
M Trinath Basu et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(6), November - December 2019, 3596– 3614

3596

ABSTRACT

Many cloud computing systems are in place for providing
different kinds of services, which include AWS, AZURE,
Google Cloud, etc. which are proprietary. These clouds help
the users implement their own IT requirements, but the users
cannot configure or customize the cloud computing
processes as per their needs, especially to handle the issue of
security from the perspectives of authentication, access
control, and data security.

Open source cloud computing systems, which include
Eucalyptus, Open Nebula, open stack, etc. allows the
changes carried to the cloud computing systems primarily
through configuration, the addition of API, the addition of
processes, etc. Users can make changes to affect the system
such that it works as per the user requirements, especially to
improve the security system built into the cloud computing
system, which sometimes found to be vulnerable for attack.
Users are concerned about the security of their software data
hosted on third-party IT infrastructure. Open Stack cloud
computing platform is being used by many for implementing
private clouds. Users can customize open stack as per their
requirements.

Open stack suffers from many security-related vulnerabilities
that can be exploited by the users for attacking the user
software and data. A review of the Open stack systems is
required to find the gaps that are existing to plug the same.
In this paper, a review of the Open stack presented, bringing
out different kinds of vulnerabilities that exist in
authenticating the users and a federation method using JSON
tokens showed that help eliminating the Vulnerabilities
existing in the open stack for enforcing security within the
Keystone module of Open stack.

Key words: Open Source cloud computing, Open Stack,
JSON Tokens, Federated authentication, Security
enforcement within open Stack

1. INTRODUCTION

Users register with a cloud computing system using the
username name and password. The registration process
sometimes involves the operation of a contract, which
includes pricing, services required, response time,

throughput, penalties, downtime provisions, limitations on
the levels of assistance needed, etc.

Users start communicating with the identity service of a
specific cloud computing system by keying in the user
name and password. The identity service after validating
and verifying the user will send a token, which is a
formatted data string containing the details of the services
availed, kind of accounts used, etc. The user then uses the
authentication token to start directly communicating with
the services intended by the user. The general process
used for authentication shown in Figure 1. The service
component verifies the authenticity of the user after
receiving the request from the user, and on getting
confirmation, the service component authorizes the user to
access the service.

Registration

Identity
Service

Contract
Details

DBMS
System

Services

Identity
Details

DBMS
System Services

related DB

Cloud Computing System

USER

Figure 1: General Process Flow for authentication System

1.1 Multi-factor Authentication

Multi-factor authentication means implementing the
process of authentication by using multiple mechanisms.
For example, an authentication system in addition to

Improving the Open Stack Authentication system through federation
with JASON Tokens

 M Trinath Basu1, JKR Sastry2

1Koneru Lakshmaiah Education Foundation, Vaddeswaram, India, miriiyala68@kluniversity.in
2Koneru Lakshmaiah Education Foundation, Vaddeswaram, India, drsastry@kluniversity.in

 ISSN 2278-3091
Volume 8, No.6, November – December 2019

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse143862019.pdf

https://doi.org/10.30534/ijatcse/2019/143862019

M Trinath Basu et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(6), November - December 2019, 3596– 3614

3597

ensuring the implementing authentication within itself but
also further check the credentials of the users by checking
with other kinds of authentication systems such as LDAP,
Active Directory, Red Hat IMS, FreeIPA, etc.

The multi-factor authentication helps to mitigate various
kinds of attacks that include brute force, social
engineering, spear, and mass phishing attacks, which
generally attack the user names and passwords. There is a
need to deploy third-party tools and integrate the same
with the underlying authentication system built to
recognize the users.

Administrative user accounts should authenticate using both
native authentication systems and an external authentication
service that supports two or more factors for authentication,
such as a digital certificate, digital signature, etc. An
external authentication service can include Red Hat Identity
Management, or Microsoft Active Directory, or any other
third party defined authentication system. This approach
can help reduce the risk of passwords that might be
compromised.

Figure 2 shows the way the multi-factor authentication
system works. The identity service usually designed to
work with backbends used as plugins, which may use a
further extension to the process of authentication. The
Identify service configured to use one or more plugins so
that the authentication system implemented using multiple
factors. The process called a federated authentication
system

The token often passed as a specific structure containing
the details of the services, resources that can be accessed,
etc. The authentication token also provides a catalog of
various services that a cloud computing system can offer.
Each service listed with its name, access endpoints for
internal, admin, and public access.

The token, once distributed, can be revoked by the system
that made available the Token. Users can use API of the
Identity service to revoke the tokens, get the list of
revoked tokens, get the list of various services offered by
the cloud computing system to the user who has access to
the token, to remove the existing token — all queries
related to the tokens initiated by the users or the services
supported through API calls. The identify service provides
API, which can be used for token management through
operations such as token revocation, to list existing
tokens, remove tokens, cache tokens, etc.

There are many types of taken management systems used in
the literature, which include UUID, Fernet, PKI, PKIZ,

JSON, etc. which differ from each other in many ways in
terms of the content of those tokens and the way content in
the token is secured. The token is the most venerable
elements within the cloud computing system.

Registration

Identity
Service

Contract
Details

DBMS
System

Services

Identity
Details

DBMS
System Services

related DB

Cloud Computing System

USER

IMS

ADS

Tokenization
Services

Figure 2: Process Flow for Multi-Factor Authentication

1.2 Use of token for effecting authentication

Once a user authenticated, a token generated for
authorization to access cloud computing service. A token
can have a variable life span defined by enforcing the
system. The recommended expiry value set to a lower value
that allows enough time for internal services to complete
tasks. If the token expires before tasks are completed, the
cloud might become unresponsive or stop providing
services. An example of expended time during use would be
the time needed by service to transfer a disk image onto the
hypervisor for local caching.

JSON Web Token is a type of non-persistent bearer token
similar to the fernet tokens. JWT is an open-standard token
that can be maintained using JWT API.

Implementation of JSON Token within a cloud computing
system helps in the fully integrated authentication system.

JWT token is a new type of token that is backed by a widely
used standard. JWT tokens increase the chances of
interoperability between the OpenStack ecosystem and other
communities that support JWT.

JWT token designed using open standards recommended by
NIST (National Institute of Standards and Technology)

M Trinath Basu et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(6), November - December 2019, 3596– 3614

3598

2. AUTHENTICATION SYSTEM AS IMPLEMENTED
IN OpenStack

OpenStack is an open-source Infrastructure as a Service
(IaaS) cloud computing software, where users can provision
virtual machines by using its components such as storage
(called “swift”), compute (called “nova”), etc. Figure 3
shows a high-level overview of OpenStack.

OpenStack deployed in standard hardware and its resources
like computation, networking, and storage shared in the
cloud. These resources controlled using an OpenStack
dashboard. Users can avail of these resources by using a
client program such as an Internet browser. OpenStack has a
modular architecture.

Open Stack is composed of a set of Modules that together
deliver the functionality required by the user. Many modules
are available, and each module provides a kind of service
needed by the user. The functioning of the OPEN stack
module individually attacked. To understand the extent to
which an open stack is secured, each Module assessed to find
the vulnerabilities and the level of security built into each of
the Modules. The weaknesses of the OPEN STACK
component that can be exploited by attackers must be known
to make the Modules secured from attacking through the
implementation of counter-attacking mechanisms.

The Security enforcement under open Stack recognized in
terms of authorization, authentication access control, and
data security.

The authorization and authentication service and the access
control archived through KEYSTONE Module. KEYSTONE
Module handles all the issues related to the identification of
the users.
Virtual Images managed through GLANCE Module, but the
security of virtual images handled through SWIFT, which
stores all the VM images and security of which is dealt with
by it.

Data in OpenStack managed through three distinct modules
that include SWIFT (Object Storage), CINDER (Block
Storage), Trove (Relational Databases), Regular applications
use a database, and therefore, the use of Trove done
extensively. Securing when TROVE used is the Major Issue.
A certain level of enforcement of security done within these
modules

One of the most important issues connected with the security
is identifying the users, group of users, and their roles and
privileges that the users have in availing the resources. The
Module KEYSTONE provides the Identity services to all the
other modules in OpenStack. The security issue is very much
related to identifying the users and the rights that are granted
to those users, such that the users provided with access to the
resources for which permissions granted.

Keystone service provides a standard authentication and
authorization store for OpenStack services. Keystone is
responsible for users, their roles, and to which tenants may
belong. Moreover, it provides a catalog of OpenStack
services that can be accessed by a user upon request and
valid authentication. Essentially, Keystone is responsible for
carrying primary functions to control the authentication and
authorization of a user:

Keystone Carries user Management; It keeps track of users
and what they are allowed to do. It carries the check through
verification of the associations between users, roles, and
tenants. Keystone provides a catalog of available services
and where their API endpoints located.

In OpenStack, the Users are digital representations of a
person, system, or service t h a t require the services
rendered by the system. Keystone ensures that incoming
requests coming from a valid user assigned to a particular
tenant with a specific role assigned to resource-access
tokens.

Entire user identification and access deigned over certain
elements that include user, tenant, role, token, and endpoints.
A tenant is a group used to isolate resources that contain a set of
users, Customers, and internal processes. A role includes a set
of assigned user rights and privileges for performing a
specific set of operations. A user token issued by Keystone
contains a list of that user’s roles. Services then determine
how to interpret those roles by their internal policies stored in
each policy.json file. Credentials are data known only to a
specific user who proves his or her identity.

Figure 3 : Overall Interactions within Key Modules

M Trinath Basu et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(6), November - December 2019, 3596– 3614

3599

A token is an arbitrary bit of text used to access resources.
Each token has a scope describing accessible resources that
may be revoked at any time and is valid for a finite
duration. An endpoint is a network-accessible address,
usually represented by URL, from which services
accessed.

