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Abstract: In most of the IoT applications, exchange of data 

among various physical and virtual IoT devices having different 

data flows, energy and delay constraints is a challenging task in 

such environments. This imposes constraints in IoT applications 

at the node, network and application level, and to meet such 

constraints, we propose an adaptive IoT system that adapts to 

different data flows in IoT network having different time and 

energy constraints. The proposed scheme consists of two 

algorithms viz., coarse grain transmission path algorithm for 

low-deadline IoT applications, where time, traffic load and energy 

consumption are considered as the main parameters; and a 

fine-grain algorithm for high-deadline situations, where low 

latency and power constraints are the important performance 

parameters. Finally, the performance of proposed strategy is 

evaluated by simulation. The results of the proposed scheme in 

this paper outperform the existing algorithms in terms of energy, 

power, number of alive nodes and delay. The proposed scheme is 

used for data transmission optimization in delay-sensitive 

resource-constrained IoT applications. 

 

Keywords: Coarse-grain transmission, Data aggregation, 

Edge, Fine-grain transmission, Internet of Things. 

I. INTRODUCTION 

Over the years the Internet of Things (IoT) has gradually 

developed to cater many fields of applications.  IoT comprises 

of large number of nodes capable of sensing data, deployed in 

a large geographical area and edge devices that can 

communicate with the IoT nodes over wireless 

communication link. The IoT nodes are placed in number of 

ways in the network viz., single-hop, multi-hop or mesh or 

grid topology. There are constraints in the IoT ecosystem at 

the node, network and application level, but network lifetime 

is the main constraint in IoT networks.  In resource 

constrained IoT applications, once the network is deployed, it 

is undesirable to replace or recharge IoT nodes. In many 

applications, the replacement of batteries is impracticable. 

The solution for energy efficiency at energy techniques only 

offers a partial solution, therefore, attention has to be paid at 

protocol level as well, where data is considered as one of the 

main parameters that can be managed to conserve energy in 

such systems.  

In IoT applications, more energy is consumed due to 

transmission of data as compared to the local processing of 

data, therefore the data to be transmitted needs to be 

minimized. To design an energy efficient IoT, the main 

 
 Revised Manuscript Received on December 05, 2019. 

Saniya Zahoor, Department of Computer Science and Engineering, NIT 

Srinagar, India, saniyazahoor@nitsri.net 

Roohie Naaz Mir, Department of Computer Science and Engineering, 

NIT Srinagar, India 

 

 

emphasis should be on data aggregation techniques. In 

delay-sensitive energy-constrained IoT applications, in 

addition to power requirements, there are latency constraints 

that need to be met. We have identified scenarios in IoT 

applications based on power and delay constraints and these 

include: power and delay constraints, power constraint and no 

delay constraint, no power constraint and delay constraint, 

and no power and no delay constraints.  

In the low-deadline situations where time, traffic load and 

energy consumption are important design parameters, a 

coarse grain transmission path algorithm is used for meeting 

such constraints in IoT. In high-deadline situation lwhere we 

have low latency and power constraints, a fine-grain 

algorithm is used for meeting such requirements. In this 

paper, we have improved algorithms presented in [1] and 

proposed an adaptive routing mechanisms based on path 

difference degree so as to adapt the different data flows in IoT 

with different time and energy constraints. Comparative 

analysis of these algorithms shows that our proposed 

algorithm gives better results as compared to the algorithms 

proposed in [1].  

The organization of paper is as follows, Section II discusses 

the literature survey, Section III presents the data flows in IoT 

data aggregation, Section IV illustrates the proposed system, 

Section V presents the mathematical proofs, Section VI 

presents the simulation results and Section VII presents the 

conclusions. 

