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Abstract

Point cloud analysis has received much attention re-

cently; and segmentation is one of the most important tasks.

The success of existing approaches is attributed to deep net-

work design and large amount of labelled training data,

where the latter is assumed to be always available. How-

ever, obtaining 3d point cloud segmentation labels is often

very costly in practice. In this work, we propose a weakly

supervised point cloud segmentation approach which re-

quires only a tiny fraction of points to be labelled in the

training stage. This is made possible by learning gradient

approximation and exploitation of additional spatial and

color smoothness constraints. Experiments are done on

three public datasets with different degrees of weak super-

vision. In particular, our proposed method can produce re-

sults that are close to and sometimes even better than its

fully supervised counterpart with 10× fewer labels. Our

code is available at the project website1.

1. Introduction

Recent developments in point cloud data research have

witnessed the emergence of many supervised approaches

[19, 20, 33, 12, 29]. Most efforts of current research are

dedicated into two tasks: point cloud shape classification

(a.k.a. shape recognition) and point cloud segmentation

(a.k.a. semantic segmentation). For both tasks, the suc-

cess of the state-of-the-art methods is attributed mostly to

the deep learning architecture [19] and the availability of

large amount of labelled 3d point cloud data [16, 1]. Al-

though the community is still focused on pushing forward

in the former direction, we believe the latter issue, i.e. data

annotation, is an overlooked bottleneck. In particular, it is

assumed that all points for the point cloud segmentation task

are provided with ground-truth labels, which is often in the

range of 1k to 10k points for a 3d shape [34, 16]. The order

of magnitude increases drastically to millions of points for

∗now with A-STAR, Singapore.
1https://github.com/alex-xun-xu/WeakSupPointCloudSeg
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Figure 1: Illustration of the weak supervision concept in

this work. Our approach achieves segmentation with only a

fraction of labelled points. .

a real indoor scene [11]. As a result, very accurate labels

for billions of points are needed in a dataset to train good

segmentation models. Despite the developments of modern

annotation toolkits [16, 1] to facilitate large-scale annota-

tion, exhaustive labelling is still prohibitively expensive for

ever growing new datasets.

In this work, we raise the question on whether it is pos-

sible to learn a point cloud segmentation model with only

partially labelled points. And, if so, how many is enough

for good segmentation. This problem is often referred to

as weakly supervised learning in the literature [37] as illus-

trated in Fig. 1. To the best of our knowledge, there are

only a handful of works which tried to address related prob-

lems [6, 14]. In [6], a non-parametric conditional random

field classifier (CRF) is proposed to capture the geometric

structure for weakly supervised segmentation. However, it

casts the task into a pure structured optimization problem,

and thus fail to capture the context, e.g. spatial and color

cues. A method for semi-supervised 3D LiDAR data seg-

mentation is proposed in [14]. It converts 3D points into a

depth map with CNNs applied for feature learning, and the

semi-supervised constraint is generated from the temporal

consistency of the LiDAR scans. Consequently, it is not

applicable to general 3D point cloud segmentation.

To enable the weakly supervised segmentation with both

strong contextual modelling ability and handling generic 3D

point cloud data, we choose to build upon the state-of-the-

art deep neural networks for learning point cloud feature

embedding [19, 33]. Given partially labelled point cloud
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Figure 2: Our network architecture for weakly supervised

point cloud segmentation. Red lines indicate back propaga-

tion flow.

data, we employ an incomplete supervision branch with

softmax cross-entropy loss that penalizes only on labelled

points. We observe that such simple strategy can succeed

even at 10× fewer labels, i.e. only 10% of the points are

labelled. This is because the learning gradient of the in-

complete supervision can be considered as a sampling ap-

proximation of the full supervision. In Sect. 3.2, we show

our analysis that the approximated gradient converges to the

true gradient in distribution, and the gap is subjected to a

normal distribution with variance inversely proportional to

the number of sampled points. As a result, the approximated

gradient is close to the true gradient given enough labelled

points. The analysis also gives an insight into choosing the

best annotation strategy under fixed budget. We conclude

that it is always better to extensively annotate more samples

with fewer labelled points in each sample than to intensively

label fewer samples with more (or fully) labelled points.

As the above method imposes constraints only on the la-

belled points, we propose additional constraints to the unla-

belled points in three orthogonal directions. First, we intro-

duce an additional inexact supervision branch which defines

a point cloud sample level cross entropy loss in a similar

way to multi-instance learning[35, 7]. It aims to suppress

the activation of any point with respect to the negative cat-

egories. Second, we introduce a Siamese self-supervision

branch by augmenting the training sample with a random

in-plane rotation and flipping, and then encourage the orig-

inal and augmented point-wise predictions to be consistent.

