
Coordination for Situated MAS:
Towards an Event-driven Architecture

Andrea Omicini and Stefano Mariani

Dipartimento di Informatica–Scienza e Ingegneria (DISI)
Alma Mater Studiorum–Università di Bologna, Italy

{andrea.omicini, s.mariani}@unibo.it

Abstract Complex software systems modelled as multi-agent systems
(MAS) are characterised by activities that are generated either by agents,
or by the environment in its most general acceptation—that is, environ-
mental resources and the spatio-temporal fabric. Modelling and engin-
eering complex multi-agent systems (MAS) – such as pervasive, adaptive,
and situated MAS – requires then to properly handle diverse classes of
events: agent operations, resource events, spatio-temporal situation.
In the following, first we devise out the requirements for a software ar-
chitecture for an agent-based middleware based on boundary artefacts,
then we sketch a concrete architecture based on the TuCSoN middleware
for MAS coordination.

1 Motivation

Today’s complex computational systems more and more require strict coupling
with the environment: pervasive, adaptive, self-organising systems need to work
as situated systems, able to react to relevant changes in the environment, and to
possibly act over it appropriately and timely. Interaction with the environment
is then one of the main issue in complex computational systems nowadays [1].

On the other hand, agent-oriented abstractions and technologies provide a
solid ground for complex system modelling and engineering: in particular, meta-
models like A&A [2], middlewares like CArtAgO [3], JADE [4], TuCSoN [5],
agent-oriented methodologies like Gaia [6], PASSI [7] and SODA [8] already
proved their effectiveness in dealing with the engineering of complex software
systems [9]. The reactive nature of situated systems, however, does not cope
well with the proactive nature of agency, at least not with no compromise: in
particular, the event-driven computational model pushed by system situation
does not match straightforwardly the typical high-level programming model of
agent-oriented languages—in particular those for intelligent agents.

While such issues are typically faced with more articulated agent languages
and architectures – like hybrid agents architectures –, their increasing complexity
(in particular in size and number of components and events) mandates for prin-
cipled solutions, possibly at system level rather than at single-component level.
Accordingly, in the following we sketch an event-driven architecture for agent
middleware exploiting coordination abstractions for event handling, discuss its



abstract features, and describe a possible reification as a concrete architecture
based on the TuCSoN middleware for multi-agent system (MAS) coordination.

2 MAS as Event-driven Systems

Situated systems have to deal with the environment as the main source of activ-
ity, as well as the foremost target for their own activity. Environment activity
is typically modelled in terms of events, whose interaction with computational
systems is articulated in a number of stages: at least, selection of potentially-
relevant events, perception of selected events, delivering of perceived events to
designed components, elaboration of events by components. Moreover, situated-
ness also means reactiveness to the spatio-temporal fabric: perceiving and re-
acting to events related to location and motion in space, and to the passage
of time, are essential features of mobile and pervasive computing applications.
In the overall, dealing with situatedness basically requires an event-driven pro-
gramming model, along with a suitable choice of the representation language for
environment events.

On the other hand, modelling a complex computational system as a MAS
basically accounts to encapsulating system activities within agents. Whereas the
notion of environment as a sort of external source of event is more or less easy
to accept, the same does not hold for agents. However, agents in an open MAS
are possibly not designed and controlled by the MAS designer: so, their activity
should be in principle handled again as an unpredictable source of events: either
for openness, or for the intrinsic complexity that an agent behaviour may in
principle encapsulate. Accordingly, both organisation and security issues require
modelling agents, too, as (possibly unpredictable) event sources within MAS, to
be possibly handled via event-driven engineering techniques.

As a result, an event-driven view of MAS is possible, where agents and the
environment are the sources of all activities, and the overall behaviour of the
MAS is obtained by suitably modelling activities as events, and governing them
through suitable event-driven models and technologies.

3 Boundary & Coordination Artefacts

Whereas agents and environment are the most suitable abstractions to handle
activities in a MAS, artefacts – being reactive by definition – are the most
suitable abstractions to encapsulate reactive behaviours—so, the most suitable
way to handle events in a complex MAS, according to the A&A meta-model [2].

