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Why are there several sciences instead of only one? Are all sciences reducible to the “most 

fundamental” one, physics? Should we try to do so now that we have the required tools? Why 

our ancestors could discover effective drugs that we still rely on, thousands of years ago; and 

we, with incomparably advanced equipment and knowledge, are desperate to do so? Why 

has biology, e.g., neuroscience and genomics, failed in unraveling the workings of organisms 

despite spending billions of hours and dollars on gathering data? Why can’t we even “repro-

duce” our results? I show that the current ontological and methodological attitudes toward 

biological phenomena are flawed. I present emergent bound box theory by following the 

second law of thermodynamics and selection’s simple core: truism-law-of-survival. It ex-

plains the evolution of organisms’ internal workings and provides the first ab initio scientific 

framework for biological sciences, including medical, psychological, and social sciences. It 

is backed up by diverse evidence from Shannon and integrated information theories, compu-

tational complexity, decoherence and quantum Darwinism, effective field theories, deep 

learning, stability of strange attractors, and discovering that despite decades of dominance, 

the share of reductionist “rational” drug design from all approved drugs is less than 9%. New 

outlooks appear on long-debated dilemmas: machine metaphor of organisms; the “replication 

crisis”; Ockham’s razor, simplicity, “beauty,” and truth; tautology problem and a new syn-

thesis of Darwinism; definition and origin of “life”; Laplace’s demon; emergence; “levels of 

organization”; “downward causation”; “intelligent design”; and skepticism and the post-

truth. I demonstrate applying the framework for COVID-19 by a machine learning-based 

cheminformatics meta-analysis using systematic review and interactome-wide consensually 

docked 4D-QSAR. I discuss how mistaking products of science for science has led to rote 

science, useless and even harmful education, intellectual exclusion, and an illusion of pro-

gress. I clarify what “philosophy” and “science” are, and explain that contrary to the appear-

ance, our scientific progress, compared to our resources, is at an all-time low in history.   

This, if not attended to, can soon lead to the extinction of human global civilization. 
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** NOTE ** 

Here, biological sciences also include medical, psychological, and social sciences as they study aspects of some biological        

organisms. Cited references are opened up only to the point of being contributive to the whole synthesis and should be noted to 

grasp levels of evidence, counter-arguments, and examples (you can use hyperlinks of the citations and ALT + LEFT        

(CMD + LEFT in macOS or ALT + P in some Linux distributions to go back and forth between the text and the references). 

Supplementary data 1 and 2 provide extensive evidence for this manuscript exceeding 500 pages. 

****** 
Science started its modern career by taking over ideas derived from the weakest side of the philosophies of Aristotle’s succes-

sors. In some respects it was a happy choice. It enabled the knowledge of the seventeenth century to be formularised so far as 

physics and chemistry were concerned, with a completeness which has lasted to the present time. But the progress of biology 

and psychology has probably been checked by the uncritical assumption of half-truths. If science is not to degenerate into a 

medley of ad hoc hypothesis, it must become philosophical and must enter upon a thorough criticism of its own foundations.(1) 

Alfred North Whitehead (emphasis added) 

I think the next [21st] century will be the century of complexity. We have already discovered the basic laws 

that govern matter and understand all the normal situations. We don’t know how the laws fit together […] 

There is no limit to the complexity that we can build using those basic laws.(2) 

Stephen Hawking in his millennial interview in 2000

erishing the monumental creations of Isaac Newton, the great 

polymath Pierre-Simon Laplace wrote so in his 1814 book, A 

Philosophical Essay on Probabilities: 

We ought then to regard the present state of the universe as the effect of its ante-

rior state and as the cause of the one which is to follow. Given for one instant an 

intelligence [often referred to as Laplace’s demon] which could comprehend all 

the forces by which nature is animated and the respective situation of the beings 

who compose it—an intelligence sufficiently vast to submit these data to analy-

sis—it would embrace in the same formula the movements of the greatest bodies 

of the universe and those of the lightest atom; for it, nothing would be uncertain 

and the future, as the past, would be present to its eyes(3) 

This model of the universe implies physics is the only necessary science 

and the reason we have special sciences like biology, psychology, and 

social sciences is that we are currently far from being able to gather and 

analyze all the lower-scale knowledge we need to build up on to reach 

higher scales; e.g., to understand and predict the behavior of the human 

body, we could reduce it to its constituent parts, study them comprehen-

sively, and then put together this lower-scale knowledge(4); also see (5, 

6). For centuries, many, including Aristotle(7), Descartes, Kant, Auguste 

Comte(8), Erwin Schrödinger(9), Popper, and Putnam(10) have had such 

discussions(11): How to unify all sciences(12-22)? Is there anything 

“fundamental” other than the micro parts(23-26)? Are wholes the same 

as the sum of their isolated parts? Can we understand organisms by stud-

ying their isolated constituent parts?  Many, including John Stuart 

Mill(27), Ludwig von Bertalanffy(28), Ernst Mayr(29), and Philip An-

derson(30) have refuted this possibility, contending that new properties 

emerge in such complex systems that are not deducible from the most 

complete knowledge of the properties of their isolated parts(31-39). De-

spite adhering to physicalism(40-42), they argue complex systems are 

irreducible. Emergence has always invoked skepticism; it lacks a com-

pelling theory(43, 44) and an aura of obscurity and “magic” surrounds 

it: “It’s not magic. But to us humans, with our crude little human brains, 

it feels like magic(45).” Meanwhile, it seems so “obvious” to be ignored; 

so “obvious” that Aristotle could recognize it over 2400 years ago(36): 

In the case of all things which have several parts and in which the totality is not, 

as it were, a mere heap, but the whole is something beside the parts.(7) 

While this problem is still open, reductionist attitudes and paradigms are 

disproportionately in reign across most fields of science, despite lack of 

scientific ground, many appropriate criticisms(1, 13, 29, 30, 46-58) and 

contradiction to established scientific fields like systems and complexity 

sciences(45, 59-61) 

Today, assessing emergentism and reductionism is of utmost basic and 

applied importance. Now, we have begun to obtain the tools and tech-

nologies needed to supplant the epistemology and methodology of 

higher-scale biological sciences with what we may subjectively and 

baselessly suppose as the superior and more accurate scales of analysis: 

exceedingly lower scales. 

A Medley of Ad Hoc Hypothesis(1) 

Failures of Reductionism 

Actually, I was led to these questions after amazement by the dominant 

reductionism in biological sciences, especially in drug discovery and 

neuroscience. Drug discovery and neuroscience epitomize both applied 

and basic fields coming into crisis in changing and understanding bio-

logical systems. Neuroscience aims to understand the most complex 

known biological system in the universe. Drug discovery aims to change 

such a complex system. Let us see how hard biological sciences have 

failed in understanding and changing complex biological systems and 

how these failures are rooted in reductionism. 

Failing to Change Biological Systems 

The Machine Mindset 

Both in academia and industry(62, 63) and reported in hundreds of jour-

nals(64-86), including Science(87, 88), Nature(89, 90), Cell(91), and 

PNAS(92), drug candidates for complex disorders like schizophrenia, 

Alzheimer’s, COVID-19, and cancers are being screened and developed 

primarily based on their affinity to a single protein hypothesized relevant 

to the disease, and only terminally filtered based on their effects on hu-

mans and non-human animals (hereinafter referred to as animals). These 

bindings are measured using in vitro biochemical assays and sometimes 

in silico methods in initial steps. How much do these measurements cor-

relate with the binding of chemicals to proteins inside the human body? 

Not much(46, 47, 93) (for ample experimental evidence, see (94-103)). 

The in silico methods suffer not only from these issues, as they’re usually 

built upon the same in vitro measurements(104), they cannot even esti-

mate accurately these themselves-dubious measurements(105-109). The 

more important issue is the relationship between the affinity of chemicals 

to a “target” protein and their therapeutic effects on, e.g., depression. 

Does changing the state of a protein to tightly bound free the body from 

depression? Many of these “targets” are not even relevant to their target 

phenotypes(110). To this date, there is no scientific evidence for the pos-

sibility of reducing to single proteins, collections of complex phenotypes 

like depression whose pathologies are even far from known. This meth-

odology which may only be leniently justified for disorders rooted in a 

single protein, like monogenetic Mendelian diseases, is ironically called 

“rational” drug discovery(111, 112). Although the initial conception of 

Ch 
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“rational” drug discovery around the 1960s by prolific scientists like 

George Hitchings, Gertrude Elion(113) and James Black(114) was an 

applaudable move toward more efficient use of scientific 

knowledge(115), its current deviated implementation could hardly be 

more oblivious to scientific knowledge. 

My amazement was followed by the question that how can such an irra-

tional paradigm be successful. It actually is not. Translating basic science 

to clinical real-world impact is denigrated as the “valley of death”(93). 

Unproductivity has frustrated drug discovery researchers for years(116-

120). The number of approved drugs per billion research dollars has 

halved every 9 years from 1950 to 2010 (denoted as Eroom’s Law; 

Moore’s law in reverse)(118). Only about 13% of the drug candidates 

that reach the clinical stage get approval. This is interestingly lower in 

more complex CNS disorders and cancers, as low as 0.04%(119, 121). 

Estimated research and development costs required to bring a new ther-

apeutic to market have soared up to 6.4 billion dollars with a mean of 1.3 

billion dollars(122). Many pharmaceutical companies, including 

Amgen, AstraZeneca, Bristol Myers Squibb, GSK, Merck, and Pfizer 

have backed off from neuroscience research(123), albeit its related dis-

orders are the first cause of disability worldwide and many of its disor-

ders, like Alzheimer’s disease, have no cure(124, 125). On the other 

hand, many of the currently approved drugs, that are considered indus-

try’s successes, are under question by experts and evidence. A significant 

portion of them have minimal effectiveness(126-132), almost no benefit 

compared to previously approved similar drugs(133-137), or are ap-

proved only based on surrogate end points(131, 132, 138-141) or flawed 

and limited evidence(131-133, 141-146). Compared to placebo, plenty 

of them probably offer no benefit and may even lower patients’ survival 

and quality of life(130, 133, 138, 139, 147-154). (If you’re thinking 

about the rather-effective drugs we have, I’ll discuss them later.) 

“Rational” drug discovery is one of the paradigms in possession of ma-

chine mindset. This reductionist mindset construes systems as machines 

whose functions or dysfunctions can be traced back and reduced to a 

single or a few specific parts. It became popular in the Scientific Revo-

lution and culminated in world-changing successes in physics and engi-

neering, including the Industrial Revolution. Machine mindset stems 

from our own humane approach of designing and building systems. 

When we aim to design and build a specific system, while designing it, 

we design each part, having in mind specific roles for that part in the 

eventual function of the whole system. Because of this, each function or 

dysfunction of a car or a spaceship can be traced back to specific parts 

by a chain of tasks. The fallacy of machine mindset is its presupposition 

that this delineated chain of tasks between parts and functions is univer-

sal among all systems (see (155-158) for examples and (11, 159-165) for 

criticisms and discussions). But biological systems are not the result of 

the same approach of designing systems. They are the result of evolution 

by means of selection. Selection does not assign and explicate any role 

to any part. It only selects among the diverse ultimate outputs and phe-

notypes of systems created by random variations. All organisms, similar 

to cities, the internet, and the stock market, are self-organizing(166, 167) 

complex systems. Their parts are not chained to their behaviors; even 

though some elements may have accentuated roles in some functions or 

dysfunctions, there is usually no clear-cut and separable delineation(168, 

169). This leads to several general distinctive features in complex sys-

tems compared to chained systems: extensive multifunctionality of dif-

ferent parts(170-176); continuous and spectral, rather than clear-cut and 

binary-like causal relationships between the states of parts and systems’ 

ultimate behaviors(177-180); capability of “self-control” by frequent 

and extensive feedbacks between parts and the whole system(181, 182); 

therefore, more independence from external agents for control(183-192); 

extensive redundancy(193-201); vestigiality(202-205); and degeneracy 

or multiple realizability, in which several processes yield identical ulti-

mate outputs(51, 206-215). 

There have been many attempts to define the word “complexity”; yet as 

it is an arbitrary concept, no “objective” consensus has been and 

probably will be possible(216, 217). Still, I propose that this word will 

be of far greater use if we unanimously exclude from its applica-

tions(218), implications of complicated chained systems, like air-

planes(156, 219) and cars(156). 

Failing to Understand Biological Systems 

Foundationalist Materialism 

Neuroscience, on the other hand, has been dealing with an epistemic cri-

sis in which despite gathering deluges of data, it has failed to understand 

how behaviors arise from nervous systems(49, 51, 220, 221). We have 

complete structural knowledge about C. elegans genome, connectome, 

and cell types for several decades now; yet we have remained dispropor-

tionately ignorant about the workings of this worm. Still, a dominating 

portion of all that is being proposed is gathering more of such data, hop-

ing that someday, they would turn into knowledge; e.g., (222). Many 

have argued that the culprit of these failures is the current too-simplistic 

reductionistic paradigm of neuroscience. It has not been successful even 

in an “easier” reductionistic task it has set for itself on which plentiful 

resources have been spent: localizing behaviors to specific parts of brain: 

“To date, the main achievement of neuroimaging [whose studies are 

dominated by the reductionistic paradigm] is to have demonstrated that 

psychiatric disorders involve the brain and not just the ‘mind’(223).” 

Such unproductive, yet popular, reductionist endeavors have even been 

disparagingly likened to the pseudoscience of phrenology(54, 224-236); 

also see (53, 182, 237-239) for insightful discussions and (240-242) for 

experimental evidence exposing shortcomings of the current paradigm 

(the “replication crisis” will be discussed below)). 

Reductionist attitudes are in reign across biological sciences. To capture 

the depth of this reign, let us investigate reductionist presumptions be-

neath the current forefront of antireductionism in biological sciences: 

systems biology. It aims to better understand and change organisms by 

deciphering how their molecular constituents give birth to behaviors by 

putting more due emphasis on the comprehensiveness of investigated 

parts and analyzing their interactions using mathematical and computa-

tional tools(156, 243). 

Systems biology confronts many challenges. Sydney Brenner, one of the 

fathers of molecular biology, contended that systems biology is “bound 

to fail”, explaining that it aims to solve an inverse problem: “deriving 

models of how systems work from observations of their behavior(244).” 

Inverse problems are challenging, and often impossible to solve(245-

247); e.g., “One cannot hear the shape of a drum(248)”(249-251). The 

problem is that observables are only a fraction of the data necessary for 

reconstructing the system they emanate from(252-255). The fact that or-

ganisms are not chained systems but complex systems with vast degen-

eracy and multiple realizability aggravates this inverse problem and re-

verse engineering of organisms. Because there is no direct linear rela-

tionship that would enable deducing the actual workings of the systems 

based on observations of their behaviors and the correct solution may not 

be identifiable among several possible solutions(212, 256-258). Another 

challenge is the non-linear and chaotic behavior of biological systems 

accompanied by our inherently far-from-perfect measurements. This is 

further aggravated by the common practice of using data that can be 

traced back to heterogenous measurements from isolated parts of diverse 

organisms. Chaotic behaviors are not a trivial problem. After his mag-

nificent triumph in mathematizing the laws of motion and gravitation, 

Isaac Newton, given the initial momenta and coordinates, could exactly 

depict the future and past states of a system of two mutually gravitating 

planets. He then went on to a system of three; however, he observed that 

predicting its future is far more complicated than he had thought(259). 

After about 350 years, we’re still trying to solve special restricted forms 

of this problem in which the weight and thus the gravitation of one body 

is neglected. Actually, in 1890, Henri Poincaré mathematically proved 

the impossibility of finding a general analytic solution for three-body 

problem(260). Poincaré discovered that such systems show chaotic be-

haviors and sensitive dependence on initial conditions: Although the 
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system is completely deterministic, minute variations of the initial con-

ditions can lead to completely different futures after enough time(261); 

e.g., one-millimeter variation in the distance between Mercury and the 

Sun can shift the solar system from stability to instability in 5 billion 

years(262); failure to consider the flap of a butterfly’s wings can in a 

long time lead to failure in predicting a tornado: the butterfly effect(263). 

This last proposition goes back to the observation of Edward Lorenz that 

rounding up the inputs of his 12-variable deterministic model of atmos-

phere from six to three decimal points completely changed the results of 

a 2-month weather simulation(264, 265). Such chaotic behaviors abound 

in nature and biological systems(266-277). 

Although current systems biology studies are methodologically hetero-

genous, they are generally guided by a deeply ingrained reductionist bot-

tom-up approach (e.g., (278, 279)) which makes them unable to cope 

with the above challenges(280, 281). Possessed by reductionism, current 

paradigms of systems biology and neuroscience employ a methodology 

for understanding the workings of organisms that at first seems very nat-

ural. They dismantle the systems; inspect each of its parts separately; 

note how they interact with each other; and finally, reassemble the dis-

connected information together and try to build again the whole system. 

The cornerstone of such paradigms is measuring properties not of wholes 

of organisms, but of their isolated parts: i.e., in vitro and ex vivo meas-

urements. Whole-scale behaviors are only “incorporated as an after-

thought(51)”(282). 

Reductionism is the most natural thing in the world to grasp. It’s simply the belief 

that “a whole can be understood completely if you understand its parts, and the 

nature of their ‘sum’”. No one in her left brain could reject reductionism.(283) 

This approach hinges upon a presumption: Behaviors of isolated parts 

are similar to their behaviors when they are within wholes: foundation-

alist materialism(284). This reductionist mindset is another successful 

relic from the Scientific Revolution, which has continued to dominate 

the scientific community. Based on this mindset, it is widely, yet tacitly, 

presupposed that in vitro and ex vivo measurements are intrinsically ac-

curate and ontologically identical with their counterpart processes which 

are within wholes of organisms and the only problems are that first, little 

error accompanies them as their settings are not identical with the body 

and second, it is hard to follow the consequences of these measurements 

because plenty other processes are added to them inside the body. Com-

positionalist attitude(13, 285)(also see (286)) of this mindset implies that 

to understand wholes, it is enough and the best to take their parts apart 

and analyze them separately: the analytic method(284). 

The analytic method works in physics: to understand what happens in the world, 

we take things apart into their fundamental pieces; to control a situation we re-

assemble the pieces, we reorder them so they will work together to make things 

happen as we will. You carry the pieces from place to place, assembling them 

together in new ways and new contexts. But you always assume that they will try 

to behave in new arrangements as they have tried to behave in others. They will, 

in each case, act in accordance with their nature.(18) Nancy Cartwright 

Despite their dominance across biological sciences, the suitability of 

foundationalist materialism and the analytic method for organisms is not 

backed up by scientific evidence. Indeed, they are contradictory to the 

convincing evidence and arguments implying the processual nature of 

biological systems(287-294). It has been shown that these are not effec-

tive in understanding even chained systems(50, 51, 254), let alone the 

human body which is one of the most complex known systems. Instead 

of unraveling the workings of organisms, the most notable outcome of 

studies employing these has been intensifying our awe and humbleness 

in front of organisms’ complexity(56, 279, 295). 

Repercussions of the uncritical wide adherence to these approaches can 

be further illuminated by discussing their relevance to Brenner’s criti-

cism. Although the problem systems biology tries to solve is indeed an 

inverse problem, Brenner’s conjecture that this problem is not solvable 

at all is not acceptable. Such problems may be dealt with by constraining 

the number of possible solutions using ensemble modeling. In ensemble 

modeling, which is also employed in fields like weather forecasting and 

ecology, several models that all comply with the available experimental 

data are constructed(296-298). These sets of models can provide an en-

semble of probable predictions and also guide the future optimal experi-

mental design to obtain the data which efficiently reduces the uncertainty 

of future models and predictions(299, 300). Ensemble modeling pro-

vides a resort for dealing with the challenge of not only the inverse prob-

lem but also the uncertainty of measurements and ubiquity of chaotic 

behaviors in biological systems(301). Still, Brenner’s criticism is im-

portant because efficient ensemble modeling requires that biological sys-

tems be primarily investigated from angles where they appear the most 

informative so that their measurements would constrain the number of 

possible solutions to the highest degree(e.g., see(302)). Currently, there 

is no general theory on the workings of organisms and their causal struc-

tures that would inform us which angles are these. Current reductionist 

approaches, under the possession of machine mindset, foundationalist 

materialism, and the analytic method, baselessly presuppose that biolog-

ical systems must be understood primarily by gaining detailed infor-

mation about specific lower-scale parts; however, the abundance of fea-

tures that elicit indeterminism in the relationship between whole-scale 

behaviors and observed states of a specific part, e.g., multifunctional-

ity(170-176), feedback loops(181, 182), degeneracy(206-215), and ro-

bustness(303, 304), casts doubt on presuming superior informativeness 

for lower scales, as they may not specify the most “differences that make 

a difference(305)” within biological systems. 

Systems biology has been a laudable move from baseless adherence to 

reductionism; however, because of the dormancy of theoretical progress 

in contrast to technological progress, its real-world efficacy has been hin-

dered by hidden uninvestigated reductionist presuppositions and “uncrit-

ical assumption of half-truths(1).” 

The real advance in the application of systems theory to biology will come about 

only when the biologists start asking questions which are based on the systems-

theoretic concepts rather than using these concepts to represent in still another 

way the phenomena which are already explained in terms of biophysical or bio-

chemical principles.(306) Mihajlo Mesarović 

Universal Failure in Biological Sciences 

“Replication Crisis” 

The crisis of biological sciences is not restricted to the fields discussed 

above. In recent years, many have expressed concern for a “replication 

crisis” in diverse fields, especially psychology and biomedicine(241, 

242, 307-313). Reproducibility of results, which is claimed by many as 

a central tenet of science (e.g., (314-316); also see (317, 318)), is worry-

ingly low for studies published in “high-impact” journals of various 

fields: 11% in preclinical oncology(319)(also see (316, 320)), about 20-

25% in pharmaceutical “target” identification and validation(110), 37% 

in psychiatry(321), 39% in psychology(314), 44% in clinical critical 

care(322), and 62% in social science(323) (these measures are not com-

parable; refer to the cited studies). There have been many attempts to 

identify the causes of the “replication crisis” and propose solutions(324). 

A majority of these revolve around increasing transparency(325-328) 

and refining(329) common statistical practices like lowering(330) or, 

even, rising(331) the significance-threshold of the p-value(332, 333). 

Yet, there is no conclusive prescription and even no consensus on 

whether we are dealing with a “replication crisis” or not(334-336). 

Let us inspect a sample case of these “irreproducibility” incidents whose 

extent has supposedly imposed a huge burden(337-339). A researcher 

investigated the effects of small-molecule drug X on cognitive impair-

ment in mice and concluded that X has a “statistically significant” effect. 

Another researcher assessed the “results reproducibility(340)” of this 

study in another country by repeating the published procedures as close 

as she could. However, her conclusion does not confirm that of the orig-

inal study. As the second researcher tried to “reproduce” the results of 

the first researcher, she must have had this presumption that the 
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phenomena they observe are sufficiently similar. I may accept that the 

drugs both researchers used under the name “X” had sufficiently similar 

properties for the purpose(341) of the study; also see (342-345). But 

were the mice and the environmental conditions also sufficiently simi-

lar(346-348)? 

Perhaps the researcher has an idealist preconception toward “mice”: that 

all mice, or all mice of a specific strain, are identical in essence as they 

all belong to the same “kind”(341, 342, 349, 350). But is this common, 

albeit tacit, and deep-seated preconception true? The workings of evolu-

tion suggest otherwise(351): Behaviors of organisms with even almost-

identical genetics differ from each other(352-358): After all, variation is 

a raw material of selection; to the extent that organisms have been se-

lected for their tendency to become diverse(359-372). “Mice” or a spe-

cific “strain of mice” are all arbitrary concepts for denoting similarity 

and categorization(373-375). To mistakenly concretize arbitrary con-

cepts, like “strain,” “race,” or “human,” is to commit the fallacy of reifi-

cation, or misplaced concreteness(1, 376, 377). 

The idealist mindset which reduces, e.g., all mice to an idealized concept 

of mouse is related to foundationalist materialism. We can distinguish 

them by assigning to foundationalist materialism, the bias to reduce a 

context-dependent processual phenomenon to a specific cross-section of 

context and time, and assigning to idealism, the bias to reduce varied 

members of a similarity group to a single, often imaginary entity, like 

“average human”(378, 379). Having exposed both idealism and founda-

tionalist materialism, we should note not only animals of the two re-

searchers were completely different, but their environments were also 

different(315, 380, 381). We have seen how a little fluctuation in organ-

isms can lead to completely different outcomes as they manifest chaotic 

behaviors(266-277). Subtle “environmental” variations can lead to dif-

ferent measurements(382-389). Even “copies” of the “same” enzyme 

have different catalytic properties(390-392). Naturally, the observations 

of the two researchers were different: they observed different processes.  

It may be argued that these individual and environmental variations are 

not to the extent that would lead to “irreproducibility.” We can reject this 

argument based on the observation that, contrary to the failure of exhaus-

tive standardization in achieving results reproducibility(382-384), delib-

erate heterogenization of study samples may “counterintuitively” im-

prove results reproducibility(381, 393-401). When the diversity of or-

ganisms and their environments is inevitable and this leads to hetero-

genous measurements, deliberate heterogenization of study samples in-

creases the base heterogeneity of the measurements and it would be less 

probable that these already heterogenous measurements would fail to be 

“reproduced” because of the heterogeneity that “reproducing” adds. 

A mature physicist, acquainting himself for the first time with the problems of 

biology, is puzzled by the circumstance that there are no “absolute phenomena” 

in biology. Everything is time bound and space bound. […] The physicist has 

been reared in a different atmosphere. The materials and the phenomena he works 

with are the same here and now as they were at all times and as they are on the 

most distant stars. He deals with accurately measured quantities and their causal 

interrelations.(402) Max Delbrück 

The “replication crisis” does not boil down to just these two fallacies. 

Another facet is how records from all these unique individuals and envi-

ronments turn into single-sentence title-friendly conclusions that cur-

rently appear in most scientific journals. Relationships are claimed be-

tween pairs of organisms’ variables. How organisms have evolved im-

plies that isolated ideal relationships do not exist. What can exist in real-

ity is a general tendency between some observed variables in some spe-

cific individuals embedded in specific environments. This tendency is 

almost always general and rough. So, how do such general and rough 

tendencies turn into popular single-sentence conclusions? 

The object of statistical science is to discover methods of condensing information 

concerning large groups of allied facts into brief and compendious expressions 

suitable for discussion.(403) Francis Galton 

Briefly, and in its most concrete form, the object of statistical methods is the re-

duction of data. A quantity of data, which usually by its mere bulk is incapable of 

entering the mind, is to be replaced by relatively few quantities which shall ade-

quately represent the whole.(404) 

No human mind is capable of grasping in its entirety the meaning of any consid-

erable quantity of numerical data. We want to be able to express all the relevant 

information contained in the mass by means of comparatively few numerical val-

ues. […] It is the object of the statistical processes employed in the reduction of 

data to exclude this irrelevant information, and to isolate the whole of the relevant 

information contained in the data.(405) 

Ronald Fisher, a major pioneer of modern statistical methods 

As attested by its pioneers, this condensation is the core aim of the cur-

rently used statistical methods. Despite all variations between individu-

als, by mathematical theories, standardization, and randomization(405-

411), modern statistical methods provide a logical way to reduce all rec-

orded data from two observed groups and answer this question whether 

we are justified to claim one group was under the effect of a different 

causal variable or not(412). This is achieved by assuming that the obser-

vations are a sample from a larger (mostly infinite(413)) hypothetical 

population, and enabling the application of long run frequency property 

and law of likelihood through the theory of testing statistical hypothe-

ses(404-406, 412, 414-417). 

Although these methods may provide a logical way to answer the above 

question, they are suitable neither for future predictions in individual or-

ganisms nor for unraveling the workings of real organisms (who are in-

dividually unique); e.g., (413, 418-423). Even a very simple and concrete 

statement like “Human heart resides on the left side of the chest cavity” 

is not true for some individuals(424); even though it is “statistically sig-

nificant” and “reproducible.” This is because these group-based methods 

suppose that all the variations between the supposed hypothetical popu-

lations are due to differences in the investigated variables. They reduce 

manifold variables of organisms to the few investigated variables. All 

the variations due to organisms’ uniqueness and their varied environ-

ments are washed away as “confounding”(404, 407). This attitude can 

be traced back to fallacies of idealism and foundationalist materialism 

and an inherent human bias toward simple clear-cut answers for inher-

ently complex problems through binary thinking and digitizing a contin-

uous and spectral world(425-430). 

All this adherence to group-based statistics is in spite of the fact that it 

has been known for a long time that individual-level inference from 

group-level statistics is a mathematical fallacy: ecological fallacy(431-

433). This fallacy can lead to taking completely wrong decisions for in-

dividuals, like in Simpson’s paradox(434-437).  

