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Abstract – Multiaccess Edge Computing (MEC) brings additional computing power in proximity of mobile users,
reducing latency, saving energy and alleviating the network’s bandwidth. This proximity is beneficial, especially for
mission-critical applications where each second matters, such as disaster management or military operations. Moreover,
it enables MEC resources embedded on mobile units like drones or robots that are flexible to be deployed for mission-
critical applications. However, the MEC servers are capacity-limited and thus need an acute management of their
resources. The mobile resources also need a smart deployment scheme to deliver their services efficiently. In this
survey, we review mission-critical applications, resource allocation and deployment of mobile resources techniques in
the context of the MEC. First, we introduce the technical specifics and uses of MEC in mission-critical applications to
highlight their needs and requirements. Then, we discuss the resource allocation schemes for MEC and assess their fit
depending on the application needs. In the same fashion, we finally review the deployment of MEC mobile resources.
We believe this work could serve as a helping hand to design efficient MEC resource management schemes that respond
to challenging environments such as mission-critical applications.

Keywords – Disaster management, multiaccess computing, resource allocation, resource deployment, unmanned
aerial vehicles

1. INTRODUCTION
Mission-critical applications require particular attention
as they may imply life or important assets losses, which
entails entail tremendous consequences in their fail-
ure. We can consider disaster management applications,
where time is a precious resource: the first 72 hours, the
golden relief time, is particularly critical to locate and
rescue people [1]. Military applications are also mission-
critical as they defend citizens from external threats
and defend the country. IoT technology combined with
cloud computing has the potential to assist rescuers and
agents to gain every precious second, by gathering infor-
mation, analyzing the situation and providing support
services. It will also help agents organize and coordinate
their operation to handle the situation [2]. Cloud com-
puting retains many advantages, like reduced costs [3]
and is easily scalable [4]. However, cloud computing
is constrained by its remote location from end users,
leading to high latency and delays. This problem is in-
creased by the heavy data generation from IoT devices
that burden the network and possibly creating bottle-
necks when tasks are not processed rapidly enough [5].
In addition, mission-critical applications operate in chal-
lenging environments with a damaged or scarce network,
making the cloud difficult to reach. Hence, cloud com-
puting may not fit all the mission-critical applications’
challenges and requirements.
In recent years, a new trend has arisen, moving cloud
computing capacities to the edge of the network. This
paradigm is called edge computing where connected de-

vices send their tasks to computing nodes located at
the edge of the network, i.e., next to users or things
producing data [5]. This proximity provides advantages
over the cloud, namely: i) latency reduction [5, 6, 7]
ii) energy saving [5, 6], iii) augmented privacy [6, 7]
and iv) location and context awareness [5, 6]. These
benefits represent the key to carrying out the strong
requirements of real-time applications. It is especially
the case for mission-critical and time-critical applica-
tions where time is an important resource [7]. Different
edge computing paradigms exist, each more or less spe-
cific. Fog computing and edge computing both bring
cloud services to the edge of the network, hence can be
confused [8]. However, edge computing focuses more on
things while fog computing focuses on the overall infras-
tructure from the edge to the cloud [5, 8]. Cloudlets are
“data center in a box” close to users and accessible by
WiFi. They take example of WiFi access point but with
computing capacities to deliver cloud services close to
users with little maintenance and low power [9]. How-
ever, they have been discarded because of their WiFi
access that implies limited coverage, difficult mobility
support between cloudlets and security concerns. Simi-
lar to cloudlets, micro-data-centers consist of 10 servers
or less and are placed next to users [10]. Finally, Mo-
bile Edge Computing (MEC) is defined by ETSI in 2015
as edge computing incorporated in Radio Access Net-
works (RANs) to serve mobile users [11] as shown in
Figure 1. The term mobile edge computing has evolved
to multiaccess computing [12], allowing heterogeneous



Radio Access Technologies (RATs), like 5G, LTE, Wi-
Fi and so on, in the paradigm and so broadening its
use cases. In this paper, we therefore employ MEC as
multiaccess edge computing as a generic term that also
includes the mobile edge computing paradigm. MEC
is the most promising candidate for mission-critical and
time-critical applications, because of its proximity, good
mobility support for mobile users and integration of
multiple access technologies.
In MEC networks, local servers are limited in resources
and as a recent paradigm, it undertakes open chal-
lenges to manage these limited-capacity resources [5,
13]. Thus, MEC resources need to be properly managed
to handle efficiently the users’ requests. The resource
management in MEC is divided in three aspects : i), of-
floading decision, ii), resource allocation and iii), users
mobility management, i.e service migration.
In mission-critical scenarios, edge resources may be em-
barked on mobile units, such as drones and vehicles.
Indeed, communication networks are often damaged by
disaster or are nonexistent due to remote location [14].
Thus, drones and vehicles have the necessary mobility
to be deployed rapidly in emergency areas, temporarily
and are flexible enough to move to follow the demands’
dynamic (which occurs when users are mobile or in sit-
uations where demands are highly dynamic in a single
device) [15, 16, 17]. The resource management is then
enlarged with a fourth aspect : iv) mobile resource man-
agement which includes the deployment of the resources,
i.e., their number and location, their path planning and
new costs such as deployment delays. In this survey,
we start by presenting related surveys in Section 2. We
then present two main use cases of mission-critical ap-
plications that may use edge computing in Section 3.
As MEC is a recent field, we also include other edge
computing paradigms like fog computing or cloudlets.
We then review in Section 4 resource allocation meth-
ods for MEC, not only for mobile resources, as again
there is not enough work on it. Finally, we review re-
source deployment schemes for MEC in Section 5 and
provide open challenges and future research direction in
Section 6. With that survey, we aim to provide tools
and insight for the design of robust MEC resource man-
agement schemes that are befitting for real life hard-
constrained use cases. To the best of our knowledge, it
is the first survey that provides a review about MEC re-
source management through the scope of mission-critical
applications.