The interactions that happen within the OpenStack for
accessing the resources shown in Figure 3. Keystone
provides authentication, authorization and access control of
various resources provided to different users

The following steps followed when a user tries to access an
OPEN STACK service.

1 The user who is trying to act as a service sends its
credentials to Keystone

2 Keystone sends the user a temporary token and a list
of tenants if the authentication of the previous
credentials succeeds. Here Tenants imply a group that
can either refer to a set of users or resources. There can
be many tenant groups configured by the
administrators. Every user placed in the group. A User
Group has access to a group of services.

3 The user sends the credentials to Keystone together
with the desired tenant

4 If the authentication of the credentials and the desired
tenant is correct, Keystone sends a tenant token and a
list of available services for this tenant.

5 The user determines the correct endpoint depending on
the action performed and requests to the endpoint along
with the tenant token acquired for authentication. An
endpoint is a location where the user expects that the
service rendered. An endpoint is a network-accessible
address, usually described by URL, from which
services accessed.

6 Keystone verifies whether the received token is correct
and is allowed to use the service to avoid connections
from non-authorized entities.

7 If the keystone authenticates the token and the right
to use the service, it checks to find if the access
policy attached to the facility conforms to the kind of
access requested by the user.

8 If the policy validation is correct, the request executed.

The architecture of the KEYSTONE module shown in Figure
4.

Figure 4: Keystone architecture

Within keystone architecture, four-component services
include token service, Catalogue service, and Policy
service, and database service included. The identity service
provides authentication service that provides validation of
credentials of the users, and the validation of the users
concerning roles and Accounts and also validation
regarding metadata data. The token service validates and
manages Tokens used for authenticating requests once a
user/tenant’s credentials have already verified. The
Catalogue service provides an endpoint registry used for
endpoint discovery. The policy service provides a rule-
based authorization engine.

The “Keystone” component of OpenStack provides identity
service for authenticating and high-level authorization. A
token-based and service-based authorization system
implemented by the Keystone component of OpenStack.
Keystone is the centralized identity and access management
component of OpenStack. The keystone module uses a
pluggable data store (SQL, LDAP).

The Identity service can store user credentials in an SQL
Database or may use an LDAP-compliant directory server.
The Identity database may be separate from databases used
by other OpenStack services to reduce the risk of a
compromise of the stored credentials.

Organizations may desire to implement external
authentication for compatibility with existing authentication
services or to enforce stronger authentication policy
requirements, although passwords are the most common
form of authentication, compromised through numerous
methods, including keystroke logging and password
compromise. External authentication services can provide

M Trinath Basu et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(6), November - December 2019, 3596– 3614

3600

alternative ways of authentication that minimize the risk
from weak passwords.

These include an internal and an external authentication
system. The internal authentication systems require user
passwords to conform to minimum standards for length,
diversity of characters, expiration, or failed login attempts. In
an external authentication scenario, this would be the
password policy on the original identity store.

The authentication service requires the user to provide
information based on something they have, such as a one-
time password token or X.509 certificate, and something
they know, such as a password.

A user can manage OpenStack session using its dashboard
(Horizon), which can be accessed using a web browser. To be
able to get the services from various services, the user has to
authenticate to the Keystone server.

First, the user gives identity and credentials (e.g., password)
to Keystone. Assuming the user is registered, Keystone
authenticates the user, creates a tamper-evident digital token
that contains information about the user, the endpoint
information of each service (e.g., Nova, Neutron, etc.), and
the operations the user is allowed to perform at each of those
services.

Keystone authentication performed by using public-key
cryptography. It uses a digital signature, and the usage of the
digital signature in this system is unconventional. It is well-
known that a significant drawback of the digital signature is
that it takes a longer time to sign and decrypt the data. For
this reason, in the real-world, a digital signature is used for
small-sized data (typically hashed data). But the existing
system of keystone signs large amounts of data, and this
makes the keystone exists system a non- standard and
inefficient for high-volume deployments.

The critical point is that a significantly more efficient and
standards-based authentication protocol for OpenStack
developed. It is feasible to re-designing and re-implements
OpenStack’s authentication protocol implemented in its
Keystone component by employing different approaches.
Either the authentication protocol is modified, or sometimes
the multi-factor authentication system is implemented.

Keystone is one of the OpenStack components used for
providing identification, authentication, and authorization
service. This service categorized into two primary functions,
which include user Management and Service Catalogue.
User Management keeps track of user’s necessary data,
such as what roles the user has, which project the user
belongs to, etc. Service Catalogue keeps track of what

services are available and provides the location of the
services’ endpoints.

Keystone provides identity, token, catalog, and policy
services — a public key-based mechanism used in the
keystone’s authentication system. Public key cryptography
allows users to communicate securely over public networks
and verify the identity of a user using a digital signature. A
digital signature is an electronic signature that can
authenticate the user.

In a digital signature, a sender typically uses her private key
to sign the data, and the receiver uses the sender’s public to
the key to verify the signature. A Certificate Authority (CA)
plays the trusted role to vouch for the identity of the user
with a specific public key.

In OpenStack, the keystone can play the role of a CA using
the keystone-manage utility or done by a third party. A
Keystone PKI token used for authentication. A PKI token is
nothing but a token signed by the keystone using its private
key. Keystone uses cryptographic message syntax (CMS)
within PKI. For this reason, the token referred to as CMS
token. Whenever the user authenticates with his/her user
name and password, keystone gathers credential data (e.g.,
user’s roles) of the user and creates a token and places them
in a file called user metadata. The metadata contains all
information of the user like token, service catalog, user role,
etc. It also includes an issue and expiration date and the id of
the token.

The project information follows next, after which the service
catalog information placed. The service catalog has the
information on the service(s) and related endpoints the
authenticating user can avail. The endpoints are where the
services should connect to obtain a specific service (e.g.,
compute vs. network service). After the endpoints, the
information about the user listed. It shows the roles of the
user, username, and id of the user. Again, this data called
CMS data because the id of the services here written in CMS
format, and the signed CMS data is called CMS token.

When a user logs-in with username and password, the
keystone gathers all of the information mentioned above and
generates a CMS token and sends it to the user’s
workstation. The user’s OpenStack client program in her
workstation caches the token locally and uses it for later
requests. When the user later requests a service, the client
sends the token along with the service request to the
Keystone endpoint. The OpenStack service verifies the
user’s signature and responds with the token.

M Trinath Basu et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(6), November - December 2019, 3596– 3614

3601

When the client needs any of the services like nova, glance,
cinder, etc., it sends a request along with the CMS token.
The target service receives the CMS token and verifies the
signature with keystone, and provides the requested service
if the token is valid and the user is authorized.

Once a service receives the PKI token, it verifies the
correctness of the same. The verification of the taken
includes verification of the digital signature, token expiry
date and time, and then proceed to handle revoked tokens —
a keystone digital certificate required for verification of the
digital certificate. The digital certificate can be obtained from
KEYSTONE or through a third-party certificate authority.
The CMS taken is verified using the certificate. If the
signature is found valid, then the metadata is decrypted and
then proceed to check the expiry of the token. An error is
flagged if the digital certificate does not tally or the token
expired.

Token verification carried using the token revocation list.
The open stack services update the revocation list when the
service requested is provided or when the token is either
expired. The id of the token is the md5 hashed token, which
is revoked by the service. Once a token is revoked, no more
the token is valid. The Id, if present in the revoked list, then
the token is found to be invalid and if not the token is
considered as accurate. Once the token found to be correct,
the service is allowed, and a response provided to the end-
user. If the request is for a VM, then the VM is created and
the IP address of the VM along with the valid port number
provided to the user, who in turn uses the IP address for
further processing required by the user, such as executing a
program.

The whole process of authentication based on the digital
certificate and the method has significant drawbacks.

1. A considerable amount of time taken for processing
the token through digital certificate affecting the
response time

2. Digital signature help securing the data integrity but
not the data confidentiality as the token its self has
essential information about the open stack system
such as the details of the services, endpoints, etc.

3. Tokens once used are revoked, and are not re-used,
leading to the signification token processing for
revoking, removing, invalidating, etc.

The Identity service supports client authentication through
TLS (transmission Layer Security), which might be
enabled. TLS client authentication provides an additional
authentication factor, in addition to the user name and
password that provides more excellent reliability on user

identification. It reduces the risk of unauthorized access
when user names and passwords might be compromised.
However, there is additional administrative overhead and
cost to issue certificates to users that might not be feasible in
every deployment.

The cloud administrator should protect sensitive
configuration files from unauthorized modification
achieved through configuring using mandatory access
control frameworks such as SELinux, for protecting data
that include keystone.conf file and X.509 certificates.

Client authentication with TLS requires certificates issued
to services. An external or internal certificate authority
can sign these certificates. OpenStack services check the
validity of certificate signatures against trusted CAs by
default, and connections will fail if the signature is not valid
or the CA is not trusted. Cloud deplorers might use self-
signed certificates; in this case, the validity check must be
disabled, or the certificate should be marked as trusted.

Fernet tokens are now the default token provider in most
of the cloud computing system. Fernet is a secure
messaging format explicitly designed for use in API
tokens. Fernet tokens are non-persistent (no need to be
persisted to a database), lightweight (within 180 to 240
bytes), and reduce the operational overhead required to run a
cloud. Authentication and authorization metadata bundled
into a message packet payload, which is then encrypted and
signed in as a Fernet token (within 180 to 240 bytes).