Finally, we make the observation that semantic parts/objects

are often continuous in the spatial and color spaces. To this

end, we propose a spatial and color smoothness constraint

to encourage spatially adjacent points with similar color to

have the same prediction. Such constraint can be further

applied at inference stage by solving a soft constrained op-

timization that resembles label propagation on a graph [38].

Our proposed network is illustrated in Fig. 2.

Our contributions are fourfold. i) To the best of our

knowledge, this is the first work to investigate weakly su-

pervised point cloud segmentation within a deep learning

context. ii) We give an explanation to the success of weak

supervision and provide insight into annotation strategy un-

der a fixed labelling budget. iii) We adopt three additional

losses based on inexact supervision, self-supervision and

spatial and color smoothness to further constrain unlabelled

data. iv) Experiments are carried out on three public dataset

which serve as benchmarks to encourage future research.

2. Related Work

Weakly supervised learning aims to use weaker annota-

tions, often in the form of partially labelled dataset or sam-

ples. In this work, we follow the definition of weak supervi-

sion made by [37]. More specifically, we are concern with

two types of weak supervision: incomplete and inexact su-

pervision.

Incomplete Supervision. This is also referred to as semi-

supervised learning in the literature [38, 3, 17, 2, 10, 27, 8].

We interchangeably use semi-supervised, weakly super-

vised and weak supervision in this paper to refer to this type

of supervision. It is assumed that only partial instances are

labelled, e.g. only a few images are labelled for the recog-

nition task [38, 36, 8], a few bounding boxes or pixels are

labelled for the image segmentation task [17, 2] or a few

nodes are labelled for graph inference [27]. The success

is often attributed to the exploitation of problem specific

assumptions including graph manifold [38, 3, 27], spatial

and color continuity [17, 2], etc. Another line of works

are based on ensemble learning by introducing additional

constraints such as consistency between original and altered

data, e.g. the addition of noise [22], rotation [10] or adver-

sarial training [15]. This has further inspired ensemble ap-

proaches [25, 21] akin to data distillation. Up till now, most

of these works emphasize on large-scale image data, while

very limited works have addressed point cloud data. [14]

proposes a semi-supervised framework for point cloud seg-

mentation. However, it does not directly learn from point

cloud data and the required annotation is quite large. [6]

proposes to exploit the geometric homogeneity and formu-

lated a CRF-like inference framework. Nonetheless, it is

purely optimization-based, and thus fails to capture the spa-

tial relation between semantic labels. In this work, we make

use of the state-of-the-art deep neural networks, and incor-

porate additional spatial constraints to further regularize the

model. Thus we take advantage of both spatial correlation

provided by deep models and geometric priors.

Inexact Supervision. It is also referred as weakly anno-

tation in the image segmentation community [9, 24]. They

aim to infer the per-pixel prediction from a per-image level

annotation [9, 24] for image segmentation tasks. The class

activation map (CAM) [35] is proposed to highlight the at-

tention of of CNN based on discriminative supervision. It is

proven to be a good prior model for weakly supervised seg-

mentation [9, 32]. Inexact supervision is often complemen-

tary to incomplete supervision, and therefore, it is also used
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to improve semi-supervised image segmentation[2]. In this

work, we introduce inexact supervision as a complement to

incomplete supervision for the task of point cloud segmen-

tation.

Point Cloud Analysis. It is applied on 3D shapes and

has received much attention in recent years. The PointNet

[19] is initially proposed to learn 3D point cloud feature

through cascaded multi-layer perceptrons (mlps) for point

cloud classification and segmentation. The following works

[20, 33, 12, 30, 11] are subsequently proposed to exploit

local geometry through local pooling or graph convolution.

Among all tasks of point cloud analysis, semantic segmen-

tation is of high importance due to its potential application

in robotics and the existing works rely on learning classi-

fiers at point-level [19]. However, this paradigm requires

exhaustive point-level labelling and does not scale well. To

resolve this issue, we propose a weakly supervised approach

that requires only a fraction of points to be labelled. We

also note that [26] proposes to add spatial smoothness reg-

ularization to the training objective. [5] proposes to refine

prediction via CRF. Nevertheless, both works require full

supervision, while our work is based on a more challenging

weak supervision setting.

3. Methodology

3.1. Point Cloud Encoder Network

We formally denote the input point cloud data as

{Xb}b=1···B with B individual shapes (e.g. shape segmen-

tation) or room blocks (e.g. indoor point cloud segmenta-

tion). Each sample Xb ∈ RN×F consists of N 3d points

with the xyz coordinates and possibly additional features,

e.g. RGB values. Each sample is further accompanied

with per-point segmentation label yb ∈ {1, · · ·K}N , e.g.

fuselage, wing and engine of a plane. For clarity , we de-

note the one-hot encoded label as Ŷ ∈ {0, 1}B×N×K . A

point cloud encoder network f(X; Θ) parameterized by Θ
is employed to obtain the embedded point cloud features

Zb ∈ RN×K . We note that the dimension of the em-

bedding is the same as the number of segmentation cate-

gories. The recent development on point cloud deep learn-

ing [19, 20, 12] provides many candidate encoder networks,

which are evaluated in the experiment section.