The first issue is to map activities of any sort – even possibly unpredictable
ones – upon a set of admissible events—that is, those events that are accep-
ted and handled by the MAS. Apart from an appropriate model, this requires
suitably-defined architectural abstractions embedding such a mapping. This is
in fact the role of boundary artefacts, which mediate between agents and the
MAS, as well as between the MAS and its environment.

18 PNSE’13 – Petri Nets and Software Engineering



In particular, we envision a principled MAS architecture where each agent
and each resource in the environment is associated to its own boundary artefact,
working on the one hand as a proxy for the agent / resource within the MAS, on
the other hand as a sort of interface for the agent / resource towards the MAS.
Known examples of boundary artefacts are Agent Communication Contexts [10]
and the abstractions of Law-Governed Linda [11].

However, once brought within a MAS by a boundary artefact, an admissible
event has to be handled to possibly generate other events and / or computational
activities, defining the overall behaviour of a MAS: for instance, to aggregate
events from resources, like a bunch of sensors. This is the role of coordination
artefacts [12], which capture admissible MAS events, and associate them to
computational activities implementing coordination laws, possibly generating
further events, and giving raise to event chains.

With respect to the classification of artefacts introduced by the A&A meta-
model [13], individual and resource artefacts are basically represented here by
boundary artefacts, whereas social artefacts play roughly the role of coordina-
tion artefacts, here. In principle, however, boundary artefacts have a much more
limited function with respect to individual and resource artefacts, which are de-
voted also to contain the basic coordination policies related to individual agents
and resources. Then, a more precise architectural mapping would require indi-
vidual coordination artefacts to be associated to boundary artefacts in order to
achieve the same sort of architectural functionality provided by A&A individual
artefacts.

4 A Concrete Event-driven Architecture in TuCSoN

The abstract architecture sketched above essentially models complex MAS as
composed of proactive entities (agents, environment resources, space-time fabric)
and reactive entities (boundary and coordination artefacts), connected together
by a net of co-ordinated events. Quite unsurprisingly, a possible reification of
such an abstract architecture can be designed upon the TuCSoN middleware for
MAS coordination [5].

First of all, it is quite easy to map coordination artefacts upon ReSpecT tuple
centres [14], which are the coordination abstraction provided by TuCSoN. There,
computational activities devoted to MAS coordination can be represented in
terms of the ReSpecT logic-based specification language [15], allowing admissible
events to be associated to reactions, possibly generating further events within a
MAS.

Then, two middleware abstractions play the role of boundary artefacts in
TuCSoN: agent coordination contexts (ACC) [16], for agents, and transducers
[17], for resources. On the one hand, ACC play the role of security and organ-
isation abstractions [18]: each agent has an associated ACC that mediates all
the agent interactions with the TuCSoN system, working both as its representat-
ive within the TuCSoN-coordinated MAS, and as its interface towards the MAS
itself, providing the agent with available operations. On the other hand, trans-

A. Omicini and S. Mariani: Coordination for Situated MAS 19



ducers [17] are in charge of representing individual resources, along with their
own peculiar ways of interacting: each portion of the MAS environment repres-
ented by a resource is associated to its specific transducer, capable of two-way
interaction to map meaningful resource events upon admissible MAS events.

Mapping our abstract event-driven architecture upon the TuCSoN middle-
ware obviously mandates for a complete event driven model. In TuCSoN, this is
achieved by (i) generalising the TuCSoN notion of admissible event, and (ii) ex-
tending ReSpecT as a full-fledge event-driven language, capable of dealing with
general-purpose events, enabling ReSpecT tuple centres to work as event-driven
abstractions for MAS coordination—as discussed in [19].