II. LITERATURE SURVEY 

Internet of Things embodies a vision of merging 

heterogeneous objects to establish seamless interactions 

among various logical and physical devices. The logical and 

physical devices in IoT are resource constrained in terms of 

processing, storage and bandwidth. Such an environment 

poses additional challenges to the miniature and unattended 

IoT devices deployed in IoT applications. There are 

numerous constraints in resources which need to be taken care 

of both at the software and hardware level. In addition to the 

resource constraints, there are many limitations due to 

characteristics of an individual node as well, (e.g., limited 

energy), the behavior of the network (e.g., topology change) 

and constraints at the application level (e.g., latency).  

 Further, these IoT devices are typically battery operated; 

as such the one-time deployment can further impose 

constrains on IoT application especially in terms of energy. 

The problem of energy consumption in IoT is a grave issue; 

therefore an efficient energy management is required. 
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 Most of the energy consumption in such resource 

constrained IoT devices occurs because of the RF 

trans-receivers and flash memory components [2]. The local 

processing consumes less energy, than transmitting the data 

for remote processing on edge or some other IoT node [3]. In 

IoT applications that are delay and energy sensitive, it 

becomes a challenge to transmit the data to the sink with low 

delay and energy savings. To address this, research has been 

carried out to address packet delivery ratio and delay[4][5], 

while others address energy and packet error rates [6],[7].  

There has been research in data gathering schemes to 

address the delay and lifetime of the sensor nodes in network. 

The data-centric approach has two main advantages i.e. 

minimum communication overhead and efficient in-network 

processing. In in-network processing, the content moving 

through the network is identifiable by intermediate nodes, 

resulting in increased resource consumption which can be 

managed by efficient data aggregation and compression 

techniques e.g., threshold-sensitive energy-efficient sensor 

network protocol (TEEN) [8]. Several researchers have 

studied the combination of information gathering in a WSN 

by combining routing with in-network compression [9]. The 

type of compression can only be application specific such as 

LEACH protocol [10], distributed source routing [11], 

routing and compression approaches used in prediction based 

monitoring [12] and distributed regression framework for 

model-based compression [13]. 

Predominant work has also been done on comparative 

analysis of data routing algorithms based on performance 

metrics such as network lifetime, robustness, security, delay, 

etc [14][15][16]. The growing research on Internet of things 

show that clustered network has advantages in terms of 

resource conservation. That is why the hierarchical structure 

is widely adopted in IoT that emphasize on real time 

application requirements. On the other hand, due to huge data 

sensing, the communication traffic of IoT applications are 

increasingly growing [17] [18]. 

Data transmission path plays an important role in IoT 

systems that determine how the data is to be communicated 

among the IoT devices. Optimizing transmission of data along 

the communication path provides an efficient way of data 

transmission in wide area IoT networks. Various optimization 

techniques have been adopted viz., Ant optimization [19], 

data transmission for high reliability in IoT environments 

[20], etc. Various Edge based IoT solutions have been 

adopted to provide fast computing on low-resource IoT 

devices. Authors in [21] presents an edge based solution to 

enhance energy conservation at IoT node level via optimal 

data transmission in IoT network. This paper presents 

coarse-grain and fine-grain data transmission algorithms for 

low-deadline and high-deadline situations in IoT. 

III. DATA FLOWS IN IOT DATA AGGREGATION  

Internet of Things is the network of physical devices which 

monito the physical world. Connectivity, sensing, and 

interactivity among devices are considered as the main 

features of the IoT. Due to the large-scale deployment of 

distributive and pervasive IoT nodes, there has been 

explosive development of redundant data in such 

applications. Further, the smaller sized IoT nodes are 

typically resource constrained, powered by limited batteries, 

storage, processing and communication capabilities. To 

optimize the use of limited resources in such IoT applications, 

various data aggregation mechanisms are used that aim to 

route the data via minimal resource consumption routes. 

Therefore, the purpose of data aggregation is to aggregate and 

collect the data packets in an effective manner in order to 

optimize the use of resources.  