2. RELATED WORKS
Several surveys about MEC exist in the literature. They
are either general [6, 18, 19, 20] or focus on different as-
pects and methods [21, 22, 23]. Mao et al. [6] introduce
MEC with the modelling of MEC communication and
computation, mobile devices and edge server. They then
review and classify resource management, and finally
identify open research directions. Mach and Becvar [20]

present a thorough survey about MEC offloading, re-
source allocation, user mobility management and its ar-
chitecture. They highlight what to take into account
when designing MEC computation offloading schemes
and discuss previous work. Abbas et al. [18] provide a
definition of MEC and its application. They also pro-
vide insight of MEC related research and technologies.
Vhora and Gandhi [19] introduce a review on MEC ar-
chitecture, related research and challenges, tools for sim-
ulation and finally MEC applications. Peng et al. [21] re-
view service adoption and provision for MEC. They con-
sider MEC service adoption, i.e task offloading, from the
mobile users’ perspective and MEC service provision, i.e
resource allocation and server placement, from the edge
server side. Wang et al. [22] review service migration in
MEC that they define and compare with previous exist-
ing concepts. They discuss the state-of-art methods and
technical service hosting solutions. Zamzam et al. [23]
propose a resource management survey using machine
learning methods. They organize the research by goals
and classify machine learning methods. There also are
surveys about public safety and mission-critical wireless
network solutions [24, 25, 26, 27] or technology solu-
tions [15, 2, 28]. Baldini et al. [24] survey public safety
organization use cases, requirements and their wireless
communications standard. Jarwan et al. [25] provide de-
sign requirements, architecture solutions and standards
for public safety networks based on LTE. These works
also provide a testing and evaluation framework for such
networks using Network Simulator NS-3. Yu et al. [27]
describe the layered architecture of public safety com-
munication. Then they review communication technolo-
gies for device-to-device communications and dynamic
wireless networks. They also discuss the integration of
some technologies in public safety networks like 5G and
edge computing. Kumbhar et al. [26] introduce pub-
lic safety networks standards and challenges with a fo-
cus on LTE, Land Mobile Radio System (LMRS) and
Software-Defined Radio (SDR). The white paper [15]
reports technologies employed in public safety applica-
tions and highlight gaps and the technology that can fill
them. The authors provide thorough use cases and their
technologies’ opportunities. Works [2, 28] study the ap-
plication of IoT technologies for disaster management
operations and future research directions. We can note
that none of these surveys focus on MEC. This survey
is complementary to these previous ones as it browses
MEC resource management work and discusses them by
their suitability depending on the applications, with a
focus on mission-critical applications.

3. MISSION-CRITICAL APPLICA-
TIONS USE CASES

MEC offer computing services independently from the
Internet and at proximity to requesting users and de-
vices [8]. This proximity allow new low-latency ser-
vices such as object or speech recognition [10] or aug-



Fig. 1 – The multiacess edge computing paradigm

mented/virtual reality [19, 11]. It also offer a new
type of location-aware and context-aware services [6,
29]. Theses MEC services may be employed by mobile
users but also by IoT devices [19, 11], such as secu-
rity cameras [17, 30]. Mission-critical applications may
profit from these types of services to carry out their cru-
cial objectives that involve life and properties. Thus, in
the next section, we are going to review two main use
cases, disaster management and military and what kind
of edge services they may request. We will also review
the technical specifics of these two uses cases.

3.1 Disaster management
With climate change, disaster occurences are bound to
increase [31], having important social and economic im-
pacts. The rescuers need to be prepared and supported
efficiently to carry out their mission, saving many lives
and recover from the situation. IoT is recognized as a
relevant technology for providing useful support to res-
cue operations [2, 28]. But all the data produced by IoT
needs low-latency processing to be useful for rescuers in
real time. For this, MEC is a promising candidate due
to its proximity [5] and its on-site rapidly deployable [32,
33] networking structure, even in difficult environments.
In the next section, we review disaster management ap-
plications that use MEC but also other edge computing
paradigms as currently there is little work only on mo-
bile MEC.

3.1.1 Edge-enabled disaster management ap-
plications

Edge services enable low-latency applications that pro-
vide situation awareness to rescuers. These types of ap-
plications deliver important information about the situ-
ation, helping rescuers adapt and organize their mission.
A common use of edge computing by disaster manage-
ment applications is for video and image analytics [17,
16, 34, 17, 35, 30, 36, 37] as edge computing responds
to the short response time requirements of these appli-
cations. It helps discover victims’ locations, count and

state and provide facial recognition for missing persons.
It also helps analyzing the environment to detect dan-
gerous paths clogged with fire or hazardous chemicals
and paths obstructed by wreckage.
Wu. et al. found that video analytics done in the edge
instead on the cloud reduces the latency up to 61% us-
ing 4G [17], expressing the usefulness of edge computing
in these situations. The analysis can be done entirely
in the edge servers, but as they are capacity limited
it may be done only partially, the rest being handled
in the cloud. Some previous work leverages the edge
computing power to filter images taken from a disas-
ter context and send only relevant ones to the cloud
for advanced processing. Indeed, several images and
video are taken by smartphones [16], drones [34] or cam-
eras [17], and by sending them all the cloud will burden
the network, as they do not all contain useful informa-
tion. The filtering will save precious bandwidth and
act in real time without human intervention. COCO,
proposed by Zhao et al. [35], is a MEC-based adaptive
image sensor that uploads to the cloud only images with
specific content. Liu et al. [16] propose Echo that is an
edge-based face recognition framework, that also filters
images and preprocesses them before sending them to
the cloud. Chemodanov et al. [30] propose geospatial
video analytics that analyze images from many devices
in a broad area to deliver information to rescuers. They
employ fog computing to preprocess images and man-
age human-computer interactions, that are trivial tasks
with low latency expectations. edge computing allow
other applications, like localization and path finding for
autonomous agents (drones and boats) when searching
for victims in the sea [36]. Avgeris et al. [37] propose
SMOKE, a three-layered cyber-physical social system to
detect forest fires and assist public authorities. They use
the edge layer to process images captured by IoT nodes
to detect fire at an early stage. They also propose the
horizontal and vertical scaling of the edge resource to
adjust the QoS. It can monitor rescuers’ health in mis-
sion and alert about their state [17]. Finally, artificial
intelligence which runs at the edge provides an action
plan and helps decision-making [17].

3.1.2 Technical specificity
Architecture Several architectures are “three-layered”
where the first layer is composed of field sensors, then
the second edge layer and the third one that is the cloud.
The cloud is kept to store historic data [17] and runs less
time-sensitive or heavy tasks [35, 16, 30]. Edge servers
are often in mobile units near the disaster scene like
fire vehicles, public buses [38] or drones [36]. It high-
lights the need for edge resources mobility management
to support the rescuers as they move on the field. Sen-
sor devices that gather data are heterogeneous. Wireless
wearable sensors monitor health or help for localization.
Body cameras [17] and smartphones [35, 16, 30], from
civilians or rescuers, capture the environment to analyze



paths, recognize missing people or help evaluate their
state and injuries. Surveillance cameras [30, 17] are also
used to evaluate the environment on a larger scale. Fi-
nally, autonomous agents, like drones, unnamed agent
boats or robots, are able to go where humans cannot and
cover rapidly an area to find missing people or assess the
situation [36, 34]. Figure 2 represents an example of a
disaster management architecture.
Network specifications In edge computing, there are
two main channels of communication: on one part the
communication between end devices and the edge, the
other part is the connection between the edge and the
cloud. The regular network can be damaged rendering
the connection between the edge and the cloud disrupted
or unstable [16, 34]. For the connection between the
edge and end devices, 4G and 5G are the most common
network access employed, especially with civil smart-
phones [16] or drones [34, 36]. With the expansion of
smart cities, the public WiFi hotspot is also a candidate.
However, it is noticeable that 4G seems to induce less
latency than WiFi in the case of video analytics [17].
Also, end devices and sensors may establish an ad hoc
network to communicate together and with edge com-
puting devices, without pre-existing structure [17, 30].
The satellite network is an other option especially when
the regular network does not work, however the latency
can be problematic [16].

