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ABSTRACT 

Autoimmune blistering diseases (AIBDs) are rare, chronic disorders of the 

skin and mucous membranes, with a broad spectrum of clinical manifestations and 

morphological lesions. Considering that 1) diagnosis of AIBDs is a challenging task, 

owing to their rarity and heterogeneous clinical features, and 2) misdiagnoses are 

common, and the resulting diagnostic delay is a major factor in their high mortality 

rate, patient prognosis stands to benefit greatly from the development of a computer-

aided diagnostic (CAD) tool for AIBDs. Artificial intelligence (AI) research into 

rare skin diseases like AIBDs is severely underrepresented, due to a variety of factors, 

foremost a lack of large-scale, uniformly curated imaging data. A study by Julia S. 

et al. finds that, as of 2020, there exists no machine learning studies on rare skin 

diseases [1], despite the demonstrated success of AI in the field of dermatology. 

Whereas previous research has primarily looked to improve performance through 

extensive data collection and preprocessing, this approach remains tedious and 

impractical for rarer, under-documented skin diseases. This study proposes a novel 

approach in the development of a deep learning based diagnostic aid for 

AIBDs. Leveraging the visual similarities between our imaging data with pre-

existing repositories, we demonstrate automated classification of AIBDs using 

techniques such as transfer learning and data augmentation over a convolutional 

neural network (CNN). A three-loop process for training is used, combining feature 

extraction and fine-tuning to improve performance on our classification task. Our 

final model retains an accuracy nearly on par with dermatologists’ diagnostic 

accuracy on more common skin cancers. Given the efficacy of our predictive model 

despite low amounts of training data, this approach holds the potential to benefit 

clinical diagnoses of AIBDs. Furthermore, our approach can be extrapolated to the 

diagnosis of other clinically similar rare diseases.
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INTRODUCTION 

Autoimmune blistering diseases (AIBDs), or autoimmune bullous disorders, 

are rare, chronic disorders of the skin and mucous membranes with poor prognosis 

in the absence of treatment [2,3].  AIBDs are generally divided into four subdivisions 

based on level of skin affected: pemphigus, pemphigoid, IgA-mediated bullous 

dermatoses, and epidermolysis bullosa acquista [3]. Our research centers around the 

two most common manifestations: pemphigus and pemphigoid. Given their rarity 

and heterogeneous clinical features, pemphigus and pemphigoid lesions are often 

mistakenly attributed to other more common conditions, leading to considerable 

diagnostic delay [3,4]. For example, pemphigus vulgaris (PV), accounting for 70% 

of all pemphigus cases, affects only 1-5 patients per million per year and has a 

diagnostic delay that ranges from months to years [5,6]. Bullous pemphigoid (BP), 

representing for 70% of all pemphigoid cases [7], affects roughly 30 patients per 

million per year in the US and has a mean diagnostic delay of 6 months [8,9]. 

This diagnostic delay is a primary factor in their poor prognosis: PV has a 5-

year mortality rate of 90% without medication, compared to 5-15% with treatment, 

and BP has been reported to be associated with morality rates ranging from 6 to 41% 

within the first year after diagnosis [10]. AIBDs diagnosis are also generally invasive, 

typically relying upon perilesional biopsy [4]. Considering these attributes of AIBDs, 

and given the rapid advances in artificial intelligence (AI) in the field of computer 

vision, demonstrating the utility of an AI-based CAD is of great significance in 

improving both patient diagnosis and treatment.  

 Although abundant research has demonstrated preliminary success of AI in 

tasks such as distinguishing skin cancers [11-13], much of this research is dependent 

upon the availability of large, uniform, transparent imaging datasets. Similar datasets 

have been compiled and made available for more common skin conditions such as 
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melanomas. However, for rarer under-documented skin diseases like AIBDs, a lack 

of transparency and uniformity amongst repositories means that their data sets are 

lagging far behind those of well-researched conditions. 

Leveraging the clinical and visual similarities between AIBDs and skin 

cancers, however, we can use these larger datasets to help train classification 

algorithms for rarer conditions such as AIBDs. Techniques such as transfer learning 

and data augmentation allow us to artificially inflate the pool of training data, 

potentially achieving a significant classification accuracy. In tandem with recent 

advances in computer vision, this strategy allows for a less computationally 

expensive model, and offers a different framework towards future development of 

CADs for less well-documented diseases. 

 

METHODS 

Data Collection and Preprocessing 

Our research focuses on three major classes: pemphigus, pemphigoid, and 

common differential diagnoses, which comprise the first layer of the taxonomy. 