Unlike UUID, PKI, and PKIZ tokens, Fernet tokens do not
require persistence. Pruning expired tokens from the token
database is no longer needed when using Fernet tokens. Since
Fernet tokens are non-persistent, they do not have replicated
as long as each identity shares the same repository, the
Fernet tokens used across the services offered by cloud computing
systems instantly across nodes.

Compared to PKI and PKIZ tokens, Fernet tokens are smaller
in size, usually kept under a 250-byte limit. For PKI and PKIZ
tokens, more significant service catalogs will result in longer
token lengths. This pattern does not exist with Fernet tokens
because the contents of the encrypted payload kept to a
minimum.

Use of fernet Tokens

Fernet tokens are message packed tokens that contain
authentication and authorization data. Fernet tokens are
signed and encrypted before being handed out to users. Most
importantly, however, Fernet tokens are temporary, which
means no persistence across clustered systems is required.
The need for the user to make multiple calls to several cloud

M Trinath Basu et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(6), November - December 2019, 3596– 3614

3602

computing components for getting access to a service or
resource gets minimized when fernet tokens used.

However, the fernet format has problems that make it non-
ideal. The fernet specification abandoned, making it hard
to get changes into it and thereby into
the cryptography implementation of it. Moreover, the fernet
specification not recognized by any standards body and
therefore not as carefully audited as an IETF standard,
making it more susceptible to zero-day vulnerabilities.
Addressing these vulnerabilities falls solely on the cloud
computing service providers.

Some of the requirements of the users that are not supported
by the fernet tokens

1. Need for a non-persistent token that does not
depend on symmetric encryption or signing
implementation. An implementation built on
asymmetric signing or encryption allows the
distribution of public keys from one node to another
instead of synchronizing a repository of symmetric
keys, which makes it easier for the cloud
components with read-only capabilities strictly used
for token validation. The asymmetric encryption
method helps to deploy keys in read-only regions
where the token validation undertook, while the
tokens issued from a central identity management
system in a separate area.

2. Need for a fallback mechanism in the event of
noticing a security vulnerability in the fernet-spec or
the implementation of the cryptography

3. As an operator, I want to be having a token provider
to fall back on in the event there is a security
vulnerability in the fernet spec or
the cryptography implementation consumed by
keystone.

4. The need for a token used not be used within a
cloud computing system but also with other prices
of the software, which is outside the scope of cloud
computing systems.

Thus there is a need for implementing proper authentication
system within cloud computing systems to make it more
secured from the point of Authenticating the users

3. SECURITY ISSUES RELATING TO KEYSTONE
MODULE

The critical study of the keystone module carried to find
security lapses contained within the keystone module. A
detailed presentation on the vulnerabilities existing in the
keystone module provided in the following sections
Invalid Login Attempts

The Identity Service (keystone) does not provide a method
to limit access to accounts after repeated unsuccessful login

attempts. A pattern of repetitive failed login attempts is
generally an indicator of brute-force attacks. This type of
attack is more prevalent in public cloud deployments. One
can mitigate this by using an external authentication system
that blocks out an account after a configured number of
failed login attempts. The account then might only be
unlocked with further administrative intervention.

Detection techniques used to mitigate damage. Detection
involves a periodic review of access control logs to identify
unauthorized attempts to access accounts. Possible
remediation would include reviewing the strength of the
user password or blocking the network source of the
attack through firewall rules. You can add firewall rules on
the keystone server that restricts the number of connections;
this can help reduce the attack’s effectiveness. Besides, it is
useful to examine account activity for unusual login times
and suspicious actions and take corrective actions such as
disabling the account.
User authentication Issue

In keystone, two authentication functions, namely
tempAuth() and “swAuth()used which use username and
password for authentication. When authentication
successfully performed, the user receives a token used to
identify him to the system later to access the services. The
provided token has a configurable expiration time, and its
default value set to 24 hours.

Most of the security systems implement the concept called
“Authentication delegation” through the process of issuing a
confirmation of delegation through SAML format. In
OpenStack, the authentication delegation system, as such, is
not implemented.

Password strength issue

Since all OpenStack projects provide username and
password combination to authenticate users, it is crucial to
take a closer look and study the strength built into the
password.

The "Electronic Authentication Guideline" created by NIST
provides some rules to prevent users from choosing bad
passwords, including checking a password against a
dictionary of commonly used passwords, specifying minimal
password length, and requiring the use of different characters
(lower-case, upper-case, non-alphabetic).

Unfortunately, no such requirements (password length and
special characters) exist in OpenStack. There are also no
dictionary checks so that users can register with a password
as short as one character.

Password storage Issue

Storing passwords is a well-known problem in all
information systems that use password authentication. The
general practice for information security requires that the

M Trinath Basu et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(6), November - December 2019, 3596– 3614

3603

administrator ensure passwords not stored in clear-text, but
somewhat encrypted. It is also essential to provide limited
access to stored passwords.

The authentication system “tempAuth” stores username and
password in a configuration file in which all passwords
stored in plain text format. The location of the superuser
credential stored in the same folder. By default, each user in
the system possesses read access to this file. Such an
approach enables system users to obtain the password of
other users and gain access to their accounts quickly. The
main reason why “tempAuth” was never considered by
developers to be an option for production deployment as it
takes the passwords of others.

The authentication system “SwAuth” uses a configuration
file where the super admin password is stored. Unlike the
“tempAuth,” “swauth” possesses properly configured access
rights to secure password data. The only security concerns
that arise with “swAuth” are clear-text stored passwords
within this file. Because of this issue, and an inside attacker
would gain a superuser account on the system, thus being
able to find out user passwords. OpenStack should consider
hashing passwords before storing them in the password file.

Both “tempAuth” and “swAuth” lack the appropriate
protection of passwords. A recommendation for both
authentication systems taken from NIST’s "Electronic
Authentication Guideline" would be to store passwords
"concatenated and hashed with an approved algorithm, so
that the computations used to conduct a dictionary or
exhaustion attack on a stolen password file would not be
useful to attack other similar password files."

Tokens of authentication

Authentication tokens play similar roles as identifiers for
web applications. An API, such as an OpenStack service, is
used to authenticate a user. Successful authentication
generates a token used to authorize service requests. The
password and username gave as input to the API interface.
When authentication succeeds, the resulting feedback
includes an authentication token and service catalog. The
tokens remain valid for 12 hours. Issued tokens become
invalid when the token is expired or when then token
canceled.

The authentication executed over a secure channel, such as
Transport Layer Security (TLS); otherwise, an attacker could
obtain a user token by performing a man-in-the-middle-
attack and remove the user who received the token from the
authentication system.

DDOS Attack

The users can also attack using A Distributed Denial of
Service attack, which executed by sending too much traffic

on a server. This server, however, can handle only a certain
number of requests, which results in it either a complete
failure or the slow down of the services.

4. PROBLEM DEFINITION

The Identity service provided within the keystone module
leaves several vulnerabilities making any cloud computing
system vulnerable for attacks. A sound security mechanism
is needed to be built within the open stack cloud computing
system so that the OpenStack system can be used effectively
for creating either public or private clouds. A secure
authentication system implemented for establishing the user
credentials so that the desired access to the services
provided. The authentication system secured in addition to
making the authentication system faster. The authentication
system must be implemented in an open platform so that the
operation easily integrated with other internationally proven
and available authentication systems.

5. RELATED WORKS

Platform Specific digital signatures and tokens used for
authentication within Openstack. An independent,
decentralized, and flexible Mechanism that serve the purpose
of authentication presented by Razib Hassan Khan et al.,
[1]. They have used OpenID, which is an open-source for the
development and implementation of authentication within
OpenStack. They have developed and offered the
authentication system as a service. The platforms prosed by
then are built web services and have implemented a single-
sign-on for accessing multiple services. The users signing
into an operating system is also used as login into
OpenStack. They have shown how the users who registered
into OpenID can log into Dashboard/Django GUI.

R. T. Fielding [2], in his thesis, has presented REST
architecture for designing web applications. REST is
stateless and works on the principle of cloud computing. The
API uses a secured https protocol for proving communication
between the users and a server. The users through API call
logs into the server and get connected.

Jamie Bodley-Scott [3] presented that identity management
is now being made user-centric from organization-centric
approaches. Access to multiple service points implemented
through user-centric approaches that are scalable and
flexible. The user-centric methods based on single sign-on
for making available different kinds of services. Through a
single sign-on, a federation of login systems used which
improves the usability of service-oriented system extensively

EC2API client [4] and the python-nova OSAPI client [5],
which are API tools used for authentication of the users into
cloud computing systems. A GUI hides the use of API and
makes accessing a service much simpler for the users. WEB-
GUI became the widely acceptable front end for making

M Trinath Basu et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(6), November - December 2019, 3596– 3614

3604

available the cloud services to the end-user and also the
administrators. The Horizon component of OpenStack
provides the GUI through which the user can access the
services without the need for accessing the system through
the use of API. There are, however, many shortcomings in
the way the dashboard provides authentication of the end-
user.

API generally used within OpenStack EC2API [6] or OSAPI
[7]) for implementing front-end GUI services. Through API,
the processes that are related to Access control,
authentication and cryptographic algorithms, and generation
systems handled within OpenStack. Many weaknesses found
when the authentication systems implemented using API
calls. The user names and passwords when used within a
different framework on which the service provider has no
control for authenticating the user. Once the user verified,
administrator credentials used for retrieving the credentials
of the user. The server that provides the service in the open
stack does not participate in the authentication process but
rather depends on the credentials provided by the
administrator.