In order to test the effectiveness of the abstract architecture depicted above,
as well as of the corresponding TuCSoN-based concrete architecture for event-
driven engineering of complex MAS, experiments were conducted, by exploiting
the TuCSoN technology in complex application scenarios. In particular, TuCSoN
is currently adopted for the implementation of the Molecules of Knowledge (MoK
for short) model for knowledge self-organisation [20], and for the testing of the
SAPERE middleware for pervasive adaptive services [21].

The TuCSoN middleware is available as an open source project [22], and
in its current stage of development features ACC in its main distribution. The
most general notion of transducers (with transducer managers for middleware
lifecycle) and the complete situated version of ReSpecT are instead currently
under testing.

Acknowledgements

The authors would like to thank the organisers of PNSE’13 and ModBE’13 –
and in particular Daniel Moldt – for inviting our contribution.

This work has been supported by the EU-FP7-FET Proactive pro-
ject SAPERE – Self-Aware PERvasive service Ecosystems, under contract
no. 256873.

References

1. Weyns, D., Omicini, A., Odell, J.J.: Environment as a first-class abstraction in
multi-agent systems. Autonomous Agents and Multi-Agent Systems 14(1) (Feb-
ruary 2007) 5–30 Special Issue on Environments for Multi-agent Systems.

2. Omicini, A., Ricci, A., Viroli, M.: Artifacts in the A&A meta-model for multi-
agent systems. Autonomous Agents and Multi-Agent Systems 17(3) (December
2008) 432–456 Special Issue on Foundations, Advanced Topics and Industrial Per-
spectives of Multi-Agent Systems.

3. Ricci, A., Viroli, M., Omicini, A.: CArtAgO: A framework for prototyping artifact-
based environments in MAS. In Weyns, D., Parunak, H.V.D., Michel, F., eds.:
Environments for MultiAgent Systems III. Volume 4389 of LNAI. Springer
(May 2007) 67–86 3rd International Workshop (E4MAS 2006), Hakodate, Japan,
8 May 2006. Selected Revised and Invited Papers.

20 PNSE’13 – Petri Nets and Software Engineering



4. Bellifemine, F.L., Caire, G., Greenwood, D.: Developing Multi-Agent Systems with
JADE. Wiley (February 2007)

5. Omicini, A., Zambonelli, F.: Coordination for Internet application development.
Autonomous Agents and Multi-Agent Systems 2(3) (September 1999) 251–269
Special Issue: Coordination Mechanisms for Web Agents.

6. Zambonelli, F., Jennings, N.R., Wooldridge, M.J.: Developing multiagent systems:
The Gaia methodology. ACM Transactions on Software Engeneering Methodolo-
gies 12(3) (2003) 317–370

7. Cossentino, M., Gaglio, S., Sabatucci, L., Seidita, V.: The PASSI and agile PASSI
MAS meta-models compared with a unifying proposal. In Pechoucek, M., Petta,
P., Varga, L.Z., eds.: Multi-Agent Systems and Applications IV. Volume 3690 of
LNCS., Springer (2005) 183–192 4th International Central and Eastern European
Conference on Multi-Agent Systems, CEEMAS 2005, Budapest, Hungary, Septem-
ber 15-17, 2005, Proceedings.

8. Molesini, A., Omicini, A., Denti, E., Ricci, A.: SODA: A roadmap to artefacts.
In Dikenelli, O., Gleizes, M.P., Ricci, A., eds.: Engineering Societies in the Agents
World VI. Volume 3963 of LNAI. Springer (June 2006) 49–62 6th International
Workshop (ESAW 2005), Kuşadası, Aydın, Turkey, 26–28 October 2005. Revised,
Selected & Invited Papers.

9. Zambonelli, F., Omicini, A.: Challenges and research directions in agent-oriented
software engineering. Autonomous Agents and Multi-Agent Systems 9(3) (Novem-
ber 2004) 253–283 Special Issue: Challenges for Agent-Based Computing.

10. Di Stefano, A., Santoro, C.: Modeling multi-agent communication contexts. In:
1st International Joint Conference on Autonomous Agents & Multiagent Systems
(AAMAS 2002), Bologna, Italy, ACM Press (15–19 July 2002) 174–175 Proceed-
ings.