3.2 Military
IoT for military is restricted because of unstable net-
works, limited bandwidth, power-limited devices and a
highly dynamic environment [39]. Edge computing of-
fers the low-latency and mobility required in the battle-
field [40].

3.2.1 Edge-enabled military applications
The battlefield has a vast variety of heterogeneous sen-
sors and devices that generate a lot of heterogeneous
data [41, 42]. To ease the instability of the network,
edge computing has the power to declutter all this in-
formation by filtering, preprocessing and add meaning
to the mass of data. Singh et al. [40] introduce an edge-
based system to monitor soldiers’ health, weapons and
location of those in command, the other soldiers and
themselves. In addition to filter, their framework merges
and attaches meaning to data to bring situational aware-
ness to agents on the field and those in command. Wang
et al. [41] leverage fog computing to compute and store
the mass of data near the field and so provide real-time
responses. Moreover, they use it to filter and preprocess
data to reduce information sent to the cloud, sparing
bandwidth. They found that the latency is reduced to
about 85% when 300 tasks are requested. Castiglione
et al. [42] use edge computing to authenticate agents
with their biometrics data when they access sensitive
material like weapons or vehicles, in addition to mon-

itoring their health. Lewis et al. [43] propose tactical
cloudlets to compute intensive tasks, like video and au-
dio recognition and also filter useless data to lighten the
application.

3.2.2 Technical specificity
There are numerous sensors on the battlefield that can
be on the ground sensors or wearable [42]. Sensors are
worn by soldiers for health monitoring. They can also
be on weapons to monitor their status [40]. Like disas-
ter management application, drones [41] or robots [44]
may be used. In battlefield health monitoring, the wire-
less devices worn by soldiers form a Body Area Net-
work (BAN) [40]. Devices communicate with each other
and with the edge with the LoWPAN wireless network.
These devices send raw data to edge networking de-
vices which transmit it to the semantic fog where data
is processed meaningfully. Architecture of the combat
cloud-fog consists of the combat resource, fog computing
and cloud computing [41]. Combat resource is combat
units which collect data and execute physical action, like
radars or drones. They can communicate together. Net-
working devices near the field perform the fog comput-
ing. The computing tasks are distributed among them
since networking devices have their own duty and low
capacities.
Mission-critical applications have strong requirements
and distinct specificities. We have seen they employ
heterogeneous end devices, sensors, vehicles and au-
tonomous agents, generating many data. All this data,
the unstable network and the strong latency require-
ment make MEC a promising solution to deliver effec-
tive support to agents. Moreover, we have seen diverse
network access used in these applications, which is con-
sistent with the variety of end devices. By integrating
heterogeneous network access, MEC is all the more con-
sistent in this type of application. Finally, some appli-
cations employ vehicles to transport the edge server [16,
17], which stresses their high dynamic and need for re-
source mobility management.

4. RESOURCE ALLOCATION
MEC resources are capacity limited, unlike the cloud,
and can even work on batteries. The resource allocation
scheme is so vital to manage these limited resources ef-
ficiently and respond to users’ requests. In this section,
we first show in Section 4.1 the different aspects to take
into account for modelling the requesting devices’ tasks.
Then in Section 4.2 we present the different types of
MEC resources we can allocate, be it computing or com-
munication resources. We then discuss in Section 4.3
the different goals pursued by resource allocation meth-
ods. We finally review in Section 4.4 the different meth-
ods that have their own trade-off between accuracy and
speed. We discuss these methods according to the sys-
tem scale and requirements.



Table 1 – Review of architectures, goals and resources used in resource allocation for MEC

Architecture Cloud Ref Goals Allocated
resources

Energy Latency Other Computing
resources

Communication
resources

Task
placement Other

Two
Edge servers One user

Tw
o

A
P

s

x [45] x x x

One
Edge server

Two fixed
users

O
ne

A
P

[46] x Offloading
time

[47] x x x

Multi-users

[48] x x
[49] x x x x

x [50] x x x
[51] x x x
[52] x x x
[53] x x x
[54] x x x
[55] x Revenue x x

M
ul

ti-
A

P
s

[56] x x
[57] x x
[58] x Costs x x
[59] x x x x

Multi-Edge
servers

x [60] x x
x [61] x x x

[62] x x Offloading
time

[63]
Min

timeout
probability

x

[64] x Reliability x x
x [65] x x x

[66] x Costs x
[67] x x x
[68] x x x x
[69] x x

x [70] x x x x
[71] x x x

x [72] x x x x
[68] x x x x
[73] x x x
[74] x x x x
[75] x x

Multi-UAVs [76] x x

[77]
Nb of
served
tasks

x x

One
UAV

Multi-devices
(fixed) [78] x Bit

offloading



Table 2.1 – Review of methods used in resource allocation for MEC

Methods Ref
Main

constrains Offloading
decisionCommunication

capacities
Computing
capacities

Devices
battery

Tasks
deadlines

Cauchy-Schwarz inequality,
Linear programming [61] x x x

KKT conditions,
Sub-gradients method [52] x

ADMM decomposition,
Convex optimization [55] x x x

Regularization technique,
Convex optimization [66] x

Lagrange duality method,
KKT conditions,

Convex optimization
[47] x x x

Dinkelbach,
Lagrange duality and

Sub-gradients methods
[46] x x

Majorization-minimization
method [57] x x

Benders decomposition [60] x
Convex optimization,
Heuristic algorithm [62] x x

Decomposition
and iteration algorithm [65] x x

Genetic algorithm [58] x x x x
Decomposition and
iteration algorithm [49] x x x

Successive convex
approximation,

Matching theory
[74] x x x

Decomposition and
iteration algorithm

based on
genetic algorithms

[75] x x x

Cauchy-Schwarz
inequality,

Convex optimization
[79] x x

Decomposition and
iteration algorithm [76] x

Successive convex
approximation,

Decomposition and
iteration algorithm

[78] x x x

Decomposition and
iteration algorithm [68] x x x

Reinforcement learning

[70] x x
[53] x x x
[69] x x
[56] x
[73] x
[51] x x x x

Decomposition and
iteration algorithm [59] x x x

Deep Neural Network [48] x x x
Game theory [67] x x



Table 2.2 – Review of methods used in resource allocation for MEC (following)