Within these three major classes, there exist eight total disease manifestations, 

comprising the second layer of the taxonomy. The differentiation between 

pemphigus and pemphigoid is based on the disease’s layer of manifestation in the 

skin, while the differentiation in the second layer is based upon the structural 

proteins that are attacked [14]. This tree-structure taxonomy is illustrated in Figure 

1 along with sample images which demonstrate the difficulty in distinguishing 

between AIBDs due to their highly similar visual features. 

Our independently consolidated dataset consists of 1,670 clinically verified 

open-source images from online repositories [15-20], and accounts for various 

manifestations of disease ranging from oral mucosal lesions to active cutaneous 
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blisters. The detailed dataset breakdown is listed in Table 1. Data is randomly split 

into training-validation-test sets, with a roughly 80-10-10 percent partitioning in 

order to provide the algorithm with sufficient training data.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1  Disease taxonomy comprises of three classes in the first layer and 

     eight classes in the second layer. 
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There exist two main issues within this dataset: insufficient size and uneven 

class distribution. To combat these pitfalls, we prepare three distinct datasets for 

training: 

1) 1,281 images from our main dataset 

2) 2,568 images using augmented data from our main dataset 

Here, we augment our initial dataset with randomized rotations, scaling, and 

reflections of undersampled classes until we reach an equal distribution of 

classes. This augmentation helps combat the biases introduced by our uneven 

class distribution. 

3) 3,000 images of skin cancers from the International Skin Imaging 

Collaboration (ISIC) repository 

The ISIC classification task is ternary, distinguishing between equal 

distributions of melanomas, nevi, and seborrheic keratoses.  

Regularization, including image resizing and color normalization, has been 

applied to all three datasets. 

 

Deep Learning Architecture 

Here we propose a prototype for classification of blisters using a convolution 

neural network (CNN). CNNs have gained increasing popularity in recent years over 

traditional machine learning approaches due to their efficacy in complex tasks like 

image recognition. CNNs use convolutional layers to generate invariant features, 

which are passed through several more filters to generate more invariant and abstract 

features. The process continues until a final feature is generated which is invariant 

to occlusions, allowing the system to accurately extract informative features from 

images without traditional manual image processing.   
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We implement the GoogleNet Inception v3 architecture, which is pre-trained 

on roughly 1.28 million images to 80 percent accuracy [21].  As illustrated in Figure 

2, Inception v3 consists of factorized, small and asymmetric convolutions, 

regularized by an auxiliary classifier. More importantly, the use of novel inception 

modules allows for decreasing the computational expense while still maintaining 

efficient learning on multiple scales [21]. The modules are particularly useful in 

shrinking down computation time given the complexity of the blisters. 

 

Implementation of the Predictive Model 

To combat insufficiencies in our training data, we employ transfer learning. 

In transfer learning, the model developed for one task is reused as the starting point 

for another task. In our case, the stored knowledge gained in both the ISIC and 

augmented datasets is then applied to our model for AIBD classification. 

The two most common incarnations of transfer learning in the context of deep 

learning are:  

Feature Extraction: By pretraining on a similar dataset, the model learns to 

extract certain features. As opposed to a randomly initialized CNN, therefore, our 

model is able to integrate this knowledge as it trains on the main dataset. 

Figure 2  Inception v3 architecture for the task of predicting AIBDs 
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Fine-tuning: In contrast to training on uneven class distributions, fine-tuning 

trains initially on the augmented dataset. We then train on the raw, uneven dataset 

with a very low learning rate, allowing for the model to incrementally adapt without 

the risk of overfitting. 

Our training consists of three progressive sequential training loops, utilizing 

feature extraction and fine-tuning. Between each loop, we freeze certain layers of 

the previously trained model, so that the new training set does not override the 

previous learned information. We treat the exact number of layers to freeze as a 

hyperparameter, initially freezing up to the fully connected layer, and then manually 

adjusting the threshold as illustrated in Figure 3.  A full schematic of our procedure 

is shown in Figure 5.  

Our first loop trains on the ISIC dataset, learning to differentiate between three 

types of skin cancers.  The similar nature of these skin cancer conditions allows the 

algorithm to train on a much larger dataset and transfer its learned features over to 

our task. We transfer this model over as an integrated feature extractor, meaning that 

the model has learned to complete tasks like image segmentation (Figure 4) even 

before training on AIBD images.  