OpenStack does not support federated identity management.
Many federation based authentication systems such as
OpenID [8][9[, SAML [11] [12], Shibboleth[10] used within
the open Stack for implementing the authentication system

Administering the policies and taking policy-related
decisions are situated at specific policy decision points
(PDP), and there can be many policy enforcement points that
communicate with PDP for effecting the authentication and
access control to the resources. Policy enforcement points
situated within a cloud computing system that delivers with
PDP for providing access to resources [13][14]. In
OpenStack, the front-end GUI server within the client is a
separate area within OpenStack. The user credentials have to
be stored within the GUI server as OpenStack has no support
for federation with the different authentication servers. The
implementation of Multiple PAPs and PDPs is not possible
when a centralized authentication server was not in place.
There should be trust between the Client (Front-end GUI)
and the cloud computing system, which is possible when a
tightly coupled GUI and Cloud computing system
implemented. The WEB server tightly coupled to the Back-
end cloud computing servers which provide the services
required by the users.

OpenID is an authentication system available as open
sources extended to implement user preferences. The system
provides a centralized Identity system that is user-centric,
which means the users can opt for the kind of system that
needs performing for enforcing the authentication to access
the cloud computing resources.

OpenStack is a cloud computing software that is available as
open-source. OpenStack initially designed to of
Infrastructure as a service (IaaS). Users can ask for the kind
of machine in terms of CPU power, extent memory and
storage required, and the nature of the operating system that

must run on the Machine. Users install an IDE and develop
their application. Users can also connect their System
software like database management software etc. Users can
deploy their claims on the machines and also run the
application.

In Open Stack, Security is built through the process of
authentication and access control and also providing security
infrastructure that can be used by the users to enforce
security on their own. The Keystone Module within open
stack takes care of security enforcement through primarily
utilizing a process based on Tokenisation. The Keystone
module provides tokens to the users, and the users access the
services offered by OpenStack with the help of tokens

Open Stack has not used any standard for implementing
security enforcement within the cloud. The security
implemented within the open Stack system is nonstandard.
Kerberos is an authentication standard. Sazzad Masud et al.
[15] have studied the Kerberos system and have shown the
wat the system implemented within the open stack as an
independent component that federates with a keystone.

OpenStack [18] is an open-source system that offers
Infrastructure as a Service (IaaS)[17]. Open stack allows the
users to provision the virtual machine with storage,
computing resources, which are provisioned by the
OpenStack components such as SWIFT, NOVA, etc.
RACKSPACE and NASA together have developed
OpenStack in python language [16].

C. Kaufman et al. [19] have presented the way the
authentication protocol system used by OpenStack
implemented within the Kerberos protocol. They have also
introduced a prototype authentication system based on
Kerberos standard

Keystone uses Digital signatures for implementing the
authentication system. Authenticating a massive amount of
text would be cumbersome [18] when massive traffic
between the clients and the cloud computing system
expected. The authors have proposed to hash the data so that
the size of the text reduced and then they have applied a
digital signature

The Keystone service developed using many interlinked and
structured internal services [20]. The services offered by
keystone can be services provided by keystone include
policy services, catalog services, token services, and Identity
services. The authentication system implemented within the
keystone based on critical public infrastructure that helps the
users to communicate in a secured manner over public
networks — the identity of the users established through a
digital signature. A user uses a private key to sign the
message digitally and the receiver uses the public key of the
user to decrypt the message and find the identity of the user
who sent the message. A certificate authority, either internal
or external, will verify the trustworthiness of the public key
used by the user.

M Trinath Basu et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(6), November - December 2019, 3596– 3614

3605

Marek Denis et al., [21] have explored the implementation of
identity federation within the OpenStack system through the
use of local identity called “Domain Accounts”

Darshan et al. [22] have presented that keystone plays a
significant role in binding all cloud computing projects
together, each project implementing a service. There is a
need to protect the resources used by the keystone such token
repository, the identity of the users and resources, the
endpoints, etc. The security of the open stack system is
enormous as all the possible attackers have the source code
of the OpenStack in their hands. The authors have analyzed
the security requirements open stack and formed a threat
model. A RESTFul API based authentication system that
offers various security services needs implementation within
the OpenStack system.

Most of the organizations around the world are shifting to
cloud computing infrastructure for supporting their IT
requirements due to cost, reliability, and availability of the
required resources as and when needed. Many cloud service
providers have already come into the market, playing a
significant role. Some of the service providers that have
come into play include SalesForce, Amazon, Google,
Microsoft, Rackspace, Oracle, Verizon, etc. [23].

Security concerns are many when one wants to use cloud
computing systems. Security is a real barrier to using cloud
computing systems [24]. A survey conducted in 2016
revealed that security risks are the primary
concerns/obstacles in using cloud computing systems.

Several frameworks developed in the past related to cloud
computing systems. Some of the frameworks are open source
based. The customers use the frameworks for building
private clouds that offer different types of services. Some of
the notable frameworks include Cloud Stack, Eucalyptus,
and Open Nebula. Off late Open stack has become the most
sought out Open sources based framework for developing
users their private networks [25].

OpenStack is vulnerable to attack. Experimentation using a
porotype specification revealed that the dashboard
component of Open Stack is sensitive for attacking. Most of
the researchers have offered different kinds of solutions used
for making the OpenStack framework secured. The keystone
module of open stack provides another type of identity
services that include identification, cataloguing, management
of policies, and dealing with tokens for authentication. The
identity services offered by the keystone module provided as
a set of services situated at more than one endpoint. The
services initiated through frontend calls. An authenticate call
initiated from the user frontend will validate either project or
user credentials, and on finding the eligibility, an
authentication token issued using which the users access the
service [26].

A study conducted, and an analysis of security issues relating
to open stack carried especially considering object storage
service. Security requirements, as stated in two different

standards released by NIST(National institute of standards
and technology) and ENISA (European Network and
Information security agency) and came out with a set of
security requirements implemented within OpenStack [27].

GidwaniIshan et al. made another study that focuses on the
security issues and threats existing in OpenStack system.,
[28]. The authors argued that OpenStack did not implement
any complexity within the password system and also that the
passwords stored in plain text. They have conducted a
penetration test using some of the existing tools and have
come out that Open Stack is prone to future attacks as many
vulnerabilities still existing in the system

A new Enhanced authentication system that works in
conjunction with original authentication system implemented
within the keystone presented by B. Cui and T. Xi in [29].
They have shown details and the way the new model
performed. They have compared the features of the new
model with the features supported by Keystone and also have
introduced the way the new model provides a high level of
security by subjecting the open stack system with the attacks
that cannot be mitigated by the keystone system.

A study of the features supported in the keystone module
[30] has found many weaknesses and a lack of support for
access control, authentication based on attributed
provisioning, audit mechanisms, and policy-based security
enforcement. They have carried a threat and identified threats
that exist concerning interfaces, components, internal
processes of the elements within OpenStack.

Series of versions of the OpenStack released, leading to the
improvement of security enforcement that mitigates many of
the vulnerabilities existing in the open stack. The open stack
being open source exposes many threats and vulnerabilities.
Open source-based Testbeds used for testing cloud
computing systems, and these testbeds used to test new
methods included in the OpenStack system for testing
resource provisioning and management of services deployed
under Multi-data centers [31].

The architecture of most of the open sources is similar [32].
Most of the cloud computing architectures consider
including a cloud controller and a set of nodes on which
several services implemented. The controller controls the
instances, network, administrative interfaces, and schedules
the interfaces. The nodes run instances of VMs through the
use of available resources.

Authenticating the users for providing secured storage and
access to the information is required, when it comes to
service-oriented information exchanges — identity
management systems needed for ensuring confidentiality and
security considering both sides of the client and provider.
Many drawbacks exist within many of the cloud computing
systems, including open stack, which causes data violations,
unauthorized access. A single point of failure happens due to
the use of centralized access. Security of cloud computing
systems enhanced through Federated Identity management,

M Trinath Basu et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(6), November - December 2019, 3596– 3614

3606

which leads to structured, adaptable and systematic
implementing of the security systems within cloud
computing systems [33].

Performance analysis of a two factor authenticated system
carried by J. M. Alve, T. G. Rodrigues [34] using the
different hypervisors, which include VMware, Xen, KVM,
etc. They have used the user name password in the first
instance and then followed by OTP based authorization.
They have used OpenID protocol, so that single sign-on
access to the services provided. They have shown that KVM
hypervisor performance extensively well using a two-factor
approach [34].

A cloud computing adaption framework is proposed by
Vicor Chang et al., [35], which can be customized by the
user for implementing the organization-specific security
requirements. They have presented that security
enforcements applied in real-time through a Multi-Layer
approach. They have used three layers for implementing
security through a firewall, intrusion, and access control,
which all are implemented in three layers.

Kryszt Benedyczak et al. have presented the use of
middleware for implementing federated computing [36].
They have proposed a method that does not require either
certificates or delegation mechanisms. They have used a
component called “Unity” for serving the identity
management services. The method proposed by them allows
many federation integration approaches that include
integrating with OpenID and SAML.

Benjamin Ertl [37] presented that Authentication for every
kind of service has to be rendered based on cross-domain
identification. They have introduced a protocol that
considers the issue of linking different accounts associated
with a client. The protocol proposed by them supports
verification of authentication for each of the services
requested by the clients. They have put their
recommendation in terms of the existing federated
infrastructures.

Controlling access to different resources considering Fine-
grained access control, Scalability, data utilization, privacy
preservation, and revocation of privilege is most
complicated. A scheme covering these aspects was proposed
by Rohit Ahuja [38] based on encryption carried using a set
of attributes. Encryption of data undertaken through
consideration of a set of attributes. They have considered that
the users hierarchically organized, with each user carrying
specific attributes. The characteristics are selected based on
the path to be used for moving data from one user location to
another, keeping because of the scalability. The authors have
presented the method of hybridization of re-encryption and
attribute-based encryption to realize the flexible revocation
of system privileges.

