
Optimist ic Parallel Discrete Relaxation*
Kinson Ho and Paul N. Hi l f inger

Computer Science Division
University of California at Berkeley, U. S. A.

Hans W. Guesgen
Computer Science Department

University of Auckland, New Zealand
{ho,hilfingr}@cs.berkeley.edu, hans@cs.auckland.ac.nz

Abst rac t

Discrete relaxation is frequently used to com­
pute the fixed point of a discrete system

where / is monotonic with respect
to some partial order Given an appropriate
init ial value for X, discrete relaxation repeats
the assignment until a fixed point
for / is found. Monotonicity of / with respect
to is a sufficient (but in general not neces-
sary) condition for iterative, hill-climbing tech­
niques such as discrete relaxation to find the
f ixed point of / .
In this paper we introduce monotonic asyn-
chronous iteration as a novel way of imple­
menting parallel discrete relaxation in prob­
lem domains for which monotonicity is a neces-
sary condition. This is an optimistic technique
that maintains monotonicity without l imit ing
concurrency, resulting in good parallel perfor­
mance. We illustrate this technique with the
parallel implementation of a constraint satisfac­
tion system that computes globally consistent
solutions, and present performance numbers for
experiments on a shared-memory implementa­
t ion. The performance numbers show that it is
indeed possible to obtain a reasonable speedup
when parallelizing global constraint satisfac­
t ion. We believe that monotonic asynchronous
iteration is applicable to parallel discrete relax­
ation in general.

1 In t roduc t i on

Discrete relaxation is frequently used to compute the
fixed point of a discrete system where / is
monotonic with respect to some partial order <. Given

*Ho and Hilfinger are supported by NSF Grant CCR-84-
51213. Guesgen performed part of this work while at the Ger­
man National Research Center for Computer Science (GMD) .
in St. Augustin, Germany, and the International Computer
Science Institute in Berkekey, California. At the G M D he
was supported by the German Federal Ministry for Research
and Technology (B M F T) within the joint projects T E X - B
(grant ITW8506D) and TASSO (grant ITW8900A7).

an appropriate init ial value for X, discrete relaxation re­
peats the assignment until a fixed point for
/ is found. Monotonicity of / with respect to < is a suf­
ficient (but in general not necessary) condition for itera­
tive, hill-climbing techniques such as discrete relaxation
to find the fixed point of / [Parker, 1987].

Discrete relaxation is widely used in the solution of
constraint satisfaction problems (CSPs), and many par­
allel implementations of discrete relaxation for CSPs
have been reported [Kasif and Rosenfeld, 1983; Rosen-
feld et a/., 1976]. These attempts have all focused on
CSP solvers that compute locally consistent (arc con­
sistent) solutions, which are relatively straightforward
to parallelize as the computations are inherently mono­
tonic. On the other hand, discrete relaxation algorithms
used in CSP solvers that compute globally consistent so­
lutions are very difficult to parallelize because for this
class of problems, monotonicity is a necessary correct­
ness condition that is not automatically satisfied. The
need to maintain monotonicity (for correctness) often
l imits the amount of concurrency available in a paral­
lel implementation, degrading the performance signifi­
cantly.

In this paper we introduce monotonic asynchronous
iteration as a novel way of implementing parallel dis-
crete relaxation in problem domains for which mono­
tonicity is a necessary condition. This is an optimistic
technique that maintains monotonicity without l imit ing
concurrency, resulting in good parallel performance. We
illustrate this technique with the parallel implementa­
tion of CONSAT [Guesgen, 1989], a constraint satisfac­
tion system that computes globally consistent solutions,
and describes an experiment on a shared-memory im­
plementation. The performance numbers show that it is
indeed possible to obtain a reasonable speedup when par­
allelizing global constraint satisfaction, and thus proving
that Kasif's conjecture is correct [1990]. We believe that
monotonic asynchronous iteration is applicable to paral­
lel discrete relaxation in general.

2 Discrete Relaxat ion

Consider the problem of finding the fixed point of a dis­
crete system . For our purposes, the system
has the following properties:

268 Constraint Satisfaction Problems

Ho, Hilfinger, and Guesgen 269

is considerable freedom in applying application-specific
scheduling strategies for good performance.