In a real sense, statistics is the study of populations, or aggregates of individuals, 

rather than of individuals.(405) Ronald Fisher 

We must never make average descriptions of experiments, because the true rela-

tions of phenomena disappear in the average; when dealing with complex and 

variable experiments, we must study their various circumstances, […] averages 

must therefore be rejected, because they confuse, while aiming to unify, and dis-

tort while aiming to simplify. […] Certain experimenters published experiments 

by which they found that the anterior spinal roots are insensitive; other experi-

menters published experiments by which they found that the same roots were sen-

sitive. These cases seemed as comparable as possible; here was the same opera-

tion done by the same method on the same spinal roots. Should we therefore have 

counted the positive and negative cases and said: the law is that anterior roots 

are sensitive, for instance, 25 times out of a 100? Or should we have admitted, 

according to the theory called the law of large numbers, that in an immense num-

ber of experiments we should find the roots equally often sensitive and insensi-

tive? Such statistics would be ridiculous, for there is a reason for the roots being 

insensitive and another reason for their being sensitive; this reason had to be 

defined; I looked for it, and I found it; so that we can now say: the spinal roots 

are always sensitive in given conditions, and always insensitive in other equally 

definite conditions. 
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I will cite still another example borrowed from surgery. A great surgeon performs 

operations for stone by a single method; later he makes a statistical summary of 

deaths and recoveries, and he concludes from these statistics that the mortality 

law for this operation is two out of five. Well, I say that this ratio means literally 

nothing scientifically and gives us no certainty in performing the next operation; 

for we do not know whether the next case will be among the recoveries or the 

deaths. What really should be done, instead of gathering facts empirically, is to 

study them more accurately, each in its special determinism. We must study cases 

of death with great care and try to discover in them the cause of mortal accidents, 

so as to master the cause and avoid the accidents. Thus, if we accurately know the 

cause of recovery and the cause of death, we shall always have a recovery in a 

definite case.(438) 

Claude Bernard, in his 1865 classic, An Introduction to the Study of Experimental 

Medicine. This major pioneer of modern biomedical sciences was only one of the 

critics against using group-based statistical methods in biomedicine(439-441) 

So, the crisis is not our inability to “reproduce” results. The crisis is that 

we expect to “reproduce” results despite neglecting most individual and 

environmental variables(336, 442-450). Foundational isolated causal re-

lationships do not exist. One cannot discover “natural laws” by group-

based statistical methods. 

Uncritically following a system that pioneers set temporarily, without 

asking if it is suitable for our aims or not, currently, study designs of 

most biological studies, from psychological and social to pharmacologi-

cal, neuroimaging, and medical studies, are based on trying to find causal 

relationships between variables using these group-based statistical meth-

ods(240, 434, 451-469). E.g., in the dominant paradigm of medical sci-

ences, having neglected almost all individual and environmental varia-

bles, researchers try to neutralize their “confounding” effect on the foun-

dationally true causal relationship they seek, by recruiting ever larger 

samples. They even try to further expand these samples by merging them 

through meta-analysis. The ecological fallacy occurs as almost all these 

are performed to decide for individual patients. Ironically, this mathe-

matically fallacious paradigm which neglects most variables is named 

“evidence-based” medicine(420, 422, 465-478). 

A likely argument is that we cannot record and use all individual and 

environmental variables; and therefore, induction and “generalization” 

from group-based statistics is the only feasible resort. First, great ad-

vancement in data gathering and analysis through sensors and machine 

learning (ML) has made moving toward this aim possible. More im-

portantly, this argument could have been acceptable if the scientific com-

munity had been collectively aware of the conceptual fundamentals and 

deficiencies of the statistical methods they use and had used them only 

as temporary heuristics to inform interim decisions and inductions while 

also recording and sharing individual and environmental data. This is not 

the case. The data that is currently shared is almost always the group-

based aggregated data and shockingly, the individual-level data is not 

usually accessible even through requesting from the original investiga-

tor(479-487). The scientific community has been searching for years for 

culprits and solutions of the “replication crisis,” failing to notice that its 

prime culprit has been dismissing most individual and environmental 

variables(336, 447-450, 488, 489). Science has been inflicted by a “sta-

tistical crisis”(447)”(426, 490-494). Current use of statistical methods 

has been numerously described as “mindless”(448, 450, 494-497). Sta-

tistical inferences are so pervasively abused that it has been possible to 

present anything as “significant”(498, 499). Abuse of statistics at such a 

massive scale obliged American Statistical Association (ASA) to release 

an unprecedentedly alarming “Statement on statistical significance and 

p-values” emphatically reminding basic facts like, “Statistical signifi-

cance is not equivalent to scientific, human, or economic significance. 

Smaller p-values do not necessarily imply the presence of larger or more 

important effects, and larger p-values do not imply a lack of importance 

or even lack of effect. Any effect, no matter how tiny, can produce a 

small p-value if the sample size or measurement precision is high 

enough(500).” Statisticians have been urging to “abandon statistical sig-

nificance(448),” emphasizing that “no single index should substitute for 

scientific reasoning(500),” and underlining “the limited role of formal 

statistical inference in scientific inference(426).” Following the alarms, 

journals from various fields have been trying to restrict these common 

abusive practices(501-505). The important point is perfectly reflected by 

one title of a recent special issue of an official journal of ASA, dedicated 

to steering toward this “post p < 0.05 era”: “Statistical inference enables 

bad science; statistical thinking enables good science(506).” Extent and 

the real-world impact of “substituting scientific reasoning(500)” with 

“mindless” practice of statistics can be highlighted by reviewing the case 

of mistaking “clinical significance” with “statistical significance”(507-

509). For decades, instead of clinical significance, the measure of ap-

proving drugs has been whether p-values reach the “statistical-signifi-

cance” threshold or not(510-513). Intriguingly, if you look up press an-

nouncements of the US Food and Drug Administration (FDA), a globally 

leading regulatory agency, on approval of drugs (e.g., see (514)), you can 

see a subtle yet immensely impactful(515) change of language. The tech-

nical term of “statistically significant” is used interchangeably with the 

common term, “significant.” It is very improbable that it comes to the 

mind of a lay person reading these announcements that this “significant” 

has nothing to do with the common non-technical meaning of “signifi-

cant” and actually, conveys a statistical measure that, as ASA has em-

phasized, can be achieved by “any effect, no matter how tiny(500)” and 

does not denote the magnitude of drugs’ effects. So, drugs have been, 

and are being, approved not only based on flawed and limited data on 

surrogate end-points(131, 132, 138-141), but also based on flawed con-

clusions from this itself-flawed data. 

It is difficult to understand why statisticians commonly limit their inquiries to     

Averages, and do not revel in more comprehensive views. Their souls seem dull 

to the charm of variety […] Whenever [statistics] are not brutalised, but delicately 

handled by the higher methods, and are warily interpreted, their power of dealing 

with complicated phenomena is extraordinary.(516) 

Francis Galton, father of modern statistical methods(517) 

The Alternative? 

Science has explored the microcosmos and the macrocosmos; we have a good 

sense of the lay of the land. The great unexplored frontier is complexity.(518) 

After reviewing fallacies of dominant paradigms of biological sciences, 

we can better appreciate what Whitehead conjectured a century ago(1): 

biological sciences have degenerated “into a medley of ad hoc hypothe-

sis” due to “uncritical assumption of half-truths.” 

If the dominant paradigms of biological sciences are so fallacious and 

ineffective, how have our advances in these sciences been possible? Let 

us first question a presupposition behind this question: Has any advance 

taken place in biological sciences? 

Our success in understanding and changing biological systems (complex 

systems) pales beside our world-changing success in engineering and 

physical sciences (chained systems). We have constructed enormous cit-

ies with skyscrapers and bewilderingly complicated plumbing, sewerage 

and electricity systems while our ancestors had to travel kilometers for 

water. We can easily meet face-to-face those on the other side of the 

planet in a few seconds, while it could take several months a few hundred 

years ago just to transmit written words. The workings of the manufac-

turing systems we use are awe-inspiring. We are sending spaceships to 

Mars. Our computers would seem magical and supernatural to our an-

cestors. Even compared to 1956, they are one trillion (1012) times 

stronger (Moore’s law)(519). You may refer to the progress we have had 

in surgical operations, life expectancy, or molecular biology. Yet even 

all this progress in confrontations with biological systems is based on our 

success in engineering and physical sciences. Advanced medical and sur-

gical devices have enabled diagnostic and interventional measures im-

possible before. Effective plumbing and sewerage systems have im-

mensely improved longevity by improving hygiene(520). Advanced 

chained technologies have enabled dissecting complex systems: from 

unraveling the structure of DNA in the 1950s(521-523) to sequencing 
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complete genome with $100,000,000 in 2001(524), and now, sequencing 

it with less than $1000 (525, 526). 

We have had meager progress in understanding and changing biological 

systems per se. About two decades ago, the data gathered by omics tech-

nologies, particularly the Human Genome Project, was thought to spur 

the introduction of an unprecedented number of effective treatments for 

various disorders and revolutionize our understanding of human biology. 

Francis Collins, director of the National Institutes of Health (NIH) stated 

in 1999 that “This knowledge will dramatically accelerate the develop-

ment of new strategies for the diagnosis, prevention, and treatment of 

disease, not just for single-gene disorders but for the host of more com-

mon complex diseases(527)”(528). Such dramatic developments were 

expected to occur by 2010(527, 528). In 2021, almost none has materi-

alized in prevention, diagnosis, and treatment(529-532). Even our under-

standing of the genetic underlying of common complex disorders has not 

progressed that much(533). The medical genetics community has been 

accused of making empty promises(529). Notable progress has been re-

stricted to monogenic Mendelian disorders, which are decipherable by 

reductionism(295). Over decades, accompanied by blaring hype, various 

technologies have been hoped to bring immense changes: high-through-

put screening, combinatorial chemistry, computer-aided drug design, 

and now artificial intelligence (AI)(534-537). Eroom’s law suggests that 

these advancements not only have not fulfilled the promises but we even 

have regressed in discovering drugs; this is in spite of the fact that many 

of these advancements are directly used in drug discovery research. 

Although this disproportionate disparity between our success in front of 

chained and complex systems may instill frustration at first, it also sug-

gests that if we develop a satisfactory framework for understanding and 

changing biological sciences, which would be at least as effective as 

foundationalist materialism and the analytic method for chained systems, 

we might enjoy unimaginably immense developments. 

Observing an exception to all our failures in front of biological systems 

led me to such an alternative framework. 

A Hypothesis 

After amazement by the extent of the irrationality of the dominant reduc-

tionism in drug discovery and its catastrophic consequences, I also no-

ticed that still, we have some rather-effective drugs for some complex 

disorders like schizophrenia and many bacterial, fungal, and parasitic in-

fections. Doubting their origination from the current paradigm, I inves-

tigated their discovery origins. 

In 1951, Henri Laborit, surgeon of a military hospital, had received a 

newly introduced antihistamine molecule, chlorpromazine, that was sup-

posed to potentiate anesthesia and reduce the shock after surgery. Yet he 

observed it caused a calmness and indifference that continued even after 

surgery. After validating this alongside army psychiatrist on more-agi-

tated patients, he went to Paris and persuaded a healthy psychiatrist to 

test it intravenously on himself and report its subjective effects. After 

initially reporting “no effects worthy of mention, save a certain sensation 

of indifference,” the psychiatrist fainted because of the antihypertensive 

effects of chlorpromazine. Laborit convinced another psychiatrist to test 

it this time on their psychotic patients. On January 19, 1952, Jacques, a 

24-year-old severely agitated schizophrenic, intravenously received 50 

mg chlorpromazine, the calming effect was immediate. After three 

weeks of treatment, Jacques was back to normal life. The first antipsy-

chotic was born(538-540). I could trace back the origins of almost all 

currently available antipsychotics, 27 drugs, to this discovery (figure 3 

and supplementary data 1). 

Four years after this pivotal event for psychiatry, the quest for chlor-

promazine analogue drugs was intense. Roland Kuhn, director of a psy-

chiatric hospital on a tight budget, to both save money and potentially 

help patients, asked a drug manufacturer if they had any of such investi-

gational antipsychotics they would like to try on their schizophrenic pa-

tients. After receiving G22355 and finding it devoid of any antipsychotic 

activity, he tried it on his depressed patients. After three weeks of ad-

ministration, most of these patients were drawn out of their suffering by 

the first antidepressant, imipramine(538, 541, 542). Interestingly, at ap-

proximately the same time, clinical studies were being conducted to as-

sess the effectiveness and safety of an analogue of the antituberculosis 

isoniazid, iproniazid, in tuberculosis patients. Apart from its antimicro-

bial effects, it was observed that iproniazid induced euphoria and en-

hanced vitality in some patients(543). Following this lead culminated in 

introducing monoamine oxidase inhibitor antidepressants(544). Origins 

of almost all currently available antidepressants, 28 drugs, can be traced 

back to these two discoveries (figure 3 and supplementary data 1). 

But such cases of humble yet impactful discoveries do not end here. A 

mummified human body dating back to 5300 years ago has was found 

carrying the fungus Piptoporus betulinus. Substances from this fungus 

have now been shown to have potent antimicrobial and immunomodula-

tory activities(545-549). Further analysis proposed that he was probably 

using the fungus for his trichuriasis(550-553). Other evidence stretches 

back the possible intentional use of effective drugs further, even to 

60,000 years ago and Neanderthals(554-561). Even today, some of our 

most effective drugs can be traced back to the therapeutics our ancestors 

discovered hundreds of years ago: opioid analgesics (22 drugs), aspirin, 

digoxin, metformin, and many others (historically used category of fig-

ure 3 and supplementary data 1). How is it possible that our ancestors, 

from about half a century to hundreds of years ago, were so successful 

in discovering drugs and now, we, with incomparably superior collected 

knowledge and tools, are so desperate to do so? The onset of the trend 

captured by Eroom’s law may imply that we could look for the onset of 

a detrimental causal trend in the second half of the previous century. 

There are several proposals for what this trend is(46, 47, 116, 118). I 

hypothesized that a major reason for the decline in efficiency is that un-

like the reductionist “rational” drug design that optimizes structures ma-

jorly based on their binding to few hypothetically therapeutic(110) “tar-

get” proteins and usually uses human and in vivo data only as terminal 

filters, because of the unavailability of the tools needed for reductionism, 

traditional drug discovery inevitably had an empirical approach primar-

ily based on observation and optimization according to phenotypical ef-

fects on humans and other animals and organisms like fungi and bacteria. 

Empirical Evidence 

Consequences of Reducing Biology 

1. Therapeutic Effects vs Their Micro-Scale “Targets”? 

To test my hypothesis, I investigated the discovery origins of all drugs 

approved by the FDA by the end of 2020. Rather similar to the seminal 

analysis of Swinney and Anthony who had previously shown that despite 

the disproportionate dominance of “rational” drug discovery, phenotype-

based approaches had contributed more than “target-based” approaches 

to the discovery of first-in-class drugs approved between 1999 and 

2008(562), I classified the discovery origins (note the precise definition 

in methods) to “target-based” and phenotype-based. To more “objec-

tively” identify drug classes, I emphasized verbatim accounts of the orig-

inal discovery paper and the discoverer(s) themselves and also used fea-

ture trees for measuring structural similarities between analogues(563). 

Figure 1 shows that “target-based” approaches that have tried to reduce 

the therapeutic effects of molecules to their lower-scale effects on pro-

teins, despite having dominated the field of drug discovery in the last 40-

50 years(111, 112), have contributed far less than phenotype-based ap-

proaches. Supplementary data-1 provides evidence-based insights to-

ward the reality of drug discovery, stripped of all the hype and advertise-

ments; e.g., although some suggest that the increase of FDA drug ap-

provals in recent years seems to have broken the Eroom’s law(564, 565), 

a deeper look reveals that the pharmaceutical industry seems to have 

been adapting to its low research productivity rather than having been 

able to improve it. It has diverted its focus from complex unaddressed 

fields like CNS disorders to either more reducible ones like monogenic 

disorders(121, 123, 564, 566) or those fields where expensive revenue- 
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boosting drugs(137, 

154, 567-572) can get 

approval regardless of 

lacking real-world ap-

propriate evidence and 

efficacy(131-133, 136-

140, 142, 144-146, 

154, 573). Furthermore, we can see 

that many of the recently approved 

drugs are simple analogues of drugs 

discovered decades ago. Even some-

times, drugs that were not brought 

forward to the market decades ago are 

now taken off the shelf and lead to the 

“recent increase of productivity”; 

e.g., rifamycin was discovered, phe-

notypically, in 1963 but it was not it-

self further developed in the US and 

was instead optimized to rifampin 

which was approved by FDA in 

1971(574). Still, rifamycin itself got 

approved by FDA in 2018(575). This 

showcases how much drug discovery 

has regressed despite all the techno-

logical progress. Interestingly, this re-

ality is seen upside down by many re-

ductionism-based studies: They state 

they want to rescue drug discovery 

from its miserably low productiv-

ity(62, 63). They have not realized 

that the reason for such productivity 

has been, in the first place, the very 

approach they have. 

I saw that in parallel with the decline 

of its productivity from the 1950s, 

drug discovery methodology has 

gradually changed in a way that cur-

rent drug hunters see those days as 

“otherworldly(576)” and “taken 

place on another planet(576)”(112, 

577). A transition is clear from small 

teams comprising a few medicinal 

chemists and pharmacologists with-

out too much specialization and who could directly oversee the relation-

ship between chemical structures and their effects on phenotypes and 

were trying to answer the same question to current huge teams in which 

the goal of discovering a drug is reduced and specialized into discon-

nected tasks: from a seamless two-way translation were observations of 

the phenotypic effect of molecules back-propagated and informed design 

and optimization to a one-way translation in which the information of 

phenotypic observations is not used, but mostly as a filter(578, 579). 

2. Rationality or Luckiness? 

Still, I was suspicious of the role of “rational” drug discovery for even 

the 9.4% of approved drugs: I hypothesized that many of the drugs dis-

covered by “target-based” approaches, depend on “off-target” mecha-

nisms for their therapeutic effects, like how it was shown recently that 

“Off-target toxicity is a common mechanism of action of cancer drugs 

undergoing clinical trials(580).” Although “rational” drug discovery de-

signs and screens molecules based on their binding to a specific target, it 

inevitably uses animal and human results as terminal filters. Even though 

animal and human data rarely inform the design of molecules, when em-

ployed as terminal filters, they may fortuitously lead to selecting drug 

candidates which benefit from several mechanisms. This possibility is 

augmented by noticing that many of the approved drugs we currently use 

have modest origins in which their effects were discovered in humans or 

in vivo models either serendipitously or out of a few hundreds of initial 

molecules (see supplementary data 1); and not by systematically screen-

ing billions of molecules(581). 

To assess my hypothesis, I systematically 

reviewed 30921 articles on the pharmacol-

ogy of the drugs whose discovery I had 

identified as “target-based” to find out if 

they benefitted from therapeutic mecha-

nisms other than their discovery “tar-

gets.” To rule out the mechanisms that are 

merely downstream effects of binding to 

the “target,” I excluded from the “off-tar-

get” therapeutic mechanisms those that 

had interactions with the “target” based 

on STRING v11(582). 

Table 1 shows the count of these “off-tar-

get” therapeutic mechanisms; these 

mechanisms along with the interaction 

networks are available in supplementary 

data 2 detailed and referenced. This 

shows that the share of “rational” and 

“target-based” drug discovery from all 

approved drugs is even far less than 9.4%. 

If it was solely the reductionist scheme of 

“rational” drug discovery, none of these 

“off-target” therapeutic mechanisms 

would have existed. They have been se-

lected unconsciously and blindly because 

of the terminal phenotypic filters and do 

not accompany any molecule selected 

based on its inhibitory potency on a “tar-

get.” Noteworthy, these counts are re-

stricted, of course, to mechanisms that 

have been shown until now; it is fair to 

expect that the actual “numbers” would 

be much higher. 

3. Is Protein Binding Even Relevant? 

Now that most drugs have been discovered based on phenotypic obser-

vations and even the “target-based” drugs are not that much “target-

based,” how much is tight binding to “targets”, the holy grail of “ra-

tional” drug discovery, relevant at all for therapeutic effects? Do ap-

proved drugs bind tightly to their “targets”? 

According to the scheme 

of “rational” drug discov-

ery, the relationship be-

tween measured binding 

affinities and drug poten-

cies are rather consist-

ently positive for drugs 

whose mechanisms of ac-

tion are based on compet-

itive antagonism and inhi-

bition. As binding affini-

ties should be considered 

relative to each macro-

molecule, I investigated 

the percentile  rank of 

each approved drug’s affinity for 

each of its therapeutic “targets” 

among all ChEMBL(583) ligands 

of that “target.” As figure 2 and 

supplementary data 3 show, although affinities of a considerable number 

of approved drugs for their therapeutic “targets” were relatively low, 

most of them incline toward the highest percentile ranks. 

DONEPEZIL 41 BORTEZOMIB 69 

ACARBOSE 14 CARFILZOMIB 2 

ALISKIREN 12 EFAVIRENZ 2 

RIVAROXABAN 7 NINTEDANIB 229 

SACUBITRILAT 2 GEFITINIB 111 

EDOXABAN 1 ERLOTINIB 109 

ZANAMIVIR 1 LAPATINIB 16 

OSELTAMIVIR 1 VANDETANIB 114 

FOMEPIZOLE 2 AFATINIB 41 

SITAGLIPTIN 13 OSIMERTINIB 8 

SAXAGLIPTIN 20 NERATINIB 4 

LINAGLIPTIN 1 SORAFENIB 140 

ALOGLIPTIN 1 PAZOPANIB 107 

ELTROMBOPAG 1 AXITINIB 102 

ARGATROBAN 1 REGORAFENIB 20 

DABIGATRAN 2 LENVATINIB 10 

MIRABEGRON 2 IMATINIB 78 

ORLISTAT 10 DASATINIB 158 

RIMEGEPANT 1 NILOTINIB 63 

ROFLUMILAST 9 PONATINIB 13 

SACUBITRILAT 2 BOSUTINIB 74 

TIRBANIBULIN 2 CRIZOTINIB 148 

VENETOCLAX 2 CABOZANTINIB 5 

SAQUINAVIR 11 CERITINIB 9 

RITONAVIR 8 OLAPARIB 4 

INDINAVIR 7 RUCAPARIB 17 

NELFINAVIR 8 NIRAPARIB 2 

LOPINAVIR 2 TALAZOPARIB 3 

ATAZANAVIR 1 IBRUTINIB 40 

MARAVIROC 3 ACALABRUTINIB 3 

ELTROMBOPAG 1 SUNITINIB 270 

PALBOCICLIB 38 VEMURAFENIB 18 

RIBOCICLIB 14 TOFACITINIB 34 

  ABEMACICLIB 17 

Figure 1. Comparison of shares of differ-

ent approaches in percentage and count 

from (A) all approved drugs and (B) drugs 

approved after 1995. Details are available 

in figure 3 and supplementary data 1. 

Figure 2. Percentile ranks of the affinity of 

approved drugs among all ChEMBL lig-

ands of their therapeutic “targets.” Details 

are available in supplementary data 3. 

Table 1. Counts of “off-target” 

therapeutic mechanisms of         

“target-based” drugs. Details are 

available in supplementary data 2. 
A 

B 
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Figure 3. Discovery origins of all approved drugs. Details are available in supplementary data 1. 
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This suggests that tight-binding of molecules to “targets” is relevant for 

therapeutic effects. This observation together with the above observa-

tions regarding the inefficiency of “rational” drug discovery and the 

many “off-target” therapeutic mechanisms of “target-based” drugs sug-

gests that binding to therapeutic “targets” with high affinity is only a 

single aspect of therapeutic effects on phenotypes. 

So, the attempt to reduce higher-scale to lower-scale phenomena has de-

creased the efficacy of drug discovery. Why? Trying to answer this ques-

tion led me to a theory that can provide a simple and firm framework for 

biological sciences based on first principles. 

Simplicity: The Key of Complexity 

Rule V. We shall comply with it exactly if we reduce involved and obscure prop-

ositions step by step to those that are simpler, and then starting with the intuitive 

apprehension of all those that are absolutely simple, attempt to ascend to the 

knowledge of all others by precisely similar steps.(584) 

René Descartes, one of the fathers of the Scientific Revolution 

To choose those constructions which without straining reduce things to the great-

est simplicity. The reason of this is manifest by the precedent Rule. Truth is ever 

to be found in simplicity, & not in the multiplicity & confusion of things. As the 

world, which to the naked eye exhibits the greatest variety of objects, appears very 

simple in its internal constitution when surveyed by a philosophic understanding, 

& so much the simpler by how much the better it is understood.(585) 

Isaac Newton 

The only method of preventing such errors from taking place, and of correcting 

them when formed, is to restrain and simplify our reasoning as much as possible. 

This depends entirely upon ourselves, and the neglect of it is the only source of 

our mistakes.(586) 

Antoine Lavoisier, father of modern chemistry 

A physical theory can be satisfactory only if its structures are composed of ele-

mentary foundations. […] 

The grand aim of all science is to cover the greatest number of empirical facts by 

logical deduction from the smallest number of hypotheses or axioms.(587) 

Albert Einstein 

Absence of a general conceptual framework for biological sciences and 

their failure in contrast to physical sciences have obliged many to pin-

point the importance of developing such a framework and propose such 

theoretical frameworks(57, 588-598). Although these frameworks have 

underlined important points, they lack a characteristic that is a central 

tenet of this manuscript: simplicity. 

Simplicity has been endorsed by many great philosophers and scientists 

from Aristotle through Galileo, Newton, Kant, Lavoisier, Poincaré, Ein-

stein, Wittgenstein, and Dirac to contemporary scientists(599-609). Alt-

hough it is noted as a key principle for gaining knowledge, because of 

lacking a concrete definition(610), it has been largely misunderstood for 

decades, particularly when it is conveyed under the terms of “principle 

of parsimony” or “Ockham’s razor”(599). See a parallel thread of mis-

understandings regarding the relationship between “beauty,” “truth” and 

simplicity in (611-616). You can see a sample of these misunderstand-

ings in this statement of Francis Crick: “While Occam’s razor is a useful 

tool in the physical sciences, it can be a very dangerous implement in 

biology. It is thus very rash to use simplicity and elegance as a guide in 

biological research(617).” 

For nothing ought to be posited without a reason given, unless it is self-evident 

(literally, known through itself) or known by experience or proved by the authority 

of Sacred Scripture.(618) William of Ockham 

A full philosophical discussion is necessary, yet here I try to mend this 

misunderstanding briefly. This is required because as I will reiterate, 

simplicity is indispensable for deciphering complexity. Misunderstand-

ings like that of Crick are due to mistaking ad hoc (for the particular case 

at hand) simplicity for ab initio (from first principles) simplicity. Ad hoc 

simplicity, which is implied by most current interpretations of Ockham’s 

razor, like Crick’s statement or how “parsimony” is used in phylogenet-

ics(619-621), implies being simplistic(622): prioritizing those answers 

and explanations which readily appear simpler at face-value. But have 

all these great thinkers advised being simplistic and naive? No, by advis-

ing simplicity, they, including William of Ockham, meant that we should 

distill complex questions to their first principles and innermost funda-

mental causes and cores by examining and pruning, or razoring, all soph-

istries and unnecessary presumptions and assumptions, rewinding non-

fundamental causal iterations and removing all apparent complexities 

and varieties. This attitude originates from this deep intuition that the 

universe is eventually unitary: All phenomena of the universe are inter-

connected(623); all phenomena, one way or another, are rooted in “sim-

pler” “fundamental” phenomena of this universe; they are not effects of 

some other “fundamental”(624) “causal agency”(625) completely out of 

this unitary whole(19, 623, 626). 

What is science? It is before all a classification, a manner of bringing together 

facts which appearances separate, though they were bound together by some 

natural and hidden kinship. Science, in other words, is a system of relations.(607) 

Henri Poincaré 

Science itself, may be regarded as a minimal problem, consisting of the completest 

possible presentment of facts with the least possible expenditure of thought.(626) 

Ernst Mach 

It’s not a matter of bringing all sorts of things together under a single concept 

but rather of relating each concept to variables that explain its mutations.(627) 

Gilles Deleuze 

Indeed, attempts at unifying sciences also originate from this conception; 

e.g., although quantum physics and general relativity, upon which mod-

ern physics is grounded, are thoroughly established for their own do-

mains, they are irreconcilable for some questions. And because of the 

deep intuition that universe is unitary, unifying these two theories has 

been a major goal in physics for decades. Similarly, phenomena and en-

tities like “living organism,” “phenotype,” “disease” or “hallucination” 

do not exist, nor are they currently explainable in the language of some 

particular science; e.g., physics(628). We see no concrete “label” on phe-

nomena that would sort them exclusively to separate theories of quantum 

physics and general relativity or our arbitrary different scientific disci-

plines and therefore would necessitate the plurality of sciences. In other 

words, we have “dappled theories in a uniform world(19)”(18, 20). Uni-

fying sciences is to dissolve these pluralities and differences by finding 

the universal fundamentals that give birth to these pluralities. Unification 

and showing the “natural and hidden kinship” of phenomena has even 

been noted as the essence of science(607, 626). Also, when great scien-

tists stated the value of “beauty” in science, they implied this “sense of 

the harmony of the cosmos(607),” not “that beauty which strikes the 

senses(607),” as has been commonly misunderstood(611-616). 