Security and privacy are the two major concerns of the users
who store their data in the clouds. Several security concerns
arise, which include access control, Data integrity control,

access logging, access auditing, and managing the identity of
the users when data transmitted between the user and the
cloud. Many complex issues lead to multiple open problems
requiring in-depth research carried Bhale Pradeep Kumar
[39].

A single sign-on is sufficient to access the services proposed
by multiple service providers recommended by Jaweher
Zouari [40]. They have proposed identity as a service
framework in which an Identity Finder system incorporated.
The identity finder system, associates service providers with
identity providers systems after taking the consent of the
users. They have proposed additional functionality that helps
to transform between different standards and mapping
semantics relating to varying attributes so that the same
identity context preserved over the entire system

Policy-based methods and mechanisms used for effecting
access control have been used by Georgios Katsikogiannis
[41] for implementing multilevel identity integration,
authentication, and authorization for providing secured
access to cloud computing resources. They have used SOA
for implementing a policy-based security system. They have
analyzed Identity integration, user roles, authentication,
authorized access control and used for validating the rules.

X Darth protocol has been used by Quratulain Alam [42] for
implementing identity management that spread across
several domains. The follow of information that takes place
when XDAuth used is modeled using Petri nets at a high
level. The authors have used the Z language for analyzing the
rules of information flow. The model verified by using a Z3
solver.

A cryptographic primitive, which is key-homomorphic
embedded into RDIC (identity-based remote data integrity
checking) protocol, which considers the user identity for
reducing the complexity of a system. The modified RDIC
helps in minimizing the cost of implementing PKI within
RDIC, Yong Yu [43].

A scheme that helps to implement RIBS (Revocable Identity-
based signature) proposed by Xiaoping Jia [44] uses an
external cloud revocation server used for carrying all critical
updates. Xiaoping has proved that a new framework that
incorporates RIBS is highly resistant to foraged messages
and different identity attacks. They have convinced that
RIBS is highly efficient when compared IBS scheme.

A cloud computing platform suffers from both external and
internal attacks. Nit many Mechanisms/methods proposed to
deal with internal attacks. Carlos Eduardo et al. [45]
described self-adoption schemes to handle insider threats.
The authors have presented the way the self-adaption
systems introduced into the Open Stack cloud computing
platform

The self-adaption mechanism found to deal with the
uncertainty that exists in a wide range of applications. The
component “Keystone” contained in open stack can be

M Trinath Basu et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(6), November - December 2019, 3596– 3614

3607

included with self-adaption mechanisms so that internal
threats counter-attacked

Carlos Eduardo et al., have presented that adds self-adaption
components to Open Stack architecture to handle insider
threats. They have analyzed several threats occurrences that
can happen within the open stack and have evaluated the
impact of the treats that occur in several scenarios. The self-
adaption system explained considering several threat
scenarios.

Mell PM et al. [46] explained that the distribution of data
among different servers is primarily dependent on the type of
cloud (private, public, and Hybrid). The data distribution is
also dependent on the users who are either internal, external,
or both. The data distribution aspects considered while
making available infrastructure as service through an open
stack cloud computing system.

The self-adoption techniques did not lead to complete
protection considering security and privacy, especially
when insider threats are involved. Many contributions
made to deal with securing the cloud computing systems
[47, 48, 49], but none of these methods could solve the
issues of insider attacks.

Cappelli DM et al. [50] have explained that an insider threat
is either a user or process that has authorized access to the
internal resources and can attack the integrity, availability,
and confidentiality of the data.

Cole DE et al. [51] have explained that insider threats are
not the same as those connected with the cloud computing
components, which are either hypervisors or brokers.
Insider threats can be catastrophic resulting in
considerable losses to the organizations as explained by
Duncan A et al., [52]

Self-adaption systems proved to be effective in dealing with
insider threats as the mechanism deal with un-certainty
considering a wide range of application and especially with
the apps that are related to effecting access control
mechanisms [53, 54, 55, 56]. De Lemos R et al. [57] have
explained that the self-adaption systems could
modify/update their behavior or data structure at run-time,
thus dealing with the dynamic management of insider
attacks.

An insider threat generally caused by authorized users of
the system [58]. The internal user regarded as the inside
attacker. Cert et al. [59] defined an employee, business
partner, and contractor who has access to the internal
information resources as the inside attackers. The users
have intensions to take advantage of the company’s data
for unlawful activity affecting availability, integrity, and
confidentiality regarded as inside attackers [59] [60].
Cappelli DM et al. [59] have considered the issue of security
from the point of likely abuse of the data by the users, which

can lead to some threat [61]. Insider risks classified as
unintentional and intentional. Only intentional threats are
classified into insider attacks [60]

Various models presented in the literature relating to
authentication, authorization, and access control helps
to implement different security measures that help to
ensure integrity, confidentiality, and availability of the
data as per the user requirements. Many models were
presented in the literature which includes RBAC (Role-
based Access control) [64], ABAC (Attribute-Based
Access Control)[65]. These models, based on the
assignment of attributes to roles either through
relationships or rules, assign permissions to access the
resources, find Rules that express relationships between
the users and roles. An identity federation management
system includes identity providers, assigned attributes
to the users and uses the Authentication related
infrastructure provided by the service providers for
effecting the security enforcement [66].

The system that implements ABAC/RBAC relies on
the software components that protect access to several
resources. The self-adaptive systems use the inputs
provided by the elements meant for controlling the
access for changing their behavior [68]. MAPE-K
framework implements the self-adaptive model
combined with the components that protects access to
the resources [69].

An enhanced scheme has been presented by Yapping Chi et
al., [70] that strengthen the authentication system
implemented within the keystone module of the OpenStack
System. The scheme uses FreeIPA for including a sentinel
that performs authentication, service management, and
access control. The effectiveness of the sentinel tested by
exposing the open stack to the external users.

Clouds provide resources that are shared by several
users/tenants through availing of different services that are
made available by cloud computing providers — the
accessibility to the resources controlled so that one user does
not get into another user jurisdiction. Several security
mechanisms must put in place, which includes authentication
and access control to provide non-conflicting access to the
resources [71][72].

The authentication systems implemented within the cloud
computing systems must be flexible such that the
authentication system implemented varies based on the kind
of resource requested by the user. Many existing cloud
computing systems implement proprietary authentication
systems through uses of signatures and tokens. Khan [73] has
designed and implemented a model based on the OpenID
framework so that limitations existing in proprietary
protocols removed.

A new authentication framework is proposed by Anisetti
[74], which is deployed on a single open stack node and
proved the effectiveness of the framework in implementing

M Trinath Basu et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(6), November - December 2019, 3596– 3614

3608

security within OpenStack. Cui [75] et al. have analyzed the
security implementation within an OpenStack, considering
each component separately. They have proposed a new
model based on symmetric and asymmetric encryption the
feasibility verified by deploying the same within OpenStack.

Chi Yaping et al. [76] have used the FreeIPA framework and
developed a sentinel which has been introduced into an open
stack and proved the effectiveness of the same. Several
papers published relating to securing various aspects within
cloud computing systems some of which have not been
included in Open Stack [77][78][79][80][81][82][83][84]
[85][86].

6. INVESTIGATIONS AND FINDINGS

The Vulnerabilities were existing in the Keystone module
investigated from different perspectives, especially the issue
of tokenization and the use of multi-factor authentication.
Several mechanisms can be introduced into the OpenStack so
that the identity of the users can be made more secure. The
measures added into OpenStack include the introduction of
more secured Tokens, implementation of multi-factor
authentication through federation approaches, etc. Every path
leads to some complexity. The more security built into the
cloud computing system same, the more sophisticated
security models to be added into the system. The security
models chosen must match the risk involved in providing a
specific service required by the customers. The risk
mitigation based security model is the most ideal.

6.1 Implementing JSON Tokens within Open Stack

Overview on JSON Tokens

JSON tokens are non-persistent, which are based on the
JSON Web Token standard and implement the same as
another component with the Open Stack. This backend will
work the same way as fernet tokens works.

The JSON token developed and signed using JWT(Java Web
technologies) and JWS (java web services) standard, and
the token will contain the authentication payload. Signed
tokens are web safe and integrity verified, but the token
payload is not opaque to its holder. It is possible to decode a
token and inspect the payload with JWS tokens. The JSON
Web Tokens are equivalent to Fernet tokens as they are
encrypted and signed.

Since JSON implementation is an independent application,
the administrators of the open stack system will be able to
change, modify, or remove items in the payload at any point
in time and for any reason.

The token provider can undertake changes to the payload.
The payload as such, is developed using the formats and
structures decided by the token providers. The interpretation
of the payloads based on parameters that are to be decoded
by the users is risky as the users may miss-interpret the
contents of the payloads. It is always non-risky if the formal
API is used by users to request information from the
Authentication service provider. The process will help to
provide the payload information to the users which are not
sensitive. Similar to the Fernet, JWTs will require a principal
repository to set up to use for signing tokens.

.

Dash Board

Key Stone

ISON Provder

Fernet Provider

JSON KEY
repostory

Figure 5: Implementing JSON Tokens within OpenStack
Cloud Computing System

There is a need to add new command “keystone-manage” to
handle generation and rotation of keys, implemented through
the use of fernet commands “fernet_setup”
and “fernet_rotate” commands. ES256, ES284, ES512 are
the recommended algorithms to be used for signing the
authentication message.

The architecture of JSON Token implementation within
OpenStack shown in figure 5

The Authentication service (KEYSTONE) should not expose
the algorithms used internally to the end-user. End-user, as
such, should not be allowed to request a specific JWS
algorithm used for the creation of authentication Tokens.
Only trusted algorithms used for token development.

