
Smart Contract Vulnerability Detection
Based on Symbolic Execution Technology

Yiping Liu(B), Jie Xu, and Baojiang Cui

Department of Cyberspace Security,
Beijing University of Posts and Telecommunications, Beijing, China

linkleep@bupt.edu.cn

Abstract. With the rapid development of the blockchain, smart con-
tract technology has been widely applied. The number of smart contracts
has grown at a high rate and nearly at an average of thousands per day.
However, the correctness and security of the smart contract itself are
facing huge problems. The well-known DAO vulnerability, and Parity
multi-signature wallet’ vulnerabilities have leaded to a hundreds of mil-
lions dollars loss, and they are both caused by the security problems of
smart contracts. Once the smart contract vulnerability is exploited, it is
very likely to bring the loss of cryptocurrencies, the disorder of the finan-
cial order and other catastrophic consequences. Therefore the security of
smart contracts is imminent. This project has designed and implemented
a vulnerability detection system of Ethereum smart contract. The system
uses the assembly instruction sequences of the smart contract to generate
the control flow graph, then performs symbolic execution and vulnera-
bility constraint solving over the control flow. The system can detect
some common types of vulnerabilities, such as the integer overflow and
underflow vulnerability, reentry vulnerability and unchecked call return
value vulnerability. It has a high accuracy of detection result, and gives
support for export vulnerability report.

Keywords: Ethereum · Smart contract · Control flow · Symbolic
execution · Vulnerability detection

1 Introduction

With the rise of Bitcoin, blockchain technology has gradually appeared in peo-
ple’s vision. In April 2014, Gavin published the Yellow Paper of Ethereum [1]
and the concept of smart contracts began to spread widely. Ethereum is an open
source decentralized blockchain platform, mainly used for the execution of smart
contracts. Smart contracts are programs deployed on the Ethereum network and
executed by the Ethereum virtual machine. The Ethereum consensus protocol
guarantees the fairness of contract execution.

Smart contract technology is widely used in various fields such as infrastruc-
ture, commercial retail, games, social media and communications because of its

c© The Author(s) 2022
W. Lu et al. (Eds.): CNCERT 2021, CCIS 1506, pp. 193–207, 2022.
https://doi.org/10.1007/978-981-16-9229-1_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-9229-1_12&domain=pdf
https://doi.org/10.1007/978-981-16-9229-1_12

194 Y. Liu et al.

safety, reliability, fairness, and efficiency characteristics. At the same time, the
security of smart contracts is also facing huge challenges.

In June 2016, the DAO security breach broke out, which caused a loss of 60
million dollars. The first vulnerability of parity multi-signature wallet resulted
in a $30 million loss, and the second vulnerability led to a freezing of $100
million. So far, the losses caused by the security issues of smart contracts have
ranged from 30 million to 152 million dollars, and the upper limit number is still
growing.

The security issues of smart contracts have emerged rapidly in the past two
years. How to judge the correctness and security of the smart contract codes
effectively has become an important direction of today’s blockchain security
research.

This paper analyzes the characteristics of Ethereum smart contract vulnera-
bilities and proposes a smart contract vulnerability detection technology based
on symbolic execution and constraint solving. Experimental results show that
the technology can detect common vulnerabilities in 1552 different contracts
with high accuracy.

This article is mainly divided into five parts. Section 1 mainly introduces the
background and summary of this article; Sect. 2 introduces related work; Sect. 3
introduces the most current types of vulnerabilities in smart contracts; Sect. 4
introduces framework design and vulnerability detection details of our system;
Sect. 5 introduces the experimental results of our vulnerability detection, the last
section summarizes our main contributions

2 Related Work

At present, there have been a lot of related work on smart contract vulnerability
detection, and the main methods adopted are fuzzing testing, symbolic execu-
tion, formal verification and other technologies. Based on the special operating
environment, life cycle and program characteristics of smart contracts, these
studies have improved existing program analysis techniques to achieve better
automated vulnerability mining effects.

Oyente [2] is one of the earliest researches on automated smart contract vul-
nerability mining. It takes smart contract bytecode as input and uses four com-
ponents including CFG builder, explorer, core analysis and validator to perform
CFG construction, symbolic execution, constraint solving, and false alarm filter-
ing. Oyente can detect common types of vulnerabilities such as integer overflow
vulnerabilities and stack overflow vulnerabilities of smart contracts.

Osiris [3] conducts further research and development on the basis of Oyente,
using symbolic execution technology to detect integer vulnerabilities in smart
contracts, mainly detailed to the types of vulnerabilities such as integer over-
flow, symbol conversion and so on. Compared with Osiris, Oyente pays more
attention to the arithmetic operation instructions in the smart contract. At the
same time, it introduces the taint analysis technology to mark the source and
transfer direction of the operands, filter out invalid vulnerabilities that cannot
be exploited, and improve the accuracy of the vulnerability detection results.