There is just one rock which weathers every storm, to which one can always hold 

fast: the assumption that the fundamental laws of nature correspond to a beautiful 

mathematical theory. This means a theory based on simple mathematical concepts 

that fit together in an elegant way.(629) P. A. M. Dirac 

If, then, it is true that the axiomatic basis of theoretical physics cannot be ex-

tracted from experience but must be freely invented, can we ever hope to find the 

right way? […] I answer without hesitation that there is, in my opinion, a right 

way, and that we are capable of finding it. Our experience hitherto justifies us in 

believing that nature is the realisation of the simplest conceivable mathematical 

ideas. I am convinced that we can discover by means of purely mathematical 

constructions the concepts and the laws connecting them with each other, which 

furnish the key to the understanding of natural phenomena. Experience may sug-

gest the appropriate mathematical concepts, but they most certainly cannot be 

deduced from it. Experience remains, of course, the sole criterion of the physical 

utility of a mathematical construction. But the creative principle resides in math-

ematics.(600, 601) Albert Einstein (emphases added) 

What real-world advantage does simplicity have? Scientific theories are 

created constructs that try to explain observed regularities. These 
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explanations can be based on different angles or scales from which phe-

nomena can be viewed; e.g., Darwinism was conceived based on pheno-

typic observations and with no knowledge of genetics, while its modern 

synthesis revolves around genetics and mechanisms of inheritance (see 

(606, 630) for other examples). The question is which scale can provide 

the most general theories. Generality requires that theories capture not 

just a pattern contingent on a specific set of observations and data, but 

could account for future observations. This can be achieved when theo-

ries become more independent from data(630, 631) and instead, capture 

“the simplest conceivable mathematical ideas(600)” from which all our 

diverse and complex observations emerge. Do not all empirical observa-

tions that lead to theories, finally boil down to some mathematical rela-

tionships between some variables? Therefore, theories closer to a priori 

justifications are more general, durable, and effective than those closer 

to a posteriori justifications and ad hoc principles(632-635); also see 

(636, 637). They are not contingent on the enforcement of those a priori 

principles on specific mediums and vessels. They capture the innermost 

fundamental principles themselves. 

The proposed frameworks for biological sciences are replete with arbi-

trary and unnecessary conceptualizations which have been imposed on 

available observations(57, 588-598). Although these arbitrary concepts 

may provide insights sometimes, their ad hoc and a posteriori nature 

makes them incapable of guiding future directions. An exception to these 

not-simple theories is Darwinism: the most central theory of biology pre-

sented by Charles Darwin(638, 639) and Alfred Wallace(638, 640). Alas, 

its simplicity not only has not been appreciated, it even has put the theory 

under criticism since a little after the publication of The Origin(641). 

Truism-Law-of-Survival 

My theory […] might lead to laws of change, which would then be main object of 

study, to guide our speculations with respect to past and future.(642) 

Charles Darwin 

My reflection, when I first made myself master of the central idea of the ‘Origin,’ 

was, “How extremely stupid not to have thought of that!”(643) 

Thomas Henry Huxley 

Darwin’s theory of natural selection came very late in the history of thought. Was 

it delayed because it opposed revealed truth, because it was an entirely new sub-

ject in the history of science, because it was characteristic only of living things, 

or because it dealt with purpose and final causes without postulating an act of 

creation? I think not. Darwin discovered the role of selection, a kind of causality 

very different from the push-pull mechanisms of science up to that time.(644) 

B. F. Skinner (emphasis added) 

The core concept of Darwinism is selection. Survival-of-the-fittest is an-

other expression for selection which was devised by Herbert Spen-

cer(645) and endorsed as “more accurate(639)” and used by Darwin(639, 

646) and Wallace(647, 648). It implies a very simple concept: a tautol-

ogy: a logical truism: survival of those who survive(649). Because of 

this, Darwinism has been claimed to have no explanatory power as tau-

tologies have no explanatory power(641, 650-653) as they are circular 

definitions and always true(605)(also see (654)). 

Intuitively, we see that this claim does not seem compatible with how 

Darwinism beautifully explains myriad observations. We can see Dar-

winism even in action in cases like antibiotic resistance(655). It even has 

been extended to theories of universal Darwinism and cosmic evolution 

to explain the origin of life on this planet((598, 656-660); also see (661)) 

and probably anywhere else in the universe(662) and the formation of all 

structures we see in the universe from the big bang(663-667). It is also 

employed in fields like evolutionary computation(668) and to explain 

diverse phenomena in various fields from psychology, neuroscience, and 

economics(644, 651, 663, 669-675) to quantum mechanics(676, 677). 

Indeed, there have been extensive counter-arguments for the claim 

against Darwinism(649, 652, 653, 678-685); also see (674, 686). Yet 

here, I aim to put the unnecessary intricacies and assumptions aside and 

embrace this contested simplicity. The problem with the accusations of 

lack of explanatory power is that they suppose Darwinism’s fundamental 

concept equals Darwinism. Albeit the theory is built upon a truism, its 

explanatory power results from investigating the consequences of nu-

merous recursions of this truism. 

We will see that “life” arises as surviving against the increasing entropy 

of the universe in the direction of the arrow of time. Survival, in any 

sense, implies continuing in the next time-step. Survival-of-the-fittest, 

which I embrace as truism-law-of-survival, is a simple law of 

change(687) implying that in a population(684, 685, 688) of organisms, 

the probability of all organisms to continue in the next time-step is not 

equal. This simplicity not only does not bereave Darwinism of its ex-

planatory power but even endows it with fundamentality and universal-

ity. While being maximally simple, to the point of being accused of tau-

tology, and dismissing unnecessary and ad hoc assumptions, Darwinism 

answers the complex question of evolution. We will see how all various 

“mechanisms” of evolution emerge from this simple core. Interestingly, 

truism-law-of-survival is the intersection of Darwin’s natural selection, 

Friedrich Nietzsche’s will-to-power(689-692), and two concepts that 

Darwin was probably influenced by: Arthur Schopenhauer’s will-to-

live(693-695) and, at least(696) through Schopenhauer(693), Benedict 

Spinoza’s conatus(697-700). 

Computational Complexity 

But, are the numerous recursions that differentiate truism-law-of-sur-

vival and Darwinism, important at all? This question is not unlike asking 

if Laplace’s demon is viable or not. Like how, by knowing all forces and 

states of all particles, it can shortcut the temporal evolution of the uni-

verse and have “the future, as the past, […] present to its eyes(3),” it can 

shortcut the emergence of Darwinism from truism-law-of-survival. 

The problem with Laplace’s demon and equating Darwinism with its 

fundamental core is dismissing computational complexity(701-704). 

Different steps of the process of evolution have been formalized numer-

ously as mathematical functions(705-712) and have kindled the whole 

fruitful discipline of evolutionary computation(668). Such formalized 

sensitivities of the output of evolution to its initial conditions, merit the 

evolution of organisms, similar to the temporal evolution of particles in 

Laplace’s model, to be viewed as computation(713) based on the behav-

ioral definition of computation(711, 714-717), which itself is based on 

the well-established algorithmic information theory and Solomonoff-

Kolmogorov-Chaitin complexity(718, 719). Computational complexity 

deals with practical resources required for carrying out a computation, 

like space and time. Moreover, the principle of computational irreduci-

bility states that the behavior of almost any system whose behavior is not 

obviously simple, cannot be predicted “except by going through almost 

as many steps of computation as the evolution of the system it-

self(720)”(721); it was further formally defined as “to be unable to com-

pute f(n) without having to compute f(i) for i = 1 to n – 1 (722)”(723) 

and corroborated by more evidence(724-727); also see incompressibility 

in emergence(32, 628, 728-733). 

So, computational processes of the emergence of Darwinism from tru-

ism-law-of-survival and the temporal evolution of particles in Laplace’s 

model cannot be circumvented by a shortcut formula, but this question 

remains if these irreducible computations are physically fundamental. 

This case is not the first time that the physicality and fundamentality of 

information and computation have been questioned. 

The venerated second law of thermodynamics was under attack for dec-

ades by a thought experiment designed by James Clerk Maxwell(734, 

735): He conceived “a being whose faculties are so sharpened that he can 

follow every molecule in its course(734).” Afterward, he argued that 

such a being [often referred to as Maxwell’s demon] can violate the sec-

ond law of thermodynamics, because it could use its information to sort 

the molecules in a closed container into two separate chambers of mole-

cules with high and low energies and therefore, without the expenditure 
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of work, raise the temperature of one chamber and lower the temperature 

of the other and ultimately decrease the entropy of a closed system. Dur-

ing years, it has been realized that the aberration of Maxwell’s demon is 

due to ignoring two physical fundamentals: information and computa-

tion(735-748). The sorting capability of the demon is inevitably compen-

sated by increasing the environment’s entropy; therefore, the second law 

of thermodynamics is not violated. 

Computational complexity is a cornerstone of complexity. Usually, we 

have this preconception that complex phenomena are built on complex 

rules. Darwinism showcases a completely different approach. “Com-

plex” phenomena are not the result of complex rules; they result from 

repeating simple rules numerous times. Cases of such emergence of com-

plexity out of simplicity have been experimentally demonstrated by 

mathematicians like Alan Turing(749), John von Neumann(750), Stani-

slaw Ulam(751, 752), John Conway(753-757), Benoit Mandelbrot(758, 

759) and Stephen Wolfram(720, 760-765). For instance, compare the 

complexity in figure 4B to the simplicity of its producing rule shown in 

figure 4A: Rule 30, which is an elementary cellular automaton rule(720, 

760). This simple rule can give birth to aperiodic(766) and chaotic(720) 

behaviors that have even made it suitable(767) for random number gen-

eration(768). Complex patterns which have emerged from simple rules 

abound in nature, like in figure 4C. 

 

 

Fundamental Core of Organisms 

What is Life? 

To build a general framework for biological sciences, we shall rewind 

all the complexities of their objects of study, organisms, to their inner-

most fundamental core. As Darwin conjectured in The Origin(639), it is 

established that all organisms share a common ancestor: the last univer-

sal common ancestor (LUCA)(769, 770). Now we must investigate how 

we can distill this common point to its innermost fundamental core. 

Although universalized versions of Darwinism and selection are often 

invoked to explain the origin of “life”((598, 656-660, 662); also see 

(661)), because of the confinement of Darwinism and even its modern 

synthesis to already-“alive” organisms, the origin of life has “remained 

an open debate”(771, 772). Here we have synthesized a simpler and more 

fundamental version of Darwinism that can resolve this problem. 

Imagine inside the primordial aquatic mixture that eventually gave birth 

to life, a volume with an arbitrary boundary containing several particles 

(figure 5) (please forgive my casual use of the word “particle” in this 

article; the more accurate term is “physical entity”). These particles will 

not remain inside the initial boundary(773). After some time, through 

random Brownian motion and diffusion, these particles get away from 

each other to the extent that the initial boundary loses its meaning(773-

776). Why this happens goes back to the only law of physics which im-

plies the irreversibility of the arrow of time(777, 778): Entropy of a 

closed system, like the whole universe, tends to increase. The second law 

of thermodynamics is another exemplarily simple scientific construct 

(especially due to its statistical mechanics interpretation(779-782); also 

see (783-785)). This simplicity has garnered it a “supreme position 

among the laws of nature”: 

The law that entropy increases—the second law of thermodynamics—holds, I 

think, the supreme position among the laws of Nature. If someone points out to 

you that your pet theory of the universe is in disagreement with Maxwell’s equa-

tions—then so much the worse for Maxwell’s equations. If it is found to be con-

tradicted by observation—well, these experimentalists do bungle things some-

times. But if your theory is found to be against the second law of thermodynamics 

I can give you no hope; there is nothing for it but to collapse in deepest humilia-

tion.(778) Arthur Eddington 

However, the consistent distancing of parti-

cles from each other depends on two pre-

sumptions: The probability of particles 

moving in each direction must be equal and 

the number of particles must be so small 

that their effects on each other would be 

negligible(786). Surely, in the primordial 

mixture, particle-containing volumes could 

be found which did not abide by these con-

ditions. Here, truism-law-of-survival takes 

place along the second law of thermody-

namics. Diverse interactions may take place 

between particles. Because of the diversity 

of particles and physical parameters in the 

primordial mixture(658, 787), various vol-

umes may appear whose particles form re-

ciprocal processes and interactions which 

counter the particles’ being carried away by 

random motion and thus preserve their 

boundaries longer, to varying degrees(598, 

788). These surviving volumes are completely in contact with the “envi-

ronment.” They may lose their “distinction” with the “environment” and 

dissolve into it and become again a part of it, or merge with some other 

molecules and expand the processes that would enable and further pre-

serve their “distinction” from the “environment.” These process-expan-

sions may give their volumes different abilities, like the ability to absorb 

and employ energy or to replicate(660, 789-791). Those groups of parti-

cles forming interactions that would delay more their dissolution by the 

increasing entropy would also have more time to expand their processes 

and abilities. After further evolution on this path(657), we can recognize 

what might be labeled as “living” cells(792, 793): processes that not only 

survive for much longer by cementing their boundaries with the “envi-

ronment” and employing the available energy for preserving their inho-

mogeneities, but also can expand and transform themselves by continu-

ing their flow through materials available in the “environment” and 

keeping many of their previous process-expansions. Such surviving sets 

of processes can expand and propagate far more rapidly(660). They can 

be considered as contagious inhomogeneities. Such a process gave birth 

to all organisms. 

So, what is it that we identify as a “living organism”? This question is 

pertinent to what is purported to be “one of the most frustrating unsolved 

problems” of biology: definition and nature of “life”(9, 588, 794-803). 

Over 135 definitions have been proposed during decades, yet it has re-

mained “a main fundamental challenge” for biology: “a science in which 

the most important object has no definition(802).” Apart from its pur-

ported epistemic importance, solving this problem has been noted to 

have applied significance; e.g., NASA’s latest Astrobiology Strategy 

states that “Recognizing life on other planets depends on how scientists 

define life(804).” 

A few have suggested that reaching consensus in defining “life” is inev-

itably futile((801, 805-810); also see (811)) and our real problem is that 

we “lack a general theory of the nature of living systems and their 

Figure 4. Many “complex” 

phenomena emerge from sim-

ple rules. (A) Rule 30 (image 

from Nonenmac at English 

Wikipedia) (B) 256 generated 

rows by Rule 30 (C) A live tex-

tile cone (Conus textile) (image 

from Richard Ling, rling.com). 

A B 

C 

Figure 5. Several particles imagined 

inside the primordial mixture (the 

cyan background). By the passing 

of time, the particles distance from 

each other and the imaginary 

boundary encapsulating them (the 

red circle) gradually gets bigger. 

http://www.rling.com/
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emergence from the physical world”(801)”(805-807, 812). These re-

searchers compare the enduring frustration in defining “life” with the 

frustration in defining water before molecular theory(801, 807). 

We can see that all organisms that exist today are the continuation and 

expansion of that surviving process after incomprehensibly numerous re-

cursions of truism-law-of-survival (figure 6). With simplicity and with-

out “feigning hypotheses”(813, 814), “life” can be described as a single 

process surviving against the dissolving tendency of the universe, which 

has undergone numerous recursions of truism-law of survival and in do-

ing so, has expanded and transformed into all existing organisms. Sur-

vival denotes prolonged proximal interaction between a group of physi-

cal entities; i.e., staying together against what would be otherwise the 

distancing of particles from each other according to the tendency of the 

universe to approach thermodynamic equilibrium and maximum en-

tropy(55, 815, 816). “Life” has not survived despite the increasing en-

tropy of the universe: “Life” is survival against the increasing entropy of 

the universe. The increasing entropy of the universe not only is not con-

tradictory to “life,” but is its ingredient(817-820). If the “antagonistic” 

tendency of the increasing entropy had been absent, survival-against-it 

would not have existed either. Still, it is important not to subvert this 

attitude with teleological fallacies like in (821-829). There may be found 

some tendencies regarding why organisms have developed and ex-

panded(787, 830-832), yet the supreme and the simplest verdict belongs 

to truism-law-of-survival. 

The effort of a thing to preserve itself is nothing but the very essence of the 

thing.(697) Benedict Spinoza 

This conceptualization of “life” also covers cases of virtual or artificial 

“life” (see video)(833-839); and therefore, seems to be a “universal the-

ory of life”(596, 771, 807). It also clarifies that organisms are not merely 

“products of chance and error(840)” and lucky flukes. On the contrary, 

Darwinism is as true and simple as a logical truism. Due to the univer-

sality of both the increasing entropy and truism-law-of-survival, “life” 

and increasing complexity are natural consequences of diverse ingredi-

ents and goldilocks conditions(e.g., (655, 841)): the thin edge between 

“uninteresting” chaos and “uninteresting” order. In too-high tempera-

tures, the tendency of entropy to increase is so high that it cannot be sur-

vived. In too-low temperatures, the tendency of entropy to increase is so 

low that there is not much to survive against. Yet, once that a suitable 

condition is provided, “life” is inevitable. That is why “life” seems to 

have emerged so soon on Earth(842). 

Processuality 

The Increasing Complexity 

We are but whirlpools in a river of ever-flowing water. We are not the stuff that 

abides, but patterns that perpetuate themselves.(843) 

Norbert Wiener, one of the fathers of cybernetics 

We have sought for firm ground and found none. The deeper we penetrate, the 

more restless becomes the universe, and the vaguer and cloudier. […] There is 

no fixed place in the Universe: all is rushing about and vibrating in a wild 

dance.(844) Max Born 

We described “life” as a single process (figure 6); importantly, it is not 

the particles temporarily staying together, it is the process that flows 

through different materials and through prolonging their staying to-

gether, has survived itself. 

This processual attitude(34, 55, 287-294, 816) emphasizes the funda-

mentality of a physical dimension of organisms which has often been 

neglected because of the dominance of machine mindset and foundation-

alist materialism: time. Organisms are dynamic becomings, rather than 

static beings and material structures. So, criticizing the “materialism” in 

“foundationalist materialism” is not to advocate for the non-physical and 

supernatural. On the contrary, it is against sticking to “a momentary 

cross-section through spatiotemporal pattern(288).” 

An organism is an event—something happening. It is temporally as well as spa-

tially extended. It has temporal as well as spatial parts. Your pet dog to-day and 

your pet dog yesterday are two different temporal parts of the same dog, just as 

his head and his tail are two different spatial parts of the same dog. It is in virtue 

of the particular kind of continuity of the dog yesterday and the dog to-day that 

we call it the ‘same’, and this seems to be the proper sense of the term. But it can 

no more be taken for granted that today’s temporal part is the same as yesterday’s 

than it can be taken for granted that one spatial part, e.g. the head, is the same 

as another, e.g. the tail. We know, in fact, that they are not the same. Organisms 

are temporally as well as spatially differentiated.(287) Joseph Woodger 

This processual perspective is also important for solving another di-

lemma parallel to the dilemma of defining “life”: Why has the complex-

ity of organisms been rising? Why are we more complex than LUCA? Is 

there an innate tendency or driving force? This was also a problem for 

Darwin(845). Many answers have been proposed(777, 846-851); e.g., 

“zero-force evolutionary law” has been presented which states that the 

tendency toward more complexity and diversity is the default behavior 

of evolutionary systems and is independent of any “force” or “con-

straint” such as selection(852-856). 

This dilemma can be divided into two questions: Why do constituent el-

ements of “complexity” arise? And Why does a large amount of these 

elements accumulate in some organisms? 

For the second question, all organisms are continuations of that single 

process that has survived and kept many of the previous process-expan-

sions forged during its survival(857). We are more “complex” than our 

ancestor bacteria which lived two billion years ago because we are later 

sections of the process of “life” which was previously mediated by 

“them.” Because of this, we have inherited some of the “complexities” 

that have been added to the process of “life” since two billion years ago; 

just like how the corpus of knowledge we possess today is more “com-

plex” and diverse than the corpus of knowledge our ancestors possessed. 

Division of the single process of “life” to separate individuals is arbi-

trary; the concept of “organism” should not be reified. 

Figure 6. A timetree of 50,632 species synthesized from times of divergence published 

in 2,274 studies. Time is shown in billions of years on a log scale and indicated through-

out by bands of gray. Major taxonomic groups are labeled and the different color ranges 

correspond to the main taxonomic divisions of the tree; from Reference (769). 

https://archive.org/details/sims_evolved_virtual_creatures_1994
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But why did not this single process remain “simple”? Imagine that after 

evolving to the first bacteria, “life” continued in two branches: one where 

the bacteria remained simple by, e.g., maximizing fidelity and the other 

where random variations were possible. We know we are the continua-

tion of the second branch and not the first. But not because of some 

“zero-force evolutionary law” independent from selection. Exactly be-

cause of selection or, perhaps better to say, truism-law-of-survival. In-

creasing entropy of the universe constantly propels “random” shuffling 

and variation at lower scales. The branch that embraced variability and 

diversity became able to explore novel interactions and processes which 

could provide novel capabilities and synergisms(858-861) and expand 

into novel surviving “adjacent possible”(862-868) wholes: a random 

walk(869) exploring possibilities based on truism-law-of-survival(846, 

849, 870-872). Evidence corroborates this: Organisms have been se-

lected and evolved for their capability to become diverse(359-372). 

Especial Importance of Simplicity in Biology 

Biology occupies a position among the sciences at once marginal and central. 

Marginal because—the living world constituting but a tiny and very “special” 

part of the universe—it does not seem likely that the study of living beings will 

ever uncover general laws applicable outside the biosphere.(873) 
Jacques Monod 

Most of the quotes we reviewed on simplicity were from great physicists; 

nevertheless, I assert that simplicity is far more important in biological 

sciences. First, biological phenomena themselves can be traced back to 

numerous recursions of very simple phenomena. Second, uniqueness is 

a hallmark of biological phenomena compared to most physical 

ones(874, 875) (a reason for this can be the far larger share of non-er-

godicity in biology(772, 862, 876, 877)). Third, “life” is itself a unique 

and “marginal” process in the universe, not prone to universal inductions 

like what we see in physics(873). 

General biological theories must be based on so simple and fundamental 

justifications that they become independent from data(630, 631); and 

therefore, would inevitably capture behaviors of organisms, despite 

uniqueness and marginality. 

Alas, many general theories presented in biological sciences try to cap-

ture all observed phenomena with all their unique intricacies, so that they 

may a posteriori reach, to some point, the predictability of physical the-

ories. But even physical constructs, like Newton’s equations, do not ex-

plain the real world with all its intricacies; they provide an ideal general 

framework that can guide further detailed pragmatic analysis. To be uni-

versal, what general biological theories need is exactly the opposite of 

the current trend: more independence from data. Conflating the aim and 

nature of general theories and detailed ad hoc theories has been one of 

the great impediments to the progress of biological sciences. 

Darwinism itself is the best place to investigate this assertion. The mod-

ern synthesis tried to update Darwinism by incorporating the knowledge 

(particularly Mendelian and population genetics) that was gathered since 

its initial conception. This a posteriori synthesis, because of its ad hoc 

nature, was doomed to be incapable of explaining many phenomena. 

Now, decades have passed, and we have become much more aware of 

the phenomena that were not included in the ad hoc principles of the 

modern synthesis. Consequently, many have been calling for a new post-

modern synthesis of Darwinism in which the newly observed phenom-

ena have also been incorporated(201, 598, 878-898); on the other hand, 

also see (898-905) and (906). 

The explanatory power of Darwinism is not due to its empirical obser-

vations, but due to its simplicity (albeit, as Einstein remarked, “experi-

ence remains, of course, the sole criterion of the physical utility(600)”). 

Although Darwinism cannot provide “accurate” predictions like that of 

Newton’s equations, it has provided illuminating explanations and guid-

ance(678, 874). Indeed, principles like computational irreducibility and 

no-free-lunch theorem(907) imply the infeasibility of a formula for evo-

lution that would be predictive like Newton’s(857, 908, 909). 

The correct way to extend Darwinism is not to append ad hoc principles 

based on a posteriori observations, but to simplify it to the more funda-

mental principles which underlie not only the observations of Darwin 

and Wallace, but also the new and future observations. Therefore, I sug-

gest that the calls for a new synthesis are best addressed by truism-law-

of-survival. It is based on a priori justification and is much simpler than 

the original account of Darwinism which was itself based on a posteriori 

justification of limited phenotypic observations. It accounts for all di-

verse new observations missed by the modern synthesis. It clarifies why 

Darwinism is endowed with universality and by decoupling Darwinism 

from biological inheritance, covers the origin of life. Finally, it is the 

basis of a theory for the evolution of organisms’ internal workings. 

Having rewound all the apparent complexities and diversities of organ-

isms to the simple core of truism-law-of-survival and staying together of 

a group of particles against the increasing entropy of the universe, as 

Descartes advised, let us derive “absolutely simple(584)” laws from this 

simple fundamental core. 

 

Internal Evolution: Emergent Bound Box Theory 

According to the second law of thermodynamics, if there are no interac-

tions among some particles in an aquatic mixture and they be free to 

show all behaviors they show when they are isolated, they get exceed-

ingly more distant from each other(773-776, 786). For a group of parti-

cles to stay together, each particle, and consequently the whole, is bound 

to a subset of all its possible states. 

Staying together, i.e., survival, of a group of particles against the increas-

ing entropy of the universe, like the entropy itself, is only relevant for 

the whole of a group of particles, not individual particles. 

Increasing entropy of the universe constantly creates variations at lower 

scales without restriction. 

As survival is only relevant for the whole of a group of particles, truism-

law-of-survival is enforced at wholes and higher scales. 

This discrepancy of freedom of variability between lower and higher 

scales creates a bottleneck of variation at higher scales; if several lower 

scales converge to the same surviving higher scale, they all may survive. 

Having evolved to perceive those differences that would make the most 

difference to their behaviors, organisms create higher-scale descriptions 

with superior cause-effect power. 

 

Further Elaboration and Evidence 

If Darwinism explains the evolution of the diversity and complexity that 

an outside observer recognizes among organisms, emergent bound box 

theory explains the evolution of the diversity and complexity among or-

ganisms that an observer may recognize from an intrinsic perspective (to 

accurately grasp what is implied by “intrinsic perspective,” see (910)): It 

explains the evolution of organisms’ internal workings. 

Truism-law-of-survival bounds actuality as it implies that not all survive. 

It decreases the degrees of freedom(11, 184, 911-915) of parts and 

wholes of the initial unevolved volume to those compatible with surviv-

ing. Some associations can be captured between this conceptualization 

and symmetry-breaking: formation of a priori statistically improba-

ble(916-918) patterns from a homogenous background(30, 55, 787, 816, 

919-928). When parts of organisms get isolated from wholes, they get 

stripped of the integrated bounds that maintain these enabling states and 

become ontologically different processes. Thus, foundationalist materi-

alism is unambiguously wrong about the workings of organisms. In vitro 

and ex vivo measurements may have no contact with the reality of in 

vivo processes. “In addition to the differential equations you need the 

initial and boundary conditions,” Denis Noble elaborates(253, 929). 

These bounds are imposed by other parts of the human body and cannot 
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be revealed by investigating isolated parts(930). Even the most complete 

knowledge of the properties of isolated parts does not enable knowing 

organisms. 

Which scales are bounded the most? Lower or higher scales? The in-

creasing entropy “randomly” creates variations at lower scales, like 

DNA mutations. This “randomness” liberates “lower” scales from being 

bound to specific variations. Yet such unbounded variations cannot con-

tinue surviving at higher scales. Surviving consequent phenotypes of 

these “free” and “random” variations are bounded by truism-law-of-sur-

vival to phenotypes that are compatible with survival. 

This has crucial consequences for the internal workings of organisms. 

Imagine a continuous flow that must inevitably become discrete because 

of running into some constraining barriers (figure 7) (because of surviv-

ability and principles of divergence and competitive exclusion(639, 931-

944); also see (945, 946)). If several varied genotypes and internal work-

ings lead to the same optimal 

phenotype (degeneracy), se-

lection or truism-law-of-sur-

vival does not discriminate 

between them in an identical 

environment. Enforcement of 

truism-law-of-survival at 

higher scales forces lower-

scale variations to converge 

into optimal phenotypes, 

during generations. This is 

why degeneracy abounds 

in biological systems(51, 

206-215). 

Although these arguments 

seem simple and logical, 

and aligned with the ob-

servations we had on the 

discovery origins, promis-

cuity of “target-based” 

drugs, and the role of lower-

scale states, let us investigate 

them more rigorously. For-

tunately, integrated infor-

mation theory (IIT), devel-

oped by Giulio Tononi and 

his colleagues, provides a mathematical(947) framework for this 

aim(305). Although this formalized theory, whose predictions are cor-

roborated by mathematical and empirical evidence(948-953), is under 

investigation and some criticisms for its validity in explaining conscious-

ness(954-956), its applicability for investigating causal structures of 

various systems from the “intrinsic perspective” of systems themselves 

is well-documented(949, 950, 957-965); also see (966, 967). It adheres 

to counterfactual(423, 968, 969) and interventionist(970-973) accounts 

of causality(961). In 

summary, IIT inves-

tigates “how the 

parts of the system, 

by being in a specific 

state, constrain the 

potential past and fu-

ture states of the sys-

tem itself(960).” 

Using the insights 

and tools provided 

by IIT, it has been 

shown that describing systems’ 

states at spatiotemporally 

coarse-grained (figure 8) 

higher scales can increase 

information and intrinsic cause-effect power (Փ)(44, 215, 959-961, 974). 