As shown in Fig.1, for data aggregation in an IoT 

environment, deployed IoT nodes collect data by sensing the 

environment; the aggregated data is forwarded to the edge 

node. The sensed information is carried to the edge node 

either directly or in hops via intermediate IoT nodes. In data 

intensive IoT applications which require periodic monitoring 

of surrounding environment, it is possible that an intermediate 

node receives redundant data from its child IoT nodes. 

Populating such sensed information has an impact on 

consumption of resources especially energy. To avoid this, 

data aggregation mechanisms can be employed in which the 

intermediate IoT nodes can forward only appropriate data to 

the edge node rather than redundant values, therefore 

enhancing optimization of resource utilization in IoT 

applications. Data aggregation mechanism offers several 

benefits to resource constrained IoT applications such as: 

improving the efficiency and accuracy of information, 

eliminating the unnecessary redundant information, 

minimizing the traffic load, saving energy of the nodes, 

optimizing the storage utilization in memory constrained IoT 

nodes, optimizing the processor utilization in IoT nodes, etc.  
 

 
Fig.1. Data Aggregation mechanism 

In resource constrained IoT applications, nodes have limited 

energy. Therefore, devising the energy conserving solutions 

for such applications becomes necessary; clustering in data 

aggregation schemes provides the essential candidate 

solutions. To ensure resource efficiency in such networks, 

clustering has become an emerging mechanism for building 

robust and energy efficient IoT environment. In clustering, 

the entire network is separated into various clusters; each 

cluster consists of IoT nodes wherein an aggregator IoT node 

forwards the aggregated data to the edge node.  
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In such edge based clustering in IoT networks, edge nodes are 

placed at the network edge to bring the computing resources 

closer to the resource constrained IoT nodes, and data 

aggregation is performed in parallel at the edge nodes. To 

minimize the amount of aggregated data from the IoT nodes 

and push the burden from the resource-constrained IoT nodes, 

adaptive data aggregation approach can also be used as an 

efficient solution in such networks where resource 

consumption can occur at a higher speed.  

In edge based IoT applications, nodes are usually 

heterogeneous in hardware, there may be a node(s) capable of 

processing the data, such set of nodes whose resources are 

sufficient are referred to as high end nodes e.g., edge nodes. 

The number of edge nodes depends on the number of clusters 

formed and size of data processed. Typically, data 

aggregation approaches for cluster based edge-IoT networks 

can be classified into two: (a) aggregator node directly sends 

data to the edge node (Direct transmission), and (b) the 

aggregator node sends data to the edge node via other node in 

multiple hops (Indirect transmission) as shown in Fig. 2 and 

Fig. 3.  

In direct transmission, each aggregator sends the sensed 

data from its IoT nodes to the sink. As Fig. 2 shows, in 

clusters C1, C2 and C3, active IoT nodes I1, I2, I3, I4, and I5 

sends the sensed data to the respective aggregator nodes A1, 

A2 and A3 , which then sends the aggregated data to the edge 

node E1. We can see that there are five data flows of sensed 

data from the active IoT nodes. A1 aggregates three data flows 

into one. As a result, there are three data flows from the 

aggregator nodes to the edge node. This approach proves to 

be an inefficient data aggregation approach because of 

multiple redundant data transmissions.  

 
   Fig. 2.  Data aggregation via direct transmission 

 
Fig. 3. Data aggregation via indirect transmission 

 

While in indirect transmission, a hierarchical data 

aggregation model is used. According to this hierarchy, the 

data aggregated on an aggregator node will further be 

aggregated on another aggregator node at a higher level. 

Therefore, the data can be aggregated hop by hop through 

multiple intermediate nodes to the edge node. As Fig. 3 

shows, in clusters C1, C2 and C3, active IoT nodes I1, I2, I3, I4, 

and I5 sends the sensed data to the respective aggregator 

nodes A1, A2 and A3. A3 further aggregates the data flow from 

aggregator node A1 and IoT node I5 into one data flow to the 

edge node E1. Therefore, data aggregation via indirect 

transmission allows for reduction in redundant data 

transmissions, compared to data aggregation via direct 

transmission. Efficient data aggregation algorithms are 

required to accommodate different data flows in IoT 

environment.  

