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Abst rac t 

Discrete relaxation is frequently used to com­
pute the fixed point of a discrete system 

where / is monotonic with respect 
to some partial order Given an appropriate 
init ial value for X, discrete relaxation repeats 
the assignment until a fixed point 
for / is found. Monotonicity of / with respect 
to is a sufficient (but in general not neces-
sary) condition for iterative, hill-climbing tech­
niques such as discrete relaxation to find the 
f ixed point of / . 
In this paper we introduce monotonic asyn-
chronous iteration as a novel way of imple­
menting parallel discrete relaxation in prob­
lem domains for which monotonicity is a neces-
sary condition. This is an optimistic technique 
that maintains monotonicity without l imit ing 
concurrency, resulting in good parallel perfor­
mance. We illustrate this technique with the 
parallel implementation of a constraint satisfac­
tion system that computes globally consistent 
solutions, and present performance numbers for 
experiments on a shared-memory implementa­
t ion. The performance numbers show that it is 
indeed possible to obtain a reasonable speedup 
when parallelizing global constraint satisfac­
t ion. We believe that monotonic asynchronous 
iteration is applicable to parallel discrete relax­
ation in general. 

1 In t roduc t i on 

Discrete relaxation is frequently used to compute the 
fixed point of a discrete system where / is 
monotonic with respect to some partial order <. Given 
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an appropriate init ial value for X, discrete relaxation re­
peats the assignment until a fixed point for 
/ is found. Monotonicity of / with respect to < is a suf­
ficient (but in general not necessary) condition for itera­
tive, hill-climbing techniques such as discrete relaxation 
to find the fixed point of / [Parker, 1987]. 

Discrete relaxation is widely used in the solution of 
constraint satisfaction problems (CSPs), and many par­
allel implementations of discrete relaxation for CSPs 
have been reported [Kasif and Rosenfeld, 1983; Rosen-
feld et a/., 1976]. These attempts have all focused on 
CSP solvers that compute locally consistent (arc con­
sistent) solutions, which are relatively straightforward 
to parallelize as the computations are inherently mono­
tonic. On the other hand, discrete relaxation algorithms 
used in CSP solvers that compute globally consistent so­
lutions are very difficult to parallelize because for this 
class of problems, monotonicity is a necessary correct­
ness condition that is not automatically satisfied. The 
need to maintain monotonicity (for correctness) often 
l imits the amount of concurrency available in a paral­
lel implementation, degrading the performance signifi­
cantly. 

In this paper we introduce monotonic asynchronous 
iteration as a novel way of implementing parallel dis-
crete relaxation in problem domains for which mono­
tonicity is a necessary condition. This is an optimistic 
technique that maintains monotonicity without l imit ing 
concurrency, resulting in good parallel performance. We 
illustrate this technique with the parallel implementa­
tion of CONSAT [Guesgen, 1989], a constraint satisfac­
tion system that computes globally consistent solutions, 
and describes an experiment on a shared-memory im­
plementation. The performance numbers show that it is 
indeed possible to obtain a reasonable speedup when par­
allelizing global constraint satisfaction, and thus proving 
that Kasif's conjecture is correct [1990]. We believe that 
monotonic asynchronous iteration is applicable to paral­
lel discrete relaxation in general. 

2 Discrete Relaxat ion 

Consider the problem of finding the fixed point of a dis­
crete system . For our purposes, the system 
has the following properties: 
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is considerable freedom in applying application-specific 
scheduling strategies for good performance. 