11. Minsky, N.H., Leichter, J.: Law-Governed Linda as a coordination model. In Cian-
carini, P., Nierstrasz, O., Yonezawa, A., eds.: Object-based Models and Languages
for Concurrent Systems. Volume 924 of LNCS. Springer (1995) 125–146

12. Omicini, A., Ricci, A., Viroli, M., Castelfranchi, C., Tummolini, L.: Coordination
artifacts: Environment-based coordination for intelligent agents. In Jennings, N.R.,
Sierra, C., Sonenberg, L., Tambe, M., eds.: 3rd international Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2004). Volume 1., New
York, USA, ACM (19–23 July 2004) 286–293

13. Omicini, A., Ricci, A., Viroli, M.: Agens Faber: Toward a theory of artefacts for
MAS. Electronic Notes in Theoretical Computer Science 150(3) (29 May 2006)
21–36 1st International Workshop “Coordination and Organization” (CoOrg 2005),
COORDINATION 2005, Namur, Belgium, 22 April 2005. Proceedings.

14. Omicini, A., Denti, E.: From tuple spaces to tuple centres. Science of Computer
Programming 41(3) (November 2001) 277–294

15. Omicini, A.: Formal ReSpecT in the A&A perspective. Electronic Notes in The-
oretical Computer Science 175(2) (June 2007) 97–117 5th International Work-
shop on Foundations of Coordination Languages and Software Architectures (FO-
CLASA’06), CONCUR’06, Bonn, Germany, 31 August 2006. Post-proceedings.

16. Omicini, A.: Towards a notion of agent coordination context. In Marinescu, D.C.,
Lee, C., eds.: Process Coordination and Ubiquitous Computing. CRC Press, Boca
Raton, FL, USA (October 2002) 187–200

17. Casadei, M., Omicini, A.: Situated tuple centres in ReSpecT. In Shin, S.Y., Os-
sowski, S., Menezes, R., Viroli, M., eds.: 24th Annual ACM Symposium on Applied
Computing (SAC 2009). Volume III., Honolulu, Hawai’i, USA, ACM (8–12 March
2009) 1361–1368

A. Omicini and S. Mariani: Coordination for Situated MAS 21



18. Omicini, A., Ricci, A., Viroli, M.: Agent Coordination Contexts for the formal spe-
cification and enactment of coordination and security policies. Science of Computer
Programming 63(1) (November 2006) 88–107 Special Issue on Security Issues in
Coordination Models, Languages, and Systems.

19. Mariani, S., Omicini, A.: Event-driven programming for situated MAS with Re-
SpecT tuple centres. In: Workshop on Agent Based Computing: From Model to
Implementation X (ABC:MI 2013), Koblenz, Germany (September 2013) Proceed-
ings.

20. Mariani, S., Omicini, A.: Molecules of Knowledge: Self-organisation in knowledge-
intensive environments. In Fortino, G., Bădică, C., Malgeri, M., Unland, R., eds.:
Intelligent Distributed Computing VI. Volume 446 of Studies in Computational
Intelligence., Springer (2013) 17–22 6th International Symposium on Intelligent
Distributed Computing (IDC 2012), Calabria, Italy, 24-26 September 2012. Pro-
ceedings.

21. Zambonelli, F., Castelli, G., Ferrari, L., Mamei, M., Rosi, A., Di Marzo Seru-
gendo, G., Risoldi, M., Tchao, A.E., Dobson, S., Stevenson, G., Ye, Y., Nardini,
E., Omicini, A., Montagna, S., Viroli, M., Ferscha, A., Maschek, S., Wally, B.:
Self-aware pervasive service ecosystems. Procedia Computer Science 7 (December
2011) 197–199 Proceedings of the 2nd European Future Technologies Conference
and Exhibition 2011 (FET 11).

22. TuCSoN: Home page. http://tucson.apice.unibo.it

22 PNSE’13 – Petri Nets and Software Engineering