Smart Contract Vulnerability Detection 195

Echidna [4] is one of the earliest open source smart contract fuzzing solutions.
It uses sophisticated grammar-based fuzzing campaigns based on a contract ABI
to falsify user-defined predicates or Solidity assertions. Testers need to add spe-
cific detection code to the smart contract source code in order to judge whether
there is a vulnerability based on the return status of Echidna.

Another fuzzing program, ContractFuzzer [5], is mainly aimed at smart con-
tract vulnerability detection. It can generate fuzz test inputs according to the
ABI specification of smart contracts, define test oracles for detecting security
vulnerabilities. And record the run-time state of the smart contract, analyze the
log and report security vulnerabilities through the Ethereum Virtual Machine
(EVM) instrumentation. ContractFuzzer tools include an offline EVM instru-
mentation tool and an online fuzzing tool. The offline EVM instrumentation
tool enables the fuzzing tool to monitor the execution of smart contracts and
extract execution logs for vulnerability analysis by instrumenting the EVM.

ZEUS [6] uses formal verification methods to detect smart contract vulner-
abilities. It applys abstract interpretation and symbolic execution to automate
the formal verification of smart contracts. And it also uses a smart contract writ-
ten in a high-level language as input and user assistance to generate a standard
for the correctness and fairness of the XACML template style.

It translates these contracts and specific guidelines into a low-level interme-
diate representation, such as LLVM bytecode, and encodes the execution seman-
tics to correctly infer contract behavior. Then static analysis is performed on the
intermediate code to determine the predicates that must be declared for verifi-
cation. Finally, ZEUS puts the modified IR into the verification engine, which
uses CHCs to quickly verify the security of the smart contract.

Securify [7] also uses formal verification methods to detect the vulnerabilities
of smart contracts, which can analyze whether there are vulnerabilities in smart
contracts with given characteristics. Securify derives the dependency graph by
analyzing the bytecode of the smart contract. Then, according to the given
characteristics, it analyzes whether the semantic information of the contract
satisfies or violates these characteristics and judges whether there are loopholes
in the contract. The input of Securify is the bytecode of the smart contract
and a series of patterns, which are described in domain-specific language. The
output is the location of the specific vulnerability. Users can write patterns by
themselves, so Securify is extensible.

Teether [8] uses automatic injection to detect contract vulnerabilities. It looks
for critical paths in the control flow diagram of the contract, and then determines
the key instructions whose parameters can be controlled by the attacker. Once a
path is determined, symbolic execution is used to convert this path into a series
of constraints. Using the constraint solver, you can infer what transactions the
attacker must perform to trigger the vulnerability.

196 Y. Liu et al.

3 Background

3.1 Reentrancy Vulnerability

Ethereum smart contracts can call and utilize the codes of other external con-
tracts. When the contract executes the transfer operation, if the counterparty
account is a contract account, the callback function in the contract account will
be called. If the called contract is a contract constructed by an attacker, there is
likely to be malicious code in it. The DAO attack exploited the reentrance loop-
holes in the contract code, causing economic losses of up to 60 million dollars.

Figure 1 is an example of an error when you forget to check the return value.

1 contract EtherStore

2 {

3 uint256 public withdrawLimit = 1 ether;

4 mapping(address => uint256) public balances;

5 function depositFunds () public payable

6 {

7 balances[msg.sender] += msg.value;

8 }

9 function withdrawFunds(uint256 _weiToWithdraw) public

10 {

11 require(balances[msg.sender] >= _weiToWithdraw);

12 require(_weiToWithdraw <= withdrawLimit);

13 require(msg.sender.call.value(_weiToWithdraw)());

14 balances[msg.sender] -= _weiToWithdraw;

15 }

16 }

Fig. 1. An error instance of forgetting to detect the return value.

The code in line 13 can be used to transfer money to the msg.sender account,
but if msg.sender is a contract account, it will call the callback function in
the destination contract to perform the transfer operation. The attacker can
construct a special callback function to cut off the control flow. So that the
contract will continue to execute lines 11–13 of code without executing 14, then
the condition of line 11 will be met forever, until the attacker takes out all
the balance in the contract. Figure 2 is the attack contract constructed for this
EtherStore contract. Lines 15–21 are the special callback function constructed
by the attacker. When the 13th line of the EtherStore code is executed, the
attack’s callback function will be called, and the attack contract will call the
withdrawFunds function of EtherStore when the 19th line is executed. The 14th
line in EtherStore is not executed, so the 11th line still meets the conditions
to achieve reentry, and continuous reentry can take out all the balance in the
EtherStore contract.