Methods Ref
Main

constrains Offloading
decisionCommunication

capacities
Computing
capacities

Devices
battery

Tasks
deadlines

Dynamic Programming
algorithm [54] x x

Decomposition and
iteration algorithm [71] x x x x

Convex optimization
and Heuristic [50] x x x x x

Heuristic [72] x x x x
SCA-based

iteration algorithm [77] x x x x

Lyapunov
theory [63] x x

Interior-point (IPA)
alogrithm [45] x x

Fig. 2 – An example of an architecture of a MEC disaster man-
agement application

The reviewed papers in this section are summarized in
tables 1, 2.1 and 2.2. Table 1 summarizes architectures,
goals and resources considered in each scheme. For the
architecture, reviewed papers consider the number of
edge servers, the number of users, the number of Ac-
cess Points (APs) and may integrate the cloud into the
system. Their goals are mainly to reduce the energy
consumption of the system or the latency. There are
also other goals like reducing the different costs of the
network, ensuring its reliability or maximizing the tasks
coverage, e.g., the number of served tasks. The allo-
cated resources are mainly computing resources, with or
without communication resources, and the tasks place-
ment, e.g., on which the server will process a task. Com-
munication resources are rarely allocated alone. Tables
2.1 and 2.2 summarize which methods the reviewed pa-
pers employ. We discuss these methods in Section 4.4.
Depending on the goals and the system, reviewed pa-
pers take into consideration different constraints, such
as communication capacities of MEC servers, the de-

vices’ battery and so on. Finally, each reviewed paper
may resolve along the resource allocation the offloading
decision, that is the decision to process tasks locally on
the devices or remotely on servers.

4.1 Task modelling
The system modelling is crucial in an efficient resource
allocation scheme. It allows the algorithm to consider
the system critical aspects and deliver adapted results.
An important aspect of system modelling is the mod-
elling of the tasks. A task is commonly modelled as
(S, C, L), where S is the associated data (input data
and code), C the required CPU cycles to achieve the
task and L the task deadline, i.e., the task maximum
tolerant latency [70, 68, 80]. S and C can be deduced
through code profiling [81, 58, 62]. Some works do not
include the task deadline in their modelling [74, 62].
But this parameter is central in latency sensitive appli-
cations for obvious reasons. It will allow the scheme to
respect task deadlines, prioritize tasks with close dead-
lines and may employ it to drop some obsolete tasks
that burden buffers. Also, work can assume dividing
tasks to allocate parts with different resources to accel-
erate processing. However, if parts of the tasks have
strong dependencies, this may burden the network as a
resource needs to wait for the others to process its part.
Some work does not consider dividing to simplify the
scheme [58]. The task generation speed [79] or distribu-
tion [82] have impact on the workload over the network,
and may help prevent bottlenecks.

4.2 Resources to allocate
Diverse types of resources can be allocated to users,
mainly communication resource and computational re-
sources. Moreover, we can consider them jointly, leading
to more efficient schemes.



Communication resource Usually, the main commu-
nication resource allocated is the bandwidth. It is al-
located to devices with a percentage of the total spec-
trum bandwidth available [80, 67] or the amount of ra-
dio bandwidth [70]. It can also depend on the channel
access method considered in the system. For systems
using TDMA, some work allocates time in each time
slots for each device proportionally to the data they
need to offload [79, 52]. For OFDMA, subcarriers are
allocated [57, 83]. The promising Non-Orthogonal Mul-
tiple Access (NOMA) method, suitable for 5G, allows
sharing subcarriers between multiple users instead to at
most one, like in OFDMA. So if the system uses NOMA,
the resource allocation scheme had to assign the subcar-
riers to multiple users [71, 50]. Some work also model
communication resources abstractly to be applied on dif-
ferent types of systems. A point to consider when we al-
locate communication resources is the interference. The
intra-cell interference is usually ignored to sub-channels
assignment [49, 62]. Inter-cell interference makes the re-
source allocation more complex as it adds dependence
between users’ uploading rates [62]. Some work ignores
this inter-cell interference as they postulate that cells
are far enough from each other or have orthogonal band-
width allocation [49]. However, it can be interesting to
consider it for networks where these interferences are
highly probable, like ultra-dense MEC networks. In ad-
dition, as MEC may possess heterogeneous Radio Access
Technologies (RATs), it raises the interesting problem of
choosing the right RAT to serve a device at a given time
for a given task. For instance, Hsu et al. [72] consider
the licensed 5G and the unlicensed NR-U. Indeed, each
RAT has its own characteristic, like coverage, mobility
support, data rate and so on. All of this may influence
the delay, the energy consumption and the quality of
service. They can also incur additional costs, like 5G
instead of the generally free Wi-Fi. Finally, next gen-
eration emergency [84] and public safety [85] communi-
cations are challenges to incorporate in MEC resources
allocations.
Computational resource Instead of the cloud, MEC
systems have limited computational resources. Thus
they are critical resources we need to allocate efficiently.
It is even more the case with many mobile users or ex-
tremely limited edge resources, as it is often the case
in mission-critical applications. If the computing re-
sources are badly allocated, important devices’ tasks
may be unprocessed on time and the overall system can
be congested. Computational resources may be CPU
cycles per seconds [55, 80, 62] or CPU cores [56]. For
UAVs-based MEC, some work allocates the number of
offloaded bits to the UAV [86, 87]. However, recent work
considers allocating CPU frequencies instead because it
seems to reduce energy consumption further [78, 88, 89].
To reduce the latency further and help MEC servers,
some works also consider the use of some spare comput-
ing power on certain devices that can use it to assist
other devices. The devices with enough resources com-

municate directly with requesting devices, called device-
to-device [90] or machine-to-machine [71] communica-
tion.
Joint communication and computation The com-
munication and computation allocations affect each
other. Regardless of how much a task is given a cer-
tain amount of communication resource, if it does not
have enough computing resource, the task will not be
processed more rapidly, and conversely [55]. So these
two resources are involved in QoS requirements, such
as delay and energy consumption, and jointly allocating
them lead to more efficient results [62].
Server selection The server selection for a task can
also be considered as a resource allocation. Match-
ing MEC nodes with tasks is relevant because MEC
nodes may possess heterogeneous capacities, in terms
of quantity as well of quality, and fit more or less a task
need [65, 70]. Plus, there is a trade-off to consider be-
tween computational time and network delay, depend-
ing on servers’ workloads, their distance from devices
and their channel quality. For example, it may be wor-
thier to assign a task to a farther server but which is
less busy [65].

4.3 Goals
The goals of the resource allocation scheme depend on
the use cases and the applications considered by the
work. They can be more adapted to latency sensitive
applications by minimizing tasks’ completion time, or fit
MEC systems with battery-powered devices by minimiz-
ing their energy consumption. The goal can be tuned
with weight in the objective function. It can aim to
prioritize some devices [62] or some aspect of a multi-
objective problem [49], like giving more weight to energy
consumption rather than latency.