3 Example: C O N S A T 
CONSAT is a system for the definition and satisfaction 
of constraints in arbitrary finite discrete domains. A 
constraint consists of a set of variables and a relation 
among the variables, and a constraint network is a set 
of constraints connected by common variables. A glob-
ally consistent solution of a constraint network is a tuple 
of values, one per variable of the network, that satisfies 
all the constraints of the network simultaneously. CON-
SAT is a global CSP solver whose constraint satisfaction 
technique is based on filtering [Waltz, 1972], i.e., on the 
successive deletion of inconsistent values from the set 
of potential values for the variables. Unlike traditional 
filtering algorithms, CONSAT uses values that are asso­
ciated with some additional information (called tags) for 
maintaining interrelationships among values (of different 
variables). In the following we give an informal explana­
tion of how CONSAT modifies local constraint propaga­
tion, a technique commonly used to compute locally con­
sistent solutions, with tagging to compute the globally 
consistent solutions of a constraint network. As global 
constraint satisfaction problems over finite domains are 
generally NP-complete, the algorithm used by CONSAT 
is exponential in the worst case. A more formal treat­
ment of CONSAT is given elsewhere [Guesgen, 1989]. 

Cons t ra in t N e t w o r k Examp le Figure 1 defines con­
straint network A, which wil l be used in the examples 
throughout this paper. There are three variables (Va, 
Vb, Vc) and six constraints (C1-C6). For example, con­
straint C1 restricts the possible values of Va to R or Y, 
and constraint C4 restricts the values of (Va,Vb) to one 
of the combinations (R,G) or (R,B). Va and Vb are called 
the adjacent variables of constraint C4. (A constraint 
may be adjacent to more than two variables, i.e., we do 
not restrict ourselves to binary constraints.) The steps 
of CONSAT as it computes the global solutions of con­
straint network A are shown in Figure 2. Details of the 
algorithm used may be found elsewhere [Guesgen, 1989]. 

Figure 1: Constraint Network A: Variables are repre-
sented by circles and constraints by rectangles. An edge 
between a circle and a rectangle means that the corre-
sponding variable belongs to the constraint represented 
by the rectangle. 

Tagged Values For any variable of a constraint net­
work, the potential values are associated with additional 
information called tags, and tagged values (of different 
variables) with the same fu l l tag form a global solution 
of the constraint network. For a constraint network of 
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Figure 2: Activations of constraint network A: Each con­
straint being activated (leftmost column) is shown with 
the feasible sets of its adjacent variables after its activa­
tion. An "* " at the end of a variable means that it has 
not been changed in the current activation. The feasible 
set of any variable non-adjacent to the current constraint 
can be found by searching backwards from the current 
activation. (Componentwise unification of full tags is the 
key idea behind the algorithm.) 

m constraints, each full tag is an m-tuple, where the 
r th component (the r th subtag) indicates the tuple in 
the r t h constraint that is part of the global solution. 
(For example, in constraint C4 of Figure 1 the tuple 
(R,B) corresponds to the subtag 2.) The special symbol 
"-" is the wildcard character for subtags and indicates 
that a tuple for the corresponding constraint has not 
been chosen. A subtag with a tuple number is said to 
be determined, while one with the special symbol "-" 
is said to be undetermined. As an example, consider 
the global solutions of constraint network A shown in 
Figure 2. The two solutions (Va,Vb,Vc) are (R,G,B) 
with full tag ( 1 , 1 , 1 , 1 , 1 , 1 ) and (R,B,G) with full tag 
( 1 , 3 , 3 , 2 , 2 , 2 ) . An intuitive explanation of the use of 
tags for constraint network A is given in Figure 3. 

F i l t e r i n g of Tagged Values The feasible set of a vari­
able contains its current set of potential (tagged) values, 
and is initialized to the special value Unconstrained, 
meaning the variable may take any value from the do­
main under consideration. The filtering function / of 
the constraint network uses local propagation of tagged 
values to eliminate inconsistent values from the feasi­
ble sets, and replaces undetermined subtags with deter­
mined subtags. Guesgen showed in his thesis that filter­
ing of tagged values is guaranteed to terminate with the 
globally consistent solutions of a constraint network in 
a finite number of steps provided that it is fair [1989]. 
This means each constraint is evaluated (or activated) 
at least once, and if a constraint changes the feasible 
set of any adjacent variable during filtering, other con­
straints adjacent to the modified variable have to be re-
activated. (This is not the usual definition of fairness 
in the parallel programming literature.) Upon termina­
tion of local propagation, each tuple of values—one per 
variable—with identical full tags form a globally consis­
tent solution of the constraint network (see Figure 2). If 
the feasible set of any variable becomes empty, there is 
no solution for the constraint network. Local propaga­
tion computes the fixed point of the filtering function / 
of the constraint network. 
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Figure 3: Globally Consistent Solutions of Constraint 
Network A 