This increase is mainly because of increased captured specificity of sys-

tems’ mechanisms at higher scales, as noisy (indeterministic) and degen-

erate micro elements are grouped into more deterministic and less de-

generate higher-scale descriptions. Later, along with confirmation in a 

biological model, it was shown that spatiotemporal higher-scale descrip-

tions may provide even more intrinsic cause-effect power through black-

boxing compared to average-based coarse-graining, especially in sys-

tems with heterogenous, integrated specialized parts, epitomized by or-

ganisms(961, 974). Black-boxing was first proposed in cybernetics to 

enable modeling highly complicated and complex systems by hiding 

their inner workings and only preserving their inputs and outputs(975-

978). Black-boxing increases intrinsic cause-effect power mainly 

through increasing the system’s irreducible integration, joint constraints, 

and the emergence of higher-scale specific mechanisms(961). Mecha-

nisms of how coarse-graining and black-boxing increase cause-effect 

power, corroborate our arguments regarding the emergence of bottle-

necks of variation at higher scales through the enforcement of truism-

law-of-survival on these scales.  

All these superior cause-effect powers in coarse-graining and black-box-

ing are achieved despite complete supervenience(979) of higher scales 

on lower scales(959-961). Nothing extraneous and non-physical is added 

to physical processes. 

It must be noted that concepts of “whole” and “part” in the theory are 

relative like “higher” and “lower”; these must not be reified. Darwinism 

extends from the lowest to the highest scales of the temporal evolution 

of the universe. Truism-law-of-survival simultaneously selects among a 

multitude of possible futures of the whole universe. This can be vividly 

seen in group-level selection(980-985). Still, the far larger share of non-

ergodicity in the world of biology(772, 862, 876, 877) may imply asym-

metries in the significance and application of emergent bound box theory 

for biological and physical phenomena. 

It is fair to look again from distance and ask if these principles we have 

derived from the fundamental core of organisms, also apply to the be-

haviors of organisms themselves. All currently established mechanisms 

of evolution(986-988) suggest that evolution of all organisms from 

LUCA has been, one way(989-992) or another(993-995), based on grad-

ual tinkering(996) and hill-climbing toward local or global optima in fit-

ness, i.e., survival, landscapes(166). This suggests organisms are, as we 

expected, extensions of the fundamental core and we may be confident 

that the principles we have derived apply to behaviors of all organisms. 

Biological Sciences and Physics Unified 

One of the principal objects of theoretical research in any department of 

knowledge is to find the point of view from which the subject appears in its  

greatest simplicity.(997) Josiah Willard Gibbs 

Why are there several sciences instead of only one? Now that we have 

got the technological capabilities, should we try to see all biological phe-

nomena through the supposedly accurate lens of physics? Should we, 

e.g., see and investigate the effects of candidate antidepressants on hu-

mans as changes that they trigger in states and motions of countless at-

oms of the brain, or should we see this same phenomenon (because of 

physicalism) as changes that they trigger in mood, behaviors and mental 

phenotypes of patients? “Rational” drug design has wasted lots of re-

sources and hopes by answering these questions uncritically. 

We saw emergence has been proposed as the reason behind the necessity 

of several sciences, but it has failed to convince most of the scientific 

community. A problem is that the word emergence has been applied for 

several disparate phenomena. Let us disentangle and investigate these 

various applications: 

A. Are wholes more than the sum of their parts? 

Yes, due to the physicality of information. Wholes are the sum of their 

isolated parts plus their organizing patterns. Emergent bound box theory 

Figure 7. The discrepancy of freedom of variability 

between lower and higher scales. The uncon-

strained low-scale variation gets bounded at higher 

scales by truism-law-of-survival. This creates de-

generacy in the internal workings of organisms. 

Figure 8. Average-based coarse-graining. A 

method of converting lower-scale to higher-

scale descriptions; from Reference (959).  
©2013 by National Academy of Sciences 
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reinforces this fundamental and physical difference because isolated 

parts do not contain information on how they are bounded in wholes. 

This bears some associations with fusion emergence proposed by Paul 

Humphrey((37, 998, 999); however, with important differences toward 

supervenience(1000, 1001) and “downward causation”(998-1000); also 

see (1001-1004)) and transformational emergence(37, 1004-1007). 

B. Diachronic or computational emergence  

Knowing “all the forces by which nature is animated and the respective 

situation of the beings who compose it(3)” in one instant in 5 billion 

years ago, could Laplace’s demon have “the future, as the past, […] pre-

sent to its eyes(3)” and predict the behaviors of organisms today? As we 

saw, computational complexity and irreducibility imply the incompress-

ibility of the temporal evolution of an emergent phenomenon by a 

shortcut formula(32, 628, 728-733). This computational irreducibility is 

multifaceted: 

What needs to be computed by Laplace’s demon? Evolution can be con-

sidered as a computation whose each step’s output is the continuation of 

those of its input processes that survive, along with their “environment.” 

Survivability of processes has meaning only relative to their “environ-

ment.” There is no concrete demarcation between organisms and the “en-

vironment.” Thus, the computation cannot be reduced only to organisms. 

Evolution of the whole universe must be computed. Moreover, the de-

mon cannot surrogate this cumbersome computation by simulating the 

evolution of simpler models. Properties like chaotic consequences of 

models’ errors(1008), historical contingency of evolution(847, 1009-

1011), and abundance of exaptations suggest that no property can be 

deemed negligible(1012, 1013). Organisms are not deducible from the 

most complete knowledge of the properties of their isolated parts be-

cause their constituting processes are not the only things that have had a 

role in their formation. Organisms also embody millions of years of irre-

ducible computation. This unambiguously attests autonomy of biological 

sciences(29) and the impossibility of deducing organisms from physics. 

An illuminating example is group-level selection(980-985). All different 

possible ensembles of societies inevitably adhere to simple rules of phys-

ics, yet their collective survivabilities are varied. Only a subset of them 

have survived recursions of truism-law-of-survival and are now social 

sciences’ objects of study. Bounds that have emerged during these recur-

sions(11, 184, 911-915) are not included in physics(1014). 

The ability to reduce everything to simple fundamental laws does not imply the 

ability to start from those laws and reconstruct the universe. In fact, the more the 

elementary particle physicists tell us about the nature of the fundamental laws, 

the less relevance they seem to have to the very real problems of the rest of sci-

ence, much less to those of society.(30) 

Philip Anderson in his classic “More is different” 

* Following Mayr(29), I propose we restrict the use of reductionism only 

to the fallacious attitude; and instead, use analysis to imply investigating 

lower scales. 

C. What is lost in trying to reduce higher-scale descriptions of bio-

logical sciences to lower-scale descriptions of physics, like in “ra-

tional” drug discovery? 

Noteworthy, “rational” drug discovery does not completely reduce 

higher-scale to lower-scale descriptions. For this, it had to investigate the 

effects of chemicals on states of all, e.g., molecules upon which a higher-

scale state, e.g., hallucination supervenes. As mathematically shown by 

IIT, even if it could do that, it was reducing the cause-effect power of its 

descriptions(44, 215, 959-961, 974). This is a case of synchronic or com-

binatorial emergence which emphasizes the irreducibility of higher-scale 

to lower-scale descriptions(32, 628, 729-733). 

D. But from where do these higher scales of biological sciences 

emerge? 

This question is behind the aura of obscurity and magic surrounding 

emergence. How does a unitary universe get dappled into exclusive 

theories and “levels”(18-20)? Phenomena like “disease” or “hallucina-

tion” are unexplainable in physics. Did not we completely adhere to 

physicalism and the unitariness of the universe? Why do not we “see” all 

phenomena of this one universe with the language of physics? Where do 

cell, tissue, organ, organism, and society come, i.e., “levels of organiza-

tion”(41, 168, 1015-1024), come from? 

These questions can be answered by unifying biological sciences with 

physics; by dissolving the seeming plurality of ontological novelties of 

biological sciences and fundamentals of physics in their “natural and hid-

den kinship(607)” and common origin. I conjecture that the emergence 

of ontological novelties of biological sciences goes back to the previous 

case of emergence(C): the more cause-effect power endowed by higher-

scale descriptions. 

Organisms’ perception of the universe has evolved according to percep-

tions’ contributions to survival. What to sense and how to perceive it 

depend on how the perception will guide behaviors and how those be-

haviors would survive and change in recursions of truism-law-of-sur-

vival(1025). Organisms do not “see” all phenomena through the “lens of 

physics,” as such lower-scale descriptions of “reality” do not specify the 

most differences that would make a difference in behaviors of surviving 

organisms. By converting this lower-scale information to higher 

scales(44), organisms have reached more cause-effect power in their per-

ceptions and pattern recognitions. 

This shows that our view of the “objective reality” is completely subjec-

tive. A much milder case of such subjective perceptions of reality is 

wishful seeing(1026-1030); also see (1031). 

So, unlike many who have tried to unify sciences by reducing all of them 

to physics(14, 16), we have dissolved the apparent disunity of sciences 

while showing that the autonomy of biological sciences from physics is 

itself based on the physical fundamentality of information(12, 21, 29). 

Any dream for an ultimate “theory of everything”(1032-1034) that 

would “in principle” be able to substitute all other sciences is futile; the 

mistake has been presupposing that this “in principle” is not something 

physically fundamental; e.g., (22, 1032, 1035). 

Indeed, patterns sought for many purposes become decoupled(43, 1036) 

from lower-scale descriptions. We can predict how other people will 

probably respond to many of our actions based on the pattern we have 

learned between input actions and output responses of black-boxed hu-

mans(1037). our ancestors could identify poisonous and therapeutic sub-

stances by recognizing patterns between them and the changes they made 

to states of the black-box of the body. In data analysis, suitable songs 

and videos are being recommended to us considering nothing about the 

inner workings of our nervous systems and only based on analyses of the 

data on responses of humans to input songs and videos. 

Black Box theory is, however, even wider in application than these professional 

studies. The child who tries to open a door has to manipulate the handle (the 

input) so as to produce the desired movement at the latch (the output); and he has 

to learn how to control the one by the other without being able to see the internal 

mechanism that links them. In our daily lives we are confronted at every turn with 

systems whose internal mechanisms are not fully open to inspection, and which 

must be treated by the methods appropriate to the Black Box.(977) 

Ross Ashby, one of the fathers of cybernetics 

We may recall that “rational” drug design and reductionist neuroscience, 

hung up on the technologies that have enabled delving into the black-box 

of the body, focus almost only on the inner workings of the box and ma-

jorly spare the superior cause-effect power of higher-scale descriptions. 

Interestingly, the ultimate importance of these levels has still kept them 

in “rational” drug design as terminal filters and validations (human trials) 

and in neuroscience where “behavior [is] incorporated as an after-

thought(51)”(49, 282). In these paradigms, higher-scale descriptions and 

investigations not only are not prioritized, they do not even inform pri-

mary goals; e.g., structures of designed molecules. 
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“Downward Causation” 

Non-Reducibility of The Universe 

I too play with symbols […]; but I play in such a way that I do not forget that I 

am playing. For nothing is proved by symbols […]; things already known are 

merely fitted [to them].(1038) Johannes Kepler 

There are also idols formed by the reciprocal intercourse and society of man with 

man, which we call idols of the market, from the commerce and association of 

men with each other; for men converse by means of language, but words are 

formed at the will of the generality, and there arises from a bad and unapt for-

mation of words a wonderful obstruction to the mind. Nor can the definitions and 

explanations with which learned men are wont to guard and protect themselves 

in some instances afford a complete remedy—words still manifestly force the 

understanding, throw everything into confusion, and lead mankind into vain and 

innumerable controversies and fallacies.(1039) Francis Bacon 

Names and attributes must accommodate themselves to the essence of the things, 

and not the essence to the names, because things come first and names after-

ward.(1040) Galileo Galilei 

What can be said at all can be said clearly, and what we cannot talk about we 

must pass over in silence.(605) Ludwig Wittgenstein 

Along with the debates on emergence, there have been unsettled debates 

around downward causation in emergent phenomena. Many argue for it 

(32-34, 924, 1041-1046), while many contend that its existence is in vi-

olation of the causal closure principle of the physical realm and conse-

quently reject both “downward causation” and emergence(34, 1047, 

1048), as it is claimed that “downward causation” is a necessary feature 

of emergence(34, 929, 1041, 1047, 1048)(also see (998-1000)). 

These confusions arise from two fallacies: first, reifying the arbitrary 

concept of causation; second, imagining a set of phenomena cross-sec-

tioned and isolated from the irreducible temporal and spatial landscape 

of the universe. 

Causation is an arbitrary abstract concept that is formed early in 

life(1049-1052) to denote difference-making, similar to counterfac-

tual(423, 968, 969) and interventionist(970-973) accounts of causa-

tion(1053). Due to the fallacy of misplaced concreteness(1, 376, 377), it 

has been reified in some discussions around “downward causation” as a 

real physical force; e.g., electromagnetic force. This has consequently 

culminated in many unnecessary debates which ultimately have no con-

tact with reality. Karl Pearson(1054), Bertrand Russel(1055), and 

Willard van Orman Quine(1056) have already highlighted the pervasive-

ness of such fallacies and misconceptions around the concept of “causal-

ity”; also see (1057-1059). 

Another fallacy is the presupposition that the entirety of the process of 

the universe can be reduced to a singleton(1053) of isolated parts in 

vacuo(1060); also see(284, 1061-1063). This false presupposition has 

consequently led to reifying the arbitrary concept of level; and thereafter, 

the arbitrary concepts of downward, upward, top, bottom, micro, macro, 

part, and whole(1064). The only truly closed system is the whole uni-

verse. These separations are all arbitrary and not physically realistic; 

therefore, the dilemma of “levels of organization”(41, 168, 1015-1024) 

goes back to conflating the arbitrary and the concrete. 

Universality of Emergent Bound Box Theory 

A theory is the more impressive the greater the simplicity of its premises, the more 

different kinds of things it relates, and the more extended its area of applicabil-

ity.(1065) Albert Einstein 

As emergent bound box theory hinges upon simple logical consequences 

of truism-law-of-survival, we can expect, like Darwinism, its domain 

would be universal. Let us inspect some patterns from diverse fields that 

comply with the theory: emergence of more predictable higher scales by 

bounding of lower-scale variations to those that are compatible with sur-

viving wholes. Analogous patterns from diverse fields can increase our 

confidence in theory by showing consilience(1066) and independence 

from data and ad hoc principles. However, some of the analogous pat-

terns, like the global stability of strange attractors, are based on an inclu-

sive conception of some principles of the theory. 

Decoherence & Quantum Darwinism 

Best possible knowledge of a whole does not include best possible knowledge of 

its parts; and that is what keeps coming back to haunt us […] The whole is in a 

definite state, the parts taken individually are not.(1067) Erwin Schrödinger 

Quantum mechanics which has been confirmed to accurately explain the 

foundations of the universe is replete with fuzziness and uncertainty. The 

principle of quantum superposition, one of its cornerstones, forbids pre-

dicting one exact value for a quantum state. All valid values and even all 

their combinations are valid for a quantum state and a single value cannot 

be pinned down and predicted. This has been experimentally observed 

in photons(1068, 1069), electrons(1070, 1071), atoms(1072) and huge 

molecules(1073, 1074). This principle is even central in quantum com-

puting. Objects we see every day are not at the same time at multiple 

positions. Humans can “objectively” agree on the exact position of an 

object. It was this “objective” exactness and the ensuing predictability 

that deluded Laplace. So, how does the unpredictable quantum world 

give birth to our predictable world and why don’t we observe “paradox-

ical” cases like Schrödinger’s cat(1067)? 

Quantum Darwinism(676, 677) which complements the theory of deco-

herence(1075, 1076) and environment-induced superselection (einselec-

tion)(1077, 1078), currently provides a satisfactory and empirically con-

firmed(1079-1082) explanation (also see (1083)). We saw that the be-

havior of an isolated part is not predictive of its behavior in the body as 

it gets bound in compliance with a surviving whole. Analogous to this 

pattern, uncertainty and unpredictability of quantum states are for when 

quantum systems are isolated from their environment. After interacting 

and getting entangled with the environment, decoherence takes place. 

Superposition reduces by irreversible elimination of the off-diagonal el-

ements of the density matrix and the environment-induced selection (ein-

selection) of the set of probabilities that are permissible in the “classical” 

world. Then, just like how the varying viable sets of processes are further 

constrained by recursions of truism-law-of-survival according to their 

interactions with the “environment,” among these permissible states, 

“objective” classical observables emerge(1034) through interactions of 

permissible states with “environment” and selection of “objective” clas-

sical observables (see (1084) for why even here, there is no concrete de-

marcation between the system and the “environment,” hence why I have 

it quoted). Quantum states may propagate multiple imprints of them-

selves(1085) and they compete in doing so as the capacity of “environ-

ment” is limited for this propagation according to no-cloning theo-

rem(1086). 

“Objective” classical states are emergent as they “are not deducible from 

the most complete knowledge of the properties of their isolated 

parts”(998, 999, 1002, 1087-1089). 

Effective Field Theories & Renormalization Group 

To accurately analyze the diffusion of a gas or the speed of sound in it, 

we do not need to know all variables of all individual particles of the gas. 

For gaining accurate insights about many atomic and molecular proper-

ties, we do not need to know anything about elementary particles like 

quarks and leptons. Similarly, Newton presented laws that could predict 

accurately the mechanics of celestial bodies, that we still use, knowing 

nothing about quantum mechanics that may explain exactly their micro-

scopic underlying. These higher-scale theories that are decoupled(43, 

1036) from more “fundamental” distantly lower-scale theories and dis-

card much of their details without sacrificing accuracy are effective field 

theories and are indispensable and ubiquitous in physics(1036); e.g., 

their role in quantum field theory has been crucial, particularly through 

renormalization theory and the renormalization group(1090-1093). In-

deed, many physicists consider all current physical theories, including 
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the Standard Model, to be effective field theories(1090-1092) and attrib-

ute our capability to explain and predict natural phenomena to such the-

ories(1094). 

They can be viewed as theories that use higher-scale descriptions by 

“black-boxing”(1091, 1095, 1096). This way, they can capture emergent 

phenomena better than lower-scale descriptions(928, 1034, 1090, 1097-

1099) and also may provide additional insights toward mechanisms of 

observed behaviors(1095). 

Using Fisher information matrix, it has been quantitatively shown that 

the reason for the emergence of simpler higher scale descriptions that 

could be explained by simpler theories is that many spatially or tempo-

rally higher-scale behaviors depend only on a few parameters and most 

of the parameters of lower-scale behaviors bear little importance(1094, 

1100). This also happens in other fields, particularly biological mod-

els(302, 1094, 1100-1105). This is because the degrees of freedom of 

parts get bound through other parts they interact with, to those behaviors 

that are compatible with survival of their wholes; analogous to how pa-

rameter spaces of organisms compress compared to the parameter spaces 

for the mere aggregation of their isolated parts. The pattern of emergent 

simplicity at higher scales can be found in many places(1106-1109). 

Deep Learning 

Many are awed by the impressive capabilities of deep learning. As a pre-

dictive data analytics tool, it provides more accuracy compared to other 

ML methods and at the same time, spares the time-consuming task of 

feature extraction and engineering(1110). Let us compare deep learning 

to other ML methods in building models for the classic example of clas-

sifying images of cats and dogs: In non-deep algorithms, we must first 

convert the input images into a set of informative features that can best 

provide the needed information for distinguishing images of cats and 

dogs; e.g., we may notice that head-to-body size ratio may be an informa-

tive feature. After converting the input images to such features, whose 

number may vary from a handful to thousands, the predictive model is 

trained with these features and their target labels. Although this proce-

dure can also be implemented with deep learning; generally, deep learn-

ing is not superior to non-deep methods in these cases where the original 

input data is first converted to tabular data(1111-1113). Deep learning is 

superior where the model is directly trained with the raw original inputs 

and their target labels, with no feature extraction in-between. 

The point is that in non-deep ML, inputs are first reduced to a set of 

features but the deep learning algorithm has direct access to raw input 

data, with no reduction. Various techniques have enabled effective ex-

ploitation of information from raw input data in deep learning(1114). 

Hidden layers and deep and convolutional architectures can learn other-

wise unrecognizable complex informative higher-scale structures and 

abstractions(1110, 1115-1122) (figure 9). Backpropagation of errors can 

find out based on output labels, the least-erroneous ways to learn from 

input data(1123, 1124). Long short-term memory can integrate input data 

even across various time steps to learn temporally higher-scale struc-

tures(1125, 1126). 

Predictive superiority of deep learning is maintained despite the possi-

bility of extracting and engineering thousands of features from inputs to 

maximize the information provided for non-deep ML and also the capa-

bility of non-deep ML algorithms to learn complex and non-linear pat-

terns in input features. Here lies a crucial point: Even exhaustive anal-

yses cannot compensate for the information reductionism wastes, as it 

dismisses emergent and higher-scale information which can bound pos-

sible labels. Mutual information provided by capturing spatial and tem-

poral higher-scale structures, apparently irrelevant local correla-

tions(1127-1130), and other informative intricacies endows deep learn-

ing with superior accuracy by constraining possibilities and thus the un-

certainty of its predictions. Because of the complexity and irreducibility 

of this captured information, workings of deep learning models are usu-

ally incomprehensible and uninterpretable(1113, 1131). They are called 

black-box models. This is inevitable due to the irreducibility and non-

localizability(168, 1132) of the used information. 

Interestingly, deep learning can recognize patterns, using exponentially 

fewer parameters than what is required in non-deep ML. It is bewilder-

ingly cheap(1133). The reason for this is the pattern we have discovered: 

emergence of more predictable higher scales from lower-scale uncer-

tainty: compression of the parameter space of isolated parts in wholes: 

feasibility of deriving simpler effective field theories(1133). It has been 

shown that deep learning can capture this “hierarchical generative pro-

cess” which abounds in nature and consequently in real-world 

data(1134). This is not possible with non-deep ML as the deep networks 

that can capture hierarchies cannot be “flattened” efficiently(1133, 1135-

1137). In both deep learning and effective field theories/renormalization 

group, there is a direct non-reduced bidirectional “flow” and “feedback” 

between “raw and unreduced data” and our asked question: Because of 

this, they can use features which “typically correspond to long-wave-

length/macroscopic degrees of freedom(1133).” 

Strange Attractors 

Let us recall the butterfly effect where we saw that chaotic dynamics and 

sensitive dependence on initial conditions make long-term prediction im-

possible(264, 265). Still, Edward Lorenz himself stated “that over the 

years, minuscule disturbances neither increase nor decrease the fre-

quency of occurrence of various weather events such as tornados; the 

most that they may do is to modify the sequence in which these events 

occur(264).” 

This insight of Lorenz stems from observing the global structural stabil-

ity of Lorenz strange attractor(1138): Instantaneous states of trajectories 

starting from extremely close initial conditions get completely away 

from each other after some time and thus, their prediction becomes im-

possible. However, all trajectories starting from completely different in-

itial conditions, after enough time, form a similar global higher-scale 

structure: another adherence to the pattern of the emergence of higher-

scale predictability from lower-scale unpredictability(1139-1141). Intri-

guingly, the shape of this global structure which is called Lorenz strange 

attractor is like a butterfly (figure 10).  

What does play the role of truism-law-of-survival here? The motivation 

of Lorenz to model weather had him constrained to select among the 

infinite space of all possible systems of differential equations, phase 

space trajectories with specific global features that would reflect the ac-

tual weather. Two features that may readily come to mind are its annual 

stability and boundedness: We expect specific states for each season 

every year; also, parameters of the weathers our species has experienced 

have been in a narrow range of all its possible states: Our species surely 

has not experienced weathers much like that of Mercury or Neptune. 

What does mediate here the emergence of global structural stability and 

higher-scale predictability? A simple version of Lorenz model in which 

the existence of Lorenz strange attractor has been proven is a non-linear 

Figure 9. Capturing higher-scale descriptions and abstractions by deep learning. 
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system of three differential equations where σ, r and b are set as 10, 28, 

and 8/3 respectively(265, 1142-1144): 
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Reciprocal interactions between behaviors of X, Y, and Z, function like 

an effective feedback system to bring about the observed global struc-

tural stability which has survived, like the interactions between constit-

uent parts of organisms(1145). These equations show well how higher-

scale predictability emerges and why many lower-scale parameters can 

be discarded in studying higher-scale behaviors. You can see that the rate 

of the change of each variable is completely interdependent and coupled 

with the state of the other two variables. There is also negative feedback 

between the absolute value of the rate of change of each variable and the 

absolute value of each variable: Large absolute value of each variable is 

followed by a decrease in the absolute value and the direction of the rate 

of change of that variable. Such complex interactions which constitute 

self- and cross-couplings in both immediate and distant causal histories 

sustain and bound the dynamics of complex physical and biological sys-

tems(1145-1150). When an organism’s part is isolated, it is stripped of 

all these complex interactions and feedbacks. 

Lorenz attractor is only an instance of the many cases of the emergence 

of higher-scale predictability from lower-scale unpredictability that have 

been investigated for decades by mathematicians, physicists, chemists, 

and others in fields like chaos theory and synergetics (55, 1151-1159). 

The 1st Ab Initio Scientific Framework for Biological Sciences 

From all we have learnt about the structure of living matter, we must be prepared 

to find it working in a manner that cannot be reduced to the ordinary laws of 

physics. And that not on the ground that there is any “new force” or what not, 

directing the behaviour of the single atoms within a living organism, but because 

the construction is different from anything we have yet tested in the physical la-

boratory.(9) 

Erwin Schrödinger, in his 1944 What is Life?, which inspired the inauguration of 

the era of molecular biology(1160, 1161) 

We saw that currently, as Whitehead had said, almost all studies in bio-

logical sciences are based on “uncritical assumption of half-truths” and 

“a medley of ad hoc hypothesis.” Now that we have been able to con-

struct based on first principles, an ontological attitude toward “life” and 

organisms and a simple theory that explains the evolution of their inter-

nal workings, we may build on these simple grounds a new 

comprehensive framework that would guide the design, data gathering 

and analysis of investigations in biological sciences. 

Grand schemes of most biological studies boil down to investigating 

causal relationships between some variables. How can our new ontolog-

ical attitude and emergent bound box theory help these investigations? 

We said that truism-law-of-survival leads to the formation of a priori sta-

tistically improbable states. What does a priori statistically improbable 

mean(916-918)? Assuming physicalism(40-42), we may describe the 

state of any system at any moment by specifying the state of all its con-

stituent micro particles, any particle that one may assume is sufficiently 

“fundamental.” These particle-states include properties like element, 

charge, coordinates (x, y, z) and momenta (px, py, pz); e.g., to describe the 

state of a 1 µm3 closed volume of helium at the standard temperature and 

pressure, at least about 27,000,000 variables have to be specified. The 

volume has 27,000,000 degrees of freedom. It has been shown that, even 

without knowing their initial coordinates, after some time, the probabil-

ity that all these atoms accumulate at an instance in one corner is very 

low. It would be far more likely to observe homogenous distributions. 

Because the number of “micro-states” that build up such distributions is 

much greater. Thus, they are much more probable. This lies at the heart 

of statistical mechanics and microscopic explanation of the second law 

of thermodynamics(779, 780). 

In Claude Shannon’s information theory, information is defined as the 

amount of reduction in uncertainty when knowing the specific state of a 

variable(1162-1164). This implies that the amount of information gained 

is relative and depends on the prior uncertainty about the variable; e.g., 

more information is needed to know the state of a die than a coin. More 

information is needed to decode a random sequence of English charac-

ters and punctuation than a meaningful English text because the initial 

uncertainty is higher for the random sequence; the English language con-

strains all possible states in the random sequence to only those with 

meaning in English(916). Shannon entropy of X is the uncertainty about 

its value and consequently the needed information to specify it and is 

represented by H ( X ) . Uncertainty about the value of a variable when 

there is already prior knowledge about it at hand can be formalized as 

Shannon conditional entropy of X given Y; H ( X | Y ) , which equals the 

uncertainty of X when already knowing Y. 

We can assign to X, e.g., the “fundamental” lower-scale state vector of 

an organism (a vector specifying all variables of all constituent “funda-

mental” particles of the organism); and to Y, e.g., a variable whose value 

we know, e.g., if the organism is in the specific environment from which 

we have previous observations and data about similar organisms. 
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H X p x p x= −
 

( | ) ( ) ( | ) log ( | )
y Y x X
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 
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Mutual information between X and Y, I ( X  : Y ) is the information gained 

about X by knowing Y. It is always positive and only zero when the two 

variables are completely independent. 
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After accounting that the organism is in the specific environment, uncer-

tainty about the “fundamental” lower-scale state vector of the organism, 

H ( X | Y )  (which equals the needed information for knowing it), gets 

less than the uncertainty about the “fundamental” lower-scale state vec-

tor of the organism when not accounting that it is in the specific environ-

ment, H(X ) , by the amount of the mutual information between X and Y, 

Figure 10. Lorenz strange attractor (based on mizuno.org/c/la/, archived). 

http://www.mizuno.org/c/la/
http://web.archive.org/web/20210531111108/http:/www.mizuno.org/c/la/
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I(X : Y ) . Based on our new ontological attitude and emergent bound box 

theory, we know that this is not zero as states of wholes and parts of 

organisms get bounded by their other parts, “environmental” varia-

bles((212, 382-389, 1165-1175)) and historical and temporal variables 

(especially evident in learning)(1176-1183) to only those that have been 

surviving(1184). 