3.2. Incomplete Supervision Branch

We assume that only a few points in the point cloud sam-

ples {Xb} are labelled with the ground-truth. Specifically,

we denote a binary mask as M ∈ {0, 1}B×N , which is 1 for

a labelled point and 0 otherwise. Furthermore, we define a

softmax cross-entropy loss on the labelled point as

lseg = − 1

C

∑

b

∑

i

mbi

∑

k

ŷbik log
exp(zbik)

∑

k exp(zbik)
, (1)

where C =
∑

b,i mbi = ||M||1 is the normalization vari-

able.

Discussion: According to the experiments, we found that

our method yields competitive results with as few as 10%
labelled points, i.e. ||M||1/(B ·N) = 0.1. The rationale is

detailed in the following. We first assume that two networks

with similar weights – one trained with full supervision and

the other with weak supervision should produce similar re-

sults. Assuming that both networks start with an identical

initialization, the higher similarity of the gradients at each

step means a higher chance for the two networks to con-

verge to similar results. Now, we write the gradients with

full supervision ∇Θlf and weak supervision ∇Θlw as

∇Θlf =
1

B ·N
∑

b

∑

i

∑

k

∇Θlbik, and

∇Θlw =
1

C

∑

b

∑

i

mbi

∑

k

∇Θlbik,

where lbik = −ŷbiklog
exp(zbik)

∑

k exp(zbik)
.

(2)

This relation is also illustrated in Fig. 3.

At each training step, the direction of the learning gradi-

ent is the mean of the gradients calculated with respect to

each individual point. Suppose that∇Θlbik is i.i.d. with ex-

pectation E[∇Θlbik] = µ and variance V ar[∇Θlbik] = σ2,

and sampled mean (n samples) Sn = mean(∇Θlbik). We

can easily verify that E[∇Θlbik] = ∇Θlf and Sn = ∇Θlw
with n = C = ||M||1. According to the Central Limit The-

orem, we have the following convergence in distribution:

√
n(Sn − µ)

d−→ N (0, σ2),

⇒
√

||M||1(∇Θlw −∇Θlf )
d−→ N (0, σ2),

⇒(∇Θlw −∇Θlf )
d−→ N (0, σ2/||M||1).

(3)

This basically indicates that the difference between the

gradient of full supervision and weak supervision is sub-

jected to a normal distribution with variance σ2/||M||1.

Consequently, a sufficient number of labelled points, i.e.

sufficiently large ||M||1, is able to approximate ∇Θlf well
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with ∇Θlw. Although the value of σ is hard to estimate

in advance, we empirically found that our method yields

results comparable to full supervision with 10× fewer la-

belled points.

The analysis also provides additional insight into data

annotation under a fixed budget. For example, with 50%
of the total points to be labelled as illustrated in Fig. 3

(right): should we label 50% of the points in each sample

(Scheme 1) or label all the points in only 50% of the sam-

ples (Scheme 2)? From the above analysis, it is apparent

that Scheme 1 is better than Scheme 2 since it is closer to

the i.i.d. assumption. This is further backed up by experi-

ments in Sect. 4.4.

3.3. Inexact Supervision Branch

In addition to the Incomplete Supervision Branch, a

so-called inexact supervision accompanies the annotation.

Assuming each part has at least one labelled point, ev-

ery training sample Xb is accompanied with an inexact la-

bel ȳb = maxi ŷbi simply by doing maxpooling over all

points. Consequently, the inexact supervision branch is

constructed in a similar fashion as multi-instance learning

[18, 7]. The feature embedding Zb is first globally max-

pooled, i.e. z̄b = maxi zbi. We then introduce a loss for the

inexact supervision branch. Since z̄b defines the logits on

each category, the sigmoid cross entropy can be adopted as

lmil =−
1

B ·K
∑

b

∑

k

ȳbk log
1

1 + exp(−z̄bk)

+ (1− ȳbk)(log(
exp(−z̄bk)

1 + exp(−z̄bk)
)).

(4)

The rationale is that for those part categories that are absent

from the sample, no points should be predicted with high

logits. The incomplete supervision branch is only super-

vised on a tiny fraction of label points while the inexact su-

pervision branch is supervised on the sample level with all

points involved, so they are complementary to each other.