IV. PROPOSED SYSTEM 

The proposed system consists of aggregator nodes that 

collect the sensed data from IoT nodes and push the data to 

the corresponding cluster head. The nodes and cluster heads 

have a many to one relation. We assume the cluster heads 

have a higher configuration as compared to IoT nodes. After 

the data to be transmitted is collected by a cluster head, hop to 

hop delivery is started until data reaches the destination 

cluster head. The last cluster head then forwards the data to 

the sink. The entire network (lnter-cluster/Intra-cluster 

connections) is controlled by a SDN (software Defined 

Networks) controller which adjusts the network in real time.  

Edge computing is utilized by the cluster heads to reduce 

computational load on the SDN controller. Once a path has 

been set by the SDN controller, the path remains the same for 

the entire data transmission duration. For the next data 

transmission, the path is recalculated. Further storage 

optimizations is performed by storing all results in a hash 

table and using them when needed. 

A. Assumptions 

Following are the assumptions made. 

 Consider the network to be made up of nodes and 

edges similar to a 

graph.  
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 Let R the communication range of nodes in the case of 

low real-time performance. 

 Let C be the set of all cluster heads where Ci, Cj, Ck 

,…, Cn are its members. 

 A pair of cluster heads Ci, Cj are said to be connected 

if the distance between them is less than R. 

 Let TRcc be the rate of communication between cluster 

heads. 

 Let TRcn be the rate of communication between cluster 

heads and IoT nodes. 

 Each node is connected to the nearest cluster head. 

 Let TRij be the transmission rate between network 

members i and j. 

 Let Vi be the node of network 

 Let Ci  be the Cluster head of network 

 Let Path_ALLCH be the set of all possible paths 

between cluster heads 

 Let T be the time taken for transmission  

 Let Tc be the time constraint in which message needs 

to be sent 

 Let Pathij be the path that has already been selected  

 Let CP(vi, vj)be the pair of cluster heads closest to Vi 

and Vj 

 Let D(Ci, Cj)be the distance calculated between 

Cluster head i and cluster head j 

 Let Path_Cost be the sum of the weights of all the 

edges along a path 

B.  Definitions 

Following definitions are used in proposed algorithms: 

 Edge Weight: The connection between the network 

members is of two types: Cluster head to cluster head and 

Cluster head to aggregator node. The higher the weight of 

an edge, better the communication. 

 Loss_Probability: A running average of packet loss 

percentage is calculated using a sliding window approach 

i.e., percentage of last 100 transmission that were 

successful. This value is multiplied for every node along a 

path to get a path loss probability value. 

 Path_Energy: Path_Energy is defined as the ratio of the 

current available energy in all the nodes along a path to the 

initial available energy in all the nodes. 

 Power_Cost: As the algorithm decides to use a cluster 

head instead of a regular node for transmission, the total 

energy needed for transmission increases. Path energy 

cost is the difference between the final cost of the path 

with increased number of cluster heads and the initial cost.  

 Average Time Delay: The average time required for 

transmission of data source IoT node to the destination 

IoT node. 

 Path Difference Degree (PDD): It measures the balance 

of transmission path. The energy consumption and load 

are dependent on this performance metrics.  

C. Proposed Algorithms 

In this section, we have proposed two algorithms viz., 

coarse grain optimal path algorithm for low deadline situation 

and adaptive transmission algorithm for power optimization 

for high deadline situations. Comparison of these algorithms 

has been done with the algorithms outlined in [1]. The 

improved algorithm 1 and Algorithm 2 are shown in Table I 

(a) and (b). In Table I(a), the decision parameters α, β and ¥  

decides which path to use, and are set according to the 

application constraints. For IoT applications where the 

network doesn’t need load balancing, α is set low. For 

applications where the node to node packet loss is high, β is 

set low to reduce the likelihood of a packet drop. And for 

networks where the Path energy is low, ¥  is set low to reduce 

the likelihood of the path being selected. 