Intuitively, filtering either eliminates a tagged value if 
it is inconsistent, or replaces one or more undetermined 
subtags of a tagged value by determined subtags. A de-
termined subtag is never replaced by an undetermined 
subtag or another determined subtag. A more formal ex­
planation of why filtering of tagged values is monotonic 



with respect to < wil l be given elsewhere [Ho, 1993]. 

C O N S A T as D isc re te Re laxa t i on In this section 
we show that CONSAT is a special case of discrete re­
laxation as defined in Section 2. 

• CONSAT computes the fixed point of the discrete 
system X = f(X) for the non-deterministic / that 
corresponds to the filtering function of the entire 
constraint network. This fixed point corresponds to 
the set of all the globally consistent solutions of the 
constraint network. 

• / = { 1 , . . . , n) is the set of all the variables of the 
constraint network. 

• / may be decomposed into component functions fc 
for constraints is the filtering 
function of constraint c, and eliminates value com­
binations inconsistent with c from the feasible sets 
of its adjacent variables. Without loss of generality, 
we assume that a constraint may be uniquely iden­
tified by its set of adjacent variables. For example, 
/{2,3,5} is the filtering function of the constraint that 
is adjacent to variables 2, 3 and 5. fc only depends 
on the values of variables and fc(X) only dif­
fers from X for the same set of variables. The new 
value of any such variable i is given by 

• For Each is 
the feasible set of variable i. 

• A"0 is the init ial state of the feasible sets of all the 
variables. Al l its components have the special value 
Unconstrained. 

• The partial order < on D has been defined on 
page 4. 

We have shown that CONSAT is a special case of dis-
crete relaxation, and have defined an application-specific 
monotonicity test between successive states of the relax­
ation. Consequently, an efficient parallel implementation 
of CONSAT may be obtained by using monotonic asyn­
chronous iteration. 

Per fo rmance We implemented parallel CONSAT us­
ing CLiP [Franz Inc., 1990], a commercial imple­
mentation of the multiprocessing features of SPUR 
Lisp [Zorn et al., 1989] that currently runs on the shared 
memory Sequent Symmetry multiprocessor. To esti­
mate the performance of parallel CONSAT in the ab­
sence of garbage collection—an upper bound on paral­
lel performance—we define speedup as the ratio of real 
time excluding garbage collection of the sequential ver­
sion relative to the real time (excluding garbage collec­
tion) of the parallel version on n processors. This def­
inition is chosen because the current CLiP implemen­
tation uses a sequential garbage collector that stops all 
but one processor each time a collection occurs. We feel 
our definition better models the performance of parallel 
CONSAT in a parallel Lisp system with a more realis­
tic garbage collector, such as the concurrent collector in 
TOP-1 Common Lisp [Tanaka and Uzuhara, 1990]. 

We measured the parallel performance of CONSAT 
for a problem in machine vision, which assigns three-
dimensional edge labelings (convex, concave, or occlud-

ing) to line drawings in a polyhedral world of trihedral 
vertices [Horn, 1986]. The constraints restrict the la­
beling of edges meeting at a vertex to be the few com­
binations physically possible. In addition, each edge is 
constrained to have the same label at both ends (where 
it meets other edges). The particular scene (constraint 
network) chosen, Stair5, has 33 variables and 56 con­
straints (36 2-variable and 20 3-variable constraints). 