3.4. Siamese Self­Supervision

Despite the above two losses, majority of the unlabelled

points are still not trained with any constraints. We believe

additional constraints on those points can potentially fur-

ther improve the results. To this end, we first introduce a

Siamese self-supervision structure. We make the assump-

tion that the prediction for any point is rotation and mirror

flipping invariant. This assumption in particular holds true

for 3D CAD shapes and indoor scenes with rotation in the

XoY plane, e.g. the semantic label should not change with

different view angle in a room. With this in mind, we design

a Siamese network structure with two shared-parameter en-

coders f1(X) and f2(X). Then given a training sample X,

we apply a random transformation that consists of a random

mirroring along the X and/or Y axes and an XoY plane ro-

tation, i.e.

R =





cosθ −sinθ 0
sinθ cosθ 0
0 0 1



 ·





(2a− 1)c (2b− 1)(1− c) 0
(2a− 1)(1− c) (2b− 1)c 0

0 0 1



 , (5)

where θ ∼ U(0, 2π) (uniform distribution) and a, b, c ∼
B(1, 0.5) (Bernoulli distribution). Specifically, the first ma-

trix controls the degree of rotation and the second matrix

controls mirroring and X,Y swapping. With the augmented

sample denoted as X̃ = XR⊤, the rotation invariant con-

straint is turned into minimizing the divergence between the

probabilistic predictions of g(f1(X)) and g(f2(X̃)), where

g(·) is the softmax function. We use L2 distance to measure

the divergence:

lsia =
1

B ·N ·K
∑

b

||g(f1(Xb))− g(f2(X̃b))||2F , (6)

and empirically found it to be better than KL-Divergence.

3.5. Spatial & Color Smoothness Constraint

Semantic labels for 3D shape or scenes are usually

smooth in both spatial and color spaces. Although they

can be included by the state-of-the-art convolution networks

[29], explicit constraints are more beneficial in our context

of weak supervision when the embedding of large amount

of unlabelled points are not well constrained by the seg-

mentation loss. Consequently, we introduce additional con-

straints at both training and inference stages.

Spatial & Color Manifold. A manifold can be defined

on the point cloud to account for the local geometry and

color by a graph. We denote the 3D coordinate channels

and RGB channels, if any, as Xxyz and Xrgb, respectively.

To construct a graph for the manifold, we first compute the

pairwise distance Pc ∈ RN×N for channel c (xyz or rgb)

as pcij = ||xc
i −xc

j ||2, ∀i, j ∈ {1, · · ·N}. A k-nn graph can

be then constructed by searching for the k nearest neigh-

bors NNk(x) of each point, and the corresponding weight

matrix Wc ∈ RN×N is written as

wc
ij =

{

exp(−pcij/η), j ∈ NNk(xi)
0, otherwise

, ∀i, j ∈ {1, · · ·N}. (7)

We take the sum of both weight matrices as wij = wxyz
ij +

wrgb
ij ∀i, j to produce a more reliable manifold when both

xyz and rgb channels are available. This is reasonable since

the xyz channel blurs the boundary and the rgb channel

links faraway points, respectively. In case the manifold

constructed on spatial distance and color contradicts the la-

belled ground-truth, we add additional must-link and must-

not-link constraints [31] to W to strengthen the compliance

to known annotations, i.e.

wij =

{

1, mi,mj = 1, yi = yj
−1, mi,mj = 1, yi 6= yj

. (8)
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We further write the Laplacian matrix [3] as L = D −W

with the degree matrix denoted as D = diag(d) [28] and

di =
∑

j wij , ∀i ∈ {1 · · ·N}.
Training Stage. We introduce a manifold regularizer [3]

to encourage the feature embedding of each point to com-

ply with the manifold obtained previously. More specifi-

cally, the prediction f(xi) should stay close to f(xj) if wij

indicates high and stay unconstrained otherwise. Thus the

regularizer is given by

lsmo =
1

||W||0
∑

i

∑

j

wij ||f(xi)− f(xj)||22

=
2

||W||0
(
∑

i

dif(xi)
⊤f(xi)−

∑

i

∑

j

wijf(xi)
⊤f(xj))

=
2

||W||0
(tr(Z⊤DZ)− tr(Z⊤WZ)) =

2

||W||0
tr(Z⊤LZ),

(9)

where Z is the prediction of all points.