 

Table – I (a): Improved Algorithm 1: Pseudocode of 

coarse grain optimal path for delay optimization 
 

Require:   vi, vj, C, Path_AllCH, TC, TR, W  

Ensure: Path_selection V<vi,vj>,Pathij , 0 0 

From the set C, search the cluster head pair (Ci, Cj)  

Construct the communication over cluster head pairs 

corresponding CHPair< Ci,Cj> of vi and vj 

Select all paths of Pathij between cluster head Ci and Cj, from 

Path_AllCH, according with W 

For i = 0 to |Pathij| do 

Calculating every path time  

If the time taken for path, T is less than latency requirements, 

TC 

Add path to set of paths under consideration 

Endif 

Endfor 

For j = 0 to |PathSS| 

Calculate path difference degree W j  

Calculate Loss_Prob 

Calculate Path_Energy 

Calculate Wj * α + Loss_Prob* β + Path_Energy * ¥ 

Find the maximum value for path_Cost 

Endfor 

Return Max_Path 

 

Table – I (b) : Improved Algorithm 2: Pseudocode of 

adaptive transmission for power Optimization 
Require: vi, vj, Pathij, Tc, Tmin 

Ensure: Path_new     

For i = 0 to |Path_all | 

Construct the communication over all cluster head pair corresponding 

of vi and vj, stored in CP(vi,vj) from the head for Pathij 

For m=0 to |CP| 

Calculate distance of cluster head pair, d(cm,cm+1)=|cm,cm+1| 

If R < d(cm,cm+1) < Rmax 

Pt(cm) = P(d(cm,cm+1)) //increase the current transmission power 

TRm,m+1 =TRC // update the transmission rate  

End if    

Calculate the Tm 

If a new path, Ti TC Tmin meets the application requirement  

NewPathSet ← Path_all[m] 

Endif  

End or 

Endfor 

For k = 0 to |NewPathSet| 

Calculate a new power changed cost, Cpk 

Calculate Path_Loss,  Path_Energy, Path_Cost 

If α*CPK + β * Path_Loss+ ¥* Path_Eenrgy 

Path_new  NewpathSet[k]  

Endif     

Endfor 

Return Path_New  

In Table I (b), the decision parameters are set according to 

requirements, but here they serve a different purpose.  
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For IoT applications where the network has strict energy 

constraints, α  is set low, to reduce the likelihood of high 

Path_Cost, for networks where the node to node packet loss is 

high, , β is set low to reduce the likelihood of a packet drop 

and vice versa. And for networks where the Path_Energy is 

low, ¥ is set low to reduce the likelihood of the path being 

selected. 

V. MATHEMATICAL FORMULATION 

In aggregation of data from IoT nodes to aggregator to 

sink, we have improved on various parameters such as power, 

failure rate, packet loss and robustness in coarse grain 

algorithm stated in [1]. The improvements are discussed as 

under: 

 

 Power Improvement: Power is the ratio of total energy of 

path if all nodes were full and actual energy present in all 

nodes along the path. In calculation of time taken in 

simulation, multiplying the time by a calculated constant 

increases the likelihood of a path having more energy left 

in its cells being used. This helps with load balancing and 

increasing network lifetime. 

 Failure rate Improvement: Failure rate is inversely 

proportional to failure percentage of nodes along the path. 

Multiplying the time by a calculated constant increases the 

likelihood of a path having lesser failure rate along its 

nodes being used. This also ensures that shorter paths are 

selected, to improve network transmission times. 

The above improvements can be combined to give 

improved power consumption and failure rates. 

 Packet loss improvement: Since paths are calculated 

according to the time constraint which takes into account 

weight of edges, using Lemma 1 and Lemma 2, we can 

show that reweighing the edges favors paths with lesser 

packet loss.  