Table 1: Performance of CONSAT for Stair5: P is the 
number of processors, and Seq is the sequential imple­
mentation. Al l times are real time in seconds, no gc is 
time without garbage collection, gc is time for garbage 
collection, and T is the total time. Speedup is based on 
times excluding garbage collection. Both sequential and 
parallel versions are compiled with the highest optimiza­
tion setting for speed. Steps is the number of discrete 
relaxation steps, including non-monotonic ones. Abort 
is the number of non-monotonic steps (re-executed). 

The results for Stair5 are summarized in Table 1. 
Speedup ranges between 0.9 on one processor to 4.6 on 
six processors. The one processor time is within 5% of 
the sequential time, showing that the parallel implemen­
tation is reasonably efficient. The speedup is less than 
linear because a small number of constraint activations 
(relaxation steps) have to be re-executed because they vi­
olate monotonicity. Serial bottlenecks in the allocation 
routines of the current CLiP implementation also pre-
vent parallel CONSAT from achieving better speedup. 

An earlier parallel implementation of CONSAT that 
performs the update to the feasible sets (X) in a single 
critical section for each constraint activation has virtu­
ally no speedup because contention for X serializes all 
the concurrent constraint activations. The current im­
plementation based on monotonic asynchronous itera­
tion performs significantly better. 

4 Related Work in Paral lel Relaxat ion 

The formulation of asynchronous iterations in Section 2 
is similar to generalized iterations defined by Pohlmann 
in the context of parallel discrete event simulation [1991]. 
Generalized iterations operate in the domain of infinite 
streams of elements, each of which corresponds to an 
event over time in the system being simulated. 

Parallel relaxation is also used by various schemes for 
solving systems of equations X <— f(X) in the domain 
of real numbers in parallel, including chaotic relaxations 
defined by Chazan and Miranker [1969], asynchronous it­
erations defined by Baudet [1978] and chaotic iterations 
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wi th delay defined by Mie l lou [1975]. In these systems 
/ is made up of component funct ions f c , and the state 
X of the f ixed-po in t compu ta t i on may be decomposed 
in to a set of (po ten t ia l l y d is jo in t ) components t ha t are 
computed by different fc funct ions concurrent ly. Each 
f c may be computed using mul t ip le previous states, w i t h 
a different state for each component of X, to m in im ize 
the amoun t of synchronizat ion required. These schemes 
are op t im ized for the doma in of real numbers by using 
the propert ies of real numbers, and their convergence 
cr i ter ia are somewhat analogous to the test for mono-
ton ic i t y used in monoton ic asynchronous i terat ions. Our 
fo rmu la t i on of asynchronous i terat ions for paral lel d is-
crete re laxat ion is a domain- independent general izat ion 
of these paral le l i te ra t ion schemes. In add i t i on , the use 
of an op t im is t i c test for monoton ic i t y for improved par­
al lel performance is unique to our approach. 

5 Conclusion 
In th is paper we proposed monoton ic asynchronous i t ­
erat ion as a correct and efficient way of imp lement ing 
paral lel discrete re laxat ion for systems for which mono­
ton ic i ty is a necessary correctness cond i t ion . Mono­
tonic asynchronous i te ra t ion uses an op t im is t i c scheme 
to compute a possible next state of the system. Th i s 
op t im is t i c scheme is h igh ly efficient bu t is not necessar­
i ly monoton ic ( i .e., correct) . An appl icat ion-specif ic test 
for mono ton ic i t y is then appl ied to the computed state. 
I f the test succeeds, the state t rans i t ion is made (a tom-
ica l ly ) . Otherwise, the compu ta t i on is repeated using 
the current state. We have appl ied our technique to 
the paral le l imp lemen ta t i on of a constra int sat isfact ion 
system tha t computes g loba l ly consistent solut ions, for 
which mono ton ic i t y is a necessary correctness condi t ion 
tha t is not au tomat i ca l l y satisf ied. We believe monoton ic 
asynchronous i te ra t ion is appl icable to paral le l discrete 
re laxat ion in general. I t w i l l be interest ing to see i f this 
appl icat ion-specif ic mono ton ic i t y test is easy to derive 
for other discrete re laxat ion problems. 
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