Inference Stage. It is well known in image segmentation

that the predictions of a CNN do not consider the bound-

aries well [4, 9] and CRF is often employed to refine the raw

predictions. In weakly supervised point cloud segmenta-

tion, this issue exacerbates due to limited labels. To mitigate

this problem, we introduce a semi-supervised label propa-

gation procedure[38] to refine the predictions. Specifically,

the refined predictions Z̃ should comply with the spatial and

color manifold defined by the Laplacian L, and at the same

time should not deviate too much from the network predic-

tions Z. We write the objective as

min
{z̃}

∑

i

∑

j

wij ||z̃i − z̃j ||22 + γ
∑

i

||z̃i − zi||22,

=⇒ min
Z̃

tr(Z̃⊤LZ̃) + γ||Z̃− Z||2F . (10)

A closed-form solution exists for the above optimization

[38] and the final prediction for each point is simply ob-

tained via

ỹi = argmax
k

z̃ik, ∀i ∈ {1, · · ·N}, where

Z̃ = γ(γI+ L)−1Z.
(11)

3.6. Training

The final training objective is the combination of all the

above objectives, i.e. ltotal = lseg + λ1lmil + λ2lsia +
λ3lsmo. We empirically set λ1, λ2, λ3 = 1. The k-nn graph

is selected as k = 10, η = 1e3, and γ in Eq. (11) is chosen

to be 1. For efficient training, we first train the network with

segmentation loss lseg only for 100 epochs. Then the total

loss ltotal is trained for another 100 epochs. The default

learning rate decay and batchnorm decay are preserved dur-

ing the trainings of different encoder networks. The initial

learning rate is fixed at 1e − 3 for all experiments and the

batchsize varies from 5 to 32 for different dataset bounded

by the GPU memory size. Our algorithm is summarized in

Algo. 1.

4. Experiment

4.1. Dataset

We conduct experiments of our weakly supervised seg-

mentation model on three benchmark point cloud datasets.

ShapeNet [34] is a CAD model dataset with 16,881 shapes

from 16 categories, each annotated with 50 parts. It is

widely used as the benchmark for classification and seg-

mentation evaluation. We propose a weakly supervised set-

ting. For each training sample we randomly select a subset

of points from each part to be labelled. We use the default

evaluation protocol for comparison. PartNet [16] is pro-

posed for more fine-grained point cloud learning. It consists

of 24 unique shape categories with a total of 26,671 shapes.

For the semantic segmentation task, it involves three lev-

els of fine-grained annotation and we choose to evaluate at

level 1. The incomplete weakly supervised setting is cre-

ated in a similar way to ShapeNet, and we follow the orig-

inal evaluation protocol. S3DIS [1] is proposed for indoor

scene understanding. It consists of 6 areas each covering

several rooms. Each room is scanned with RGBD sensors

and is represented by point cloud with xyz coordinate and

RGB value. For weakly supervised setting, we assume a

subset of points are uniformly labelled within each room.

The evaluation protocol on Area 5 as holdout is adopted.

4.2. Weakly Supervised Segmentation

Two weakly supervision settings are studied. i) 1 point

label (1pt), we assume there is only 1 point within each cat-

egory labelled with ground-truth. Less than 0.8% of total

Algorithm 1: Weakly Supervised Point Cloud Segmen-

tation

input : Point Cloud {Xb ∈ RN×D}, Labels

{yb ∈ ZN}
output: Segmentation Predictions {ỹb ∈ ZN}

/* Training Stage: */

for epoch← 1 to 100 do

Train One Epoch: Θ = Θ−α∇Θlseg|{Xb},{yb};

for epoch← 1 to 100 do
// Siamese Network

Sample φ ∼ U(0, 2π) and a, b, c ∼ B(1, 0.5);
Calculate R according to Eq. (5);

Generate augmented sample X̃ = XR⊤;

// Manifold Regularization

Construct Laplacian L according to Sect. 3.5;

Train one epoch:

Θ = Θ− α∇Θltotal|{Xb},{X̃b},{yb}
;

/* Inference Stage: */

Forward pass Zb = f(X̃b; Θ);
Obtain predictions {ỹb} via Eq. (11);
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points are labelled for ShapeNet under the 1pt scheme. For

S3DIS, the total labelled points is less than 0.2%. ii) 10 per-

centage label (10%), we uniformly label 10% of all points

for each training sample.

Encoder Network. We choose DGCNN [33] with default

parameters as our encoder network due to its superior per-

formance on benchmark shape segmentation and high train-

ing efficiency. However, as we point out in Sect. 5, the

proposed weakly supervised methods are compatible with

alternative encoder networks.