Lemma 1: The edges are reweighed to favor edges with 

lesser packet loss, given as:  

 

         
(1) 

Between a pair of nodes, the number of packets sent 

is a constant amount so the above equation reduces 

to: 

                          (2) 

The weight becomes inversely proportional to the 

packets received.  

QED  

Lemma 2: The path is made up of edges with lesser 

packet loss. While calculating all possible paths, 

paths with higher weights than a certain constraint 

are rejected. And if the weight of an edge is less, the 

path which includes this edge will have less total 

weight. QED  

The power is also improved and can be proved in a similar 

way as Lemma 2. These two reweighing schemes can be 

combined to give an algorithm with lesser packet loss and 

power improvement  

    Robustness: In addition to packet loss and power 

improvements, the proposed modified algorithm 1 

ensures robustness as supported by Lemma 3.  

Lemma3:  More the number of nodes / hops in path, more 

is the expected value of a failure occurring.  

According to the algorithm if message is sent along one 

path, then any node can be a source of single point of 

failure. Consider the set of all such nodes in the selected 

path, let that set be Si. We assume sending the message 

along multiple paths; therefore, single point of failure 

can only occur at nodes which are common to all paths. 

Let the set of common nodes to those paths be {S1} 

∩{S2}∩{S3}, ... , ∩ {Si}. It is clear that the size of the 

second set is bounded by the set with the least number of 

elements, which implies:   

                                                                    (3) 

Where Nfi is the number of sources of failure in improved 

algorithm and Nfo is the number of sources of failure in 

algorithm 1 in [1] .  

We have improved on parameters like power, failure rate, and 

time delay in algorithm 2 stated in [1]. Power and failure 

improvements can be stated and proven in the same way as for 

improved algorithm 1. However, the mathematical proof for 

improvement in time delay is stated in lemma 4: 

Lemma 4: An edge is included between cluster head 

pairs only if it improves the time constraints of the path. 

If the statement holds for every edge included in path, the 

path will always be better than a path that doesn’t 

include the intermediate cluster head pairs. Therefore 

the path is at least as good as a path chosen otherwise by 

algorithm 2 of [1]. 

VI. SIMULATION SETUP AND RESULT ANALYSIS 

The proposed graph structure are programmed and 

simulated in C++. The simulations are run using omnet++. 

The simulation parameters are set as shown in Table II. 

A. Performance Metrics 

Following is the performance metrics used: 

    Network area versus rounds: It is assumed that every 

node contributes area equal to PI * R*R overlap of node 

areas is counted twice. It is calculated three different times 

for three different location schemes. 

    Energy per round: Total energy is calculated and divided 

by number of rounds. 

    Packet delivery ratio: It is assumed that every cluster 

head has a failure rate between 0% and 20%. It is assumed 

that every node has a failure rate between 0% and 30%. 

Any packet which has < 60 % failure rate is considered as 

failed. 

    Rounds versus Alive Nodes: Every node is given 20j, one 

transmission costs 1j. 
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B. Result Analysis 

The performance of improved algorithm 1 is evaluated in 

terms of round number versus number of alive nodes, network 

area versus number of rounds, power/time versus number of 

rounds and rounds versus energy/alive node. 

Table-II :Simulation Parameters                                                             
Parameters Value 