( | ) ( ) ( : )H X Y H X I X Y= −

 Due to the relationship between Wiener-Granger causality(1185-1187) 

and Shannon information ((1188-1196), also see (1197, 1198); for the 

relationship between transfer entropy and Shannon information, see 

(1199)), this illuminates that predictions, and interventions(1200-1203), 

would be more accurate by incorporating individual, environmental and 

temporal variables(1183, 1204-1206); contrary to what foundationalist 

materialism and idealism has inculcated and is practiced now by likes of 

“evidence-based” medicine and almost all human, animal, psychological 

and social studies. 

“It from bit” symbolizes the idea that every item of the physical world has at 

bottom, an immaterial source and explanation; that what we call reality arises in 

the last analysis from the posing of yes-no questions and the registering of equip-

ment-evoked responses; in short, that all things physical are information-theo-

retic in origin.(1207) John Archibald Wheeler 

Information has attracted a lot of attention in recent decades in different 

sciences, including biology. This word represents several concepts put 

forth by several theories(1208). Many cases of its use in biological sci-

ences depict biological systems as “information processing systems” that 

inherit and process the “information” in cellular signals or biomolecules 

like DNA as in (11, 48, 244, 527, 588, 595, 794, 1163, 1209, 1210); also 

see (1211, 1212). Our simpler conceptualization, as Wheeler may imply, 

shares more concrete ground with reality rather than arbitrarily concep-

tualizing parts of organisms as “information-processors” or “biological 

Maxwell’s demons”; also see (863, 1213-1218). Just like how “The ac-

tual message is one selected from a set of possible messages(1162),” a 

human is one of the possible states for all constituent “particles” con-

structing that human. Our conceptualization shares some associations 

with Schrödinger’s negative entropy (negentropy)(9, 1219-1221) or 

those formulated for clarification of scientific information(916-918). 

So, as far as possible, all individual, environmental and temporal varia-

bles of observations should be recorded. Technologies like wearable bi-

osensors(1222) used in digital health and telemonitoring(1223), organ-

oids(1224, 1225), high-throughput phenotypic assays(1226, 1227) and 

internet-of-things can facilitate gathering accurate(1184, 1228) diverse 

information in massive scales(1229): proteome-wide affinity finger-

prints(1230), transcriptome, epigenome, metabolome, secretome, radi-

ome, neuroimaging and connectome, behaviors and cognitive responses, 

social variables(1231, 1232), etc. These different observation modalities 

can be integrated to capture the most information(1233-1235). Real-

world(1236, 1237), patient-centered(1238) and pragmatic(1239, 1240) 

observations like electronic health data(1241, 1242) should replace the 

current infatuation with randomization and standardization that try to 

wash out organisms’ uniqueness and contextuality in search for non-ex-

istent isolated foundational relationships. 

To recognise a class is to throw away information.(1243) 

Ross Ashby 

It is a mark of maturity of a branch of science that the notion of similarity or kind 

finally dissolves, so far as it is relevant to that branch of science. That is, it            

ultimately submits to analysis in the special terms of that branch of science.(374) 

Willard Van Orman Quine 

How can relations and patterns be found among all these variables? For-

tunately, recognizing patterns among numerous variables is the chief 

purpose and capability of the currently well-developed technique of ML. 

It can recognize complex, non-linear, and causal((1244, 1245); also see 

(1202)) patterns among thousands of variables in millions of entries and 

even use these patterns for generating novel entities that would show the 

desired behaviors(63, 1246). 

The principle that all variables should be recorded does not seem to be 

sufficient. “Rational” drug discovery would not become efficient even if 

it records all variables of its observations. Because its observations have 

little to do with its ultimate aim, that is changing phenotype (i.e., have 

little cause-effect power). A crucial point is asking the right question. 

The asked question is translated in ML to model’s target variable: the 

variable which guides the parameterization of models and for the predic-

tion of which, the information of all variables is used. Here also, emer-

gent bound box theory comes to our help. Higher-scale descriptions of 

systems tend to have superior cause-effect power. So, target variables 

should tend toward higher-scale descriptions. However, this depends on 

the purpose; e.g., affinity for proteins may be an appropriate target vari-

able for developing chemical probes(1247). 

Whoever condemns the supreme certainty of mathematics feeds on confusion, and 

can never silence the contradictions of the sophistical sciences, which lead to an 

eternal quackery.(1248) Leonardo da Vinci 

Every possible application of calculation would be excellent if the physiological 

conditions were quite accurately defined. Physiologists and physicians should 

therefore concentrate their effort, for the moment, on defining these condi-

tions.(438) Claude Bernard 

Measure what is measurable and what is not measurable, 

make measurable.(1249) 

To complete the compatibility of our framework with the productive 

mathematically precise methodology of physics(15, 1250), we should 

note if our information truly represents real-world values of their referent 

phenomena or not(1249). Definition of variables must be unambiguous, 

consistent, “objective” and globally harmonized. Currently, in biological 

sciences, variables are specified too loosely, ambiguously, and based on 

foundationalist materialism, e.g., (350, 375, 1251-1257) and (1258-

1261). Any conceivable and apparently negligible difference between 

phenomena must be specified by translating them to new variables or 

variable-values, as they may affect phenomena; e.g., “inactive” excipi-

ents of drugs(1262). ML can reach more accuracy when variables, unlike 

now(1263-1268), are explicated specifically(1205, 1206). Metrology, 

the scientific study of measurement, can help biological sciences in this 

path(1269-1273). 

The most important contribution of emergent bound box theory is 

providing a new ontological framework for biological sciences built up 

on first principles. Many of the above points had already been pointed 

out, albeit a posteriori; e.g., the need for considering individual-level var-

iables has been highlighted from more than a thousand years ago(1274) 

to the current “personalized medicine”(464, 1275, 1276). Many have 

also realized the contextuality of observations; e.g., above I cited eleven 

clinical studies concluding that “lack of blinding leads to statistically-

significant bias of effect-size”(1165-1175); I also cited two meta-epide-

miological finding no “statistically-significant relationship between lack 

of blinding and effect size”(1277-1279). This obliged the authors(1277) 

and editors(1279) to suggest that although there had been strong evi-

dence that lack of blinding may lead to bias in effect size, their large 

sample size implies that this may be confined to “specific set-

tings(1277)” and more research is needed to unravel “the relationship 

between lack of blinding and effect-size.” The problem is that they do 

not have realized that the “causal relationship” they seek between two 

isolated variables does not exist. Unspoiled by ad hoc principles, our new 

ontological attitude brings this realization that all effects are “personal” 

and all settings are “specific settings.” 

How to Apply the Framework 

Demonstrative COVID-19 Cheminformatics Meta-Analysis 

The data can be gathered prospectively and/or retrospectively. Unfortu-

nately, ignoring most variables has immensely reduced the value of big 
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data collections, primary databases, and the primary literature. Regard-

ing the primary literature, even the few recorded individual-level varia-

bles are rarely shared publicly or even made accessible by personal re-

quest(479-487). Only for demonstration, let us apply the framework for 

COVID-19 drug repurposing. The ultimate scheme is a cheminformatics 

meta-analysis model for predicting molecules’ effect size in improving 

COVID-19 outcomes. Input data include variables of 2D-structure, as-

sessed outcome, country, size of treatment group, age, gender, race, se-

verity, variation, different aspects of risk of bias, in vitro inhibitory po-

tency against SARS-CoV-2 (pIC50), and affinity fingerprint (for 180 

binding pockets across human-SARS-CoV-2 interactome) (supplemen-

tary data 4) (see methods). Training data were extracted by systemati-

cally reviewing 42916 studies (supplementary data 5). The trained model 

was used to predict the effect size of repurposable drugs(1280). In prep-

aration of the affinity fingerprints, I also used consensually docked 4D-

QSAR (four-dimensional quantitative structure-activity relationship) to 

demonstrate how to integrate various heterogenous modalities and scales 

of data and also, raw-data deep learning and non-deep learning by a 

nested design. The 4D-QSAR itself is a demonstration of how different 

methods can be integrated for synergy and higher efficiency: Docking 

and QSAR modeling are two different methods of predicting binding af-

finity: QSAR modeling infers binding affinity from available in vitro 

data, whereas docking uses simulation and previously developed scoring 

functions. Consensually docked 4D-QSAR modeling not only synergis-

tically integrates these methods (see methods) but also integrates vari-

ous, mostly individually insufficient, scoring functions(1281) and pre-

diction models(1282). To showcase this, I used here all different types 

of scoring functions(104): empirical FlexX(1283), PLANTS(1284) and 

X-Score(1285); physics-based HYDE(1286); ML-based RF-Score-

VS(1287), and knowledge-based KORP-PL(1288).  

The framework can be refined and augmented by other techniques; e.g., 

➢ Multi-output ML can have several target variables(1289). These 

several target variables can represent, e.g., different target pheno-

types of a disorder. 

➢ Variable-importance analysis and Shapley value(1290) can be used 

to non-reductively identify the “importance” of variables and un-

derstanding mechanisms. 

➢ ML can be integrated with multiscale modeling(1291), ensemble 

modeling(1292), and network analysis(1293) to enable understand-

ing causal mechanisms of complex behaviors by accounting for the 

uncertainty of data and chaotic behaviors. 

➢ ML can be integrated with optimization techniques, like reinforce-

ment learning or genetic algorithm(668), to enable an optimized 

search for novel solutions. In such settings, the trained ML model 

can be used as the fitness function that assesses the novel solutions’ 

fitness. This setting can be accompanied by consecutive experimen-

tations to provide the ML with an acceptable applicability domain. 

Such settings which include consecutive steps of diversification 

(e.g., genetic algorithm) and selection (e.g., ML) seem to be very 

effective for designing new solutions for distinct problems in dif-

ferent disciplines. The target variable of these consecutive diversi-

fications and selections must have the highest cause-effect power. 

Some Applications of the Framework 

✓ Genetic predictive scores and functional omics. Even the state-

of-the-art approaches for unraveling the genetic basis of phenotypes 

are confined to investigating isolated crude effects of single, or at 

most a handful, highly penetrant genes, both in interventional ani-

mal studies(1294-1298) and in human studies(531, 1299-1302). 

The inability to use the deluges of available omics data inflicts also 

fields other than biomedicine, like phylogenetics(1303). We can re-

deem these failures and provide predictions of phenotypes for 

whole genomes and unravel non-reductive genomes-phenome as-

sociations and mechanisms. These capabilities along with our 

current genome editing abilities(1304) open the door to untapped 

possibilities in genetic therapy(1305, 1306). 

✓ Drug discovery. Recently, ML found a molecule based on direct 

patterns between molecular structures and E. coli growth inhibition 

that not only inhibited E. coli growth potently but also had efficacy 

against phylogenetically diverse pathogens in mouse models(1226). 

Employing this rather higher-scale endpoint in ML provides a gen-

eral proof-of-concept confirmation for the framework; however, 

here we realized that far higher potencies can be reached by incor-

porating individual and environmental variables and also assigning 

the ultimate higher-scale description as the target variable, e.g., 

therapeutic effects on infected human patients rather than the inhib-

itory effect on bacteria. Based on the massive presented evidence, I 

am sanguine that drug discovery’s effectiveness will soar so high 

that we may even supplant current gold-standard drugs(126-132) 

with molecules with far higher efficacy and safety. 

✓ Pharmacology and “mechanistic” studies. Even the state-of-the-

art methods for investigating mechanisms of drugs and other inter-

ventions are marred by idealism, foundationalist materialism, and 

organisms’ compensatory feedbacks(1307-1313). Tools like the bi-

ological fingerprint I used in the demonstration (the affinity finger-

print), variable-importance analysis, and Shapley value enable us to 

non-reductively open the black-boxes of human bodies and peek 

into their inner workings(1314). The discovery of the dopaminergic 

pathophysiological aspect of schizophrenia and “dopamine recep-

tors” based on phenotypic effects of haloperidol may be considered 

a classic example of unraveling lower-scale mechanisms from 

higher-scale description, not the other way around(1315-1317). 

✓ Herbal and supplement formulations and personalized nutri-

tion. Especially using tools such as biological fingerprints that en-

able analyzing mechanisms, we may compound effective combina-

tions(1318) and personalized diets(1319, 1320). 

✓ Toxicological regulation. Including ecotoxicological and environ-

mental risk assessments(1321-1323). 

✓ Replacing animal models. Despite the ubiquity of animal models 

in biomedicine, they are not reliable and accurate in reflecting be-

haviors of humans. It has been concluded that “The majority of pub-

lished effects are most likely measurements of noise(320)”(1324, 

1325). But an alternative has been lacking(1326). The framework 

can help replace(1327) animal tests with in silico(1328) or non-an-

imal alternatives(1329, 1330). And until reaching there, it can be 

used to reduce(1327) animal use by determining what phenotypes 

in each model should be investigated or ignored(1331) or can be 

used in ethics committees, e.g., to assess based on predicted effica-

cies and probabilities of proposed molecules, if a drug discovery 

project is justified to use animals; or to calculate the sample size of 

animal studies (also human studies) based on better evidence of es-

timated effect size. 

✓ Sustainable development. E.g., in conservation(1332, 1333) of bi-

odiversity(1334, 1335), evolutionary forecasting(1336) and epide-

miological challenges like pandemics. 

✓ Medical diagnosis and treatment. Besides diagnosis, additional 

cause-effect power can be reached by making seamless and unre-

duced, the segmented stages of diagnosis and intervention and using 

AI-based recommender systems. This is because when the purpose 

is to eventually administer some treatment, response to the received 

treatment is a higher scale compared to the diagnosis. The real-

world impact of this seamlessness can be illuminated by recalling 

the unreliability of the current best-practice guidelines and recom-

mendations(453) provided by “evidence-based” medicine and the 

rapid shift of medicine toward more automatization and digitaliza-

tion(1337). Intervention is not restricted to pharmacotherapy and 

extends to psychotherapy, gene therapy, cell therapy, 
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physiotherapy, rehabilitation, palliative care, neural inter-

faces(1338), food and lifestyle modifications, etc. 

✓ Biomedical and tissue engineering. E.g., for process optimization, 

design, and material tuning in bioreactors, cell culture, 3D-bioprint-

ing (also 3D-printing)(1339), etc. 

✓ Synthetic biology and genetic engineering. As a theory of the evo-

lution of organisms’ internal workings, it provides insights into how 

these workings can be changed; e.g., it guides what characteristics 

to target in selection and optimization of directed evolution and 

what variables to measure(1340-1343). Accompanied by our cur-

rent genome editing capabilities(1304), it can help a lot in managing 

world hunger(1344, 1345) and reducing animal agony through var-

ious means from synthesizing non-animal meat to engineering effi-

cacious plants and livestock(1346). 

✓ Identification of scientific misconducts and bugs. We will see 

that a major current challenge in the pursuit of knowledge is the 

pervasiveness of scientific misconduct(1347-1368). By recognizing 

anomalous patterns, it can help. 

✓ Psychological and social sciences. Unification of physical, bio-

medical, and social sciences can lead to great synergy and revela-

tions as it complies with the universe’s unitariness(1231, 1232, 

1369, 1370). Psychological and social insights provided by the 

framework and the tons of available data(1371) can help us in fields 

like political and organizational decision-making(1372). 

Other Emergent, Collective, Self-Organizing, Critical and Chaotic 

Behaviors:  

Although we developed emergent bound box theory based on organisms, 

we saw it can capture patterns extending to quantum mechanics. Based 

on its simplicity and universality, it is wise to expect that it can be of 

value outside biological sciences in fields that deal with emergent phe-

nomena, to varying degrees. As ML is effective in recognizing patterns 

in such phenomena(1373-1375), the framework may enhance it by guid-

ing the gathering, assignment, engineering, and reduction of varia-

bles(1376, 1377). Let me elaborate on such applications through an ex-

ample. There has been a question of why 2D-QSAR modeling can out-

perform 3D-QSAR modeling(1378). Based on its conformation in three 

dimensions, a single 2D molecular representation can be converted into 

various 3D representations. 3D representations may be considered 

“lower-scale” representations of molecules. Now, based on emergent 

bound box theory, we must see which is closer to our target measure-

ment, the binding affinity of molecules to macromolecules. Because sev-

eral poses and conformers of ligands may contribute to binding affin-

ity(1379, 1380), 2D representations are closer. Thus, they are both 

cheaper and generally more informative. In designing the consensually 

docked 4D-QSAR, I used such insights and used features based on 2D 

structures and docking scores of up to four different poses. This way, I 

also added information about targets and the different tautomers, pro-

tomers, and poses of the molecule. Based on the framework, this can be 

further expanded by adding environmental and experimental variables of 

binding affinity measurements, like the used assays and solutions. 

✓ Earthquake prediction, geoscience, oil and gas industries(1381-

1384). Extracting and engineering higher-scale descriptions may 

help(1385). 

✓ Materials science and engineering(1386, 1387). 

✓ Self-assembling materials and swarm robotics. It can guide how 

to build desired pre-defined structures and also how to guide their 

collective behaviors toward addressing the eventual purpose itself 

without reducing it to an intermediary purpose(1388-1391). 

✓ Trading and finance. 

✓ Weather prediction. We still cannot accurately predict instantane-

ous weather for 20 days later(1392).  

“Intelligent Design” 

Darwinism does not explain how organisms’ internal workings have 

changed during evolution. This void can be regarded as a major cause of 

the discussed stagnation of biological sciences. Another implication of 

this void has been making room for “intelligent design.” This creation-

ist(1393-1396) argument has attracted a lot of attention and been unfairly 

presented to the public, including schools(1397-1403); also see (1404). 

Although convincing counter-arguments and evidence have been pre-

sented((199, 1394, 1405-1413); also see (1414, 1415)), proponents of 

this pseudoscientific((1416); also see (1417)) idea keep proclaiming the 

“end of Darwinism”(1418, 1419). Although probably no amount of evi-

dence suffices to compel all to prioritize knowledge and truth(1393-

1396, 1420), emergent bound box theory provides us with two strong 

counter-arguments against two core arguments of “intelligent design.” 

“Intelligent design” rests on this claim that as “the purposeful arrange-

ment of parts of a system reliably indicates deliberate design(1418),” and 

as we observe such “purposeful arrangement of parts” in organisms, or-

ganisms are “intelligently designed.” The appearance of design in organ-

isms has been noted for hundreds of years and even by many scien-

tists(155, 1421-1423). It even had initially convinced Darwin of an “in-

telligent designer”(1424, 1425). As we discussed in rebutting machine 

mindset, deliberate and “intelligent” design results in systems whose 

parts are chained to systems’ functions by a chain of tasks. Then, we 

counted properties of complex systems whose extent and ubiquity con-

tradict such clear-cut chain of tasks, to varying degrees: whole-part feed-

backs(182-192), continuous and spectral rather than binary-like causal 

structures(177-180), multifunctionality(170-176), redundancies(193-

201) and vestigialities(202-205), degeneracy or multiple realizability(51, 

206-215). Contrary to “intelligent design,” Darwinism is compatible 

with these empirical observations as, according to emergent bound box 

theory, selection or truism-law-of-survival is primarily enforced at 

higher scales; e.g., phenotypes, not genotypes. Biased by machine mind-

set, “intelligent design” has fallaciously extended our own approach of 

building systems to organisms. The influence of machine mindset on “in-

telligent design” is evident from the frequent use of machine metaphor 

for organisms and their parts by its proponents(1418, 1419, 1426). Ob-

servations of organisms actually testify that they are not “intelligently” 

designed. The core argument of “intelligent design” is turned on its head. 

Truism-law-of-survival also refutes another argument often used by cre-

ationists: “It is hard to believe organisms are mere flukes and ‘products 

of chance and error(840).’” As we saw, they are not merely so. The emer-

gence of “life” and complexity is as inevitable and simple as a logical 

truism, hence their quick emergence on Earth(655, 841, 842).

Starting the 2nd Scientific Revolution 

Nullius in verba; Take nobody’s word for it 

Motto of the Royal Society, the first modern scientific society, as 

“an expression of the determination of Fellows to withstand the domination of authority.(1427)” 

Aspired early on to become a scientist, I entered university with this pre-

conception that I would join a thousands-years-old pursuit of knowledge 

by philosophers and scientists who are in awe of nature and everything 

we see; who are constantly questioning and doubting established ideas 

and their own ideas to illuminate the vast seas of unknowns and possi-

bilities before us. 
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What I observed completely contradicted this preconception: I observed 

professors that, despite having authored hundreds of “peer-reviewed” bi-

omedical articles and reminding to be among “the top 1% scientists of 

the world,” did not know the very basics of the most fundamental theory 

of biology: Darwinism. Some even asserted that “science cannot be 

trusted, because scientific results have been disproven numerously.” “Do 

not they know that science is primarily a set of methods, a perennial pur-

suit, not an edifice of dictated results; and indeed, falsifiability of scien-

tific theories has been proposed as a distinction and virtue of sci-

ence(1428)?,” I asked myself. Afterward, this question occurred to me 

that how is it possible to be ignorant of the most basic tenets of science 

and still “reach the top” of the scientific community. 

Science justifies itself in its methods, quite apart from any serviceable knowledge 

it may convey. […] That form of popular science which merely recites the results 

of investigations, which merely communicates useful knowledge, is from this 

standpoint, bad science, or no science at all.(1054) 

Karl Pearson, a major pioneer of modern statistical methods (emphasis added) 

It is the activity of the […] not-too-critical professional: of the science student 

who accepts the ruling dogma of the day; who does not wish to challenge it; and 

who accepts a new revolutionary theory only if almost everybody else is ready to 

accept it. I believe, and so do many others, that all teaching on the University 

level (and if possible below) should be training and encouragement in critical 

thinking. [He] has been badly taught. He has been taught in a dogmatic spirit: he 

is a victim of indoctrination. He has learned a technique which can be applied 

without asking for the reason why. […] I see a very great danger in it and in the 

possibility of its becoming normal (just as I see a great danger in the increase of 

specialization, which also is an undeniable historical fact): a danger to science 

and, indeed, to our civilization.(1429) Karl Popper (emphases added) 

Positive results […] come from doubting that the lessons are all true. You must 

here distinguish the science from the forms or procedures that are sometimes used 

in developing science. It is easy to say, “We write, experiment, and observe, and 

do this or that.” You can copy that form exactly. But great religions are dissipated 

by following form […]. In the same way it is possible to follow form and call it 

science but it is pseudoscience.(1430) Richard Feynman (emphases added) 

I saw that most studies, whether in journals with the lowest or the highest 

“impact factors,” are not, as I had thought, results of hours of question-

ing, doubting established methods, and curiously exploring and debating 

new perspectives. Although many of them claim novelty and original-

ity(1431, 1432), they are merely rote permutations of previous works, 

without considerably questioning their methodologies and presumptions: 

rote science: like how a clerk or a technician merely follows prespecified 

protocols and tasks. This is why the fallacies we discussed, have not been 

corrected in decades, but cemented (a quick look at the latest issues of 

journals with the highest “impact factors” can empirically confirm this.). 

Let alone questioning presuppositions of widely accepted paradigms; I 

saw that a majority of studies published in “peer-reviewed ISI-indexed” 

journals were unaware, or maybe indifferent, toward elementary widely 

known published scientific facts. Let me bring an example I came across 

while preparing the demonstrative cheminformatics meta-analysis I pre-

sented. Hundreds of “peer-reviewed ISI-indexed” articles have intro-

duced potential drugs for COVID-19 by docking against a single protein 

a handful to a few thousand chemicals(e.g., (1433-1443)). Let alone 

questioning reductionism and “rational” drug design; accuracy of select-

ing candidates for inhibiting a random protein among this number of 

molecules is not unlike reporting results with nanometer precision from 

a tape measure(105, 106). This has been known for years(105-109). I 

was so amazed by this rote science that I assessed the accuracy of the 

widely used AutoDock Vina(1444) and the scoring functions I used in 

the consensually docked 4D-QSAR, for SARS-CoV-2 main protease and 

COVID-19 targets, respectively. Results confirmed what has already 

been known. For AutoDock Vina, Spearman’s rank correlation coeffi-

cient was 0.178 and Pearson correlation coefficient was 0.12; average 

Spearman’s rank correlation coefficient for all proteins and all the scor-

ing functions was 0.107 (supplementary data 6; also see (1445)). 

Why Here? 

But how are these concerns relevant to our first subject, unifying biolog-

ical sciences and physics? Why am I expressing them here? First, I assert 

that for the Second Scientific Revolution, we must cling to what we 

clung to in our framework and theory: simplicity. Second, I observed that 

a deeply ingrained presupposition has always hindered my aim to instill 

change in others by criticizing the scientific community’s current awful 

state: We are living in the pinnacle of scientific progress as is evident 

from the highly advanced technologies we have; how can my criticisms 

be relevant when the same science has culminated in all this progress? 

Here, I have presented massive evidence to the contrary which I will 

elaborate on and expand further. 

Simplicity: Cornerstone of the Second Scientific Revolution 

Every science must pass through three periods of development. The first is that of 

presentiment, or of faith; the second is that of sophistry; and the third is that of 

sober research.(997) 

Justus von Liebig 

Those who know that they are profound strive for clarity. Those who would like 

to seem profound to the crowd strive for obscurity. For the crowd believes that if 

it cannot see to the bottom of something it must be profound.(1446) 

Friedrich Nietzsche 

The problems are solved, not by giving new information, but by arranging what 

we have always known. Philosophy is a battle against the bewitchment of our       

intelligence by means of language.(1447) 

Ludwig Wittgenstein (emphasis added) 

We solved the enduring dilemmas of simplicity, “beauty” and Ockham’s 

razor; machine metaphor; foundationalist materialism; “replication cri-

sis”; Darwinism’s tautology; definition of life; increasing complexity; 

and “downward causation” not by providing new empirical results, but 

by seeking simplicity and clearing ambiguities. As Newton remarked, 

“Truth is ever to be found in simplicity, & not in the multiplicity & con-

fusion of things(585).” 

This simplicity is especially important now. In Justus von Liebig’s 

words, we are currently in the age of sophistry: a period in the develop-

ment of science when layers of misunderstandings have been stacked, 

cemented, and eventually concealed by a mesmerizing and commercial-

izing facade. Many of our current fallacies are not the results of outright-

wrong hypotheses like “Earth is the center of the universe”. They are 

results of “uncritical assumption of half-truths” and the snowball effect 

(computational complexity) following these “half-truths.” “Evidence-

based” medicine and “rational” drug discovery, e.g., were initially based 

on sound attitudes: more efficacious use of the available knowledge(113-

115, 1448-1452). The problem is that instead of clinging to the simplest 

form of their ultimate purpose, they clung to some ad hoc surrogate pur-

pose. “Rational” drug discovery mistook binding to a single protein for 

rationality and clung to this mistake. “Evidence-based” medicine mis-

took results of group-based “mindless” statistical rituals for evidence and 

clung to this mistake.  

We shall overgrow the age of sophistry similar to how we could disen-

tangle the excessive complexity of biology: more emphasis on simplic-

ity. Lavoisier confirms this by saying that “The only method of prevent-

ing such errors from taking place, and of correcting them when formed, 

is to restrain and simplify our reasoning as much as possible(586).” From 

a perspective, more emphasis on simplicity compared to previous philos-

ophies is what propelled the scientific revolution. Therefore, here I aim 

to clarify what science is and present some necessary concepts for the 

Second Scientific Revolution with utmost simplicity and independence 

from data(630-635). Noteworthy, although the conceptualizations may 

seem not to thoroughly reflect our experiences, as Einstein empha-

sized(600), they do not contradict them either. They are based on the 

simplest and only the most necessary assumptions. 
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What is Science? 

In order to seek truth, it is necessary once in the course of our life, to doubt, as 

far as possible, of all things.(1453) René Descartes 

Science never imposes anything, science states. Science aims at nothing but mak-

ing true and adequate statements about its object. The scientist only imposes two 

things, namely truth and sincerity.(9) Erwin Schrödinger 

After the development of agriculture and settlement of our hunter-gath-

erer ancestors and then the development and expansion of cities, effi-

ciency in providing food soared so high that many could spare much 

more of their time for other than the spontaneous struggle for survival 

and reproduction. Many who had been captivated by questions like 

“what are we?” “where are we?” and “what should we do?” set up and 

adhered to several frameworks in which they could try to quench their 

curiosities and wonders in various ways: religions, cults, myths, and phi-

losophy. Among all frameworks which proposed answers for these ques-

tions, philosophy was unique in one fundamental way: It was empty; it 

imposed no answer; not a single presupposition, assumption, or dogma. 

Literally meaning love [philo-] of knowledge and wisdom [sophia], it 

only imposed a single direction: striving to move toward knowledge. 

Philosophy later discovered something important which culminated in 

the Scientific Revolution. Although some philosophers, like Aristotle, 

had previously emphasized empirical observations rather than mere the-

orization(1454-1456), observing our manifold indelible biases, philoso-

phers like Francis Bacon and Robert Boyle discovered that in pursuit of 

knowledge, we must excessively increase the emphasis on simple, con-

crete, and unambiguous observations and exclusively prioritize it, both 

for ideation and validation(1454, 1457-1462). This discovery proved to 

be extremely crucial and philosophy gained a revolutionary momentum 

where such observations were possible: where behaviors of nature could 

be observed and recorded unambiguously: natural philosophy; e.g., “Is 

our planet the center of the universe?” “How do things move?” “How do 

we get sick?” and “what are organisms made of?.” 