3 Example: C O N S A T
CONSAT is a system for the definition and satisfaction
of constraints in arbitrary finite discrete domains. A
constraint consists of a set of variables and a relation
among the variables, and a constraint network is a set
of constraints connected by common variables. A glob-
ally consistent solution of a constraint network is a tuple
of values, one per variable of the network, that satisfies
all the constraints of the network simultaneously. CON-
SAT is a global CSP solver whose constraint satisfaction
technique is based on filtering [Waltz, 1972], i.e., on the
successive deletion of inconsistent values from the set
of potential values for the variables. Unlike traditional
filtering algorithms, CONSAT uses values that are asso­
ciated with some additional information (called tags) for
maintaining interrelationships among values (of different
variables). In the following we give an informal explana­
tion of how CONSAT modifies local constraint propaga­
tion, a technique commonly used to compute locally con­
sistent solutions, with tagging to compute the globally
consistent solutions of a constraint network. As global
constraint satisfaction problems over finite domains are
generally NP-complete, the algorithm used by CONSAT
is exponential in the worst case. A more formal treat­
ment of CONSAT is given elsewhere [Guesgen, 1989].

Cons t ra in t N e t w o r k Examp le Figure 1 defines con­
straint network A, which wil l be used in the examples
throughout this paper. There are three variables (Va,
Vb, Vc) and six constraints (C1-C6). For example, con­
straint C1 restricts the possible values of Va to R or Y,
and constraint C4 restricts the values of (Va,Vb) to one
of the combinations (R,G) or (R,B). Va and Vb are called
the adjacent variables of constraint C4. (A constraint
may be adjacent to more than two variables, i.e., we do
not restrict ourselves to binary constraints.) The steps
of CONSAT as it computes the global solutions of con­
straint network A are shown in Figure 2. Details of the
algorithm used may be found elsewhere [Guesgen, 1989].

Figure 1: Constraint Network A: Variables are repre-
sented by circles and constraints by rectangles. An edge
between a circle and a rectangle means that the corre-
sponding variable belongs to the constraint represented
by the rectangle.

Tagged Values For any variable of a constraint net­
work, the potential values are associated with additional
information called tags, and tagged values (of different
variables) with the same fu l l tag form a global solution
of the constraint network. For a constraint network of

270 Constraint Satisfaction Problems

Figure 2: Activations of constraint network A: Each con­
straint being activated (leftmost column) is shown with
the feasible sets of its adjacent variables after its activa­
tion. An "* " at the end of a variable means that it has
not been changed in the current activation. The feasible
set of any variable non-adjacent to the current constraint
can be found by searching backwards from the current
activation. (Componentwise unification of full tags is the
key idea behind the algorithm.)

m constraints, each full tag is an m-tuple, where the
r th component (the r th subtag) indicates the tuple in
the r t h constraint that is part of the global solution.
(For example, in constraint C4 of Figure 1 the tuple
(R,B) corresponds to the subtag 2.) The special symbol
"-" is the wildcard character for subtags and indicates
that a tuple for the corresponding constraint has not
been chosen. A subtag with a tuple number is said to
be determined, while one with the special symbol "-"
is said to be undetermined. As an example, consider
the global solutions of constraint network A shown in
Figure 2. The two solutions (Va,Vb,Vc) are (R,G,B)
with full tag (1 , 1 , 1 , 1 , 1 , 1) and (R,B,G) with full tag
(1 , 3 , 3 , 2 , 2 , 2) . An intuitive explanation of the use of
tags for constraint network A is given in Figure 3.

F i l t e r i n g of Tagged Values The feasible set of a vari­
able contains its current set of potential (tagged) values,
and is initialized to the special value Unconstrained,
meaning the variable may take any value from the do­
main under consideration. The filtering function / of
the constraint network uses local propagation of tagged
values to eliminate inconsistent values from the feasi­
ble sets, and replaces undetermined subtags with deter­
mined subtags. Guesgen showed in his thesis that filter­
ing of tagged values is guaranteed to terminate with the
globally consistent solutions of a constraint network in
a finite number of steps provided that it is fair [1989].
This means each constraint is evaluated (or activated)
at least once, and if a constraint changes the feasible
set of any adjacent variable during filtering, other con­
straints adjacent to the modified variable have to be re-
activated. (This is not the usual definition of fairness
in the parallel programming literature.) Upon termina­
tion of local propagation, each tuple of values—one per
variable—with identical full tags form a globally consis­
tent solution of the constraint network (see Figure 2). If
the feasible set of any variable becomes empty, there is
no solution for the constraint network. Local propaga­
tion computes the fixed point of the filtering function /
of the constraint network.

