Ve):
(R{1,1,1,1,1,1), G(1,1,1
(R(1,3,3,2,2,2), B(1,3,3

B(1,1,
G(1,3,3

1,1, 1,1,1,1))
»2,2,2), v2,2,2))
Figure 2: Activations of constraint network A: Each con-
straint being activated (leftmost column) is shown with
the feasible sets of its adjacent variables after its activa-
tion. An "*" at the end of a variable means that it has
not been changed in the current activation. The feasible
set of any variable non-adjacent to the current constraint
can be found by searching backwards from the current
activation. (Componentwise unification of full tags is the
key idea behind the algorithm.)

(Va,Vb,¥c) = (R,G,B) with full tag (1,1,1,1,1,1)
C1{Va) = {RY} 1 Va = R
C2(¥b) = { G,Y,B} 1 ¥ -0
Ca(Ve) - {B,YG)} 1 Ve =B
04(vavvb) - { (nvG)l (RrB)) 1 (\"a.\"b) - (RpG)
C5(V¥b,Vc) = { (G.,B), (B,G) } 1 (Vb,¥e) = (G,B)
C6(Va,¥¢) = { (R,B), (B, G) } 1 (Va,¥c) = (R,B)

(Va,¥b,Vc) = (R,B,6) with tull tag (1,3,3,2,2,2)
C1(Va) ={RY} 1 Va =R
c2(vv) = {G,Y.B)} 3 ¥ =B
C3(¥c) = {B,Y,G} 3 Ve L]
C4(Va,¥b) = { (R,C¢), (R,B}) } 2 (Va,Vb) = {R,B)
CS(\'b.'Jc) - { (G’B)l (B.G) } 2 (%.VC) - (Buq)
C6(Va,¥c) = { (A,B), (R,G) } 2 <(Va,¥c) = (R,G)

Figure 3: Globally Consistent Solutions of Constraint
Network A

m constraints, each full tag is an m-tuple, where the
rth component (the rth subtag) indicates the tuple in
the rth constraint that is part of the global solution.
(For example, in constraint C4 of Figure 1 the tuple
(R,B) corresponds to the subtag 2.) The special symbol
"-" is the wildcard character for subtags and indicates
that a tuple for the corresponding constraint has not
been chosen. A subtag with a tuple number is said to
be determined, while one with the special symbol "-"
is said to be undetermined. As an example, consider
the global solutions of constraint network A shown in
Figure 2. The two solutions (Va,Vb,Vc) are (R,G,B)
with full tag (1,1,1,1,1,1) and (R,B,G) with full tag
(1,3,3,2,2,2). An intuitive explanation of the use of
tags for constraint network A is given in Figure 3.

Filteringof Tagged Values The feasible set of a vari-
able contains its current set of potential (tagged) values,
and is initialized to the special value Unconstrained,
meaning the variable may take any value from the do-
main under consideration. The filtering function / of
the constraint network uses local propagation of tagged
values to eliminate inconsistent values from the feasi-
ble sets, and replaces undetermined subtags with deter-
mined subtags. Guesgen showed in his thesis that filter-
ing of tagged values is guaranteed to terminate with the
globally consistent solutions of a constraint network in
a finite number of steps provided that it is fair [1989].
This means each constraint is evaluated (or activated)
at least once, and if a constraint changes the feasible
set of any adjacent variable during filtering, other con-
straints adjacent to the modified variable have to be re-
activated. (This is not the usual definition of fairness
in the parallel programming literature.) Upon termina-
tion of local propagation, each tuple of values—one per
variable—with identical full tags form a globally consis-
tent solution of the constraint network (see Figure 2). If
the feasible set of any variable becomes empty, there is
no solution for the constraint network. Local propaga-
tion computes the fixed point of the filtering function /
of the constraint network.