JWS tokens will be integrity verified with a private key and
validated using a corresponding public key. Since
the ES256 implementation only uses signing (as opposed to
signed, encrypted payloads), this adheres to slightly better

M Trinath Basu et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(6), November - December 2019, 3596– 3614

3609

security practices over fernet because private keys never
have to be synced across keystone API nodes. Only public
keys need to be transferred to other keystone API servers to
validate tokens across a cluster.

The configuration file related to Fernet will be modified to
redirect the

6.2 JOSN Token Payload

The payload of the JWS will have the following components:

1. A string containing the ID of the user who
authenticated for the token

2. A numeric value for token expiration

3. numeric value relating to the time a token was issued

4. The following components will be included in the
token along with payload to keep information about
the elements used for developing the token.

5. Authentication methods used to obtain the token

6. Audit Ids required for claiming audit information
associated with a Token

7. Open Stack system ID in case of system-scoped
tokens

8. OpenStack domain ID in case of domain-specific
Tokens

9. Open Stack Project ID in case of project-scoped
tokens

10. Open Stack trust ID in case of trust-scoped tokens

11. Open Stack Application Credential ID in case of
credential tokens

12. Open Stack Group Ids in case of federated tokens to
carry a temporary user’s group assignments

13. Open stack idpId in case of federated tokens to take
the ID of a user’s identity provider

14. Open Stack protocol ID present in federated tokens to
denote the protocol used by a federated user to
authenticate

15. Open stack access token present in OAuth tokens

The JSON application is developed in python language and
using PyJWT and JWCrypto library. ES256 algorithm is
used for digitally signing the tokens, is dynamically selected
so that it becomes impossible for anybody to attack the
tokens. Users will request and present tokens in the same
way they currently do with Fernet tokens. There is no need to
add or change any APIs.

6.3 Implementing Key Setup and Rotation Strategy

Much like the Fernet implementation, a JWT provider will
require a key rotation strategy. Since ES256 relies on
asymmetric signing, the suggested rotation strategy will be
slightly different, known with Fernet.

The Fernet implementation requires the usage of a staged
key, which is just a key with a unique name, to ensure tokens
validated during the rotation process. This kind of usage of
key names not required in the case of JSON tokens. The
following steps should be sufficient to perform key rotation
without token invalidation due to missing signing keys.

1. For every server, A key pair created in terms of
Private and Public Key.

2. The public keys exchanged between the servers

3. Tokens every server ca be validated anywhere as
the public keys of every sever contained in every
other server.

4. Any server can be designated to rotate the keys. The
key rotation by the servers in a round-robin fashion
based on time slicing.

5. A server responsible for key rotation creates a key
pair and sends its public key to all the other servers.
Once an acknowledgment received from other
servers that the key loaded into the key repositories
of the respective servers, the key rotating server will
start singing the keys. The server rotating the keys
can wait for some time and begin singing the tokens
if in case there is a need to avoid the process of
acknowledgment.

The Modified Authentication process meant for
implementing multiple signatures to make the system much
more secured as it becomes quite challenging to attack
numerous signatures.

The PyJWT library does not have functions to sign the
tokens using multiple signatures. A feature added that is
capable of singing with numerous signing algorithms.
Changing the key pairs would not affect the system as the
servers have keys used to sign or design with one of the
digital signature algorithms.

A separate function is implemented within the JSON
application to revoke the Key-pairs. A count maintained for
each of the key-pair stored in the repository, The key-pair
that has achieved a threshold value is automatically
invalidated and deleted from the repository subsequently

M Trinath Basu et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(6), November - December 2019, 3596– 3614

3610

6.4 Crypto-Agility through JSON Library

An expansion to the JWS specification implemented to deal
with more algorithms that can be selected randomly and
dynamically for singing the tokens digitally and also include
more algorithms that can also be chosen dynamically for
validating the tokens once received by a server. To achieve
crypto agility, the Tokens generated by different algorithms
converted to Fernet Tokens as a standard format for
exchanging the tokens.

In the JWT, the users can change the kind of algorithm used
for affecting the digital signature or validating the tokens by
the servers by specifying the same by making changes to the
JOSE header. A validation weakness or wrongly digitally
signing the tokens can thus be affected. The source of the
algorithms in the Python Library must be validated before
the same used for securing the tokens.

Since JWT is a widely used web standard, this will have a
net positive impact on security. The implementation will use
asymmetric signing, reducing the risk of having to replicate
or transfer private keys from one host to another. Since the
token payloads are signed, data within the token will be
readable to anyone who has the token. The token can only be
validated using the corresponding public key of the private
key used to sign the token initially.

In most cases, JSON Web Tokens will have a header,
payload, and signature where each section is delimited by a
period (.). The header contains the name of the algorithm
used to verify the integrity of the token — the name of the
algorithm stored as the “alg” attribute of the header. The
library validating the token uses the algorithm specified in
the header to perform an integrity check and compares its
results to the signature portion of the token.

Security concerns documented and raised that describe the
issues with allowing clients to dictate algorithms used for
token verification. The problem is a concern specifically with
applications that support asymmetric and symmetric signing.
An attacker could effectively bypass the verification check of
a token by using a published, or known, the public key to
generate a JWT with a symmetric signing algorithm.

The issue would be applicable if keystone supported signed
tokens and encrypted tokens with the same token provider
implementation. This vulnerability addressed across various
libraries after its discovery, but the keystone should be aware
of the overall technique that leads to it in the first place. We
can mitigate this type of vulnerability in keystone by
ensuring keystone doesn’t blindly allow end-users to specify
which algorithm used to verify the integrity of a token (e.g.,

only implementing support for ES256) and also ensure that
the “alg” supplied in the token header-only populated by
keystone and also to ensure that keystone only issues tokens
of a single encryption or signing strategy (e.g., not allowing
users to get signed token and encrypted tokens from the same
server, thus mixing asymmetric and crucial symmetric usage
at runtime)

Implementing JSON Tokens within Open stack Systems

The steps to be undertaken for implementing the JSON
tokens shown in Table 1

Table 1 :Steps for implementing JSON token system in
OPEN STACK

Serial
Number

Step Undertaken

1 Add a new JSON class into Keystone Module
2 Modify FernetUtility Class such that JWT API

library called for either creation of a token, or
digitally signing the token or validating the
token or revoking the existing token

3 Add a function into JSON Class which called
from fernetUtility class for rotating JWT
signing keys

4 Add a function into JSON class which called
from FernetUtility class for verifying the
Algorithms used for digitally signing the tokens

5 Add a function into JSON class which called
from FernetUtility class for validating the
tokens

6 Generalize the Token Formatter class and
derive JSON formatter class used for formatting
the tokens

Different Python Libraries required for implementing the
JSON Tokens, the details of which provided in Table 2.

Table 2: Use of Python Library
Serial

Number
Library
Name Description of the Library

1 PyJWT

This library only supports
token signing or JWS. It does
not support JWE, or
authenticated encryption, yet.
A minimum version
of 1.0.1 is required, but this
library already included in the
OpenStack global requirements
repository.

2 python-Jose

This library only supports
token signing or JWS. It does
not support JWE, or
authenticated encryption, yet.
OpenStack global requirements
did not include the provision of
this library

M Trinath Basu et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(6), November - December 2019, 3596– 3614

3611

Serial
Number

Library
Name Description of the Library

3 JWCrypto

This library supports both JWS
and JWE, but both the
environments included in
OpenStack global
requirements.

4 Authlib

This library supports both JWS
and JWE, but its licensing is
incompatible with OpenStack
as it is AGPL

.

7. CONCLUSION

OpenStack is a prominent open-source software for
providing the infrastructure as a service to the users. It is
necessary to investigate the sufficiency of the security built
into the Open stack as OPEN STACK contemplated to be
used by many users.

Management of tokens issues to the users is the most crucial
issue. The system must be such that it is difficult to attack
the initial logins or the tokens exchanged for providing
authentication to the user.

The fernet tokens used within the keystone is weak as it
exposes much vulnerability that can be exploited by the
attackers. Fernet token formatting is also nonstandard. A
JSON token follows the open standards and therefore are
ruggedized. The fernet classes can be generalized, and the
functionality required for the development of tokens,
digitally signing the tokens, validating the algorithms and
keys, and also for rotating the keys using the JSON library
effected.

REFERENCES

1. Razib Hassan Khan, Jukka Ylitalot and Abu Shohel
Ahmed, OpenID Authentication As A Service in
OpenStack, 7th International Conference on Information
Assurance and Security (IAS), PP. 372-377, 2017

2. R. T. Fielding, "Architectural Styles and the design of
network-based software architectures," Ph.D.
dissertation, University of California, Irvine, 2000.

3. Jamie Bodley-Scott, "IDM09, Access or Identity, http:
//www. opengroup. org/j ericho/idm2009_jbs .pdf."

4. "Euca-Tools, Eucalyptus Community,
http://open.eucalyprus.com/wiki-/toolsecosystem, last
accessed 10th May 2011."

5. "Python-OpenID 2.2.5, http:// pypi.python.org/
pypi/python-openid, last accessed 5th May 2011

6. "Amazon AWS EC2 API Reference,
https://docs.amazonwebservices. Com /awsec2 /latest/
apireference/, 2011."

7. Rackspace US, Inc., "Openstack compute developer
guide api 1.0, 2011."

8. "OpenID Foundation, http://openid.net, last accessed
14th June 2011."