4.3.1 Energy-aware parameters
In mobile edge computing networks, mobile devices are
battery powered. Thus minimizing their energy con-
sumption is crucial to maintaining the user’s quality of
experience [62] and preserve autonomous devices’ bat-
tery to let them complete their tasks. Some work con-
siders the overall energy consumption, e.g., from the
local computing to the offload computing [57]. Other
work considers only the device’s energy consumption
as is it assumed that MEC servers have reliable power
sources [47, 49]. However, in mission-critical applica-
tions, servers can be battery powered, like embedded on
UAVs or in buses. They may have more energy at their
disposal than end devices; nonetheless, their energy bud-
get is limited. Moreover, the energy consumption of the
overall system is always important to minimize the ap-
plication’s energy impact. The energy consumption for
a task is often calculated as 𝐸 = 𝜅𝐹 𝛽 ⋅ 𝑐 , where F
is the computing capacities of the device as CPU cy-
cles per seconds, c represent the number of CPU cycles



required to finish the task, 𝜅 and 𝛽 are constant that
depends on the device’s chip architecture [54, 62]. 𝜅 is
often 10−26 or 10−27 and 𝛽 is 2 [59, 70, 53, 49]. So the
computing capacities influence the task’s process time
but also the energy consumption. Therefore, there is
a trade-off between energy consumption and execution
time to consider. This trade-off can be adjusted with
a weight factor in the optimization goal to fit the ap-
plication needs, having a low energy consumption or a
reduced latency [91, 59]. It can additionally include ex-
ternal factors like the device’s residual battery [59] and
so adjust to the devices’ needs in real time. When MEC
servers are UAVs, the hover time is to be included in the
energy model under the form: 𝐸ℎ = 𝑃 ⋅𝑇 , where P is the
power to hover and T the hovering time [92]. Besides
the hovering time, UAV consumes energy for flying, de-
pending on its velocity and weight [86]. Its accelerations
have equally significant impact on energy [78]. We can
ignore some energy consumption points in the optimiza-
tion whether they are idle energy and we cannot control
it. This is the case for server idle energy consumption
or energy consumption of links that are traffic indepen-
dent [60, 58]. Plus, some actions are negligible in com-
parison to others in the system, like downloading energy
consumption [53].

4.3.2 Latency
Latency is crucial in mission-critical applications where
situations may be life or death, like in search and rescue.
A task’s latency comprises the processing time and nec-
essary transmission time from the device to the edge and
potentially to the cloud [79, 68, 54, 65]. Work [52] add
to it the compression time, present in system with heavy
tasks like video processing. We can also add the local or
remote computational queuing delay [55, 64] because of
the continue tasks generation, present even when other
tasks are processed. The processing time depends on
CPU cycles required to complete the task and the com-
puting capacities, e.g., CPU cycles/seconds, allocated
to the task [74, 69]. The latency is equally affected
by the data generation speed. When the generation is
superior to the system processing capacities, data ac-
cumulates in buffers and nodes don’t process tasks in
real time. Wang et al. [61] refer to it as a blocking state
and propose to adapt the resource allocation scheme de-
pending on whether the system is in a blocking state or
in a nonblocking state. Furthermore, the data genera-
tion is usually non-uniform across the system. It leads
varying workloads between servers, and some may be
overloaded while others are free from tasks. It is so
interesting to consider balancing in the resource alloca-
tion [69], as well as the trade-off between computing and
transmission time when moving a task to a less loaded
but further node [65]. In addition, some devices can pro-
cess critical tasks or occupy a pivotal role in the system,
therefore they need priority in their processing. A solu-
tion proposed in [52] is minimizing a weighted-sum delay

of all devices, the weight reflecting devices’ importance
in the system. Alternatively, [51] proposes to measure
each tasks’ priority with delay and reliability require-
ments. Standardly, the downloading time from server
to devices is ignored, since results data are smaller and
downlinks have higher rates [62, 58]. What’s more, the
transmission time between a base station and its asso-
ciated MEC server is ignored [59]. Finally, as seen in
Section 4.1, the partition of tasks can greatly reduce the
processing time by paralleling the processing. [45] shows
that the dynamic placement of the tasks partitioning de-
cision, i.e the decision to process on which nodes each
part of the task, can reduce the latency. Indeed, if the
decision is taken on the requesting node, it can take its
much constrained resources. But if the decision is taken
on a remote MEC server, it may take more time to reach
other MEC servers, depending on their placement from
the device.

4.3.3 Reliability
As seen in Section 3, some tasks of mission-critical ap-
plication are of vital importance. Thus, the MEC must
have a certain level of reliability to ensure that these
tasks are processed. In wireless networks, the reliabil-
ity is seen as the probability to successfully transfer data
within a delay [93]. A first challenge in MEC networks is
node failure. The redundancy of tasks is a relevant solu-
tion to mitigate this effect [94, 95]. However, it can bur-
den the network if the redundancy takes more than the
needed computing or communication resources. A node
failure measurement helps ensure the minimum tasks’
reliability, avoiding the resources’ overuse [77]. Another
challenge is extreme events in server and UE processing
queues. When queues are overloaded they may drop
some critical tasks, and assuring an average queuing
delay is not sufficient to prevent that [96]. Thus, the
work [64] uses the statistics of the extreme queue length
to ensure reliability.

4.4 Methods
The chosen method for resource allocation has to pro-
pose a satisfactory compromise between precision, com-
putational complexity and scalability depending on the
problem and its context. Some methods may be unable
to solve a problem [56] or fill the system requirements.
In addition, the method has to fit the scale of the sys-
tem, not being too complex for large-scale systems, and
its needs, for example if suboptimal results are sufficient.

4.4.1 Optimization methods
Classic mathematical optimization methods aims to
solve problems optimally. Cao et al. [47] solve optimally
the resource allocation in a three-node network to min-
imize devices’ energy consumption with the Lagrange
duality method. Chen et al. [68] propose a scheme for
resource allocation and task placement in ultra-dense



networks for minimizing the task completion time. They
resolve the computational resource allocation part of the
problem with Karush–Kuhn–Tucker (KKT) conditions.
Ren et al. [52] exploit the KKT conditions to allocate
a MEC server’s resources to users while minimizing the
delay, where data is compressed locally by the user be-
fore sending. Even though classic mathematical opti-
mization methods allow optimal outcomes they come
with significant complexity. Thus they are adapted to
small-scale systems with few parameters. They are un-
adapted to large-scale systems where the complexity is
too high to handle and they will either not be able to
solve the problem or demand an unfeasible amount of
time.