Our second loop trains on an augmented dataset. In early trials the algorithm 

placed little weight on the underrepresented classes, resulting in low sensitivity (see 

“Metrics” section) for the majority of the disease classes. We thus augment these 

underrepresented classes to introduce a bias that counteracts this imbalance. Our 

goal here is not to improve raw accuracy, but to ensure sensitivity is improved 

amongst most classes.  

Our third loop trains on our original main dataset (1,281 original images from 

AIBDs). Our goal here is to mainly fine-tune the previous model.  In addition to 

freezing layers, we decrease the learning rate while increasing the dropout rate to 
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make sure any adjustments the algorithm makes are minor, not overriding previous 

knowledge. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 Frozen Layers/Parameters 

      

ISIC 

AIBDs 

Figure 4 Feature extraction allows for tasks like  

image segmentation to be pretrained in our model 

Figure 5  Schematic diagram of three-loop transfer learning procedure 
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Certain factors such as skin color and lighting may skew our training. To 

combat this, we implement early stopping within our algorithm (which halts training 

if validation error greatly exceeds training error) in order to prevent overfitting to 

these invariants.  

 

Metrics and Analysis Methods 

We aim to report results on three main metrics:  

1. Accuracy between the three main classes of the first layer (pemphigus, 

pemphigoid, and common differential diagnoses) 

2. Accuracy between the eight subdivided classes of the second layer 

3. Sensitivity of the first and second layers, according to the following 

definition 

Sensitivity =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 

 

Accuracy indicates a general effectiveness of the algorithm while sensitivity 

allows us to address the medically significant issues of false positives and negatives. 

The diagnostic accuracy of dermatologists presented in previous research is 

used as a reference to evaluate our diagnosis accuracy. In a 2017 study focused on 

AI-aided diagnosis of common skin lesions, dermatologists examined a binary 

benign vs malignant differentiation of skin cancers, and also a nine-class disease 

partition. Tasks were conducted by certified dermatologists, achieved a 66% 

accuracy in the binary task, and a 55% accuracy in the second, 9-class partition [22].  

Unlike other common dermatological conditions, early manifestations of 

autoimmune disease are often not cutaneous [22], as shown in Figure 6.  Paired their 

rarity with wide range and complexity of differential diagnoses, pemphigus and 
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pemphigoid are more easily misdiagnosed than most skin cancers [22]. Whereas the 

general public is more cognizant of skin cancer, the early symptoms of autoimmune 

diseases are more subtle, so patients are more likely to seek help from general 

practitioners than certified dermatologists.  Thus, our goal is to create a tool with 

accuracy that matches or improves upon real-world diagnostic accuracy. 

 

RESULTS 

To assess the accuracy of our trained model, a total of 194 hold out images 

from the eight different disease classes are tested. Our findings are summarized in 

Table 2 as a confusion matrix, from which the sensitivity is derived and listed in 

Table 3. Our CNN model achieves 67.5% accuracy on the broader disease classes 

(first layer), with 56.7% accuracy on the finer partitions (second layer). 

We first assess the effectiveness of transfer learning and data augmentation in 

our model.  

Our pretrained model has a significantly lower initial validation loss, as shown 

in Figure 7, indicating the efficacy of feature extraction in improving the model’s 

Figure 6 Non-cutaneous manifestations of disease. a, b: Oral lesions are common 

manifestations of pemphigus and pemphigus-like diseases, carrying a range of 

differential diagnoses including lichen planus, ulcerative stomatitis, and herpetic 

lesions [23-25]. c: Ocular lesions are also common manifestations of pemphigoid 

and pemphigoid-like diseases[26]. 
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performance. The slight convergence can best be explained by excess noise within 

the validation data set, which may have skewed the loss.  

 

 

However, transfer learning indeed significantly increased the training 

accuracy of our model. The addition of transfer learning appears to boost the training 

accuracy from just under 40% to almost 50% (Figure 8).  Given the visual 

similarities between the skin cancer images in the ISIC dataset and our AIBDs image 

dataset, and given this increase in accuracy, it is clear that the feature extraction from 

the ISIC dataset effectively transfers into our AIBD imaging data. 