Ho, Hilflnger, and Guesgen 271

Figure 3: Globally Consistent Solutions of Constraint
Network A

Intuitively, filtering either eliminates a tagged value if
it is inconsistent, or replaces one or more undetermined
subtags of a tagged value by determined subtags. A de-
termined subtag is never replaced by an undetermined
subtag or another determined subtag. A more formal ex­
planation of why filtering of tagged values is monotonic

with respect to < wil l be given elsewhere [Ho, 1993].

C O N S A T as D isc re te Re laxa t i on In this section
we show that CONSAT is a special case of discrete re­
laxation as defined in Section 2.

• CONSAT computes the fixed point of the discrete
system X = f(X) for the non-deterministic / that
corresponds to the filtering function of the entire
constraint network. This fixed point corresponds to
the set of all the globally consistent solutions of the
constraint network.

• / = { 1 , . . . , n) is the set of all the variables of the
constraint network.

• / may be decomposed into component functions fc
for constraints is the filtering
function of constraint c, and eliminates value com­
binations inconsistent with c from the feasible sets
of its adjacent variables. Without loss of generality,
we assume that a constraint may be uniquely iden­
tified by its set of adjacent variables. For example,
/{2,3,5} is the filtering function of the constraint that
is adjacent to variables 2, 3 and 5. fc only depends
on the values of variables and fc(X) only dif­
fers from X for the same set of variables. The new
value of any such variable i is given by

• For Each is
the feasible set of variable i.

• A"0 is the init ial state of the feasible sets of all the
variables. Al l its components have the special value
Unconstrained.

• The partial order < on D has been defined on
page 4.

We have shown that CONSAT is a special case of dis-
crete relaxation, and have defined an application-specific
monotonicity test between successive states of the relax­
ation. Consequently, an efficient parallel implementation
of CONSAT may be obtained by using monotonic asyn­
chronous iteration.

Per fo rmance We implemented parallel CONSAT us­
ing CLiP [Franz Inc., 1990], a commercial imple­
mentation of the multiprocessing features of SPUR
Lisp [Zorn et al., 1989] that currently runs on the shared
memory Sequent Symmetry multiprocessor. To esti­
mate the performance of parallel CONSAT in the ab­
sence of garbage collection—an upper bound on paral­
lel performance—we define speedup as the ratio of real
time excluding garbage collection of the sequential ver­
sion relative to the real time (excluding garbage collec­
tion) of the parallel version on n processors. This def­
inition is chosen because the current CLiP implemen­
tation uses a sequential garbage collector that stops all
but one processor each time a collection occurs. We feel
our definition better models the performance of parallel
CONSAT in a parallel Lisp system with a more realis­
tic garbage collector, such as the concurrent collector in
TOP-1 Common Lisp [Tanaka and Uzuhara, 1990].

We measured the parallel performance of CONSAT
for a problem in machine vision, which assigns three-
dimensional edge labelings (convex, concave, or occlud-

ing) to line drawings in a polyhedral world of trihedral
vertices [Horn, 1986]. The constraints restrict the la­
beling of edges meeting at a vertex to be the few com­
binations physically possible. In addition, each edge is
constrained to have the same label at both ends (where
it meets other edges). The particular scene (constraint
network) chosen, Stair5, has 33 variables and 56 con­
straints (36 2-variable and 20 3-variable constraints).

Table 1: Performance of CONSAT for Stair5: P is the
number of processors, and Seq is the sequential imple­
mentation. Al l times are real time in seconds, no gc is
time without garbage collection, gc is time for garbage
collection, and T is the total time. Speedup is based on
times excluding garbage collection. Both sequential and
parallel versions are compiled with the highest optimiza­
tion setting for speed. Steps is the number of discrete
relaxation steps, including non-monotonic ones. Abort
is the number of non-monotonic steps (re-executed).