I believe strongly that philosophy has nothing to do with specialists.(1463) 

Gilles Deleuze 

A system such as classical mechanics may be ‘scientific’ to any degree you like; 

but those who uphold it dogmatically, believing, perhaps, that it is their business 

to defend such a successful system against criticism as long as it is not conclu-

sively disproved—are adopting the very reverse of that critical attitude which in 

my view is the proper one for the scientist. In point of fact, no conclusive disproof 

of a theory can ever be produced; for it is always possible to say that the experi-

mental results are not reliable, or that the discrepancies which are asserted to 

exist between the experimental results and the theory are only apparent and that 

they will disappear with the advance of our understanding.(1428) 

Karl Popper 

Yet along with immense success, this discovery brought natural philos-

ophy also a challenge. The growing corpus of the knowledge and tech-

nologies produced by natural philosophy implied that natural philoso-

phers could no longer pursue knowledge without restriction. Either the 

breadth or the depth of objects of the study had to be restricted. So, nat-

ural philosophers started getting confined to the arbitrary boundaries of 

their previously defined questions(1464-1466). Along with this, the 

word scientist replaced natural philosopher(1467). As the received cor-

pus of knowledge accumulated and grew larger, such divisions and spe-

cialization got narrower to the point that nowadays, many scientists do 

not question any of the frameworks and methodologies they are taught. 

What distinguished philosophy was that it imposed nothing but moving 

toward knowledge. We may say that science (natural philosophy) also 

imposes concrete observations; but apart from that, its success goes back 

to it not exempting any dogma and framework from questioning and 

doubt. How come have scientists abandoned science’s cornerstone and 

key to success? 

 

Mistaking Products of Science for Science 

Rule I. The end of study should be to direct the mind toward the enunciation of 

sound and correct judgments on all matters that come before it. […] Since the 

sciences taken all together are identical with human wisdom, which always re-

mains one and the same, however, applied to different subjects, and suffers no 

more differentiation proceeding from them than the light of the sun experiences 

from the variety of things which it illumines. […] We are justified in bringing 

forward this as the first rule of all, since there is nothing more prone to turn us 

aside from the correct way of seeking out truth than this directing of our inquiries, 

not toward their general end, but toward certain special investigations. […] We 

must believe that all the sciences are so inter-connected, that it is much easier to 

study them all together than to isolate one from all the others. If, therefore, anyone 

wishes to search out the truth of things in serious earnest, he ought not to select 

one special science; for all the sciences are conjoined with each other and inter-

dependent: he ought rather to think how to increase the natural light of reason, 

not for the purpose of resolving this or that difficulty of scholastic type, but in 

order that his understanding may light his will to its proper choice in all the 

contingencies of life. In a short time he will see with amazement that he has made 

much more progress than those who are eager about particular ends, and that he 

has not only obtained all that they desire, but even higher results than fall within 

his expectation.(584) René Descartes (emphases added) 

It is not the facts themselves which form science, but the method in which they 

are dealt with.(1054) Karl Pearson 

It is only scientific thinking, the method that leads to new knowledge, the insight 

into possible sources of error, the care in preparing a line of argument, whose 

study and practice are seen as the true task of the university. […] the capacity for 

critical thinking in science will in one way or another play a more important part 

than copious knowledge.(1468) Werner Heisenberg 

Scientists abandoned the core of science because they did not realize that 

science is a method. They got hung up on the achievements of this 

method and dismissed the method itself: from demonstrations for popu-

larizing science where instead of showing the importance of “the natural 

light of reason(584),” attention is directed toward visual specta-

cles(1469)(e.g., (1470)), to schools and universities where, following the 

routine of times before the advent of publishing when the only way to 

maintain a reliable source for the taught material was to transcribe(1471), 

teachers and professors forgo arguments and discussions to read the ma-

terials of books and lecture-notes for students (as if they cannot read 

them themselves)(1472-1477). Instead of teaching how philosophical 

and scientific method has led to achievements, we are obsessed with 

equations, definitions, numbers, names, processes, etc.; this is like mem-

orizing all the information I have brought in the supplementary files, 

without caring why those were sought in the first place (and all along 

this, it seems to be forgotten that humans’ memory is not like that of 

computers). Therefore, despite spending immense resources(1478), in-

cluding a huge portion of more than a decade of almost everyone’s life, 

our education system has failed in all its goals: preparation for profes-

sions revolving around products of science, like health care profes-

sions(1479-1502); instilling in the public the necessary civic skills 

(hence the pervasiveness of misinformation and unsubstantiated asser-

tions, even among the educated(1503-1512)); eventually, the current ed-

ucation system has hindered the progress of philosophy and science. 

When it came time for me to give my talk on the subject, I started off by drawing 

an outline of the cat and began to name the various muscles. The other students 

in the class interrupt me. ‘We know all that!’ ‘Oh,’ I say, ‘you do? Then no wonder 

I can catch up with you so fast after you’ve had four years of biology.’ They had 

wasted all their time memorizing stuff like that, when it could be looked up in 

fifteen minutes.[…] 

It’s not science, but memorizing, in every circumstance […] I couldn’t see how 

anyone could be educated by this self-propagating system in which people pass 

exams, and teach others to pass exams, but nobody knows anything.(1513) 

Richard Feynman 
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It is not so very important for a person to learn facts. For that he does not really 

need college. He can learn them from books. […] The aim must be the training of 

independently acting and thinking individuals 

The school should always have as its aim that the young person leave it as a 

harmonious personality, not as a specialist. […] Otherwise, he—with his special-

ized knowledge—more closely resembles a well-trained dog than a harmoniously 

developed person.(587) Albert Einstein 

Conformity and obedience are among the few things that have been ed-

ucated well(1514-1517)(also see (1518-1521)). But they are antithetical 

to questioning and doubt: the cornerstone of science(1522-1529). Con-

trary to the motto of the Royal Society(1427), the current attitude of the 

scientific community “is often no different from the young African vil-

lager’s […] propounded by one of his elders. In both cases the propound-

ers are deferred to as the accredited agents of tradition.(1515)”; also see 

(1530-1532). This polarity to science is evident in how a significant ma-

jority of the greatest scientists, to varying extents, saw schools and aca-

demia as an adversary, rather than facilitating: Isaac Newton(1533), 

Charles Darwin(1424), James Clerk Maxwell(1534), Francis Gal-

ton(1535), Albert Einstein(1536), Alan Turing(1537), Peter 

Higgs(1538), John Gurdon(1539, 1540), etc.(1538, 1541, 1542). 

Men are born ignorant, not stupid; they are made stupid by education.(1543) 

Bertrand Russel 

During the three years which I spent at Cambridge my time was wasted, as far as 

the academical studies were concerned, as completely as at Edinburgh [Univer-

sity of Edinburgh] and at school.(1424) Charles Darwin 

One had to cram all this stuff into one’s mind for the examinations, whether one 

liked it or not. This coercion had such a deterring effect that, after I had passed 

the final examination, I found the consideration of any scientific problems dis-

tasteful to me for an entire year.(1536) Albert Einstein 

It is fair to expect that the greatest scientists would flourish in a system 

that claims to educate science; but the progress has been “happening in 

spite of the dominant culture of education, not because of it; it is like 

people are sailing into a headwind all the time(1544).” It may be argued 

that our current education and academic system is better than the times 

of these giants. On the contrary, I argue it is far worse: far more institu-

tionalized, standardized, commodified, rigid, and rigged for conformity 

and obedience and against questioning and independent thought. Trained 

by standardized tests based on passive and docile acceptance and mem-

orization of “facts,” instead of philosophy and science (which are meth-

ods), many are obsessed with “right” answers(1473, 1545, 1546). 

Whereas half of those with doctoral-level degrees, do not even under-

stand “what it means to study something scientifically”(1505), they 

blame ancient great pioneers like Plato and Aristotle for being “com-

pletely wrong”(1547-1549). Now, we can confidently guess “Where 

have all the geniuses gone(1550, 1551)?”(1552-1554): 

Most schooling is just training for stupidity and conformity […] People are fil-

tered out for obedience. If you can guarantee lots of stupidity in the educational 

system like stupid assignments and thing like that, you know that the only people 

who’ll make it through, are people like me and most of you, I guess, who are 

willing to do it no matter how stupid it is because we want to go to the next step. 

So, you may know that this assignment is idiotic and the guy up there couldn’t 

think his way out of a paper bag, but you’ll do it anyway, because that’s the way 

you get to the next class and you want to make it. There are people who don’t do 

that. There are people who say they are not going to do it; it’s too ridiculous. 

Those people are called behavioral problems or something like that. They end up 

in the principal’s office or in the streets or selling drugs or whatever. […] and it 

works right through graduate school. The problem is that you can’t have progress 

this way. […] You can’t get anywhere if you just copy what somebody told you. 

You have to be challenging things all the time, challenging everything. […] a 

couple of smart guys will decide what the great thoughts are and every student 

will memorize them and that’s education. Well, that’s a way to turn people into 

pure automata: […] I pick them, you memorize them: of course, that’s the oppo-

site of education.(1555) Noam Chomsky 

Without education, we are in a horrible and deadly danger of taking educated 

people seriously.(1556) G. K. Chesterton 

Interestingly, many have tried to fill the void created by dismissing phi-

losophy and science by implementing and teaching critical think-

ing(1472, 1527, 1545, 1557-1559); still, no consensus has been reached 

for its definition(1559-1561). I argue the void can be best filled by cor-

recting our understanding of philosophy and science. 

Reform is no use anymore, because that is simply improving a broken model. What 

we need is not evolution, but a revolution in education. This has to be transformed 

into something else. One of the real challenges is to innovate fundamentally in 

education. Innovation is hard, because it means doing something that people 

don’t find very easy; it means challenging what we take for granted, things that 

we think are obvious. The great problem for reform or transformation is the tyr-

anny of common sense. Things that people think: “well, they cannot be done any 

other way, because that is the way it’s done.” […] Many of our ideas have been 

formed not to meet the circumstances of this century but to cope with the circum-

stances of previous centuries, but our minds are still hypnotized by them and we 

have to disenthrall ourselves of some of them. Now, doing this is easier said than 

done. It is very hard to know what it is you take for granted and the reason is you 

take it for granted.(1562) 

The late Ken Robinson (emphasis added) 

Commodification 

Where Knowledge and Public Good Is Not Important at All 

All too often the main reason for a piece of research seems to be to lengthen a 

researcher’s curriculum vitae.(1563) 

Doug Altman in his 1994 editorial in The BMJ, “The scandal of poor medical 

research”  

Science has taken a turn toward darkness. […] No-one is incentivised to be 

right(1564) 

Richard Horton, editor-in-chief of The Lancet 

The crippling of individuals I consider the worst evil of capitalism. Our whole 

educational system suffers from this evil. An exaggerated competitive attitude is 

inculcated in the student, who is trained to worship material success as a prepa-

ration for his future career.(587) Albert Einstein 

Another challenge following science’s success was that many started 

paying attention to science, not primarily for pursuing knowledge, but 

for making a profit out of this successful method(1565). The challenge 

of prioritizing materialistic whims over knowledge and truth has accom-

panied the pursuit of knowledge from the beginning. Socrates, 

Plato(1566-1568), and Aristotle(1569) were extremely critical of soph-

ists. While Socrates refused to take any money for what he did and lived 

an extremely modest life, sophists taught primarily for money. During 

centuries, sophistry turned into a word for denoting “willingness to pros-

titute something high, to pursue knowledge or wisdom for low 

ends(1570)”(1457, 1571-1575), also see(1573, 1576-1578). 

The sophist is a man who is unconcerned with the truth, or does not love wisdom, 

although he knows better than most other men that wisdom or science is the 

highest excellence of man. […] He is concerned with wisdom, not for its own 

sake, not because he hates the lie in the soul more than anything else, but for the 

sake of the honor or the prestige that attends wisdom. He lives or acts on the 

principle that prestige or superiority to others or having more than others is the 

highest good.(1579) Leo Strauss 

Sophistry is well alive today(473, 1464, 1580-1595): In several cases, I 

had provided convincing established scientific evidence that the core of 

some study was completely wrong; however, I was responded by the in-

vestigators that “I only want to improve my CV.” Similar notions 

abound: “Poor methods get results(1564),” “I will do anything for an-

other line in my CV. […] [I am] just playing the game, working the sys-

tem, trying to get ahead. Besides, this is how things work, you either do 

whatever is necessary or you get left behind(1580, 1581).” Focus of a 

majority of researchers is on how to write articles, how to publish, how 

to design tempting figures and graphs and where to buy materials, how 
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to get accepted, etc. I have seen thousands of advertisements for work-

shops like “how to publish articles,” “how to get accepted by writing 

convincing cover letters,” yet I do not remember a single advertisement 

for a workshop on epistemology or scientific method. Pursuit of 

knowledge, the public good, and awe in front of nature and possibilities 

have given their place to concern for publications, citations, metrics, 

CVs, and paychecks. Thinking, questioning, and doubting are not much 

important; after all, they do not show up on CVs. They even take the time 

that could be spent on adding more lines to CVs. 

The current system fosters interests conflicting with pursuing knowledge 

at every step. Students have to focus on making their CVs enticing. Pro-

fessors have to attract enough funds, lest they would be put under pres-

sure by the business people who run the academia(1596-1598), to the 

point of committing suicide, like the late Stefan Grimm(1599-1602). Ed-

itors need to fill the pages of everyday-increasing journals. Even the tip 

of the iceberg(1347-1351) of scientific misconduct(1352-1368) is sky-

rocketing. Moreover, scientific misconduct has even been adapting and 

evolving into more sinister varieties. Some have become organizational 

business models(1603-1605). Like the evolution of camouflage, some 

have tried to reduce the potential damage by employing low-profile strat-

egies of scientific misconduct and gaming the metrics(1606-1612). 

Overselling and marketing approach has become so pervasive that some 

may not identify it as misconduct(1432, 1613-1617): From 1974 to 2014, 

the relative frequency of the word novel in PubMed abstracts has in-

creased by about 4000% and it is predicted that it will appear in every 

record by the year 2123(1431). Even with the purest of intentions, we 

face manifold barriers and biases in pursuit of knowledge. What hope is 

left when there is no care for truth(1618)? 

Natural Philosophy is Meaningless Without Philosophy 

Science without epistemology is, insofar as it is thinkable at all, primitive and 

muddled.(1065) 

So many people today—and even professional scientists—seem […] like some-

body who has seen thousands of trees but has never seen a forest. A knowledge of 

the historic and philosophical background gives that kind of independence from 

prejudices of his generation from which most scientists are suffering. This inde-

pendence created by philosophical insight is the mark of distinction between a 

mere artisan or specialist and a real seeker after truth.(1619) Albert Einstein 

My opinion about the high, majestic task of philosophy is to make things 

clear.(1620) Ludwig Boltzmann 

Philosophy aims at the logical clarification of thoughts. Philosophy is not a body 

of doctrine but an activity. A philosophical work consists essentially of elucida-

tions. Philosophy does not result in ‘philosophical propositions’, but rather in the 

clarification of propositions. Without philosophy thoughts are, as it were, cloudy 

and indistinct: its task is to make them clear and to give them sharp bounda-

ries.(605) Ludwig Wittgenstein 

But how can specialization and fixation on products of science be reme-

died while the accumulative growth of the products of science is inevi-

table? To remedy its too-much specialization, science must not abandon 

its original unspecialized form, from even before we discovered the im-

portance of concrete observations and introduced it as dogma: philoso-

phy. We must clear our understanding of what science is and what it is 

not and where its power comes from. We must understand that the power 

of science does not come from its adherence to “evidence.” Do not 

frameworks other than science claim “evidence” for their statements? 

They surely do. What distinguishes philosophy and science among them 

is that they do not impose any dogma but moving toward knowledge; 

thereby, they have exempted no claim of “evidence” from questioning 

and doubt and have revealed deficiencies of most claims of “evidence.” 

This way, they have also concluded that concrete observations are the 

most reliable source of “evidence.” But this important discovery does 

not imply that the philosophy part of natural philosophy is dispensable. 

As Daniel Dennett put it, “There is no such thing as philosophy-free sci-

ence; there is only science whose philosophical baggage is taken on 

board without examination.(848).” Observed phenomena are not in a 

vacuum. They do not hold a label that would unambiguously convey 

their meaning and interpretation. Scientific observations and conclusions 

depend on the specific theoretical and value backgrounds and the zeit-

geist they get embedded in(636, 1621-1629). What counts as a valid ob-

servation, how to design studies, what variables should be considered, 

what data the instruments are actually collecting, and how to infer gen-

eral patterns; all these require philosophical thought(1630-1632). De-

spite this and the reliance and stress of many scientists, especially the 

great ones, like Charles Darwin(674, 686, 695, 1633, 1634), James Clerk 

Maxwell(1635, 1636), Ludwig Boltzmann(1620), Henri Poincaré(607), 

Karl Pearson(1054), Albert Einstein(1065, 1619, 1637-1642), Niels 

Bohr(1643), Werner Heisenberg(1644, 1645), Wolfgang Pauli(1646), 

Erwin Schrödinger(9, 1647) and Alan Turing(1648, 1649) on philoso-

phy, nowadays, a majority of the scientific community, in ignorance of 

what philosophy and science are, have drawn a misplaced concrete line 

between them(636, 1638, 1650-1652); e.g.,(1032, 1653-1659). Alas, 

professional academic philosophers themselves are also responsible for 

this(1644, 1660-1662). This has led to the enduring fallacies and wastes 

of rote science, only a sample of which we have seen in this manuscript: 

Is the binding of a chemical to an in vitro or in silico model of a protein 

“sufficient evidence” for it having a specific therapeutic effect? Is it even 

“sufficient evidence” for its binding to that protein in the body? Is a small 

p-value in a pharmaceutical clinical trial “sufficient evidence” for using 

that drug for an individual? Can we neglect most variables and still ex-

pect to reach “the same conclusion” from different observations? All this 

aside, the most important question is what to ask; e.g., is seeking the 

definition of “life” or the exact historical origin of “life” even rational? 

It is one of the principal impediments to the advancement of natural philosophy, 

that men have been so forward to write systems of it. […] the specious and prom-

ising titles of these system-writers are apt to persuade the unwary, that all the 

parts of natural philosophy have already been sufficiently explained; and, conse-

quently, that it were needless for them to be at any farther expence and trouble in 

making enquiries into nature; the business being done to their hands. […] Such 

kind of superstructures should be looked upon only as temporary, and preferable, 

indeed, to others, as being the least imperfect yet not entirely to be acquiesced in, 

as incapable of farther improvements and useful alterations.(1663) 

Robert Boyle, who through his many contributions, including The Sceptical Chy-

mist (note the reference to doubt), was pivotal in the Scientific Revolution(1664) 

Concepts that have proven useful in ordering things easily achieve such authority 

over us that we forget their earthly origins and accept them as unalterable givens. 

Thus they come to be stamped as “necessities of thought,” “a priori givens,” etc. 

The path of scientific advance is often made impassable for a long time by such 

errors.(1619) Albert Einstein 

Science can be pictured as a telescope through which we try to see the 

world with the highest “objectivity.” Apart from the fact that this “ob-

jectivity” is “relative” as we are all confined to our indelible humane 

observation point, each theoretical and methodological framework and 

zeitgeist, e.g., Thomas Kuhn’s paradigm(1665) or Michel Foucault’s 

episteme(1666, 1667), can be regarded as a specific configuration of this 

telescope which may provide optimal vision for some points. But they 

should not be taken as a universally true dogma. For each purpose, the 

configuration must be calibrated to overcome epistemological obsta-

cles(1668) and align optimally with “reality.” Particular configurations 

should not be black-boxed and uncritically followed. This is especially 

important in biological sciences due to organisms’ uniqueness(875); e.g., 

in employing the framework presented here, it is imperative to critically 

think and discuss in each case what variables to include, where to draw 

the line between different variables and variable-values, what observa-

tions can provide the best data for our needs, or if it is wise to follow up 

an unexpected observation; also see Popper’s botany example in (1429). 

The impact of this can be illuminated by recalling that a considerable 

number of approved drugs have originated from sagacity and critical 

thinking upon serendipitous observations (figure 3 and supplementary 

data 1) and dismissal of such careful and critical observations has been 
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suggested as one culprit of the decline of drug discovery(1669-1671). As 

Louis Pasteur remarked, “In the field of experimentation, chance favors 

only the prepared mind(997).” And at all times, the frameworks them-

selves should be questioned too. Specialization sweeps all inconsisten-

cies under the rug of technical terms and “norms of the profession” and 

discourages self-correction based on alternative views and real-world 

data and creates internally self-consistent(47) static bubbles with little 

contact with reality. 

Scientific research, as a way of expanding knowledge, obliges us to overcome 

classicism. The very process of apprenticeship carries within itself the                    

requirement that it come to an end and yield to independent creation. To study or 

to learn from a classic ultimately impels us to emulate what its author did: to 

surpass the previous classical stance, to transform, to extend, and to renew         

science itself.(1672) José Ortega y Gasset 

Philosophy is also the root of the social infrastructure of science (it must 

be remembered that there is no concrete line between philosophy and 

science(636)). If “evidence” and data could talk for themselves, what 

was the need for peer criticism and discussion? As every human has man-

ifold unexamined presuppositions, by debating and criticizing each 

other’s works, scientists can notice the biases that have remained hidden 

to themselves. This intellectual inclusion in which interlocutors elevate 

each other is an ancient pillar of philosophy and science, e.g., in Plato’s 

Academy. Let us see how intellectual exclusion has hindered the pro-

gress of science. 

We recognized foundationalist materialism as one of the major flawed 

mindsets behind “replication crisis” and “evidence-based” medicine. But 

what is the root and origin of this mindset? I argue that one of its major 

roots is the exclusivity of the Judeo-Christian and “Western”(1673) 

worldview among the pioneers and early developers of modern science. 

Judeo-Christian worldview depicts, at least, humans as foundational en-

tities: “souls” that have come to this world. This implies that, first, nature 

is foundationally alien to and different from us. Second, as we discussed, 

a foundational “entity” or “material” implies some inherently fixed phe-

nomena which can be captured in a moment (Nietzsche refers to this at-

titude as soul-atomism(690)); in contrast to a flowing process which can-

not be captured in a cross-section of time, as it also expands temporally. 

You can contrast this with the “Eastern” worldview which depicts hu-

mans and everything else we see, as processes that come out of this 

world(1005, 1674-1679). A becoming versus a being view(1680, 1681). 

Here, the argument is not on the correctness of these views, the point is 

that intellectual inclusion and “a bit of blood-transfusion from Eastern 

thought(9)” could have made the scientific community aware that foun-

dationalist materialism is not the only way of looking at the world; that 

it has employed such a presupposition. 

Nowadays, the education system and scientific community, not only do 

not strive to explore diverse intellectual landscapes, they have turned into 

extremely rigid and static echo chambers that readily fixate and get hung 

up on the first publishable framework that they stumble upon(1541, 

1546, 1553, 1554, 1682-1688). 

Illusion of Scientific Progress 

The history of Western science confirms the aphorism that the great menace to 

progress is not ignorance but the illusion of knowledge.(1689) 

The scientific community, much like the public, is mesmerized by the 

highly advanced technologies and the immense corpus of knowledge we 

possess. E.g., a recent PNAS article that tries to resolve the “seeming 

paradox” of “scientific progress despite irreproducibility” states that “No 

one aware of the present state of science doubts the many important ad-

vances that are taking place almost daily. […] Examples are particularly 

evident in technology and health: computers, cellphones, satellites, GPS, 

information availability, antibiotics, heart operations, increasing age of 

mortality, fertilizers, genetically improved crops, minimally invasive 

joint surgeries and joint replacements, contact lenses and laser surgery, 

magnetic resonance imaging, robotics, electric vehicles, air bags, solar 

energy, wind energy, better weather forecasting, and on and on almost 

without end(1690).” 

Again, the fallacy here is mistaking products 

of science for science. Products of science 

have been extended and accumulated for a 

long time and we have inherited these prod-

ucts. This does not imply that we are also cur-

rently enjoying “the rapidity of scientific pro-

gress(1690).” You can see in table 2 that the 

initial seeds of all the innovations exampled to 

showcase “the translation of the evolving web 

of scientific advances into applica-

tions(1690).” can be traced back to before the 

1970s. As some scientists including Nobel 

Laureates(1686, 1715-1724) have pointed out, 

we have been majorly just reaping the innova-

tions of previous generations. Our major role 

has been linear extension of those innovations; 

e.g., we have been able to further develop 

computers, AI, ML, and deep learning which 

were initially innovated before the 

1970s(1114, 1725). Innovation of vaccination 

dates back to ancient times(1726-1728): From 

observing in 420 BCE that “No one was ever 

attacked a second time” by the plague of Ath-

ens(1729, 1730) to deliberate prophylactic im-

munization in China in 300 to 1000 CE and 

Edward Jenner’s safer method in 1798 based 

on phenotypic observations(1731). The scien-

tific community not only has failed to extend 

the success of previous generations in con-

fronting chained systems to complex systems, 

it even has not been aware of this failure. 

Among the examples, antibiotics and anes-

thetics are the only successes in front of com-

plex systems; interestingly, all antibiotics and 

anesthetics have been discovered based on phenotypic observations, not 

“rational” drug design, the currently dominant paradigm (figure 3 and 

supplementary data 1). We probably could not have discovered these 

drugs if we had sooner “progressed” to our current “scientifically ad-

vanced” state. Even in physics, to which the reign of rote science ex-

tends(1538, 1683, 1684), there has been an unrequited quest for funda-

mental progress since the 1970s: We have not been successful, except in 

experimental validation of previous innovations(1732). 

Science becomes dangerous only when it imagines that it has reached its goal. 

What is wrong with priests and popes is that instead of being apostles and saints, 

they are nothing but empirics who say ‘I know’ instead of “I am learning,” and 

pray for credulity and inertia as wise men pray for scepticism and activity.(1733) 

Bernard Shaw 

The only way that we will make a mistake is that in the impetuous youth of           

humanity we will decide we know the answer.(1734) Richard Feynman 

It may be argued that this is because we have reached the “end of sci-

ence”(1552, 1723, 1735), that we already know all possible fundamental 

scientific principles and the only thing we are left to do is to uncritically 

produce more data and fill in the details. This is a delusion imbued by 

rote science. As it can only see new permutations of previous studies, it 

is blind to the vast sea of the knowable unknowns and all the possibili-

ties(772). Perhaps it is correct that as Dirac pointed out in 1929, “The 

underlying physical laws necessary for the mathematical theory of a 

large part of physics and the whole of chemistry are thus completely 

known(1736).” Still, in other fields like biological sciences, especially 

psychological and social sciences, we are in infancy(1033). And as we 

saw, these sciences are decoupled(43, 1036) from “the underlying 

Technology Innovation Refs 

Computer 1834 - 1941 (1691) 

Cellphone 1940 - 1973 
(1692, 
1693) 

Fertilizer 
c. 5900 

BCE 
(1694) 

GPS 1958 - 1978 
(1695, 

1696) 

Satellite 1957 (1697) 

Genetically im-
proved crops 

c. 8000 
BCE – 1994 

(1698) 

Heart operations 1896 (1699) 

Minimally inva-

sive surgery 
1938 (1700) 

Joint replace-
ments 

1890 (1701) 

Contact lenses 1508-1887 (1702) 

Laser surgery 1951-1962 (1703) 

Magnetic reso-

nance imaging 
1938-1974 

(1704-

1708) 

Robotics 1961-1972 (1709) 

Electric vehicles 1832-1870s (1710) 

Air bag 1952 (1711) 

Solar energy 
c. 1000 

BCE - 1876 
(1712) 

Wind energy 600 - 1887 
(1713, 

1714) 

Table 2. Examples brought for 

“the translation of the evolving 

web of scientific advances into 

applications” to showcase our 

current scientific progress. 
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physical laws.” “There is no limit to the complexity that we can build 

using those basic laws(2).” An open-ended untrodden landscape lies be-

fore us. 

Let alone transformative innovation; in many cases, we have even failed 

to develop and employ the innovations which were handed down to us, 

and instead, have used them in completely wrong ways. We have failed 

our milestones in taming infections that are taking millions of lives(1737, 

1738), by relying on reductionist “rational” vaccine design(1739-1742). 

We have molded X-ray crystallography; nuclear magnetic resonance im-

aging, rational drug discovery(113-115), computers, AI, ML, and deep 

learning(1743) into the wasteful paradigm of “rational” drug discovery. 

There’s an awful lot of rote learning, and a lot of mistaking knowledge for the 

right technical words. A guy who says the right words is thought to know some-

thing. […] it’s not at all impossible to teach a child to say that pi is the ratio of 

the circumference to the diameter of a circle. It’s just as easy to teach him a 

nursery rhyme. And then to say that pi is numerically equal to 3.14159. That way 

you can get fooled. You haven’t the slightest idea what you’re talking about, and 

you sound just fine.(1734) Richard Feynman 

Rote science makes fundamental innovation and the full potential of sci-

ence unreachable as it severs first-hand contact with the real world by 

censoring it through one-size-fits-all frameworks and reified concepts. 