Comparisons. We compare against 3 sub-categories of

methods. i) Fully supervised approaches (Ful.Sup.), includ-

ing the state-of-the-art networks for point cloud segmenta-

tion. These methods serve as the upper bound of weakly

supervised approaches. ii) Weakly supervised approaches

(Weak Sup.), we implemented several generic weakly su-

pervised methods and adapt them to point cloud segmen-

tation tasks. In particular, the following methods are com-

pared. The Π model [10] proposed to supervise on orig-

inal input and the augmented input, but without the in-

complete supervision on the augmented input. The mean

teacher (MT) [25] model employs a temporal ensemble for

semi-supervised learning. The baseline method is imple-

mented with only the segmentation loss lseg and DGCNN

as encoder. Our final approach (Ours) is trained with the

multi-task total loss ltotal with label propagation in the in-

ference stage. iii) Unsupervised approaches, these meth-

ods do not rely on any annotations but instead directly in-

fer clusters from the spatial and color affinities. Specifi-

cally, we experiment with Kmeans and normalized cut spec-

tral clustering[23] (Ncut). Both methods are provided with

ground-truth number of parts.

Evaluation. For all datasets, we calculate the mean In-

tersect over Union (mIoU) for each test sample, and report

the average mIoU over all samples (SampAvg) and all cate-

gories (CatAvg). For unsupervised methods, we find a best

permutation between the prediction and ground-truth and

then calculate the same mIoU metrics.

ShapeNet. We present the results in Tab. 1, where we

make the following observations. Firstly, the weak super-

vision model produces very competitive results with only

1 labelled point per part category. The gap between full

supervision and 1 point weak supervision is less than 12%.

Secondly, we observe consistent improvement in the perfor-

mance of segmentation with more labelled point from 1pt

to 10%. Interestingly, the weak supervision model is com-

parable to full supervision even with 10% labelled points.

Lastly, our proposed method that combines multiple losses

and label propagation improves upon the baseline consis-

tently, and outperforms alternative generic semi-supervised

learning approaches and unsupervised clustering methods.

S3DIS. The results are presented in Tab. 2. We make

observations in a similar way to ShapeNet. First, the 1pt

weak supervision provides strong results. The results of

our proposed multi-task model is only 1% lower than the

fully supervised counterpart. Furthermore, the results of

our method with only 10% labelled points is even slightly

superior than the fully supervision. Finally, the results of

our method consistently outperform both unsupervised and

alternative weakly supervised methods.

PartNet. For the PartNet dataset, we report the average

mIoU in Tab. 2. Details for each category is included in the

supplementary. We also observe the same patterns from the

results. The 1pt setting yields particularly strong results and

our own variant outperforms all unsupervised and alterna-

tive weak supervision methods.

4.3. Qualitative Examples

We show qualitative examples of point cloud segmen-

tation on all datasets and compare the segmentation qual-

ity. Firstly, we present the segmentation results on se-

lected rooms from the S3DIS dataset in Fig. 4. From left to

right we sequentially visualize the RGB view, ground-truth,

fully supervised segmentation, weakly supervised baseline

method and our final approach results. For weakly super-

vised methods, 10% training points are assumed to be la-

belled. We observe accurate segmentation of majority and

continuous objects, e.g. wall, floor, table, chair and window.

In particular, our proposed method is able to improve the

baseline results substantially by smoothing out the noisy ar-

eas. Nonetheless, we observe some mistakes of our method

at the boundaries between different objects. The segmenta-

tion results on ShapeNet are shown in Fig. 5. These exam-

ples again demonstrate the highly competitive performance

by the weakly supervised approach. For both the plane and

car categories, the results of the weak supervision are very

close to the fully supervised ones.

4.4. Label More Points Or More Samples

Given a fixed annotation budget, e.g. the total number of

labelled points, there are different combinations of labelling

strategies to balance the amount of labelled samples and the

amount of labelled points within each sample. In this ex-

periment, we control these two variables and validate on

ShapeNet segmentation with the PointNet encoder for effi-

cient evaluation. We first restrict the fixed budget to be 10%
of all training points. The labelling strategy is described by

x% samples (Samp) each with y% labelled points (Pts) and

xy = 1000 to satisfy the restriction. We evaluate 5 com-

binations and present the results in Tab. 3. The consistent

improvement of mIoU with x% from 10% to 100% sug-

gests that, given fixed total annotation budget, it is better

to extensively label more samples each with fewer labelled

points than intensively labelling a fraction of the dataset.
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Table 1: mIoU (%) evaluation on ShapeNet dataset. The fully supervision (Ful. Sup.) methods are trained on 100% labelled points. Three levels of

weak supervisions (1pt, 1% and 100%) are compared. Ours method consists of DGCNN as encoder net, MIL branch, Siamese branch, Smooth branch and

Inference label propagation.