Simulation Area 150 * 150 square 

meter 

Data aggregators 50 

Cluster Heads 10 

Maximum time threshold 500 seconds 

Cluster to cluster transmission 

of unit data 

1 second 

Cluster to data aggregator 

transmission of unit data 

100 seconds 

1 transmission of data cost 1 joule  

Initial Node Energy 20 joules 

Fig. 4 shows energy left per node versus number of rounds. It 

is evident from the graph that the energy of a node is more in 

improved algorithm 1 as compared to algorithm 1 stated in 

[1]. Fig 5 shows power per node versus number of rounds. It is 

evident from the graph that the power of a node is more in 

improved algorithm 1 as compared to algorithm 1 stated in 

[1]. Fig. 6 shows the nodes in improved algorithm 1 lasts for a 

longer time as compared to algorithm 1 stated in [1], but dies 

at approximately same time of simulation. Fig. 7 shows 

average energy of a node across simulations. With different 

initial energy taken for different simulations, the energy of a 

node is analyzed after 20 rounds, and it is evident that the 

energy of a node in algorithm 1 of [1] is less than the energy of 

a node in our improved algorithm 1. Fig. 8 shows average 

power of a node across simulations. With different initial 

power taken for different simulations, the power of a node is 

analyzed after 20 rounds. it is evident that the power of a node 

in algorithm 1 of [1] is less than the power of a node in our 

improved algorithm 1. 

 
Fig. 4. Energy left per node versus Number of Rounds 

 
Fig. 5.  Power per unit time versus Round number 

 
Fig 6. Number of alive nodes versus Number of Round 

 
Fig 7. Average energy per node across simulations 

 

 

 

 

 



International Journal of Innovative Technology and Exploring Engineering (IJITEE) 

ISSN: 2278-3075, Volume-9 Issue-2, December 2019 

1962 

 

Published By: 

Blue Eyes Intelligence Engineering     

& Sciences Publication  
Retrieval Number: B7859129219/2019©BEIESP 

DOI: 10.35940/ijitee.B7859.129219 

 
Fig 6. Number of alive nodes versus Number of Round 

 

 
Fig 7. Average energy per node across simulations 

 
 

Fig 8. Power per unit time across simulations 

 

The improved algorithm 2 is only designed for fast network 

transmission times; we have considered two different types of 

graphs - dense graphs and sparse graphs, each with power 

constraint and no power constraint. Results are shown in 

Table III to Table VI. 

 

 

 

 

Table - III: Dense graph, with no power 
Simulation Time taken in 

improved 

algorithm 2 

Time taken in  

algorithm 2 of [1] 

Cluster Head 

time in 

improved 

algorithm 2 

Cluster head time 

in algorithm 2 of 

[1] 

Cluster heads 

in path in 

improved 

algorithm 2 

Cluster heads in 

algorithm 2 of [1] 

0 1.91842E+06 1.93076E+06 29907 42254 20417 32764 

1 1.91766E+06 1.93294E+06 30141 45423 20656 35938 

2 1.92286E+06 1.93464E+06 29971 41747 20459 32235 

3 1.9205E+06 1.93297E+06 31398 43862 21905 34369 

4 1.92504E+06 1.93914E+06 30754 44859 21235 35340 

5 1.91816E+06 1.93159E+06 31636 45071 22156 35591 

6 1.92219E+06 1.93634E+06 30890 45040 21386 35536 

7 1.91845E+06 1.93012E+06 29742 41409 20251 31918 

8 1.91968E+06 1.93326E+06 27988 41568 18482 32062 

9 1.92355E+06 1.93688E+06 28271 41609 18747 32085 

10 1.91829E+06 1.93313E+06 29778 44619 20288 35129 

 

Table- IV: Dense graph, with power constraint 
Simulation Time taken in 

improved 

algorithm 2 

Time taken in 

algorithm 2 of [1] 

Cluster Head 

time in improved 

algorithm 2 

Cluster head time 

in algorithm 2 of 

[1] 

Cluster heads in 

path in improved 

algorithm 2 

Cluster heads 

in algorithm 

2 of [1] 

0 1.0742E+06 1.08105E+06 17311 24165 12000 18854 

1 1.14256E+06 1.15169E+06 17608 26740 11955 21087 

2 1.1155E+06 1.12216E+06 18816 25468 13305 19957 

3 1.05648E+06 1.06458E+06 16706 24802 11481 19577 

4 1.0704E+06 1.07902E+06 16494 25117 11198 19821 

5 1.05659E+06 1.06397E+06 17014 24396 11790 19172 

6 1.19939E+06 1.20807E+06 19516 28200 13587 22271 

7 1.1163E+06 1.12326E+06 18416 25376 12899 19859 
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8 1.23671E+06 1.24622E+06 19028 28540 12909 22421 