Smart Contract Vulnerability Detection 197

1 import "EtherStore.sol";

2 contract Attack

3 {

4 EtherStore public etherStore;

5 constructor(address _etherStoreAddress)

6 {

7 etherStore = EtherStore(_etherStoreAddress);

8 }

9 function pwnEtherStore () public payable

10 {

11 require(msg.value >= 1 ether);

12 etherStore.depositFunds.value(1 ether)();

13 etherStore.withdrawFunds (1 ether);

14 }

15 function () payable

16 {

17 if(etherStore.balance > 1 ether)

18 {

19 etherStore.withdrawFunds (1 ether);

20 }

21 }

22 }

Fig. 2. An attack contract target for EtherStore contract.

3.2 Integer Overflow Vulnerability

The Ethereum Virtual Machine (EVM) specifies fixed-size data types for inte-
gers. This means that an integer variable can only be represented by a certain
range of numbers, respectively (u)int8/16/24/.../256. For example, a uint8 can
only store numbers in the range [0,255]. Attempting to store 256 into a uint8
will become 0. Therefore, performing calculations without checking user input
can easily occur the calculation result exceeds the maximum range that the vari-
able type can represent. This situation is called integer overflow or underflow.
Integer overflow vulnerabilities can be easily exploited by attackers to perform
logic processes that developers did not anticipate. Figure 3 is a contract with an
integer overflow vulnerability.

If an attacker maliciously calls the increaseLockTime function to cause the
lockTime variable overflowed in line 12. Then the attacker can break the time
limit and call the withdraw function to successfully withdraw the account bal-
ance. Figure 4 is a contract with integer underflow vulnerability.

The balance variable on lines 11 and 12 may underflow. When the attacker
does not deposit money in the contract, the value of balance is 0. Then the
attacker calls the transfer function and sets value to any positive integer, the
balance-value will underflow and becomes a very large positive integer.

198 Y. Liu et al.

1 contract TimeLock

2 {

3 mapping(address => uint) public balances;

4 mapping(address => uint) public lockTime;

5 function deposit () public payable

6 {

7 balances[msg.sender] += msg.value;

8 lockTime[msg.sender] += now + 1 weeks;

9 }

10 function increaseLockTime(uint _seconds) public

11 {

12 lockTime[msg.sender] += _seconds;

13 }

14 function withdraw () public

15 {

16 require(balances[msg.sender] > 0);

17 require(now > lockTime[msg.sender]);

18 balances[msg.sender] = 0;

19 msg.sender.transfer(balances[msg.sender]);

20 }

21 }

Fig. 3. A contract with an integer overflow vulnerability

1 contract Token

2 {

3 mapping(address => uint) balances;

4 uint public totalSupply;

5 function Token(uint _initial)

6 {

7 balances[msg.sender] = totalSupply - _initial;

8 }

9 function transfer(address _to , uint _value) public

10 returns (bool)

11 {

12 require(balances[msg.sender] - _value >= 0);

13 balances[msg.sender] -= _value;

14 balances[_to] += _value;

15 return true;

16 }

17 function balanceOf(address _owner) public constant

18 returns (uint balance)

19 {

20 return balances[_owner];

21 }

22 }

Fig. 4. A contract with integer underflow vulnerability

Smart Contract Vulnerability Detection 199

3.3 Unchecked Call Return Value Vulnerability

Some methods in solidity can send Ether to external accounts. For example,
transfer() method, send() method, call method, etc. The call() and send() func-
tions will return a boolean value after completion. The return value is true to
indicate the operation is successful, and false to indicate failure. So when the
send or call function fails, the contract will not terminate execution and com-
plete the state rollback, but will simply return false. Therefore, without checking
the return value of the send or call operation, it is likely that the result of incon-
sistent intentions of the developer may occur. Figure 5 is an example of an error
when you forget to check the return value.

1 contract Call_Vul

2 {

3 // ... local variables definitions

4 function withdraw(uint256 _amount) public

5 {

6 require(balances[msg.sender] >= _amount);

7 balances[msg.sender] -= _amount;

8 etherLeft -= _amount;

9 msg.sender.send(_amount);

10 }

11 }

Fig. 5. An error when you forget to check the return value

If the call is used to send ether to a smart contract that does not accept them
(for example, because it does not have a fallback function) or a callback occurs
during the call to an external smart contract, the send operation may run out
of gas and cause the send to fail and return false. Since the return value is not
checked in our example, even though msg.sender has not received the money,
the balance in the account has decreased.