Setting Model CatAvg SampAvg Air. Bag Cap Car Chair Ear. Guitar Knife Lamp Lap. Motor. Mug Pistol Rocket Skate. Table

F
u

l.
S

u
p

. PointNet[19] 80.4 83.7 83.4 78.7 82.5 74.9 89.6 73.0 91.5 85.9 80.8 95.3 65.2 93.0 81.2 57.9 72.8 80.6

PointNet++[20] 81.9 85.1 82.4 79.0 87.7 77.3 90.8 71.8 91.0 85.9 83.7 95.3 71.6 94.1 81.3 58.7 76.4 82.6

DGCNN[33] 82.3 85.1 84.2 83.7 84.4 77.1 90.9 78.5 91.5 87.3 82.9 96.0 67.8 93.3 82.6 59.7 75.5 82.0

U
n

su
p

.

Kmeans 39.4 39.6 36.3 34.0 49.7 18.0 48.0 37.5 47.3 75.6 42.0 69.7 16.6 30.3 43.3 33.1 17.4 31.7

Ncut[23] 43.5 43.2 41.0 38.0 53.4 20.0 52.1 41.1 52.1 83.5 46.1 77.5 18.0 33.5 48.0 36.5 19.6 35.0

W
ea

k
S

u
p

.

1
p
t

Π Model[10] 72.7 73.2 71.1 77.0 76.1 59.7 85.3 68.0 88.9 84.3 76.5 94.9 44.6 88.7 74.2 45.1 67.4 60.9

MT[25] 68.6 72.2 71.6 60.0 79.3 57.1 86.6 48.4 87.9 80.0 73.7 94.0 43.3 79.8 74.0 45.9 56.9 59.8

Baseline 72.2 72.6 74.3 75.9 79.0 64.2 84.1 58.8 88.8 83.2 72.3 94.7 48.7 84.8 75.8 50.6 60.3 59.5

Ours 74.4 75.5 75.6 74.4 79.2 66.3 87.3 63.3 89.4 84.4 78.7 94.5 49.7 90.3 76.7 47.8 71.0 62.6

1
0
%

Π Model[10] 79.2 83.8 80.0 82.3 78.7 74.9 89.8 76.8 90.6 87.4 83.1 95.8 50.7 87.8 77.9 55.2 74.3 82.7

MT[25] 76.8 81.7 78.0 76.3 78.1 64.4 87.6 67.2 88.7 85.5 79.0 94.3 63.3 90.8 78.2 50.7 67.5 78.5

Baseline 81.5 84.5 82.5 80.6 85.7 76.4 90.0 76.6 89.7 87.1 82.6 95.6 63.3 93.6 79.7 63.2 74.4 82.6

Ours 81.7 85.0 83.1 82.6 80.8 77.7 90.4 77.3 90.9 87.6 82.9 95.8 64.7 93.9 79.8 61.9 74.9 82.9

Table 2: mIoU (%) evaluations on S3DIS (Area 5) and PartNet datasets. We compared against fully supervised (Ful.Sup.),

unsupervised (Unsup.) and alternative weakly supervised (Weak. Sup.) approaches.

S3DIS PartNet

Setting Model CatAvg ceil. floor wall beam col. win. door chair table book. sofa board clutter CatAvg SampAvg

F
u

l.
S

u
p

. PointNet 41.1 88.8 97.3 69.8 0.1 3.9 46.3 10.8 52.6 58.9 40.3 5.9 26.4 33.2 57.9 58.3

PointNet++ 47.8 90.3 95.6 69.3 0.1 13.8 26.7 44.1 64.3 70.0 27.8 47.8 30.8 38.1 65.5 67.1

DGCNN 47.0 92.4 97.6 74.5 0.5 13.3 48.0 23.7 65.4 67.0 10.7 44.0 34.2 40.0 65.6 67.2

U
n

su
p

.

Kmeans 38.4 59.8 63.3 34.9 21.5 24.6 34.2 29.3 35.7 33.1 45.0 45.6 41.7 30.4 34.6 35.2

Ncut 40.0 63.5 63.8 37.2 23.4 24.6 35.5 29.9 38.9 34.3 47.1 46.3 44.1 31.5 38.6 40.1

W
ea

k
S

u
p

.

1
p
t

Π Model 44.3 89.1 97.0 71.5 0.0 3.6 43.2 27.4 62.1 63.1 14.7 43.7 24.0 36.7 51.4 52.6

MT 44.4 88.9 96.8 70.1 0.1 3.0 44.3 28.8 63.6 63.7 15.5 43.7 23.0 35.8 52.9 53.6

Baseline 44.0 89.8 96.7 71.5 0.0 3.0 43.2 32.8 60.8 58.7 15.0 41.2 22.5 36.8 50.2 51.4

Ours 44.5 90.1 97.1 71.9 0.0 1.9 47.2 29.3 62.9 64.0 15.9 42.2 18.9 37.5 54.6 55.7

1
0
%

Π Model 46.3 91.8 97.1 73.8 0.0 5.1 42.0 19.6 66.7 67.2 19.1 47.9 30.6 41.3 64.1 64.7

MT 47.9 92.2 96.8 74.1 0.0 10.4 46.2 17.7 67.0 70.7 24.4 50.2 30.7 42.2 63.8 64.5

Baseline 45.7 92.3 97.4 75.4 0.0 11.7 47.2 22.9 65.3 66.7 11.7 43.6 17.8 41.5 63.1 63.9

Ours 48.0 90.9 97.3 74.8 0.0 8.4 49.3 27.3 69.0 71.7 16.5 53.2 23.3 42.8 64.5 64.9

Table 3: Comparisons of

different labelling strategies on

ShapeNet segmentation. All

numbers are in %.