Filtering is Monotonic with respect to Partial
Order < of Tagged Values For two tagged val-
ues v, and v, with identical domain values, v, < v
ifl every determined rth subtag in v, has an identical
rth subtag in v,. For example, R(1,-,-,-,-,-) £
R(1,1,-,1,-,~) < R(1,1,1,1,1,1). For two sets of
tagged values V and W, we ext.end the definition such
that V < W ifl for every w € W, there exista v € V
such that v < w. In addition, < is defined such that
UnConstrained < V for any set of tagged values V.
For the activation of constraint network A in Figure 2,
Va.Step! = { R(1,-,-,-,-,~), 7(2.-.-.-,'."‘) }
Va.Stepdt = { R(1, 1 y1,-,-), R{1,3,-

so Va.Stepl < Va.8t¢p4.

Intuitively, filtering either eliminates a tagged value if
it is inconsistent, or replaces one or more undetermined
subtags of a tagged value by determined subtags. A de-
termined subtag is never replaced by an undetermined
subtag or another determined subtag. A more formal ex-
planation of why filtering of tagged values is monotonic

Ho, Hilflnger, and Guesgen 271

with respect to < will be given elsewhere [Ho, 1993].

CONSAT as Discrete Relaxation In this section
we show that CONSAT is a special case of discrete re-
laxation as defined in Section 2.

« CONSAT computes the fixed point of the discrete
system X = f(X) for the non-deterministic / that
corresponds to the filtering function of the entire
constraint network. This fixed point corresponds to
the set of all the globally consistent solutions of the
constraint network.

« [= {1,...,n) is the set of all the variables of the
constraint network.

* / may be decomposed into component functions f,
for constraints e C I. fo: D — D is the filtering
function of constraint ¢, and eliminates value com-
binations inconsistent with ¢ from the feasible sets
of its adjacent variables. Without loss of generality,
we assume that a constraint may be uniquely iden-
tified by its set of adjacent variables. For example,
/{2,3,5} is the filtering function of the constraint that
is adjacent to variables 2, 3 and 5. f. only depends
on the values of variables i € €, and f,(X) only dif-
fers from X for the same set of variables. The new
value of any such variable i is given by ; f.(X).

s ForX e D X =({X:,....X.). Each X; € D, is
the feasible set of variable i.

« A" is the initial state of the feasible sets of all the
variables. All its components have the special value
Unconstrained.

+ The partial order < on D has been defined on
page 4.

We have shown that CONSAT is a special case of dis-
crete relaxation, and have defined an application-specific
monotonicity test between successive states of the relax-
ation. Consequently, an efficient parallel implementation
of CONSAT may be obtained by using monotonic asyn-
chronous iteration.

Performance We implemented parallel CONSAT us-
ing CLiP [Franz Inc., 1990], a commercial imple-
mentation of the multiprocessing features of SPUR
Lisp [Zorn et al., 1989] that currently runs on the shared
memory Sequent Symmetry multiprocessor. To esti-
mate the performance of parallel CONSAT in the ab-
sence of garbage collection—an upper bound on paral-
lel performance—we define speedup as the ratio of real
time excluding garbage collection of the sequential ver-
sion relative to the real time (excluding garbage collec-
tion) of the parallel version on n processors. This def-
inition is chosen because the current CLiP implemen-
tation uses a sequential garbage collector that stops all
but one processor each time a collection occurs. We feel
our definition better models the performance of parallel
CONSAT in a parallel Lisp system with a more realis-
tic garbage collector, such as the concurrent collector in
TOP-1 Common Lisp [Tanaka and Uzuhara, 1990].

We measured the parallel performance of CONSAT
for a problem in machine vision, which assigns three-
dimensional edge labelings (convex, concave, or occlud-

272 Constraint Satisfaction Problems

ing) to line drawings in a polyhedral world of trihedral
vertices [Horn, 1986]. The constraints restrict the la-
beling of edges meeting at a vertex to be the few com-
binations physically possible. In addition, each edge is
constrained to have the same label at both ends (where
it meets other edges). The particular scene (constraint
network) chosen, Stair5, has 33 variables and 56 con-
straints (36 2-variable and 20 3-variable constraints).