9. D. Recordon and D. Reed, "OpenID 2.0: a platform for
user-centric identity management," in Proceedings of
the second ACM workshop on Digital identity
management, ser. DIM '06. New York, NY, USA:
ACM, 2006, pp. 11-16. [Online]. Available:
http://doi.acm.Org/10.l 145/1179529.1179532

10. M. Erdos and S. Cantor, "Shibboleth architecture
protocols and profiles, Http://shibboleth. internet2.
edu/shibboleth-documents .html."

11. R. Philpott, E. Maler, N. Ragouzis, J. Hughes, P.
Madsen, and T. Scavo, "OASIS Open 2008, Security
Assertion Markup Language (SAML) V2.0 Technical
Overview, Committee Draft 02, http://docs.oasisopen.
org/security/saml/ post2.0/ sstc-saml-tech-overview-2.0
.html," March 2008.

12. J. Rosenberg and D. Remy, Securing Web Services with
WS-Security: Demystifying WS-Security, WS-Policy,
SAML, XML Signature, and XML Encryption. Pearson
Higher Education, 2004.

13. S. Almulla and C. Y. Yeun, "Cloud computing security
management," in Engineering Systems Management
and Its Applications (ICESMA), 2010 Second
International Conference on, 30 2010-April 1 2010, pp.
1-7.

14. D. Gollmann, "Computer security," Wiley
Interdisciplinary Reviews: Computational Statistics, vol.
2, no. 5, pp. 544-554, 2010. [Online]. Available:
http://dx.d0i.0rg/l 0.1002/wics. 106

15. Sazzad Masud and Ram Krishnan, Kerberos-Based
Authentication for OpenStack Cloud Infrastructure as a
Service, IT CoNvergence PRActice (INPRA), volume:
3, number: 2 (June), pp. 1-24

16. S. Mandy. Drawbacks of the digital signature.
http://computerfun4u.blogspot.com/2009/02/
drawbacks-of-using-digital-signature.html.

17. P. Mell and T. Grance. The NIST Definition of Cloud
Computing. Technical Report 800-145, National
Institute of Standards and Technology, 2011.
https://doi.org/10.6028/NIST.SP.800-145

18. Rackspace. OpenStack: The Open Source Cloud
Operating System. http://www.openstack.org/
software/

19. C. Kaufman, R. Perlman, and M. Speciner. Network
Security: Private Communication in a Public World.
Prentice-Hall, 2002.

20. R. Xu. Keystone authentication. http://
OpenStackoz.blogspot.com/2014/08/ keystone-
authentication.html

21. Marek Denis, Jose Castro Leon, Emmanuel Ormancey,
Paolo Tedesco, Identity federation in OpenStack - an
introduction to hybrid clouds, 21st International
Conference on Computing in High Energy and Nuclear
Physics, DOI:10.1088/1742-6596/664/2/022015

22. Darshan Tank, Akshai Aggarwal, and Nirbhay
Chaubey, Security Analysis of OpenStack Keystone,
International Journal of Latest Technology in
Engineering, Management & Applied Science

M Trinath Basu et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(6), November - December 2019, 3596– 3614

3612

(IJLTEMAS) Volume VI, Issue VI, June 2017 | ISSN
2278-2540

23. Ristov S, Gusev M, Kostoska M. Security assessment of
OpenStack open-source cloud solution, Proceedings of
the 7th southeast European Doctoral Student Conference
(DSC2012). 2012: 577-587.

24. http://www.hytrust.com/cloud-sddc-study/
25. S. Ristov, M. Gusev and A. Donevski, "Security

Vulnerability Assessment of OpenStack Cloud," 2014
Sixth International Conference on Computational
Intelligence, Communication Systems and Networks,
Tetova, 2014, pp. 95-100
https://doi.org/10.1109/CICSyN.2014.32

26. [26] [3] https://docs.openstack.org/security-
guide/identity.html

27. Slipetskyy R. Security issues in OpenStack, Master's
thesis, Norwegian University of Science and
Technology, 2011.

28. Ishan GidwaniIshan, Dasrath Mane. Security Issues In
OpenStack, International Journal of Computer Science
and Information Technology Research, Vol. 3, Issue 2,
pp: (1147-1158), Month: April - June 2015

29. B. Cui and T. Xi, "Security Analysis of OpenStack
Keystone," 2015 9th International Conference on
Innovative Mobile and Internet Services in Ubiquitous
Computing, Blumenau, 2015, pp. 283-288. DOI:
10.1109/IMIS.2015.44

30. Ericsson, Keystone Security GAP and Threat
Identification (Quick Study), OpenStack Folsom
Release, 2014

31. Cirrus, O.: Open cirrus - open cloud computing research
testbed (Apr 2012), https://opencirrus.org/

32. Ng, C.H., Ma, M., Wong, T.Y., Lee, P.P.C., Lui, J.C.S.:
Live deduplication storage of virtual machine images in
an open-source cloud. Proceedings of 2011, 12th
ACM/IFIP/USENIX International Conference on
Middleware. Pp. 81–100.

33. Rohit Shere, Sonika Srivastava and R.K. Pateriya, A
Review of Federated Identity Management of
OpenStack Cloud, International Conference on Recent
Innovations in Signal Processing and Embedded
Systems (RISE), 2017

34. J.M. Alve, T.G. Rodrigues, "Multi-Factor
Authentication with OpenID in Virtualized
Environments," IEEE Latin America Transactions,
Vol. 15, No. 3, pp. 528-533, March 2017
https://doi.org/10.1109/TLA.2017.7867604

35. Vicor Chang and Muthu Ramacharandra, "Towards
Achieving Data Security with the Cloud Computing
adoption framework", IEEE Transactions on services
computing, Vol.9, No.1, pp. 138-151, Feb. 2016

36. Krysztof Benedyczak, "Unicore 7 - Middleware services
for Distributed and Federated Computing", IEEE, pp.
613-620, 2016.

37. Benjain E, Identity Harmonization for Federated HPC
Grid and Cloud Services, IEEE proceedings, Pp. 621-
627, 2016.

38. Rohit Ahuja, An identity is preserving access control
scheme with flexible system privilege revocation in

cloud computing, IEEE- 11th Asia Joint Conference on
Information Security, pp. 39-47, 2016.

39. Bhale Pradeep Kumar, "Achieving Cloud Security
using Third-Party Auditor, MD5 and Identity based
Encryption", International Conference on Computing,
Communication, and Automation, pp. 1304-1309, 2016.

40. Jaweher Zouari, An Identity as a service framework for
the cloud, IEEE Proceedings, Pp. 1-5, 2016.

41. Georgios Katsikogiannis, "An Identity and Access
Management approach for SOA," IEEE International
Symposium on Signal Processing and Information
Technology, pp. 1-6, 2016
https://doi.org/10.1109/ISSPIT.2016.7886021

42. Quratulain Alam, "Formal Verification of the xDAuth
Protocol," IEEE, pp.1-14, 2016

43. Yong Yu, "Identity-based Remote Data Integrity is
hacking with perfect data privacy-preserving for cloud
storage," IEEE, pp. 1-11, 2016.

44. Xiaoing Jia, Efficient Revocable ID-based signature
with cloud revocation server, IEEE Proceedings, Pp.
1-9, 2017

45. Carlos Eduardo Da Silva, Thomás Diniz, Nelio Cacho,

and Rogério de Lemos, Self-adaptive authorization in
OpenStack cloud platform, Journal of Internet Services
and Applications, Journal of Internet Services and
Applications (2018) 9:19,
https://doi.org/10.1186/s13174-018-0090-7

46. Mell PM, Grance T. SP 800-145. The NIST Definition
of Cloud Computing. Tech. Rep., National Institute of
Standards and Technology. MD: Gaithersburg; 2011.

47. Duncan A, et al. Cloud Computing: Insider Attacks on
Virtual Machines during Migration. In: Trust, Security,
and Privacy in Computing and Communications
(TrustCom), 2013 12th IEEE International Conference
https://doi.org/10.1109/TrustCom.2013.62

48. Garkoti G, Peddoju S, Balasubramanian R. Detection of
Insider Attacks in Cloud-Based e-Healthcare
Environment. In: Information Technology (ICIT), 2014
International Conference on; 2014. p. 195–200.
https://doi.org/10. 1109/ICIT.2014.43.

49. Stolfo S, Salem M, Keromytis A. Fog Computing:
Mitigating Insider Data Theft Attacks in the Cloud. In:
Security and Privacy Workshops (SPW), 2012 IEEE
Symposium on; 2012. p. 125–128.
https://doi.org/10.1109/SPW.2012.19.

50. Cappelli DM, Moore AP, Trzeciak RF. The CERT
Guide to Insider Threats: How to Prevent, Detect, and
Respond to Information Technology Crime, 1st ed.
Addison-Wesley Professional; 2012.

51. Duncan A, Creese S, Goldsmith M. Insider Attacks in
Cloud Computing. In: Trust, Security and Privacy in
Computing and Communications (TrustCom), 2012
IEEE 11th International Conference on; 2012.p. 857–
862. https://doi.org/ 10.1109/ TrustCom.2012.188.

52. Cole DE. Insider threats and the need for fast and
directed responded. Tech. Rep.: SANS Institute InfoSec
Reading Room; 2015.

53. Bailey C, Chadwick DW, de Lemos R. Self-adaptive
federated authorization infrastructures. J Compute

M Trinath Basu et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(6), November - December 2019, 3596– 3614

3613

System Sci. 2014; 80(5):935–52. https://
dx.doi.org/10.1016/j.jcss.2014.02.003.
http://www.sciencedirect.com/ science/article/PII
/S0022000014000154

54. Pasquale L, et al. Securitas: A Tool for Engineering
Adaptive Security. In: Proceedings of the ACM
SIGSOFT 20th International Symposium on the
Foundations of Software Engineering. FSE ’12. New
York: ACM; 2012. p. 19:1–19:4.
https://doi.org/10.1145/2393596.2393618. https://
doi.acm.org/ 10.1145/2393596.2393618

55. Schmerl B, et al. Architecture-based Self-protection:
Composing and Reasoning About Denial-of-service
Mitigations. In: Proceedings of the 2014 Symposium
and Bootcamp on the Science of Security. HotSoS ’14.