Label Strat. CatAvg SampAvg

Samp=10%
70.37 77.71Pts=100%

Samp=20%
72.19 78.45Pts=50%

Samp=50%
74.29 79.65Pts=20%

Samp=80%
76.15 80.18Pts=12.5%

Samp=100%
77.71 80.94Pts=10%

5. Ablation Study

Importance of Individual Components. We analyze the

importance of the proposed additional losses and inference

label propagation. Different combinations of the losses are

evaluated on all datasets with the 1pt annotation scheme.

The results are presented in Tab. 4. We observe that the

Siamese self-supervision introduces the most advantage for

S3DIS. This is because S3DIS is a real dataset, where the

orientations and layouts of objects are diverse, and the aug-

mentation and consistency constraints increase the robust-

ness of model. In contrast, the pose of test shapes are al-

ways fixed for the other two datasets, and thus they benefit

less from Siamese augmentation. We also compare against

the use of only data augmentation (last row), and the re-

sults suggest it is better to have the consistency constraints

on unlabelled points. The results are also further improved

with the multi-instance loss for inexact branch. Finally, the

smooth constraint at both training (Smo.) and inference

(TeLP) stages consistently bring additional advantage to the

whole architecture.

Compatibility with Encoder Network. We further ex-

amine the compatibility of the proposed losses with differ-

ent encoder networks. In particular, we investigate the per-

formance with PointNet and DGCNN as the encoder net-

work. The results are shown in Tab. 4 and it is clear that

both networks exhibit same patterns.

Table 4: Ablation study on the impact of individual losses and

inference label propagation and the compatibility with alternative

encoder networks.

Components PointNet DGCNN

MIL Siam. Smo. TeLP ShapeNet PartNet S3DIS ShapeNet PartNet S3DIS

65.2 49.7 36.8 72.2 50.2 44.0

X 66.0 50.3 41.9 73.1 51.5 44.3

X X 69.0 52.1 42.2 73.4 52.9 44.4

X X X 69.6 52.5 43.0 73.8 53.6 44.2

X X X X 70.2 52.8 43.1 74.4 54.6 44.5

Data Augmentation 65.3 49.9 38.9 73.0 52.7 43.2
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Figure 4: Qualtitative examples for S3DIS dataset test area 5. 10% labelled points are used to train the weak supervision models.
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Figure 5: Qualitative examples for ShapeNet shape segmentation.
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Figure 6: The impact of amount of labelled points for all three

datasets.

Amount of Labelled Data. As suggested by previous

study, the amount of labelled data has an significant impact

on the point cloud segmentation performance. In this sec-

tion, we investigate this relation by varying the amount of

labelled points. In particular, we control the percentage of

labelled points to be from 1% to 100% (full supervision)

with the baseline weak supervision method. The results are

presented in Fig. 6. We observe that the performance on all

datasets approaches the full supervision after 10% labelled

points.

Point Feature Embedding. We visualize the point cloud

feature embedding to further understand why weak super-

F
u

ll
y

 S
u

p
.

1
0

%
 W

e
a

k
ly

 S
u

p
.

Figure 7: T-SNE visualization of point embeddings in 2D space.

vision leads to competitive performance. We first project

the feature before the last layer into 2D space via T-SNE

[13] for both full supervision and 10% weak supervision.

The projected point embeddings are visualized in Fig. 7.

We observe similar feature embedding patterns. This again

demonstrates a few labelled points can yield very competi-

tive performance.

6. Conclusion

In this paper, we made a discovery that only a few la-

belled points is needed for existing point cloud encoder

networks to produce very competitive performance for the

point cloud segmentation task. We provide analysis from

a statistical point of view and gave insights into the anno-

tation strategy under fixed labelling budget. Furthermore,

we proposed three additional training losses, i.e. inexact

supervision, Siamese self-supervision and spatial and color

smoothness to further regularize the model. Experiments

are carried out on three public datasets to validate the effi-

cacy of our proposed methods. In particular, the results are

comparable with full supervision with 10 × fewer labelled

points.
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