P Steps | Abort

1.0 447 0

1 95 T | 102 0.95 447 0
2 50 7| 67 1.8 455 7
3 36 9 | 45 25 454 10
4 28 |10 38 3.2 465 13
5 25 | 12 37 36 464 17
6 20 j12] 32 4.6 463 16

Table 1: Performance of CONSAT for Stair5: P is the
number of processors, and Seq is the sequential imple-
mentation. All times are real time in seconds, no gc is
time without garbage collection, gc is time for garbage
collection, and T is the total time. Speedup is based on
times excluding garbage collection. Both sequential and
parallel versions are compiled with the highest optimiza-
tion setting for speed. Steps is the number of discrete
relaxation steps, including non-monotonic ones. Abort
is the number of non-monotonic steps (re-executed).

The results for Stair5 are summarized in Table 1.
Speedup ranges between 0.9 on one processor to 4.6 on
six processors. The one processor time is within 5% of
the sequential time, showing that the parallel implemen-
tation is reasonably efficient. The speedup is less than
linear because a small number of constraint activations
(relaxation steps) have to be re-executed because they vi-
olate monotonicity. Serial bottlenecks in the allocation
routines of the current CLiP implementation also pre-
vent parallel CONSAT from achieving better speedup.

An earlier parallel implementation of CONSAT that
performs the update to the feasible sets (X) in a single
critical section for each constraint activation has virtu-
ally no speedup because contention for X serializes all
the concurrent constraint activations. The current im-
plementation based on monotonic asynchronous itera-
tion performs significantly better.

4 Related Work in Parallel Relaxation

The formulation of asynchronous iterations in Section 2
is similar to generalized iterations defined by Pohlmann
in the context of parallel discrete event simulation [1991].
Generalized iterations operate in the domain of infinite
streams of elements, each of which corresponds to an
event over time in the system being simulated.

Parallel relaxation is also used by various schemes for
solving systems of equations X<—f(X) in the domain
of real numbers in parallel, including chaotic relaxations
defined by Chazan and Miranker [1969], asynchronous it-
erations defined by Baudet [1978] and chaotic iterations

with delay defined by Miellou [1975]. In these systems
/ is made up of component functions f., and the state
X of the fixed-point computation may be decomposed
into a set of (potentially disjoint) components that are
computed by different f; functions concurrently. Each
fo may be computed using multiple previous states, with
a different state for each component of X, to minimize
the amount of synchronization required. These schemes
are optimized for the domain of real numbers by using
the properties of real numbers, and their convergence
criteria are somewhat analogous to the test for mono-
tonicity used in monotonic asynchronous iterations. Our
formulation of asynchronous iterations for parallel dis-
crete relaxation is a domain-independent generalization
of these parallel iteration schemes. In addition, the use
of an optimistic test for monotonicity for improved par-
allel performance is unique to our approach.

5 Conclusion

In this paper we proposed monotonic asynchronous it-
eration as a correct and efficient way of implementing
parallel discrete relaxation for systems for which mono-
tonicity is a necessary correctness condition. Mono-
tonic asynchronous iteration uses an optimistic scheme
to compute a possible next state of the system. This
optimistic scheme is highly efficient but is not necessar-
ily monotonic (i.e., correct). An application-specific test
for monotonicity is then applied to the computed state.
If the test succeeds, the state transition is made (atom-
ically). Otherwise, the computation is repeated using
the current state. We have applied our technique to
the parallel implementation of a constraint satisfaction
system that computes globally consistent solutions, for
which monotonicity is a necessary correctness condition
that is not automatically satisfied. We believe monotonic
asynchronous iteration is applicable to parallel discrete
relaxation in general. It will be interesting to see if this
application-specific monotonicity test is easy to derive
for other discrete relaxation problems.