Additionally, Table 4 indicates that data augmentation and subsequent fine-

tuning greatly increases the sensitivity of underrepresented classes, and Figure 8 

demonstrates a significant decrease in overfitting (where training accuracy is greater 

than test accuracy). Our fine-tuned model (Figure 8) actually shows a reversal from 

the trend of overfitting, although this training-test accuracy difference is likely 

statistically negligible. Indeed, while the sensitivity of under sampled classes still 

Table 2  Raw Confusion Matrix 

Pemphigus 

Vegetans

Pemphigus 

Vulgaris

Pemphigus 

Foliaceus

Bullous 

Pemphigoid

Linear IgA 

Bullous 

Dermatoses

Erythema 

Multiforme

Bullous 

Lupus
Urticaria

Pemphigus 

Vegetans
8 0 0 5 0 0 0 0

Pemphigus 

Vulgaris
0 6 0 15 0 0 1 0

Pemphigus 

Foliaceus
0 8 4 2 0 0 0 1

Bullous 

Pemphigoid
2 2 0 40 2 0 2 0

Linear IgA 

Bullous 

Dermatoses

0 3 0 3 17 0 4 3

Erythema 

Multiforme
0 0 0 10 1 9 4 1

Bullous Lupus 2 0 0 5 0 0 22 2

Urticaria 0 0 0 5 0 0 1 4

Predicted  Class

T
ru

e 
 C

la
ss
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remains below average, our model indicates a major improvement in the 

classification of these classes, with the sensitivity improving 2 or 3-fold over 

previous models (Table 4). An increase in sensitivity and decrease in overfitting 

reflects our model’s improved capability to generalize to other imaging data of 

AIBDs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3 Sensitivity of both layers 

 
Disease 

Class
Sensitivity

Disease   

Class
Sensitivity

Pemphigus 

Vegetans
0.62

Pemphigus 

Vulgaris
0.27

Pemphigus 

Foliaceus
0.27

Bullous 

Pemphigoid
0.83

Linear IgA 

Bullous 

Dermatoses

0.57

Erythema 

Multiforme
0.36

Bullous 

Lupus
0.71

Urticaria 0.4

Differential 

Diagnoses
0.65

Pemphigus 0.52

Pemphigoid 0.79
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Pemphigus 

Vegetans

Pemphigus 

Foliaceus
Urticaria

Raw Model 0.08 0.20 0.00

Pretrained 

Model
0.00 0.13 0.10

Pretrained & 

Fine-tuned  

Model

0.62 0.27 0.40

Table 4 Sensitivity of undersampled classes in various models 

Figure 7  Validation loss progression of various models 
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Overall, the majority of classes have high sensitivity (above 65%), with the 

exception of the pemphigus classes which have sensitivity around 50% (Table 3).  

This low sensitivity is due to an uneven class distribution, which was not fully fixed 

through the data augmentation/oversampling. In the first layer-partition, pemphigus 

and pemphigoid retain high sensitivity on par with dermatologists (Table 3), 

indicating the effectiveness of the algorithm in differentiating between major disease 

classes. In a clinical setting, the high sensitivity with regards to pemphigus and 

pemphigoid is promising, considering the severity of false negatives for such 

diseases. 

 

CONCLUSION 

Our findings demonstrate the feasibility of deep learning as an effective aid in 

the diagnosis of autoimmune blistering diseases.  Even with a relatively small, 

Figure 8  Training and test accuracy of  various models 
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variant dataset, through our three-loop training process incorporating transfer 

learning and data augmentation, our single CNN was able to classify these rare 

diseases with accuracy nearly on par with that of dermatologists on more common 

skin cancers. Our work proposes an alternative approach to deep-learning aided 

classification, using less computational power and requiring fewer imaging data. 

Given that the main constraint to this procedure is visual similarity between skin 

cancers and selected disease classes, this approach can easily be extrapolated to other 

dermatological conditions.  

With a growing amount of dermatology image repositories – most notably, the 

ISIC and HAM10000 – and their growing disease diversity, transfer learning and 

data augmentation are imperative in expanding the scope of the imaging data 

available. While our preprocessing augmented data using conventional functions, 

more complex functions such as MixUp [27] may potentially better alleviate issues 

of overfitting and memorization. Specific to our algorithm, implementing cross-

validation will improve the algorithm’s ability to generalize.  

To be successfully extrapolated to other dermatological conditions, ideally our 

method must also be able to identify the exact features – both concrete and abstract 

– that were most predictive of the different AIBDs.  This leads us to the concept of 

DeepLIFT, a novel decomposition method that allows us to make better light of the 

“black box” nature of neural networks [28]. With a better understanding of feature 

importance, it will be easier to interpret the predictive performance of the model in 

different scenarios, which will aid potential utilization of our tool in a clinical setting. 
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