4.4.2 Decomposition techniques
Decomposition techniques are used for challenging prob-
lems where optimal solutions are likely nonexistent.
They decompose the initial problem into sub-problems,
easier to tackle. They are in addition employed in-
stead of optimal solutions to reduce complexity. A re-
duced complexity is important in MEC systems where
resources are limited unlike in the cloud. They can be a
good trade-off between efficiency and results, especially
with systems where medium accuracy is sufficient. Plus,
we may implement them easier and in a distributed man-
ner.
Iterative algorithms When considering several joint
problems, we can decouple the sub-problems and solve
them individually, like decoupling the offloading deci-
sion and the resource allocation. To retain the connec-
tion between the sub-problems, we solve them in an iter-
ative algorithm. Each iteration takes the output of the
previous iteration in input to update the solution until
convergence to the optimal solution. It allows a de-
creased complexity but at the cost of the solution’s pre-
cision. In iterative algorithms, we have to pay attention
to its convergence properties and its required iterations.
Li et al. [75] propose a two-stage heuristic resolving it-
eratively the offloading decision and the CPU frequency
allocation with the goal of minimizing the energy con-
sumption of mobile devices. Pham et al. [49] propose
the JOBCA iterative algorithm to solve the resource al-
location and offloading problem for wireless back-haul
networks. Networks with wireless back-haul may be uti-
lized for rural areas or emergency services where wired
back-haul is expensive and restrictive. Li et al. [58] in-
troduce an offloading and resource allocation scheme for
multiple wireless access points to minimize the monetary
and energy costs. Tran and Pompili [62] propose a re-
source allocation scheme for multiservers in ultra-dense
networks to minimize a weighted sum of task completion
time with devices’ energy consumption. For that they
introduce an iterative heuristic algorithm to solve the
initial problem in polynomial time. Fan and Ansari [65]
address the workload allocation for cloudlets, consider-
ing the trade-off between sending tasks to a near cloudlet

but overloaded or a far cloudlet but less busy. To sim-
plify the initial problem, they propose an iterative algo-
rithm solving task assignment and computing resource
allocation. Zhang et al. [59] aim at finding the trade-off
between latency and energy consumption. They inves-
tigate a scenario with one small cell and another with
multiple small cells and propose an iterative search al-
gorithm for the multiple cell scenarios. Zhu et al. [71]
introduce a resource allocation scheme for 5G Industrial
Internet of Thing (IIoT). In this scheme, they include
devices with enough computing resource to help other
devices with machine-to-machine communication.
Mathematical decomposition Mathematical solu-
tions exist to transform the problem into simpler sub-
problems. Then, we can solve them with classic opti-
mization methods. Ji and Guo [46] propose a resource
allocation for two users, one far and one close to the
MEC server. In the relay mode, where the nearest user
serves as relay between the MEC server and the far user,
they employ the Dinkelbach’s method to transform the
non-convex problem into a convex one. Next, they solve
it with classical convex optimization methods. Wang et
al. [55] propose a resource allocation strategy with a
two-stage tandem queues for maximizing the revenue of
the network. The first queue is for packet transmission
through the base station and the second for computa-
tional processing at the MEC server. The initial NP-
Hard problem is decomposed with an Alternating Direc-
tion Method of Multipliers (ADMM)-based algorithm
into convex sub-problems. ADMM is an algorithm to
solve problem with a splittable objective function. It is
adapted to decentralized systems because of its decom-
posability and requires a few iterations to converge for
modest accuracy [97]. However, it is slow to converge
for high accuracy. Yang et al. [60] handle the task allo-
cation problem for cloudlets with Bender decomposition
to minimize the overall energy consumption. Zhang et
al. [80] use a modified generalized Benders decomposi-
tion for latency-sensitive services with caching to min-
imize the overall latency. They also solve the problem
with a branch and bound method that has an expo-
nential computation complexity. Wang et al. [66] intro-
duce MOERA, an online resource allocation algorithm
to minimize arbitrary operational costs and costs that
reduce quality of service (e.g., delay) and consider user’s
mobility without their prior knowledge. They use a reg-
ularization technique [98] to divide into sub-problems.
Wang et al. [61] consider MEC systems having a non-
blocking state and a blocking state when too much data
has accumulated in a server’s buffers. For the nonblock-
ing state, they divide the problems into task assignment
and resource allocation sub-problems with the Cauchy–
Schwarz inequality. For the blocking state they aim to
recover the nonblocking state rapidly by equalizing the
transmitting and computing resource across layers. Lyu
et al. [54] address task admission and resource alloca-
tion by minimizing the energy consumption with their
EROS scheme. The initial problem is simplified to an in-



teger programming problem by pre-admitting tasks that
have to be offloaded to meet their deadlines. Then it is
resolved with a quantified dynamic programming algo-
rithm. Haber et al. [77] provide a resource allocation
scheme for UAV-assisted MEC, taking into account the
UAV positioning and reliability.

4.4.3 Game theory
Game theory methods are adapted to systems where
each node has individuals’ interests. For example, when
there is a service provider aiming at maximizing its rev-
enue and autonomous devices, each wanting to complete
their tasks as quickly as possible. Theses methods can
propose a consensus in such systems in a decentralized
manner. Josilo and Dán [67] provide a resource alloca-
tion model where edge services providers and devices in-
teract as a Stackelberg game. The devices are the lead-
ers and want to minimize their tasks completion time by
choosing to which edge server they offload their tasks
and through which access point. Sardellitti et al. [74]
use matching theory to assign users to a MEC server
and their communication and computational resources,
according to the users’ preferences.

4.4.4 Learning methods
Learning methods learn from the past and/or from the
environment. They are more rapid than classic meth-
ods, but can be less precise. Each one possesses its own
advantages or inconvenient.
Evolutionary Computation (EA) EA is inspired by
biology. Many algorithms exist under EA and are more
or less adapted to certain problems with their own pros
and cons. For example, genetic algorithms tend to not
be trapped in local optima [99, 100] while being hard
tuning it to problems. Thus, Wan et al. [100] propose a
different use of EA for task-driven resource assignment,
including hybridization of different EA algorithms. Li et
al. [99] use a genetic algorithm to minimize completion
time for mobile devices and an edge server.
Reinforcement learning Allocation resource schemes
can use a reinforcement learning method. More specif-
ically a Q-learning method can be used. It has for ad-
vantage to be model-free and adapt itself to a stochastic
environment. It is so a solution for dynamic context,
that we retrieve in mission-critical MEC scenarios [70].
Also, we can tune it to take more or less long-term de-
cisions. Wang et al. [73] propose a multi-stack rein-
forcement learning algorithm for resource allocation in
mobile edge computing. They use multi-stack to take
advantage of a historical resource allocation scheme and
avoid learning the same scheme. However, a disadvan-
tage of reinforcement learning is the Q table. It will
be excessively large for large-scale systems due to many
different possible states, rendering its storage and the Q
value search complex [53, 69]. Alternatively, we can use
a deep reinforcement learning method, with a deep neu-