9 1.19807E+06 1.20707E+06 18595 27595 12668 21668 

10 1.12638E+06 1.13528E+06 17352 26251 11779 20678 

 

Table – V: Sparse graph, with no power constraint 
Simulation Time taken in 

improved 

algorithm 2 

Time taken in 

algorithm 2 of 

[1] 

Cluster Head 

time in 

improved 

algorithm 2 

Cluster head 

time in 

algorithm 2 of 

[1] 

Cluster heads in 

path in 

improved 

algorithm 2 

Cluster heads in 

algorithm 2 of 

[1] 

0 1.60234E+06 1.6086E+06 30642 36894 22744 28996 

1 935848 941409 16667 22228 12048 17609 

2 1.58618E+06 1.59169E+06 31789 37299 23978 29488 

3 1.35081E+06 1.35702E+06 26071 32281 19414 25624 

4 1.22757E+06 1.23326E+06 23425 29110 17374 23059 

5 1.0499E+06 1.05393E+06 20670 24698 15498 19526 

6 1.73318E+06 1.73885E+06 35709 41377 27179 32847 

7 1.69251E+06 1.69802E+06 33045 38564 24706 30225 

8 1.73953E+06 1.74622E+06 33898 40596 25327 32025 

9 1.63861E+06 1.64508E+06 32480 38949 24409 30878 

10 1.39216E+06 1.39794E+06 27417 33197 20559 26339 

 

Table – VI: Sparse graph, with power constraint 
Simulation Time taken in 

improved 

algorithm 2 

Time taken in 

algorithm 2 of 

[1] 

Cluster Head 

time in 

improved 

algorithm 2 

Cluster head 

time in 

algorithm 2 of 

[1] 

Cluster heads in 

path in 

improved 

algorithm 2 

Cluster heads in 

algorithm 2 of 

[1] 

0 740817 743904 13074 16161 9417 12504 

1 857995 862569 15429 20003 11195 15769 

2 782055 784592 14910 17447 11055 13592 

3 762371 766088 13534 17251 9771 13488 

4 823862 827930 14330 18398 10262 14330 

5 728802 731089 13795 16082 10202 12489 

6 869430 871382 17511 19463 13230 15182 

7 848171 851797 15754 19380 11571 15197 

8 938366 941436 18190 21260 13566 16636 

9 804449 807325 15414 18290 11449 14325 

10 809693 812900 14688 17895 10693 13900 

 

VII. CONCLUSIONS 

In IoT applications, the communication among the IoT 

nodes is an important aspect in determining the network 

topology. Clustered topology are considered as manageable 

structures for IoT. But these frameworks are constrained in 

terms of latency, bandwidth, coverage, and unbalanced 

deployment of computing resources. In order to manage these 

issues, Software Defined Networks and Edge computing are 

integrated into IoT to constitute our proposed framework. The 

IoT system should provide an effective connectivity and 

control among various physical and virtual IoT devices. An 

efficient data transmission scheme is a need of the hour for 

most of the IoT systems that are energy constrained. The 

different delay constraints in data flows is a challenging issue 

 

 

 

 in such systems. To optimize the performance of data 

transmission, we propose an adaptive IoT system that adapts 

different data flows in IoT meeting various application 

requirements. The proposed work consists of coarse grain 

transmission path algorithm and a fine-grain algorithm for 

low-deadline and high-deadline IoT applications.  

The proposed work is validated by simulations.  
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The simulation results are supported by mathematical proof 

of the proposed algorithms used in the work. The proposed 

scheme provides improved solution for different data 

transmissions in Edge-IoT applications with delay constraint 

or no delay constraint and with power constraint or no power 

constraint scenarios. 
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