56. Yuan E, Esfahani N, Malek S. A systematic survey of
self-protecting software systems. ACM Trans Auton
Adapt Syst. 2014; 8(4):17:1–
https://doi.org/10.1145/2555611.
http://doi.acm.org/10.1145/2555611.

57. De Lemos R, Giese H, Müller H, Shaw M,
Andersson J, Litoiu M, Schmerl B, Tamura G,
Villegas N, Vogel T, Weyns D, Baresi L, Becker
B, Bencomo N, Brun Y, Cukic B, Desmarais R,
Dustdar S, Engels G, Geihs K, GÃÂu˝ schka K,
Gorla A, Grassi V, Inverardi P, Karsai G, Kramer
J, Lopes A, Magee J, Malek S, Mankovskii S,
Mirandola R, Mylopoulos J, Nierstrasz O, Pezza M,
Prehofer C, Schafer W, Schlichting R, Smith D,
Sousa J, Tahvildari L, Wong K, Wuttke J. Software
engineering for self-adaptive systems: A second
research roadmap. In: de Lemos R, Giese H, Müller
H, Shaw M, editors. Software Engineering for Self-
Adaptive Systems II, Lecture Notes in Computer
Science, vol 7475. Berlin: Springer; 2013. p. 1–32.
https://doi. org/10.1007/978-3-642-35813-5_1.

58. Schultz E, A framework for understanding and
predicting insider attacks. Computer Security.
2002;21(6):526–31. https://doi.org/10.1016/S0167-
4048(02)01009-X.

59. Cappelli DM, Moore AP, Trzeciak RF. The CERT
Guide to Insider Threats: How to Prevent, Detect, and
Respond to Information Technology Crime, 1st ed.
Addison-Wesley Professional; 2012.

60. George Silowash AM, Cappelli D, et al. Common sense
guide to mitigating insider threats. Tech. rep. CERT
Carnegie Mellon; 2012.

61. Colwill C. Human factors in information security: The
insider threat - who can you trust these days?. Inf Secur
Tech Rep. 2009;14(4):186–96. https://
doi.org/10.1016/j.istr.2010.04.004.

62. Clercq JD. Single Sign-On Architectures. London:
Springer-Verlag; 2002. p. 40–58.
http://dl.acm.org/citation.cfm?id=647333.722879

63. Chadwick DW, et al. PERMIS: A Modular
Authorization Infrastructure. Concurr Comput: Pract
Exper. 2008;20(11):1341–57. https://doi.org/10.
1002/cpe.v20:11. http://dx.doi.org/10.1002/cpe.v20:11

64. Sandhu RS, et al. Role-Based Access Control Models.
Computer. 1996; 29(2):38–47.

https://doi.org/10.1109/2.485845. http://dx.doi.org/10.
1109/2.485845.

65. Hu VC, et al. SP 800-162. Guide to Attribute-Based
Access Control (ABAC) Definitions and
Considerations. Tech. Rep., National Institute of
Standards and Technology. VA: McLean and Clifton;
2014.

66. Chadwick DW. Federated Identity Management. In:
Foundations of Security Analysis and Design V, Lecture
Notes in Computer Science, vol 5705. Berlin: Springer;
2009. p. 96–120. https://doi.org/10.1007/978-3- 642-
03829-7_3.

67. Hu VC, et al. SP 800-162. Guide to Attribute-Based
Access Control (ABAC) Definitions and
Considerations. Tech. Rep., National Institute of
Standards and Technology. VA: McLean and Clifton;
2014.

68. De Lemos R, Giese H, Müller H, Shaw M, Andersson
J, Litoiu M, Schmerl B, Tamura G, Villegas N, Vogel
T, Weyns D, Baresi L, Becker B, Bencomo N, Brun
Y, Cukic B, Desmarais R, Dustdar S, Engels G,
Geihs K, GÃÂu˝ schka K, Gorla A, Grassi V,
Inverardi P, Karsai G, Kramer J, Lopes A, Magee J,
Malek S, Mankovskii S, Mirandola R, Mylopoulos J,
Nierstrasz O, Pezza M, Prehofer C, Schafer W,
Schlichting R, Smith D, Sousa J, Tahvildari L, Wong
K, Wuttke J. Software engineering for self-adaptive
systems: A second research roadmap. In: de Lemos R,
Giese H, Müller H, Shaw M, editors. Software
Engineering for Self-Adaptive Systems II, Lecture
Notes in Computer Science, vol 7475. Berlin: Springer;
2013. p. 1–32. https://doi. org/10.1007/978-3-642-
35813-5_1.

69. Kephart JO, Chess DM. The Vision of Autonomic
Computing. IEEE Comput. 2003; 36(1):41–50.
http://dx.doi.org/10.1109/MC.2003.1160055.

70. Yaping Chi; Gefei Li; Ying Chen, Xiaohong Fan,
Design and Implementation of OpenStack Cloud
Platform Identity Management Scheme, Published
in 2018 International Conference on Computer,
Information and Telecommunication Systems (CITS)

71. Feng Dengguo, Zhang Min, Zhang Yan, et al. Research
on cloud computing security [J].Journal of Software,
2011,22 (1): 71-83.

72. Yu Nenghai, Hao Zhuo, Xu Jiajia, et al. Review of the
progress of cloud security research [J].Journal of
Electronics, 2013,41 (2): 371-381.

73. KHAN R H, YLITALO J, AHMED A S. OpenID
Authentication as a Service in OpenStack[C]//IEEE. 7th
International Conference on Information Assurance and
Security, December 5-8, 2011, Malacca, Malaysia. New
Jersey: IEEE, 2011: 372-377.

74. ANISETTI M, ARDAGNA C A, DAMIANI E, et al.
Toward Security and Performance Certification of Open
Stack[C]//IEEE. 2015 IEEE International Conference on
Cloud Computing, June 27-July 2, 2015, New York,
USA. New Jersey: IEEE, 2015: 564-571.

75. CUI Baojiang, XI Tao. Security Analysis of OpenStack
Keystone[C]//IEEE. 9th International Conference on
Innovative Mobile and Internet Services in Ubiquitous

M Trinath Basu et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(6), November - December 2019, 3596– 3614

3614

Computing, July 8-10, 2015, Santa Catarina, Brazil.
New Jersey: IEEE, 2015: 283-288.

76. The Chi Yaping, Wang Huili, Yuan Ze Bo, and another
authentication mechanism OpenStack Research and
Improvement [J] Jilin University (Information Science),
2015 (11): 700-706.

77. JKR Sastry, M Trinath Basu, Securing SAAS service
under cloud computing-based multi-tenancy systems,
Indonesian Journal of Electrical Engineering and
Computer Science, Volume 13, Issue 1, Page 65-71,
2019

78. JKR Sastry, M Trinath Basu, Securing Multi-tenancy
systems through multi DB instances and multiple
databases on different physical servers, International
Journal of Electrical and Computer Engineering
(IJECE), Volume 9, Issue 2, Pages 1385-1392, 2019

79. M.Trinath Basu1, Dr. JKR Sastry, A fully security
included Cloud Computing Architecture, International
Journal of Engineering & Technology, Volume 7, Issue
2.7, Page 807-812, 2018

80. Dr. JKR Sastry, M Trinath Basu, Securing Multi-
tenancy systems through user spaces defined within
database level, Jour of Adv Research in Dynamical &
Control Systems, Volume 10, issue 7, Page 405-412,
2018

81. J. K. R. Sastry, K. Sai Abhigna, R. Samuel and D. B.
K. Kamesh, Architectural models for fault tolerance
within clouds at the infrastructure level, ARPN Journal
of Engineering and Applied Sciences, VOL. 12, NO.
11, 2017, Pages 3463-3469

82. DBK Kamesh, JKR Sastry, Ch. Devi Anusha, P.
Padmini, G. Siva Anjaneyulu, Building Fault Tolerance
within Clouds at Network Level, International Journal
of Electrical and Computer Engineering (IJECE), Vol.
6, No. 4, pp. 1560~1569, 2016

83. S. L. SUSHMITHA, Dr. D. B. K. J.K. R. SASTRY, V.
V. N. SRI RAVALI, Y.SAI KRISHNA REDDY,
building fault tolerance within clouds for providing
uninterrupted software as service, Journal of
Theoretical and Applied Information Technology,
Vol.88. No.1, Pages 65-76, 2016

84. NVS Pavan Kumar, Dr.JKR Sastry, Dr. K Raja Sekhara
Rao, Mining Distributed Databases for Negative
Associations from Regular and Frequent Patterns,
International Journal of Advanced Trends, Volume 8,
Issue 4, Pages 1440-1463, 2019

85. NVS Pavan Kumar, Dr.JKR Sastry, Dr. K Raja Sekhara
Rao, On Incremental mining Databases for Regular and
Frequent Patterns, International Journal of Emerging
Trends and engineering research, Volume 7, Issue 9,
Pages 291-305, 2019
https://doi.org/10.30534/ijeter/2019/12792019

86. NVS Pavan Kumar, Dr.JKR Sastry, Dr. K Raja Sekhara
Rao, Mining Negative Frequent regular Itemsets from
Data Streams, International Journal of Emerging Trends
and engineering research, Volume 7, Issue 8, Pages 85-
98, 2019
https://doi.org/10.30534/ijeter/2019/02782019