Knowledge of a majority of us is like how Feynman depicts above: We 

may write articulate and highly cited articles; however, what we are 

looking at is only nature’s reflection in previous generations’ minds 

passed to us through the established frameworks and conceptions we 

have uncritically followed. We do not have close contact with reality. 

Those who fall in love with practice without science are like a sailor who enters 

a ship without helm or compass, and who never can be certain whither he is 

going.(1248) Leonardo da Vinci 

Scientists here seem to work hard. In fact, some of them work so hard that there 

is no time left for serious thinking. They should heed the saying, ‘A busy life is a 

wasted life.’(617) Francis Crick 

One can watch an object for years and never produce any observation of scientific 

interest. To produce a valuable observation, one has first to have an idea of what 

to observe(996) François Jacob 

Many areas of biology seem stuck with nineteenth-century authoritarian ideology, 

which favours data production over generating new ideas or questioning stale 

paradigms. This encourages a kind of ‘excellence in mediocrity’, which drives off 

creative minds and attracts researchers who imitate rather than innovate. […] This 

is not surprising considering that PhD students in the biological sciences receive 

little or no exposure to the history and philosophy of scientific thought, making the 

degree a misnomer. Few biologists can distinguish between speculation, demar-

cated hypotheses and theories. Even fewer appreciate the need for revolutionary 

hypotheses; and fewer still can generate them.(1522) (emphases added) 

We may spend billions of hours and dollars(1744) and impose agony on 

millions of animals(1745) to produce tons of data and publish incessantly 

more articles(1746-1749). Yet this does not imply that these articles and 

data have any valuable relation to the real world(1546, 1750-1753); re-

call “replication crisis,” the decline of drug discovery, and the far-from-

expected output of omics. The evidence I have presented to support the 

too-week foundations of several paradigms that have been exclusively 

dominant for decades implies that most of the current conclusions and 

even the gathered data in biological sciences are of minimal reliabil-

ity(453) and value that they could have had, if the scientific community 

had upheld, instead of its products, science itself. Even without consid-

ering the huge waste of rote science, and also without considering the 

bias imposed by the ubiquity of scientific misconduct(1618), it has been 

suggested that above 85% of resources spent for scientific research is 

wasted(498, 1754-1758). 

So, relative to available resources, our scientific practice is at an all-time 

low in history. Let us delve into some benefits of science that rote science 

has deprived humans of. 

The Universal Domain of Science: 

Society’s Truth Buffer 

Scientific education is fabulously neglected. This is an evil that is inherited, 

passed on from generation to generation. The majority of educated persons are 

not interested in science, and are not aware that scientific knowledge forms part 

of the idealistic background of human life. Many believe—in their complete igno-

rance of what science really is—that it has mainly the ancillary task of inventing 

new machinery, or helping to invent it, for improving our conditions of life. They 

are prepared to leave this task to the specialists, as they leave the repairing of 

their pipes to the plumber. If persons with this outlook decide upon the curriculum 

of our children, the result is necessarily such as I have just described it.(1647) 

Erwin Schrödinger 

Science claims the whole universe as its field.(1054) Karl Pearson 

Let us apply to the political and moral sciences the method founded upon               

observation and upon calculus, the method which has served us so well in the 

natural sciences. Let us not offer in the least a useless and often dangerous 

resistance to the inevitable effects of the progress of knowledge; but let us change 

only with an extreme circumspection our institutions and the usages to which we 

have already so long conformed.(3) Pierre-Simon Laplace 

You frequently state that I have developed a completely one-sided outlook and 

look at everything and think of everything in terms of science. […] But you look 

at science as some sort of demoralizing invention of man, something apart from 

real life, and which must be cautiously guarded and kept separate from everyday 

existence. But science and everyday life cannot and should not be                             

separated.(1759) Rosalind Franklin (emphasis added) 

Origin of the fallacy of neglecting the subjective and theory-laden nature 

of observations and “letting data speak for itself” can be traced back to 

Francis Bacon. He drew a concrete line between humans and na-

ture(1760). This fallacy has resulted in dogmatically avoiding first-per-

son pronouns in scientific communications(1761-1763); however, con-

sidering Bacon’s emphasis on being aware of our different biases, e.g., 

in his four “idols of the human mind”(1039), he probably would have 

been appalled by our current rote science(1764). 

The human understanding resembles not a dry light, but admits a tincture of the 

will and passions, which generate their own system accordingly; for man always 

believes more readily that which he prefers. […] in short, his feelings imbue and 

corrupt his understanding in innumerable and sometimes imperceptible 

ways.(1039) Francis Bacon 

The rigour of science requires, that we distinguish well the undraped figure of 

nature itself from the gay-coloured vesture with which we clothe it at our pleas-

ure.(1765) Heinrich Hertz, translated and quoted by Ludwig Boltzmann 

Still, this fallacy of drawing a too-concrete line between humans and na-

ture has had immense repercussions. It has deprived humans of prioritiz-

ing science in “all the contingencies of life(584)” including governance 

and management of societies. It is presumed that science “has mainly the 

ancillary task of inventing new machinery, or helping to invent it, for 

improving our conditions of life(1647).” Because of this, many, in com-

plete ignorance of what philosophy and science are, have no guilt in stat-

ing that they have nothing to do with science or do not trust science. 

“They are prepared to leave this task to the specialists, as they leave the 

repairing of their pipes to the plumber(1647).” This is like saying they 

have nothing to do with knowledge and truth. Philosophy and science 

are the supreme approaches toward understanding any phenomena in the 

unitary whole of the universe. “The whole of science is nothing more 

than a refinement of every day thinking(1766).” By restricting science 

only to utilitarian applications(1565), our current culture deprives us of 

this refined thinking and turns us into commodity-producing automata. 

Science is not confined to the arbitrary boundary of some specializations 

and already-conceived questions. It is “identical with human wisdom, 

which always remains one and the same, however, applied to different 

subjects, and suffers no more differentiation proceeding from them than 

the light of the sun experiences from the variety of things which it 
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illumines(584).” “To say that there are certain fields from which science 

is excluded, wherein its methods have no application, is merely to say 

that the rules of methodical observation and the laws of logical thought 

do not apply to the facts, if any, which lie within such fields(1054).” Do 

behaviors of humans lie outside the universe? Do “politicians” have ac-

cess to some source of knowledge which is superior to philosophy and 

science? So, why the scientific community has handed the fate of our 

species to “politicians” who are known for concealing the truth and lack-

ing the slightest hint of rationality and wisdom(1767)? 

There is no end to suffering, for our cities, and none, I suspect, for the human 

race, unless either philosophers become kings in our cities, or the people who are 

now called kings and rulers become real, true philosophers(1568) Socrates 

It is of great importance that the general public be given an opportunity to             

experience—consciously and intelligently—the efforts and results of scientific    

research. It is not sufficient that each result be taken up, elaborated, and applied 

by a few specialists in the field. Restricting the body of knowledge to a small group 

deadens the philosophical spirit of a people and leads to spiritual poverty.(587) 

Albert Einstein 

Philosophical thinking has never been more important than it is today, because 

there’s a whole system taking shape, not just in politics but in culture and jour-

nalism too, that’s an insult to all thinking.(627) Gilles Deleuze 

It may be argued that science is silent on moral values and thereby, can-

not be an alternative. When humans confronted phenomena whose ori-

gins, they were ignorant of, like thunders and floods, they invoked untrue 

causes and agents to justify and respond to these unusual phenomena. In 

many instances, these illusions resulted in unimaginable unnecessary ag-

ony; e.g., countless children and animals have been sacrificed to stop 

floods(1768). Thousands of women have been tortured, murdered, and 

burned for witchery(1769-1773). Many children have been persecuted 

and murdered for witchery or bringing misfortune(1774, 1775). Alt-

hough some of these atrocities are still taking place(1771-1775), many 

of them are far less prevalent in many societies. Why? Through science, 

we have come to this understanding that, e.g., floods have nothing to do 

with sacrificing children like how albinism has nothing to do with witch-

ery. Through science, we have understood their natural causes and risen 

above many of these challenges. We have dissolved our moral conviction 

and moved toward amorality and understanding(1776-1778). I assert the 

two revolutions discussed here, in biological sciences and our conception 

of science, can dissolve many of our moral convictions that are based on 

ignorance. Such moral convictions are causing problems extending from 

those that are threatening the entire human civilization, like fundamen-

talism, extremism, discrimination, and polarization, to everyday chal-

lenges in communication which are due to our ignorance of psychologi-

cal and social causes of phenomena. 

Let me bring an example for the amoralizing effect of science. In recent 

years, attention toward diversity and inclusion has culminated in large 

progress(1779-1781). However, progress in some aspects has lingered or 

even stalled(1781-1787). Some suggest that resuming progress requires 

fundamental social and cultural shifts(1781, 1787, 1788). A drawback of 

current discussions promoting inclusion and diversity, even in the scien-

tific community, is that they are only backed up by moral convictions. 

Moral convictions are subjective(1789). Those who oppose inclusion 

and diversity in many aspects are also propelled by moral convic-

tions(1790-1794). And because of the subjectivity of morality, it is prob-

ably impossible to convince and convert them based on moral arguments. 

Let us employ a completely different perspective: the more “objective” 

perspective of science. Let us try to see “our” composing processes as 

outside observers. Now, let us compare the objective trajectories of the 

preferable scenarios of these two subjective convictions: a human soci-

ety promoting while the other curtailing diversity and inclusion. We have 

already compared two similar scenarios: the group of bacteria that em-

braced variation and diversity versus the group that did not. As we saw, 

evidence supports this conclusion that embracing variability and 

diversity enables exploring novel capabilities(858-860). Organisms have 

been selected for embracing diversity and inclusion(359-372). This has 

enabled their expansion and evolution to all the diverse forms we see. 

Similarly, it is wise to see that a group of humans that actively promote 

diversity and inclusion among themselves, is “objectively” and naturally 

far more capable to gain enhanced and new capabilities and opportuni-

ties. Empirical evidence corroborates this outlook(1795, 1796). Still, in 

line with our realization that unification of biological sciences and phys-

ics does not entail being able to capture everything with a simple physics 

formula, being able to dissolve psychological and social phenomena by 

science should not entail too simplistic and naive attitudes; otherwise, 

upside-down conclusions may ensue(1790, 1797). “Although science 

claims the whole universe as its field, it must not be supposed that it has 

reached, or ever can reach, complete knowledge in every department. Far 

from this, it confesses that its ignorance is more widely extended than its 

knowledge(1054)” Even where science does not lead to conclusive dis-

solution, it brings this important realization that the conviction we 

choose to employ is not fueled by unequivocal and irrefutable “objec-

tive” reasons: this can alone increase our tolerance toward others(1798). 

Besides dissolving many, not all, moral challenges, “objective” scientific 

vantage points toward phenomena can reveal broader implications of 

“objective” principles which are not at all visible when remaining con-

fined to moral convictions: Intellectual inclusion is among such implica-

tions of the principle of diversity. 

Metacognition 

I am wiser than this man, for neither of us really knows anything fine and good, 

but this man thinks he knows something when he does not, whereas I, as I do not 

know anything, do not think I do either. I seem, then, in just this little thing to be 

wiser than this man at any rate, that what I do not know I do not think I know 

either.(1799) Socrates (emphasis added) 

Our attempt to employ toward our moral convictions, an “objective” per-

spective by seeing “ourselves” as outside observers, is an example of 

trying to achieve metacognition: becoming cognizant of our own cogni-

tion. By clearing the line between nature and humans and realizing that 

we are among the composing processes of this unitary universe, we can 

better appreciate that our cognition and behaviors are investigable and 

understandable by philosophy and science. Metacognition is especially 

important for the second scientific revolution. It makes us aware and 

helps us manage our manifold biases(1800). Let us skim over some met-

acognitive standpoints. 

We Have Not Evolved to Pursue Knowledge and “Truth”: 

We must, however, acknowledge that man with all his noble qualities, […] still 

bears in his bodily frame the indelible stamp of his lowly origin.(1633) 

Charles Darwin 

This is the origin of many of our biases. 

Incomprehensibility of the Extent of Complexity for Human Cognition: 

The complexity that our species evolved to deal with is incomparable to 

the complexity we may currently face in science and our societies. Our 

working memories can keep and process only a few objects at a 

time(1801-1804). Thus, similar to how we cannot perceive the extent of 

the meagerness of the size of Earth compared to the whole universe, we 

cannot perceive the extent of the difference between a single recursion 

of truism-law-of-survival and the “number” of recursions from LUCA to 

ourselves, neither can we perceive the extent of the irrationality and in-

efficiency of “rational” drug discovery (supplementary data 2). 

Binary Thinking: Digitizing a Continuous Spectral Complex World: 

One way to cope with such overwhelming amounts of complexity is to 

reduce them into a few discrete manageable categories and digitize the 

continuous and spectral reality(425-430). This is one reason for the per-

vasiveness of reducing complex phenomena to a few variables and “sub-

stituting scientific reasoning(500)” with “mindless statistical rituals.” 



 

32 

 

Herd Mentality: 

Another way to cope with the complexity we have evolved to embrace 

is to follow peers and take for granted most of what we are told(1805-

1808). Yet we must remember this is not optimal for pursuing 

knowledge(1529, 1809). 

A new scientific truth does not triumph by convincing its opponents and making 

them see the light, but rather because its opponents eventually die, and a new 

generation grows up that is familiar with it.(1810) Max Planck 

Inflexibility of Developed Structures: 

By the time most scientists have reached age thirty they are trapped by their own 

expertise.(617) Francis Crick 

In emergent bound box theory, we saw that through recursions of truism-

law-of-survival, states of constituents of organisms get bound to a subset 

of their possible states. Constituents of organisms may get so bound to 

specific states that they would discourage the emergence of diversity and 

novelty. This pattern occurs in human organizations too. It has been 

shown that when they get very large, their creativity diminishes(1811-

1814) and they show unproductive behaviors which minimize their or-

ganizational efficacy(1815, 1816). Large organizations become too sta-

ble to disrupt and innovate radically. This is why many fundamental and 

radically disruptive innovations have emerged from solitary individuals 

rather than large teams. There is a polarity between stability and creativ-

ity(1817, 1818). 

This is a challenge, especially in this era. Organizations have become so 

large and complex that they may resist any change unless forced to (like 

in COVID-19 pandemics). This also inflicts the scientific community. A 

concrete example is the manuscript you are reading: Commending 

Schrödinger’s conception of science, I have strived that the work “aims 

at nothing but making true and adequate statements about its object(9)”; 

however, I may not be able to share it properly because of not adhering 

to common size limits that are vestiges of the pre-internet era. Despite 

environmental impetus, scientific journals still follow established habits 

and stick to printing in the digital era and thereby, also impose unneces-

sary pains for both authors and readers(1819-1824); also see (1825). Re-

membering this bias and the fact that established habits and bureaucra-

cies are not natural laws cast in stone but are created by us, and that 

change, flexibility, and inclusion are necessary, can itself make us more 

tolerant(1541, 1686, 1688, 1715-1717, 1719-1721). 

Scientific Conviction 

It Is Convicted That I am 

A doubt that doubted everything would not be a doubt.(1826) 

Ludwig Wittgenstein 

It would be a mistake to suppose that a science consists entirely of strictly proved 

theses, and it would be unjust to require this. Only a disposition with a passion 

for authority will raise such a demand, someone with a craving to replace his 

religious catechism by another, though it is a scientific one. […] It is actually a 

sign of a scientific mode of thought to find satisfaction in these approximations to 

certainty and to be able to pursue constructive work further in spite of the absence 

of final confirmation.(1827) Sigmund Freud 

The fundamental cause of the trouble is that in the modern world the stupid are 

cocksure while the intelligent are full of doubt. Even those of the intelligent who 

believe that they have a nostrum are too individualistic to combine with other 

intelligent men from whom they differ on minor points. […] Perhaps we shall 

have to realise that scepticism and intellectual individualism are luxuries which 

in our tragic age must be forgone, and if intelligence is to be effective, it will have 

to be combined with a moral fervour which it usually possessed in the past but 

now usually lacks.(1828) Bertrand Russel (emphasis added) 

Descartes tried to build his knowledge upon questioning and doubting 

everything he had taken for granted, including the reliability of his per-

ception from the physical world(584, 1829, 1830). He reasoned he could 

not refute the possibility that some omnipotent demon was deceiving his 

perception. He supposed that to pursue knowledge, it is necessary to find 

an initial certain and indubitable firm ground to build upon: “Archime-

des, in order that he might draw the terrestrial globe out of its place, and 

transport it elsewhere, demanded only that one point should be fixed and 

immovable; in the same way I shall have the right to conceive high hopes 

if I am happy enough to discover one thing only which is certain and 

indubitable(584).” “After having reflected well and carefully examined 

all things,” he infamously asserted “I think, therefore I am(584).” 

But this assertion does not seem to be indubitable at all as many have 

already criticized it(690, 1446, 1831-1836); also see (1837). Here, I 

question Descartes’ presumption that it is necessary to build knowledge 

on certain and indubitable grounds. Philosophy and science do not im-

pose certainty, but moving toward knowledge. 

We shall seek metacognition toward the most important approach of 

moving toward knowledge. We said that philosophy and science have 

been the most successful frameworks for gaining knowledge about the 

world because they exempt nothing from questioning and doubt. Now, 

let us doubt doubting itself. Doubt is integral for pursuing knowledge but 

is not the end itself. As John Dewey put it, “Taken merely as a doubt, an 

idea would paralyze inquiry. Taken merely as a certainty, it would arrest 

inquiry. Taken as a doubtful possibility, it affords a standpoint, a plat-

form, a method of inquiry(1557).” To build up knowledge, there is no 

need for our initial ground to be “certainly true.” What is needed is 

awareness toward the extent of the reliability of assumptions we build 

on; if we are justified to employ them or not. From a view, this is what 

we have been adhering to all along in modern statistical methods: It has 

never been proven that a treatment is effective. It has been shown that 

we are justified or not to suppose that a treatment is effective (according 

to the framework of modern statistical methods). Remembering that the 

aim of philosophy and science is moving toward knowledge, not cer-

tainty and that radical skepticism(1838) is a choice itself, it should be 

noted that this justification is relative. We must decide which choice is 

closer to truth. Absolute truth is not a desideratum. I propose an alterna-

tive for Descartes’ cogito: It is convicted that I am. 

Scientific conviction is to open a set of parentheses and inside that pa-

rentheses, to fully commit to the implications(1839) of that conviction, 

but always to be willing to abolish the conviction and the whole impli-

cated parentheses if contradicted by more justifying arguments and evi-

dence. 

The popular view that scientists proceed inexorably from well-established fact to 

well-established fact, never being influenced by any unproved conjecture, is quite 

mistaken. Provided it is made clear which are proved facts and which are conjec-

tures, no harm can result. Conjectures are of great importance since they suggest 

useful lines of research.(1840) 

We can only see a short distance ahead, but we can see plenty there that needs to 

be done.(1841) Alan Turing 

Science is a way to teach how something gets to be known, what is not known, to 

what extent things are known (for nothing is known absolutely), how to handle 

doubt and uncertainty, what the rules of evidence are, how to think about things 

so that judgments can be made, how to distinguish truth from fraud, and from 

show.(1734) Richard Feynman 

The fallibilist and pragmatist attitude(377, 1629, 1831, 1842-1846) of 

scientific conviction, besides its importance in addressing the ancient 

challenge of radical skepticism, is especially important in our post-truth 

era which is rife with impartial and biased use of information, radical 

relativism and sophistry. Although it may sound that scientific convic-

tion decreases flexibility, I argue that it even increases it and promotes 

intellectual inclusion. It discourages authoritarianism of some “certainly 

true” dogma(1847) and emphasizes reflective practice(1848, 1849). Sci-

entific conviction highlights that pursuit of knowledge is interwoven be-

tween building frameworks and destroying them based on observing 

their real-world implications(1850); between the willingness to fail and 

to reconsider previous convictions while exploring the unknown(1851, 
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1852). Yet it also emphasizes that indecisiveness makes opportunity for 

those unconcerned with truth. Public education of scientific conviction 

and how to embrace uncertainty is necessary in our post-truth era(1853, 

1854); also see (1855). 

So, my criticisms against “waste” of resources by “rational” drug dis-

covery or “evidence-based” medicine are not aimed at the mistakes per 

se; mistakes are a part of science(1852). The problem is that the domi-

nant rote science cannot self-reflect and self-correct. It not only does not 

question to enable correcting mistakes but uncritically builds upon what-

ever it is told and cements mistakes into “a priori givens(1619).” The 

problem is rote science’s inherent inability to move toward knowledge. 

The sophist, in contradistinction to the philosopher, is not set in motion and kept 

in motion by the sting of the awareness of the fundamental difference between 

conviction or belief and genuine insight.(1579) Leo Strauss 

The way in which knowledge progresses, and especially our scientific knowledge, 

is by unjustified (and unjustifiable) anticipations, by guesses, by tentative solu-

tions to our problems, by conjectures. These conjectures are controlled by criti-

cism; that is, by attempted refutations, which include severely critical tests. […] 

As we learn from our mistakes our knowledge grows, even though we may never 

know-that is, know for certain. Since our knowledge can grow, there can be no 

reason here for despair of reason. And since we can never know for certain, there 

can be no authority here for any claim to authority, for conceit over our 

knowledge, or for smugness.(1856) Karl Popper 

The Last Chance 

It is no easy matter to root out old prejudices, or to overturn opinions established 

by time, custom and great authorities. […] Where I have been necessarily led, in 

this disagreeable part of the work, to criticise the sentiments of eminent and 

learned authors, I have not done it with a malignant view of depreciating their 

labours, or their names; but from a regard to truth, and to the good of                 

mankind.(1857) James Lind 

Here, I have tried to push aside the mesmerizing and deceiving facade of 

the accumulated products of science and have asserted that our scientific 

progress, relative to the resources we possess, is the all-time low in his-

tory and our scientific practice has minimal relevance to the real world 

and is a “pseudoscientific imitation(1430)” of the scientific method that 

has changed the world and garnered science, its current credibility and 

authority. By these, I have not aimed at diminishing the importance of 

science; on the contrary, I aim to revitalize this most valuable and hon-

orable achievement of “life” on Earth. I have aimed to make the scientific 

community aware of its condition, so that we may leave behind this all-

time low: We cannot improve our reality until we see it. These hopes are 

based on two convictions: We have to change fast and We can change. 

Why Do We Have to Change Fast? 

A challenge is that, even with sufficient impetus, massive cultural and 

social changes generally need decades and centuries; however, the speed 

at which great dangers are threatening us compels us to accelerate our 

change. 

1. Selection of Bad Science 

Some intellectual sits at the typewriter and writes it all out as if the information 

were really known. The intellectual never says, “I don’t know this,” or “I’m not 

really sure.” If he were to do so, he couldn’t sell his articles because somebody 

else would come along and say that they have all the answers.(1734) 

Richard Feynman 

The first reason is that our current trajectory naturally leads to exceed-

ingly less room and prospect for positive change in the future. 

We saw that currently, questioning, doubting, and real-world value are 

not crucial in scientific practice. The commodity is the number of arti-

cles, citations, “impact factors,” etc. The short-term attitude of the busi-

ness people who run the academia and govern the scientific community 

does not leave room for science, just numbers(1596-1602). Strategies 

that optimize these numbers survive and propagate far better than those 

strategies which “waste” time for questioning, adherence to stand-

ards(1263-1268, 1858), thinking scientifically, and bringing real-world 

value. We saw how recursions of truism-law-of-survival create organ-

isms highly efficient for what has enabled their survival. Similarly, if the 

current organizational values of the scientific community survive, the 

scientific practice will be even more rote, template-based, conformist 

and unable to solve real-world problems, unless where it could merely 

permutate previous solutions(1859, 1860). Complying with Goodhart’s 

law(1861, 1862), “When a measure becomes a target, it ceases to be a 

good measure(1859),” new ways of gaming metrics are being devised 

constantly(1606-1612). 

In the past, censorship worked by blocking the flow of information. In the twenty-

first century, censorship works by flooding people with irrelevant infor-

mation.(1863) Yuval Noah Harari 

Even if one could persevere against all these systemic adversities(1864), 

and present to the world a scientific work with immense real-world 

value, there is a good chance that it will be lost among piles of valueless 

products of rote science(1747, 1865, 1866); e.g., look at how this 2007 

article, even published by top scientists in a top journal, did not get suf-

ficient attention and consequently, our species suffered the exact future 

that it had warned: “Coronaviruses are well known to undergo genetic 

recombination, which may lead to new genotypes and outbreaks. The 

presence of a large reservoir of SARS-CoV-like viruses in horseshoe 

bats, together with the culture of eating exotic mammals in southern 

China, is a time bomb. The possibility of the reemergence of SARS and 

other novel viruses from animals or laboratories and therefore the need 

for preparedness should not be ignored(1867).” 

2. The Anthropocene Crisis 

We have made a civilization based on science and technology and then at the 

same time have arranged things so that almost nobody understands science and 

technology. That is a clear prescription for disaster: We might get away with it 

for a while, but sooner or later this combustible mixture of ignorance and power 

is going to blow up in our faces.(1868) Carl Sagan (emphasis added) 

Accumulation of products of science has empowered us over the envi-

ronment to an extent unimaginable for our ancestors. Now, we can inflict 

damages to the environment that our ancestors were incapable of. Unlike 

this increasing power, we have regressed science to rote science and ar-

ticle-writing. Our education is also hung up on reciting products of sci-

ence, rather than science itself. This has led to an unbalance: Currently, 

our species resembles a child who is given a gun (power). There is a great 

danger for both the child and others, not because of malevolence or stu-

pidity, but because of ignorance. Our society is like an organism with 

immense power but without a mind and the ability to think. It lacks the 

most basic insight into the implications of its actions. 

The investigation of the psyche is the science of the future. Psychology is the 

youngest of the sciences and is only at the beginning of its development. It is, 

however, the science we need most. Indeed, it is becoming more obvious that it is 

not famine, not earthquakes, not microbes, not cancer but man himself who is 

man’s greatest danger to man, for the simple reason that there is no adequate 

protection against psychic epidemics, which are infinitely more devastating than 

the worst of natural catastrophes.(1869) Carl Jung 

We are rushing into the extinction of human civilization. Only 100 sec-

onds are left on Doomsday Clock, which is developed by the Bulletin of 

the Atomic Scientists and whose reaching midnight epitomizes the end 

of human civilization (thebulletin.org). Challenges like global climate 

change and other environmental issues like declining biodiversity(1334, 

1335), antibiotic-resistant bacteria(1870), pandemics, food security and 

hunger(1344, 1345), misinformation, and cultural crises(1571, 1593, 

1767, 1871) are getting bigger and bigger without suitably being at-

tended to(1872-1874). 

 

https://thebulletin.org/doomsday-clock/
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We Can Change 

There is only one good, that is, knowledge, and only one evil, that is,  igno-

rance.(1875) Socrates 

On applying my mind to politics, I have resolved to demonstrate by a certain and 

undoubted course of argument, or to deduce from the very condition of human 

nature, not what is new and unheard of, but only such things as agree best with 

practice. And that I might investigate the subject-matter of this science with the 

same freedom of spirit as we generally use in mathematics, I have laboured care-

fully, not to mock, lament, or execrate, but to understand human actions; and to 

this end I have looked upon passions, such as love, hatred, anger, envy, ambition, 

pity, and the other perturbations of the mind, not in the light of vices of human 

nature, but as properties, just as pertinent to it, as are heat, cold, storm, thunder, 

and the like to the nature of the atmosphere, which phenomena, though inconven-

ient, are yet necessary, and have fixed causes, by means of which we endeavour 

to understand their nature, and the mind has just as much pleasure in viewing 

them aright, as in knowing such things as flatter the senses.(1876) 

Benedict Spinoza 

Laplace’s model that we started this manuscript with implies that all our 

actions are predetermined. Although we saw that Laplace’s model has 

many mistakes, it is hard to disagree that “our” actions depend, to a large 

extent, on causes that are out of “our control,” like our emotions. But 

even in such a model, there is one thing that can change “our” “out-of-

control” behaviors in response to similar phenomena: understand-

ing(697). This is confirmed by the fact that today, fewer children are 

sacrificed to stop floods(1768). The understanding provided by science 

dissolved the emotions provided by blind moral convictions. Similarly, 

we can overgrow the age of sophistry by trying to understand why we 

have reached here, the consequences of not overgrowing this age, and 

why we may be kept in this age. Similar to our discovery in the Scientific 

Revolution, we can get benefit in our pursuit of understanding from pre-

vious observations recorded in history. Indeed, as may have been implied 

by my frequent use of quotes, many fallacies I criticized here had already 

been pointed out by scientists living hundreds of years ago. But cur-

rently, there is an infatuation with the new. This way we are losing thou-

sands of years of experience and wisdom in pursuit of knowledge and 

are doomed to repeat the mistakes that have already been observed and 

recorded. We can infer that just like how the consensus of the intellectual 

community at Copernicus and Galileo’s time did not reverse the fact that 

Earth goes around the Sun, the high number of our publications, cita-

tions, and “impact factors” does not imply that we have moved even an 

inch forward in pursuit of knowledge. In Feynman’s words, “For a suc-

cessful technology, reality must take precedence over public relations, 

for nature cannot be fooled(1877).”; also see (1878). We can recall ap-

proaches that have filled millions of pages during hundreds of years, 

without leading to meager valuable and truthful insight? Isn’t rote sci-

ence among such approaches? We can recall how intellectual communi-

ties of different ages gradually grew away from rationality and inclusion 

of new ideas and failed to optimally pursue knowledge. 