6 Acknowledgements

We thank Suresh Krishna for translating Miellou's paper
on chaotic iterations from French into English, and Ed
Wang for explaining the subtleties of lattice theory. We
also thank Chu-Cheow Lim, Ed Wang, Luigi Semenzato
and Kathy Yelick for their comments on various drafts
of this paper.

References

[Baudet, 1978] Gerard M. Baudet. Asynchronous iter-
ative methods for multiprocessors. Journal of the
ACM, 25(2):226-244, April 1978.

[Chazan and Miranker, 1969] D. Chazan and W. Mi-
ranker. Chaotic relaxation. Linear Algebra and its
Applications, 2:199-222, 1969.

[Franz Inc., 1990] Franz Inc. Allegro CLiP Manual, re-
lease 3.0.3 edition, March 1990.

[Guesgen, 1989] Hans Werner Guesgen. CONS AT: A
System for Constraint Satisfaction. Research Notes

in Artificial Intelligence. Morgan Kaufmann, San Ma-
teo, California, 1989.

[Ho, 1993] Kinson Ho. High-level abstractions for sym-
bolic parallel programming. PhD thesis, Computer
Science Division (EECS), University of California,
Berkeley, California, 1993. To appear.

[Horn, 1986] Berthold Klaus Paul Horn. Robot Vision.
MIT Press, Cambridge, Massachusetts, 1986.

[Kasif and Rosenfeld, 1983] Simon Kasif and Azriel
Rosenfeld. The fixed points of images and scenes. In
Proceedings CVPR '83: IEEE Computer Society Con-
ference on Computer Vision and Pattern Recognition,
pages 454-456, Washington, DC, June 1983.

[Kasif, 1990] Simon Kasif. On the parallel complexity of
discrete relaxation in constraint satisfaction networks.
Artificial Intelligence, 45(3):275-286, October 1990.

[Miellou, 1975] Jean-Claude Miellou. Iterations chao-
tigues a retards; etudes de la convergence dans le
cas d'espaes partiellement ordonnes (Chaotic itera-
tions with delay; studies of convergence for the case
of partially ordered spaces). Comptes Rendus Heb-
dom ad aires des Seances De L 'Academic des Sciences,
280, Series A(4):233~236, January 1975. In French.

[Parker, 1987] D. Stott Parker. Partial order program-
ming. Technical Report CSD-870067, Computer Sci-
ence Department, University of California, Los Ange-
les, California, December 1987.

[PohIlmann, 1991] Werner Pohlmann. A fixed point ap-
proach to parallel discrete event simulation. Acta In-
formatica, 28(7):611-629, October 1991.

[Rosenfeld et ai, 1976] Azriel Rosenfeld, Robert A.
Hummel, and Steven W. Zucker. Scene labeling by re-
laxation operations. IEEE Transactions on Systems,
Man and Cybernetics, 6(6):420-433, June 1976.

[Schmidt, 1986] David A. Schmidt. Denotational Se-
mantics: A Methodology for Language Development.
Allyn and Bacon, Boston, Massachusetts, 1986.

[Stoy, 1977] Joseph E. Stoy. Denotational Semantics:
The Scott-Strachey Approach to Programming Lan-
guage Theory. MIT Press, Cambridge, Massachusetts,
1977.

[Tanaka and Uzuhara, 1990]
Tomoyuki Tanaka and Shigeru Uzuhara. Multipro-
cessor Common Lisp on TOP-1. In Proceedings of the
Second IEEE Symposium on Parallel and Distributed
Processing, Dallas, Texas, December 1990.

[Waltz, 1972] D. L. Waltz. Generating semantic descrip-
tions from drawings of scenes with shadows. Techni-
cal Report AI-TR-271, MIT Laboratory for Computer
Science, Cambridge, Massachusetts, 1972.

[Zorn et al., 1989] Benjamin Zorn, Kinson Ho, James
Larus, Luigi Semenzato, and Paul Hilfinger. Multi-
processing extensions in Spur Lisp. |IEEE Software,
6(4):41-49, July 1989.

Ho, Hilfinger, and Guesgen 273