ral network to estimate the Q value for an action and
a state. But we lose the “model-free” properties of the
Q-learning, and need to train a model. Chen et al. [70]
propose a deep reinforcement learning for CoMEC net-
work, where collaborative edge servers are connected.
Li et al. [53] use deep reinforcement learning for allo-
cating computational resources of a MEC server to mo-
bile devices by minimizing execution delay and energy
consumption. Wang et al. [69] introduce a deep rein-
forcement learning based resource allocation algorithm
to minimize the computing and routing delay in edge
networks. They also consider balancing the resource al-
location to reduce localized pressure on the network and
improve delays. Yang et al. [56] propose a deep rein-
forcement learning agent for the trade-off between down-
link data reliability and delay by CPU allocation and
data blocklength in ultra-reliable low latency commu-
nication networks. The Q-learning method is suitable
when there is not much communication or interaction
with other agents in the system, i.e., in MEC environ-
ment the mobile devices. However, if we assume that
the mobile devices interact and are intelligent agents,
Q-learning lacks an adaption mechanism to the other
agents’ (mobile devices) actions. Feng et al. [51] em-
ploy a WoLF-PHC reinforcement learning for resource
allocation to reduce energy consumption and prioritize
tasks in mission-critical applications. The WoLF-PHC
algorithm adapts the learning rate by learning slower
when we “take the ascendant” to let the other agent
the time to adapt its strategy and reach a whole system
equilibrium. Conversely, the learning rate will be faster
when the other agent takes the ascendant to “catch them
up” [101].
Deep neural network Li and and Lv [48] use a Deep
Neural Network (DNN) for resource allocation to min-
imize the network energy consumption. They train
DNNs to simulate the behavior of a sequential quadratic
programming algorithm. They train a DNN with a fixed
number of devices in the data set and the other with
a random number of devices, rendering the latter one
more flexible than the specialized one. Thus, the DNN
will take less time to solve the problem with an approxi-
mation of the optimal result. However, the environment
is highly dynamic and leads various uncertainties. A
training set might be under-representative of the com-
plex system and the trained DNN is not flexible enough
to tackle some situations as it does not adapt on run [69].
Moreover, it can be difficult to find good data before-
hand.

5. MOBILE RESOURCE DEPLOY-
MENT

When MEC servers are mounted on UAV or robots, they
are suited to cover the needs of mobile users in tempo-
rary events or emergency responses. Indeed, fixed re-
sources might instead be too costly, too inflexible to
deploy or just needed for a limited time. Particularly in



Table 3 – Review of architectures and goals used in mobile resource deployment for MEC

Architecture Goals Ref Deployment type
Number of UAVs

to deploy
UAVs

locations
UAVs

trajectory

One UAV

Fixed nodes

Min energy

[83] x
[78] x

Mobile users

[87] x
[102] x
[86] x
[103] x

Min Delay [104] x
Max Computation Rate [105] x

Max Offloaded Bits [106] x

Multi-UAVs

Fixed nodes
Max Coverage [107] x
Load balancing [108] x

Min UAV number [82] x x

Mobile users

Min Energy [92] x
[109] x

Min Delay and Energy [88] x
Max Offloaded Tasks [110] x

Max Served Tasks [111] x
Max Computation Efficiency [89] x

Nb of served resquests [77] x

emergency responses and post-disaster management, de-
ploying temporary additional computing resources can
help rescuers, victims and wireless devices processing
critical tasks with critical delay constraints. However,
mobile edge resource deployment comes with many chal-
lenges.
For deploying one mobile resource, we have to optimize
its trajectory between a starting and an ending point to
serve the mobile devices by minimizing the delay [104] or
the system energy consumption [83, 78, 86]. For deploy-
ing multiple mobile resources, we need to optimize their
numbers, i.e minimizing their number while satisfying
the goal, their locations and associate them with mobile
users. Indeed, with multiple mobile resources, we do
not have a starting and ending point so we cannot plan
the entire trajectory but rather compute the next loca-
tion point. Goals can be minimizing energy consump-
tion [92], minimizing number of deployed nodes [82] or
balance the workload between resources [108]. Also, the
deployment scheme is often joint with another problem-
atic: tasks scheduling, offloading decision, CPU opti-
mization, i.e what amount of CPU a task needs, resource
or bits allocation. We summarize reviewed papers for
this part in tables 3 and 4, classifying them depending
on their main objectives and undertaken constraints.

5.1 System modelling

One UAV deployment Generally, when we consider
one UAV deployment, we assume that it starts and fin-
ishes its trajectory at predefined locations. Like that,
the UAV does cycles in which devices can offload their

tasks [102, 83, 78, 87, 102, 106]. The problem is then
to study the path planning in theses cycles. The cycle
is separated in time slots, where the UAV is considered
static, as well as devices when they are mobile [83, 78,
87]. In general, in these system the area covered is not
large [86], and thus these works are convenient for short
term deployment and low-scale applications or to help
fixed servers in short areas. We name this deployment
type as trajectory in table 3.
Multi-UAVs deployment Deployment of multiple
UAVs can cover large areas and be used in large-scale ap-
plications. It is a complex challenge that is highly cou-
pled with the resource allocation scheme as they depend
on each other. Previous research considers different sce-
nario for multiple UAVs deployment. [107] and [109] as-
sume a three layer MEC system, with a device layer,
a UAV layer and fixed ground MEC servers. Islam-
bouli and Sharafeddine [82] study UAVs swarm deploy-
ment with some UAVs acting as relays for multi-hop of-
floading when the transmission power is too low [82].
Some other works consider UAVs deployment jointly
with other problems like tasks scheduling [92], user as-
sociation and resource allocation [89].