The results for Stair5 are summarized in Table 1.
Speedup ranges between 0.9 on one processor to 4.6 on
six processors. The one processor time is within 5% of
the sequential time, showing that the parallel implemen­
tation is reasonably efficient. The speedup is less than
linear because a small number of constraint activations
(relaxation steps) have to be re-executed because they vi­
olate monotonicity. Serial bottlenecks in the allocation
routines of the current CLiP implementation also pre-
vent parallel CONSAT from achieving better speedup.

An earlier parallel implementation of CONSAT that
performs the update to the feasible sets (X) in a single
critical section for each constraint activation has virtu­
ally no speedup because contention for X serializes all
the concurrent constraint activations. The current im­
plementation based on monotonic asynchronous itera­
tion performs significantly better.

4 Related Work in Paral lel Relaxat ion

The formulation of asynchronous iterations in Section 2
is similar to generalized iterations defined by Pohlmann
in the context of parallel discrete event simulation [1991].
Generalized iterations operate in the domain of infinite
streams of elements, each of which corresponds to an
event over time in the system being simulated.

Parallel relaxation is also used by various schemes for
solving systems of equations X <— f(X) in the domain
of real numbers in parallel, including chaotic relaxations
defined by Chazan and Miranker [1969], asynchronous it­
erations defined by Baudet [1978] and chaotic iterations

272 Constraint Satisfaction Problems

wi th delay defined by Mie l lou [1975]. In these systems
/ is made up of component funct ions f c , and the state
X of the f ixed-po in t compu ta t i on may be decomposed
in to a set of (po ten t ia l l y d is jo in t) components t ha t are
computed by different fc funct ions concurrent ly. Each
f c may be computed using mul t ip le previous states, w i t h
a different state for each component of X, to m in im ize
the amoun t of synchronizat ion required. These schemes
are op t im ized for the doma in of real numbers by using
the propert ies of real numbers, and their convergence
cr i ter ia are somewhat analogous to the test for mono-
ton ic i t y used in monoton ic asynchronous i terat ions. Our
fo rmu la t i on of asynchronous i terat ions for paral lel d is-
crete re laxat ion is a domain- independent general izat ion
of these paral le l i te ra t ion schemes. In add i t i on , the use
of an op t im is t i c test for monoton ic i t y for improved par­
al lel performance is unique to our approach.

5 Conclusion
In th is paper we proposed monoton ic asynchronous i t ­
erat ion as a correct and efficient way of imp lement ing
paral lel discrete re laxat ion for systems for which mono­
ton ic i ty is a necessary correctness cond i t ion . Mono­
tonic asynchronous i te ra t ion uses an op t im is t i c scheme
to compute a possible next state of the system. Th i s
op t im is t i c scheme is h igh ly efficient bu t is not necessar­
i ly monoton ic (i .e., correct) . An appl icat ion-specif ic test
for mono ton ic i t y is then appl ied to the computed state.
I f the test succeeds, the state t rans i t ion is made (a tom-
ica l ly) . Otherwise, the compu ta t i on is repeated using
the current state. We have appl ied our technique to
the paral le l imp lemen ta t i on of a constra int sat isfact ion
system tha t computes g loba l ly consistent solut ions, for
which mono ton ic i t y is a necessary correctness condi t ion
tha t is not au tomat i ca l l y satisf ied. We believe monoton ic
asynchronous i te ra t ion is appl icable to paral le l discrete
re laxat ion in general. I t w i l l be interest ing to see i f this
appl icat ion-specif ic mono ton ic i t y test is easy to derive
for other discrete re laxat ion problems.

6 Acknowledgements
We thank Suresh Kr i shna for t rans la t ing Mie l lou 's paper
on chaotic i terat ions f r o m French in to Engl ish, and Ed
Wang for exp la in ing the subtlet ies of la t t ice theory. We
also thank Chu-Cheow L i m , Ed Wang , Lu ig i Semenzato
and K a t h y Yelick for their comments on various drafts
of th is paper.

References
[Baudet , 1978] Gerard M. Baudet . Asynchronous iter­

at ive methods for mult iprocessors. Journa l of the
A C M , 25(2) :226-244, A p r i l 1978.