In pursuit of understanding, we may confront realities that may seem 

discomforting at first; e.g., are not we caught up in a giant “rat race” of 

article-writing and CV-lengthening without any real-world output in 

spite of all the costs we accept: hundreds of hours of work from millions 

of researchers, billions of dollars, thousands of institutes and agony of 

millions of animals(1745)? Although many of us may reach our short-

term wishes, is not our collective organizational efficacy too miserable? 

Isn’t the honorable pursuit of knowledge molded into just one of the 

many documented “bullshit jobs(1879)” unconcerned with truth (bullshit 

entered the vocabulary of philosophy by Harry Frankfurt to denote un-

concern for truth (1464, 1880, 1881)? Despite the abundance of scientific 

journals, institutions and universities, is our scientific output much dif-

ferent from hastily completed school homework and rewriting of previ-

ously established concepts and frameworks? 

But even at these times, let us dissolve our frustration by understanding 

that even these phenomena themselves have had natural causes. E.g., as 

Bacon remarked, science’s success leads to many phenomena that are 

naturally(1882) in “contrariety toward true knowledge” as they do not 

impose pursuing knowledge above everything else. 

There is no composition of estate or society, nor order or quality of persons, 

which have not some point of contrariety toward true knowledge. That monar-

chies incline wits to profit and pleasure, and commonwealths to glory and vanity. 

That universities incline wits to sophistry and affectation, cloisters to fables and 

unprofitable subtilty.(1883) Francis Bacon 

Also, let us remember this crucial point that all the criticisms and prob-

lems I have pointed out do not rid our community of being adherents to 

science whose ultimate dogma is moving toward knowledge, because 

many researchers have been unaware of the extent of the dreadfulness of 

our current state and trajectory. If after becoming aware, we continue our 

current trajectory, we will then become a disgrace to all great philoso-

phers and scientists. 

Our freedom to doubt was born out of a struggle against authority in the early 

days of science. It was a very deep and strong struggle: permit us to question — 

to doubt — to not be sure. I think that it is important that we do not forget this 

struggle and thus perhaps lose what we have gained.(1734) Richard Feynman 

Time was when scientists and engineers were among the world’s insurgents, dar-

ing to question the established order-the church-and to undermine its teachings 

by their theories and experiments. But the pendulum has swung, as pendulums do, 

and today the scientific community finds itself on the side of the establishment, in 

an age when “establishment” has become a “dirty word.” Now science once 

again must take the initiative.(1884) 

[We are] free to choose not to be conscious, but not free to escape the penalty of 

unconsciousness: destruction.(1885) Ayn Rand 

Understanding is not itself sufficient. The current momentum needs mas-

sive momentum for change. We must diffuse the understanding we ob-

tain to the whole scientific community. In parallel, we must vehemently 

strive for changing our immensely inflexible organizational structures. 

In hardships, let us gain strength by recalling how our forebearers perse-

vered in pursuit of knowledge, in any circumstances and at any cost: 

From Socrates who chose death over abandoning the pursuit of 

knowledge (figure 11) to “the determination of Fellows [of the first mod-

ern scientific society] to withstand the domination of authority(1427).” 

Despite all my criticisms, the scientific community is, still, far ahead in 

many aspects from other communities: We form globally inclusive dis-

cussions and collaborations. There is much less attention to arbitrary ge-

ographical boundaries. And we are tolerant and appreciative to those 

who criticize us (a characteristic which is non-existent in many places); 

that I have been criticizing and hoping that my words would be reflected 

upon is a testament to this. Still, the survival of our global civilization 

depends on our massive change. 

Now, the question is not which way is better to gain knowledge or the 

“mistakes” and experimentations we naturally commit along pursuing 

knowledge. The problem is a general unconcern for truth in the scientific 

community. This is while science is society’s truth buffer. We, the sci-

entific community, are responsible for all the misery we see in the 

world(1771-1775): from labor(1886) and mutilation(1887) of children to 

agony of animals, domestic violence, discrimination, terrorism, and fi-

nally, our imminent extinction. We are society’s brain. We could have 

prevented these sufferings if we had upheld “the natural light of rea-

son(584)” itself instead of getting hung up on the things it illuminates. 

Evidence and our current trajectory do not bode well for the sustainabil-

ity of our global civilization(1334, 1335, 1344, 1345, 1571, 1593, 1767, 

1870-1874, 1888-1892). And we, the scientific community, must feel re-

sponsible for it. We can keep all these problems under the rug as it may 

seem more comfortable, for a short while, to stick with the current trend. 

But one thing is certain: One way or another, our current trajectory will 

soon end. Either by awareness, self-questioning, and self-doubt of the 

scientific community or by the extinction of human global civilization. 
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I say unto you: one must still have chaos in oneself to be able to give birth to a dancing star. 

I say unto you: You still have chaos in yourselves. Alas, the time is coming when man will no longer give birth to a star. 

Alas, the time of the most despicable man is coming, he that is no longer able to despise himself. 

Behold, I show you the last man.(689) 

Friedrich Nietzsche 

The unexamined life is not worth living.(1799) 

Socrates, after choosing death by hemlock, on the charge of impiety and corrupting the youth, 

over abandoning the pursuit of knowledge 

Methods 

Discovery origin of all approved drugs 

I compiled the list of drugs approved by the FDA by the end of 2020 using three 

databases: National Center for Advancing Translational Sciences (NCATS) Inx-

ight: Drugs (drugs.ncats.io/), Drugs@FDA (accessdata.fda.gov/scripts/cder/daf/in-

dex.cfm) and the Orange Book (fda.gov/drugs/drug-approvals-and-databases/ap-

proved-drug-products-therapeutic-equivalence-evaluations-orange-book). I que-

ried Inxight: Drugs choosing “US Approved OTC” OR “US Approved Rx” for the 

development status, “Approved” for highest phase, “Principal Form” for substance 

form, and excluding treatment modalities of “Secondary,” “Inactive Ingredient,” 

“Diagnostic.” From Drugs@FDA, I retrieved drugs with type 1 (New Molecular 

Entity) and type 7 (“Previously Marketed but Without an Approved NDA”) appli-

cations among “Original NDA and Original BLA Approvals” and excluded dis-

continued. I also checked and added non-discontinued drugs of the orange book if 

they were not already included. All these retrieved drugs are listed in supplemen-

tary data 1; however, I did not investigate the discovery origin of these groups of 

drugs: diagnostic agents like contrast agents; nutrients vitamins and nutrient inor-

ganic ions; secondary agents which are not therapeutic themselves, like mesna; 

antidotes; enantiopure or racemic formulations of previously approved drugs; pro-

drugs of previously approved drugs; excipients; drug whose therapeutic effects de-

pend more on the physical properties of molecules; e.g., surfactants, chelating 

agents, radiopharmaceuticals, photochemotherapeutics, and osmotic diuretics. 

Drug discovery is a multitier process; it is important to settle upon definite and 

unambiguous criteria for discovery origin so that the decision whether drugs were 

discovered based on reductionism or not would be most “objective” (compare 

(1893) to (562) to see how the same drug has assigned differently to different dis-

covery origins.) I defined discovery origin as the first observation that has related 

a drug class to a therapeutic effect. A drug class is a group of analogues (chemical 

and/or pharmacological(1894)) along with their respective lead molecules that 

Figure 11. The Death of Socrates by Jacques Louis David (1787). 

https://drugs.ncats.io/
https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm
https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm
https://www.fda.gov/drugs/drug-approvals-and-databases/approved-drug-products-therapeutic-equivalence-evaluations-orange-book
https://www.fda.gov/drugs/drug-approvals-and-databases/approved-drug-products-therapeutic-equivalence-evaluations-orange-book
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guided their discovery. To identify a set of chemicals as analogues with utmost 

“objectivity,” I cited the literature (e.g., (1894)) and calculated feature trees as the 

molecular similarity measure using FTrees 6.3(563, 1895, 1896). I assigned drug 

classes to Target-based for when the discovery origin was observing the effect of 

the molecule on a “target” protein or phenotype-based for when the discovery 

origin was observing the effect of the molecule on a phenotype; following the sem-

inal study of Swinney and Anthony(562), I counted biopharmaceuticals as a sepa-

rate group, but also further sorted based on whether they are endogenous-based or 

not. I compared the share of these categories among all the approved drugs and 

among those approved after 1995, the approval year of the first “target-based” drug, 

saquinavir. Those drugs whose accurate discovery accounts were not found but 

were surely discovered based on phenotypical observations according to their dis-

covery year, were put in the category of therapeutic phenotype in non-human ani-

mals and ex vivo. In investigating the discovery origins, I highly prioritized the 

accounts of the initially reporting discovery papers and afterward, other narrations 

from the discoverer(s) themselves. 

“Off-Target” Therapeutic Mechanisms of “Target-Based” Drugs 

I searched PubMed and Embase to systematically retrieve the studies investigating 

therapeutic pharmacological mechanisms of the “target-based” drugs I had identi-

fied in the previous section, with these queries: “[Drug]/pharmacology”[Majr] for 

PubMed and ‘Drug’/exp/mj/dd_pd for Embase. After deduplicating the retrieved 

citations from these two databases using Systematic Review Assistant-Deduplica-

tion Module (SRA-DM)(1897), I reviewed the citations and extracted “off-target” 

mechanisms that were experimentally shown or suggested to mediate effects re-

lated to the therapeutic effect for which the drug was initially approved. To rule 

out the downstream effects of the binding of drugs to their “target,” I excluded 

from the extracted “off-target” mechanisms, those that were mediated by first shell 

or second shell interactor proteins; those off-“target” mechanisms that were based 

on direct binding of the drug to the “off-target” proteins were exempt from this 

exclusion criterion. I retrieved these interactors from STRING v11(582) with these 

settings: “experiments” or “databases” for active interaction sources; highest con-

fidence (0.900) for minimum required interaction score; 500 for the maximum 

number of interactors in the first and the second shells. I mostly used IUPHAR/BPS 

Guide to PHARMACOLOGY(1898) or ChEMBL(583) for nomenclature. 

Percentile Rank of the Affinity of Approved Drugs Among             

All ChEMBL Ligands of Their Therapeutic Targets 

I retrieved the targets of approved drugs from “a comprehensive map of molecular 

drug targets”(1899); this database (supplementary information S2 of (1899), ar-

chived) has compiled therapeutic targets of approved drugs which are defined as 

“those proteins or other biomolecules (such as DNA, RNA, heparin, and peptides) 

to which the drug directly binds, and which are responsible for the therapeutic ef-

ficacy of the drug(1899).” I excluded drug-target pairs with these mechanisms of 

action: agonists, activators, biopharmaceuticals, channel-openers, modulators, ac-

tivators, allosteric antagonists, partial agonists, inverse agonists, DNA and RNA 

inhibitors, “cell membrane inhibitors” and releasing and chelating agents. I re-

trieved the available binding measurements for the remaining “targets” from 

ChEMBL27(583) with these curations: Measurements lacking pChEMBL value or 

with pChEMBL values expressed in any relation other than “equal to” like “smaller 

than” or “bigger than” were excluded; measurements expressed in other than IC50 

or Ki were excluded; based on (1900), 0.30 was added to pChEMBL values of 

measurements expressed in IC50 to make the measurements more comparable; 

pChEMBLs of molecules with more than one remaining measurement were aver-

aged and one final pCHEMBL was recorded for each ligand. After excluding “tar-

gets” with less than 100 remaining ligands, I calculated the percentile rank (inclu-

sive) of the affinity of the approved drugs among the remaining ligands for each 

target. Percentile ranks of all salt and protonation alternative forms of each drug 

(available in ChEMBL) were averaged, weighted based on the count of measure-

ments for each form. 

Interactome-Wide Affinity Fingerprints                                              

of the Drug Repurposing Hub 

After retrieving possibly therapeutic proteins across the human-SARS-CoV-2 in-

teractome from the extensive available data(1901-1906) and filtering them based 

on the availability of acceptable structural information and druggability (Tclin or 

Tchem categories in Pharos(1907)), I identified 176 binding sites across these pro-

teins based on the coordination of their co-crystallized ligands, or by using DoG-

SiteScorer (via SeeSAR 10.0 and proteins.plus) and (1908) and PrankWeb(1909) 

for “targets” lacking co-crystallized ligands. After downloading validated(1910) 

3D structures of the proteins from either PDB-REDO(1911) (for experimental 

structures) or SWISS-MODEL repository(1912) (for homology models), I docked 

the 6676 molecules of the Drug Repurposing Hub(1280) by FlexX(1283) and 

HYDE(1286) via SeeSAR 10.0. I had prepared structures of the Drug Repurposing 

Hub (version 2020-03-24) by hydrogenation based on PH= 7.4, deduplication 

based on the IUPAC international chemical identifier (InChI), removing all but the 

largest contiguous fragments using Open Babel 3.0(1913). Analysis of different 

states of protonation and tautomerization was performed by Protoss integrated into 

SeeSAR(1914). I used FoldX 5(1915) to revert into the wild type, the proteins for 

which only experimental data for a mutant type was available, e.g., Histone-lysine 

N-methyltransferase NSD2. To identify putative binding sites across protein-pro-

tein interfaces of the interactome, I used the alanine scanning functionality(1915) 

of FoldX 5 and SpotOn(1916). I also used 2D-QSAR modeling for predicting the 

affinities of molecules to druggable targets without acceptable structural infor-

mation (see next section). Assessed proteins and used binding sites are available in 

supplementary data 4. 

Interactome-Wide Consensually docked 4D-QSAR                             

Affinity Fingerprints for COVID-19 Select Drugs 

To enhance accuracy (and demonstrate nested integration of diverse data), I de-

signed consensually docked 4D-QSAR modeling to predict the binding affinity of 

a select set of compounds with more potential more accurately. After the generation 

of protomers and tautomers, docking was done with FlexX, allowing the generation 

of up to 10 poses for each protomer or tautomer. Then, these poses were rescored 

and optimized by HYDE. After this, the poses were rescored also by these scoring 

functions: chemplp, plp, plp95 scores of PLANTS(1284) (via VEGA ZZ 

3.2.1.33(1917)); HPScore, HMScore and HSScore of X-Score(1285) (via VEGA 

ZZ 3.2.1.33); RF-Score-VS(1287) and KORP-PL 0.1.1(1288). For each target, the 

four best poses were selected for each molecule based on ranking all the docked 

and rescored poses of its various protomers and tautomers. This ranking was based 

on calculating a total score by weighted averaging all scores of each pose. This 

weight was calculated for each target and each scoring function according to Spear-

man’s rank correlation coefficient between the most potent score (variably the 

highest or lowest according to the specific scoring function) for molecules retrieved 

from ChEMBL27 and their experimental pChEMBL values. One notable aspect of 

this 4D-QSAR modeling is that it can cohesively and synergistically integrate var-

ious kinds scoring functions and other methods of affinity prediction. The ML part 

was done using either random forest(1918) or XGBoost(1919), either one of which 

was better for each protein in hyper-parametrization and internal validation; I used 

10-fold cross-validation in internal validation. I also used 2D-QSAR modeling for 

predicting the affinities of molecules to druggable targets without acceptable struc-

tural information. In both 2D- and 4D-QSARs, these descriptors were used: 1024-

bits Morgan fingerprint(1920) (radius: 3) and RDKit descriptors 

(rdkit.org/docs/GettingStartedInPython.html#list-of-available-descriptors (20 

September 2020), archived): SlogP, SMR, LabuteASA, TPSA, average molecular 

weight, exact molecular weight, number of rotatable bonds, number of hydrogen-

bond donors, number of hydrogen-bond acceptors, number of amide bonds, num-

ber of atoms, number of hetero atoms, number of heavy atoms, number of stereo-

centers, number of unspecified stereocenters, number of rings, number of aromatic 

rings, number of saturated rings, number of aliphatic rings, number of aromatic 

heterocycles, number of saturated heterocycles, number of aliphatic heterocycles, 

number of aromatic carbocycles, number of saturated carbocycles, number of ali-

phatic carbocycles, fraction of carbons that are SP3 hybridized, Chi0v - Chi4v, 

Chi1n - Chi4n, Hall-Kier alpha value, Kappa1 - Kappa3, SlogP_VSA1 - 

SlogP_VSA12, SMR_VSA1 - SMR_VSA10, PEOE_VSA1 - PEOE_VSA14, 

MQN1 – MQN42. 

Systematic Review 

I retrieved citations related to therapeutic effects of molecules in COVID-19 on 14 

March 2020 using these queries: 

CINAHL: TI ( SARS OR MERS OR “Severe Acute Respiratory Syndrome” OR “Middle East respiratory 

syndrome” OR “2019 novel coronavirus” OR nCoV OR COVID OR COVID-19 OR “coronavirus disease” ) 

OR AB ( SARS OR MERS OR “Severe Acute Respiratory Syndrome” OR “Middle East respiratory syn-

drome” OR “2019 novel coronavirus” OR nCoV OR COVID OR COVID-19 OR “coronavirus disease” ) 

Search modes - Boolean/Phrase, Limiters - Exclude MEDLINE records, Expanders - Apply equivalent subjects 

Narrow by SubjectMajor: - coronavirus infections OR - middle east respiratory syndrome coronavirus OR - 

middle east respiratory syndrome OR - severe acute respiratory syndrome 

Cochrane (via OVID): SARS OR MERS OR “Severe Acute Respiratory Syndrome” OR “Middle East res-

piratory syndrome” OR “2019 novel coronavirus” OR nCoV OR COVID OR COVID-19 OR “coronavirus 

disease” [Including Limited Related Terms], deduplicated 

Embase: (((‘sars-related coronavirus’/exp OR ‘middle east respiratory syndrome coronavirus’/exp) AND 

(‘drug development’/exp OR ‘drug activity’/exp)) OR (sars:ab,ti OR mers:ab,ti OR ‘severe acute respiratory 

syndrome’:ab,ti OR ‘middle east respiratory syndrome’:ab,ti OR ‘2019 novel coronavirus’:ab,ti OR ncov:ab,ti 

OR covid:ab,ti OR ‘covid 19’:ab,ti OR ‘coronavirus disease’:ab,ti)) AND [abstracts]/lim NOT [medline]/lim 

ProQuest: (MAINSUBJECT.EXACT(“Drug screening” OR “Drug discovery” OR “Drug development” OR 

“Drugs” OR “Drug”) AND AB,TI(SARS OR MERS OR “Severe Acute Respiratory Syndrome” OR “Middle 

East respiratory syndrome” OR “2019 novel coronavirus” OR nCoV OR COVID OR COVID-19 OR “coro-

navirus disease”)) NOT bdl(1007527), In: Biological Science Collection, Health & Medical Collection, MED-

LINE®, Nursing & Allied Health Database, ProQuest Dissertations & Theses A&I, ProQuest Dissertations & 

Theses Global 

https://web.archive.org/web/20211111143130/https:/static-content.springer.com/esm/art%3A10.1038%2Fnrd.2016.230/MediaObjects/41573_2017_BFnrd2016230_MOESM16_ESM.xlsx
https://web.archive.org/web/20211111143130/https:/static-content.springer.com/esm/art%3A10.1038%2Fnrd.2016.230/MediaObjects/41573_2017_BFnrd2016230_MOESM16_ESM.xlsx
https://proteins.plus/
http://rdkit.org/docs/GettingStartedInPython.html#list-of-available-descriptors
http://web.archive.org/web/20200920141627/http:/rdkit.org/docs/GettingStartedInPython.html
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MEDLINE (via PubMed): Search ((SARS[Title/Abstract] OR MERS[Title/Abstract] OR “Severe Acute 

Respiratory Syndrome”[Title/Abstract] OR “Middle East respiratory syndrome”[Title/Abstract] OR “2019 

novel coronavirus”[Title/Abstract] OR nCoV[Title/Abstract] OR COVID[Title/Abstract] OR COVID-19[Ti-

tle/Abstract] OR “coronavirus disease”[Title/Abstract]) NOT medline[subset]) Filters: Abstract 

Scopus: TITLE-ABS ( sars OR mers OR “Severe Acute Respiratory Syndrome” OR “Middle East respiratory 

syndrome” ) AND SUBJAREA ( phar ) AND NOT INDEX ( medline ) 

Web of Science: TS=(SARS OR MERS OR “Severe Acute Respiratory Syndrome” OR “Middle East respir-

atory syndrome” OR “2019 novel coronavirus” OR nCoV OR COVID OR COVID-19 OR “coronavirus dis-

ease”), Refined by: [excluding] Databases: ( MEDLINE ) AND RESEARCH AREAS: ( PHARMACOLOGY 

PHARMACY ), Databases= WOS, BCI, DIIDW, KJD, MEDLINE, RSCI, SCIELO Timespan=All years, 

Search language=Auto 

After deduplication with SRA-DM(1897) and removing the citations without title 

or abstract or citations from before 2002 (the advent of the earliest of these epi-
demics (SARS)), I screened them using abstrackr(1921); I used abstrackr AI capa-

bility to prioritize relevant citations and continued screening until I became confi-

dent that the remaining citations were probably irrelevant. I updated the initially 
retrieved citations until 27 June 2021 using LitCovid(1922) “treatment” citations. 

Citations of 24 August 2020 onwards were not screened using abstrackr, but en-

tirely manually. I included any assessment of molecules on symptoms and markers 
of SARS(severe acute respiratory syndrome), MERS (Middle-east respiratory syn-

drome), or COVID-19 (coronavirus disease 2019) in animals (including humans), 

irrespective of the severity of the disease, study type, and animal model. I excluded 
these interventions: macromolecules such as antibodies, vaccines, inorganic com-

pounds; nanomedicines, traditional and herbal medicines. Downloaded citations 

plus the query file for Reaxys database and the protocol submitted to PROSPERO 

on 18 March 2020, which was rejected as “It [was] felt that the methods proposed 

in [the] review are not synonymous with those of systematic review.” You can see 

the PRISMA flowchart(1923) in figure 12 (I have brought it in the methods section 
due to the demonstrative value of the systematic review). 

 

 
Cheminformatics Meta-Analysis 

After observing the very low quality of studies, I excluded studies of SARS and 

MERS, animal studies, and human studies with low quality from the 

cheminformatics meta-analysis (still, their extracted data is available in supple-

mentary data 5); I also excluded corticosteroids and anticoagulants as their effects 

on the progression of COVID-19 is not straightforward. For variables of 2D struc-

ture, I converted smiles codes of molecules to 1024-bits Morgan fingerprint(1920) 

(radius: 3) and RDKit descriptors (listed above). For pIC50, I used available meas-

urements with this priority for assays: nucleic acid (RT-PCR) > protein (AntiNP) 

> plaque and others. According to the consensus reported in (1924), assessed out-

comes included mortality (closest to 90 days), mechanical ventilation (total number 

of patients, over 90 days), viral clearance (closest to 7 days, 3 days either way), 

admission to hospital, duration of hospital stay, intensive care unit (ICU) length of 

stay, duration of mechanical ventilation, time to symptom resolution or clinical 

improvement and time to viral clearance. For effect size, I used the ratio of means 

or medians for continuous data and risk ratio or hazard ratio for dichotomous data; 

I recorded it as a percentage where the effect size of the treatment with better out-

come gets larger than 100; adjusted hazard ratios or risk ratios were inverted if 

necessary. For variation, I used the sum of the coefficient of variation or quartile 

coefficient of dispersion * 100 for continuous data and 95% confidence interval * 

2 * 100 for dichotomous data; where variation was not reported for an outcome, I 

instead used the variation of another outcome in that study. For risk of bias, I used 

the OHAT Risk of Bias rating Tool (January 2015) (ntp.niehs.nih.gov/go/riskbias, 

archived); an answer from 0 to 5 was given to each of its nine questions: 0 for not 

relevant, 1 for definitely low, 2 for probably low, 3 for not reported, 4 for probably 

high, 5 for definitely high. Nine questions were these: Was administered dose or 

exposure level adequately randomized?; was allocation to study groups adequately 

concealed?; did selection of study participants result in appropriate comparison 

groups?; did the study design or analysis account for important confounding and 

modifying variables?; were the research personnel and human subjects blinded to 

the study group during the study?; were outcome data complete without attrition or 

exclusion from analysis?; can we be confident in the exposure characterization?; 

can we be confident in the outcome assessment?; were all measured outcomes re-

ported?. For severity, I used the percentage of patients with scores above 5 on the 

WHO ordinal scale for clinical improvement (who.int/publications/i/item/covid-

19-therapeutic-trial-synopsis, archived). When the aggregate age was not reported, 

it was estimated by weighted mean or median; when the race was not reported, it 

was inevitably estimated based on another study from the same country; in case of 

unreported severity or gender, they were assigned 50. I used random forest(1918) 

and XGBoost(1919) for ML with 10-fold cross-validation in internal validation. 

Assessing the Accuracy of AutoDock Vina for                                    

SARS-CoV-2  Main Protease 

I used the data gathered by (1925) (ndownloader.figstatic.com/files/26786317, ar-

chived) as the reference experimental measurements, which is reported in inhibi-

tion-percentage of SARS-CoV-2 main protease in 20 µM. Ligands, which were 

available in the file as SMILES, were prepared by these procedures using Open 

Babel 3.1.1: adding hydrogens, removing all but the largest contiguous fragment, 

calculating Gasteiger partial charges, and removing duplicates by InChI. For the 

protein, based on the validation data(1910), I used chain A of 7JKV from PDB-

REDO(1911). For docking, I used AutoDock Vina(1444) via VEGA ZZ 

3.2.1.33(1917) with these settings: exhaustiveness = 24, center_x = -19.486, cen-

ter_x = -19.486, center_y = 63.837, center_z = -0.745, size_x = 28.0, size_y = 36.0, 

size_z = 28.0. To assess the linear correlation between the calculated Vina Energy 

and the experimental data, I calculated Pearson correlation coefficient (two-sided 

p-value). To assess the rank correlation, I calculated Spearman’s rank correlation 

coefficient, Kendall’s Tau-a and Tau-b rank correlation coefficients and Goodman 

and Kruskal’s gamma. 

Limitations 

I was not able to find the discovery origins of several drugs. In some cases, 

I was able to find a discovery-related paper, e.g., in PubMed, but was 

unable to find its full-text webpage. As feature trees are biology-agnostic, 

it was not possible to define a static cut-off limit for being an analogue; 

e.g., although “pharmacophores” of mechlorethamine and chlorambucil 

are near-identical, as their “auxophores” are very different, their global 

similarity is rather low. Confirmation bias may have impacted my search 

for the discovery origins. As discussed before, mechanisms of organisms’ 

behaviors are not necessarily localizable(168, 169, 1132). Even the state-

of-the-art methods like using si-RNA have many flaws(1307, 1309, 1926, 

1927); let alone animal studies using pharmacological tool compounds to 

investigate the mechanisms of drugs. Many studies I used in investigating 

the “off-target” therapeutic mechanisms of “target-based” drugs were of 

this kind. 

Figure 12. PRISMA(1923) flowchart for the systematic review. 

Reports assessed for eligibility 
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Reports sought for retrieval 

(n= 1789) 
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https://ntp.niehs.nih.gov/go/riskbias
https://web.archive.org/web/20200830131454/https:/ntp.niehs.nih.gov/ntp/ohat/pubs/riskofbiastool_508.pdf
https://www.who.int/publications/i/item/covid-19-therapeutic-trial-synopsis
https://www.who.int/publications/i/item/covid-19-therapeutic-trial-synopsis
https://web.archive.org/web/20200616235447/https:/www.who.int/publications/i/item/covid-19-therapeutic-trial-synopsis
https://ndownloader.figstatic.com/files/26786317
http://web.archive.org/web/20211014175409/https:/s3-eu-west-1.amazonaws.com/pstorage-acs-6854636/26786317/pt0c00216_si_002.xlsx?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Expires=10&X-Amz-SignedHeaders=host&X-Amz-Signature=455052d0428b7908acf1b9c112fea24b3055fcd78814f80bd1572dcc5221e247&X-Amz-Date=20211014T175408Z&X-Amz-Credential=AKIAILZ4PUMXRSJTQWIQ/20211014/eu-west-1/s3/aws4_request
http://web.archive.org/web/20211014175409/https:/s3-eu-west-1.amazonaws.com/pstorage-acs-6854636/26786317/pt0c00216_si_002.xlsx?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Expires=10&X-Amz-SignedHeaders=host&X-Amz-Signature=455052d0428b7908acf1b9c112fea24b3055fcd78814f80bd1572dcc5221e247&X-Amz-Date=20211014T175408Z&X-Amz-Credential=AKIAILZ4PUMXRSJTQWIQ/20211014/eu-west-1/s3/aws4_request
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