5.2 Deployment methods

Like resource allocation, the deployment of UAV is of-
ten associated with a joint problem. In these cases, the
problem will be too complex to address directly. Thus,
works tend to decompose the initial problem into sub-
problems and resolve them iteratively, where the deploy-
ment part is resolved with the results of the previously



Table 4 – Review of methods used in mobile resource deployment for MEC

Ref Method Joint problematic Main
constraintsBits

allocation Scheduling Offloading Power
allocation

CPU
optimi-
zation

Resource
allocation

User
association

[83]
Lagrangian duality,
Successive convex

approximation
x x x

Power and
computation

capacities

[78]

Successive convex
approximation,

Decomposition and
iterative algorithm

x x x
Energy devices
consumption’s,

Trajectory constraints

[87] Decomposition and
iterative algorithm x x Task deadlines,

Energy budget

[102]

Dinkelbach method,
Successive convex

approximation,
Decomposition and
iterative algorithm

x Computing capacities,
Mechanical constraints

[86] Decomposition and
iterative algorithm x Energy budget,

Data Causality

[104]
Penalty

dual-decomposition
method

x x Residual battery,
Energy budget

[105] Decomposition and
iterative algorithm x UAV speed

[109] Decomposition and
iterative algorithm x Devices

coverage

[88] Successive convex
approximation x Computing

capacities

[103]
Block successive

upper-bound
minimization algorithm

x x
Latency constraints,

Computation
and power capacities

[110] Greedy algorithm x Computation
capacity

[111] Greedy dispatching
algorithm

Communication range,
UAVs number

[89] Decomposition and
iterative algorithm x x UAV Velocity,

Obstacles

[106] Decomposition and
iterative algorithm x x UAV battery

and velocity

[107] Deep Reinforcement
Learning x x -

[108] Differential
Evolution algorithm

x Computation
capacities

[92] x x x Computation
capacities

[82] Meta-Heuristic x
Computation capacities,

Time and
power constraints

[77] SCA-based
iterative algorithm x x

UAV battery,
Tasks reliabiltiy,

Latency requirements



resolved joint problems [89, 102, 78]. In the next sub-
sections, when authors employ iterative algorithms, we
will focus on the deployment part.

5.2.1 Convex optimization
Convex optimization allows finding an optimal solution
to a relatively simple problem. It can be sufficient in
a problem with one UAV, but not for a more complex
problem, like with multiple UAVs. Xiong et al. [87] use
the CVX solver to solve a UAV trajectory along with
offloading and bits allocation. Li et al. [86] also propose
a convex function solvable by a CVX solver in their two-
stage alternating algorithm for UAV trajectory and bits
allocation.

5.2.2 Successive Convex Optimization (SCA)
method

Non-convex optimization problems are frequent in
UAVs-enabled MEC due to lots of constraints and pa-
rameters. Thus, the Successive Convex Optimization
(SCA) method resolve these problems by approximat-
ing them into convex problems iteratively [112]. This
method will produce a local optimal solution in a par-
allel and distributed manner. Some work employs the
SCA method to resolve UAV trajectory [105, 83, 89, 78]
and UAV position [88, 77] problems. However the result-
ing optimizer can have a high computational complexity
and does not respond to the real-time requirement of the
system [78].

5.2.3 Greedy algorithms
Greedy algorithms are known heuristics solutions for
coverage problems [113], such as in UAV deployment.
They propose a good estimation of the global optimal
solution to complex problems. Chen et al. [110] use a
greedy algorithm to deploy UAVs to locations and as-
sociate their devices’ tasks to maximize offloaded tasks.
Wang et al. [111] use a greedy algorithm to dispatch
UAVs, considering users’ hotspots, for maximizing the
number of processed tasks.

5.2.4 Population-based meta-heuristics
Population-based meta-heuristics search for the best so-
lutions in a set of candidate solutions. It starts with
a random population of solutions, then merges, keeps
or eliminates each one in each iteration to obtain the
most suited. They have the advantage to avoid local
optima [114] at the cost of a higher complexity than a
classic optimization method. Thus, it can be hard to
employ them for online solutions. Besides, each algo-
rithm possesses its own advantage and inconvenience.
Evolutionary computation Wang et al. [92] use a
Differential Evolution (DE) algorithm to decide UAV
location. Their problem possesses a mixed decision vari-
ables and is a variable-length, posing problem to use effi-

ciently a DE algorithm, so they propose a new encoding
where each UAV in an individual and the population is
a deployment solution. Yang et al. [108] also use a DE
to deploy UAVs at a location to balance the workload
among them to avoid bottleneck in the network.
Ions motion optimization Islambouli and Sharafed-
dine [82] use ions motion optimization [114] to choose
the number of UAVs and their positions, along with
device associations and computation allocations. The
algorithm models the population of possible solutions
that are anions and cations and choose an efficient solu-
tion iteratively. The work [114] shows that ions motions
optimization tend to avoid local optimum and few tun-
ing parameters, instead of other population-based algo-
rithms.

6. OPEN ISSUES AND CHALLENGES
In this section, we discuss some still open issues and
related challenges.

6.1 Real-time resource allocation and deploy-
ment

MEC application environments evolve and change
rapidly, it is therefore essential to evaluate and pre-
dict diverse aspects of the application and network
to respond appropriately. For the resource allocation
scheme, the changing traffic load and channel conditions
can hinder the network, creating bottlenecks and signif-
icantly impede the delay. For deployment of mobile re-
sources, user mobility is important to take into account
to position the resource at the proper place and taking
account of the travel time to be sure they are available
when needed. Many other aspects can impact the re-
source management scheme. Classic machine learning
mechanisms may help predict these aspects, but they
have to be meticulously modelled as historic data may
not match the application due to the challenging and
very fast changing environment.

6.2 Security and privacy

The security and privacy questions in MEC are sensi-
tive because of the distributed and wireless nature of
the paradigm. Also, in mission-critical applications, it
is even more the case as the information can be sensitive
and malicious attackers can take advantage of the situ-
ation or make it worse. The fixed and wearable sensors
are prone to network attacks on their wireless communi-
cation. The attackers can jam the communication, ren-
dering them unreliable or listen to the confidential data.
The cloud is generally more secure than the other layers
of MEC, but privacy is to be considered as we transmit
sensitive data to the Internet. MEC needs proper secu-
rity and privacy mechanisms to be reliable in sensitive
situations.



6.3 Green MEC
Several pieces of work focus on reducing the energy con-
sumption of the devices, as it is important to preserve
their battery. However, they may not consider the en-
ergy consumption on the overall application, i.e., the
energy consumption of the edge and cloud. It is indis-
pensable to consider it globally to achieve green MEC,
therefore minimizing pollution and reduce costs. Fur-
ther, it is even more the case with mission-critical ap-
plications where resources may be on mobile units and
so battery-constrained.

6.4 MEC experimentation and test beds
The majority of the reviewed work validate their work by
simulation. Although there are good simulation tools,
experiments are valuable to assess a scheme in real situa-
tions. The prevalence of simulations is undoubtedly due
to the lack of tools, especially test beds for edge com-
puting. The SILECS1 platform proposes a large-scale
distributed infrastructure from sensors to large data cen-
ters, thus making it a possible tool for MEC experimen-
tation.

7. CONCLUSION
In this paper, we have reviewed mission-critical and
time-critical applications using MEC. We present their
architectures and the edge services they use. We then
reviewed work on MEC resource allocation, highlight-
ing their modelling, goals and methods and do the the
same for mobile resource deployment schemes. We finish
by providing some open challenges and research direc-
tion. With this work, we hope to assist the researcher
designing MEC resource management schemes that fit
highly dynamic applications, like mission-critical and
time-critical applications, and fully leveraging MEC po-
tential.
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