[Chazan and M i ranker , 1969] D. Chazan and W. M i -
ranker. Chaot ic re laxat ion . L inear Algebra and its
Appl icat ions, 2:199-222, 1969.

[Franz Inc. , 1990] Franz Inc. Al legro C L i P Manua l , re-
lease 3.0.3 ed i t i on , March 1990.

[Guesgen, 1989] Hans Werner Guesgen. CONS A T : A
System f o r Const ra in t Sat isfact ion. Research Notes

in Ar t i f i c ia l Intel l igence. Morgan K a u f m a n n , San M a ­
teo, Ca l i fo rn ia , 1989.

[Ho, 1993] K inson Ho. High-level abstractions f o r sym­
bolic para l le l programming. P h D thesis, Compute r
Science D iv is ion (EECS) , Univers i ty of Ca l i fo rn ia ,
Berkeley, Ca l i fo rn ia , 1993. To appear.

[Horn , 1986] Ber tho ld Klaus Paul Horn . Robot Vision.
M I T Press, Cambr idge, Massachusetts, 1986.

[Kasi f and Rosenfeld, 1983] S imon Kasi f and Azr ie l
Rosenfeld. The f ixed points of images and scenes. In
Proceedings C V P R '83: I E E E Computer Society Con-
ference on Computer Vision and Pat te rn Recognition,
pages 454-456, Wash ing ton , D C , June 1983.

[Kasif, 1990] S imon Kasif . On the paral le l complex i ty of
discrete re laxat ion in constra int sat isfact ion networks.
A r t i f i c i a l Intel l igence, 45(3) :275-286, October 1990.

[Mie l lou , 1975] Jean-Claude M ie l l ou . I terat ions chao-
tiques a retards; etudes de la convergence dans le
cas d'espaes par t ie l lement ordonnes (Chaot ic i tera­
t ions w i t h delay; studies of convergence for the case
of par t ia l l y ordered spaces). Comptes Rendus Heb-
dom ad aires des Seances De L 'Academic des Sciences,
280, Series A(4):233~236, January 1975. In French.

[Parker, 1987] D. S to t t Parker. Par t ia l order p rogram­
m i n g . Technical Repor t CSD-870067, Compute r Sci­
ence Depar tment , Univers i ty of Ca l i fo rn ia , Los Ange­
les, Ca l i fo rn ia , December 1987.

[Poh lmann, 1991] Werner Poh lmann . A f ixed po in t ap­
proach to paral le l discrete event s imu la t i on . Acta I n -
fo rmat i ca , 28(7) :611-629, October 1991.

[Rosenfeld et a i , 1976] Azr ie l Rosenfeld, Rober t A.
H u m m e l , and Steven W. Zucker. Scene label ing by re­
laxa t ion operat ions. I E E E Transact ions on Systems,
M a n and Cybernetics, 6(6) :420-433, June 1976.

[Schmidt , 1986] Dav id A. Schmid t . Denota t iona l Se-
mant ics : A Methodology f o r Language Development.
A l l y n and Bacon, Boston, Massachusetts, 1986.

[Stoy, 1977] Joseph E. Stoy. Denota t iona l Semantics:
The Scott-Strachey Approach to Programming Lan­
guage Theory. M I T Press, Cambr idge , Massachusetts,
1977.

[Tanaka and Uzuhara, 1990]
T o m o y u k i Tanaka and Shigeru Uzuhara. Mu l t i p ro ­
cessor C o m m o n Lisp on T O P - 1 . In Proceedings of the
Second I E E E Symposium on Para l le l and Distr ibuted
Processing, Dal las, Texas, December 1990.

[Wal tz , 1972] D. L. Wa l t z . Generat ing semantic descrip­
t ions f r o m drawings of scenes w i t h shadows. Techni­
cal Repor t A I - T R - 2 7 1 , M I T Labora to ry for Computer
Science, Cambr idge , Massachusetts, 1972.

[Zorn et a l . , 1989] Ben jamin Zorn , K inson Ho, James
Larus, Lu ig i Semenzato, and Paul Hi l f inger. M u l t i ­
processing extensions in Spur Lisp. I E E E Software,
6(4) :41-49, Ju ly 1989.

Ho, Hilfinger, and Guesgen 273