4 Vulnerability Detection Methods

In this section, we will introduce our vulnerability detection system in detail.
Our system is designed to detect common types of vulnerabilities such as reen-
trancy vulnerability, integer overflow vulnerability, and unchecked call return
value vulnerability in smart contracts. Our system uses bytecode, the address
or the source code of a smart contract as input, and outputs the vulnerability
detection result, including specific information such as the type and the location
of the vulnerability. Figure 6 depicts the workflow of our vulnerability detection
system. It mainly includes the following five modules.

200 Y. Liu et al.

Fig. 6. Workflow of our vulnerability detection system.

Compile and Decompile. The input of the system may be solidity code or
EVM bytecode, so it needs to be compiled or decompiled to generate the opcode
sequence. The generated instruction sequence includes instruction offset, instruc-
tion name and instruction parameters.

Control Flow Generation. The control flow graph is composed of the basic
block and the edge between them. The basic block is analyzed and constructed
from the first instruction, and it is ended when JUMP instruction is encountered
and the next basic block is generated. The basic block is ended when the JUMPI
instruction is encountered and it will generate two basic blocks with different
conditions then record the rules that the jump conditions need to meet.

Symbolic Execution. Our system constructs a virtual machine executed by
the EVM bytecode and use the control flow graph in the control flow generation
module to traverse all possible paths and record the possible results of each
step according to Depth-First-Search principle. At the same time, the constraint
conditions of each step and the operand will be transformed into the variable
type of constraint solving.

Vulnerability Detection. Vulnerability detection is synchronized with the exe-
cution of the contract in the virtual machine. If a sensitive operation that may
trigger the vulnerability condition is encountered during the execution, it will
jump into the vulnerability detection module. The vulnerability detection mod-
ule will solve the jump conditions and vulnerability status. The existence of
possible explanations indicates the vulnerability may exist.

Smart Contract Vulnerability Detection 201

Constraint Solving. The constraint solving module provides assistance for the
virtual executor module and the vulnerability detection module. It is mainly
used to convert variables into z3 type variables and to solve various conditional
constraints.

4.1 Control Flow Generation

The control flow generation module is used to determine all possible path con-
ditions during program execution. The edges of the control flow graph represent
each basic block in the process of program execution, and the edges between
nodes represent the jump conditions between nodes. The generation of control
flow graphs is not necessary in the process of symbolic execution, but gener-
ating control flow graphs can help better understand the calling relationship
between programs or perform the next step of analysis. The detailed of control
flow generation process is as follows:

1. After generating the opcode sequence, fetch an instruction from it.
2. Determine whether this instruction is JUMP or JUMPI.
3. If it is JUMP, take out the parameter which is the target address of this

instruction.
4. If it is JUMPI, take out the parameters which include jump conditions and

jump addresses.
5. If it is CALL/CALLCODE/DELEGATECALL/STATICCALL, you first

need to set this address as the end of current node.
6. If it is RETURN instruction, record the offset of this instruction as the end

of current node. Check whether the next instruction is the last instruction or
JUMPDST, if not, throw an error.

7. If the instruction is JUMPDST, traverse all nodes to find the starting address
of this JUMPDST instruction, and set the currently executing NodeID as the
ID of this node.

4.2 Symbolic Execution

Based on the control flow graph, the symbolic execution module uses Depth-
First-Search principle to execute each node in the graph, and updates the global
state at the same time. When encountering a conditional jump instruction or an
operand operation instruction, converted it into a variable type for constraint
solving, so that the vulnerability detection module can solve the constraint for
the vulnerability. The symbolic execution module is divided into three parts:
the state design of the virtual machine, the instruction realization of the virtual
machine and the path call of the symbolic execution.

1. State design of the virtual machine. Virtual machine of the system is
modeled on the Ethereum virtual machine(EVM). After each transaction is exe-
cuted, the state of the EVM, including the program counter, the stack, and
account balance may change. Figure 7 is an example of the internal state tran-
sition of the virtual machine after a transaction is completed. The transition

202 Y. Liu et al.

Fig. 7. An example of the EVM internal state transition after a transaction is com-
pleted.

models of these three states are implemented separately in the virtual machine
we built.

2. Implementation of virtual machine instructions. The current EVM
instructions have implemented a total of 142 instructions. According to the
instructions of the EVM, our system has implemented 117 commonly used
instructions.
3. The principle of path calling. Before symbolic execution of control flow
graph, the calling principle of the path must be determined first. Here we use the
Depth-First-Search principle. Differ from the general graph traversal progress,
we need to save the state of this path when it is ended.

4.3 Vulnerability Detection

We will introduce the details of reentrancy vulnerability, integer overflow vul-
nerability and unchecked call return value vulnerability detection method sepa-
rately.

Reentrancy Vulnerability Detection. The main reasons of why reentrancy
vulnerabilities exist are as follows:

1. When using the call instruction to transfer money to a contract account, the
contract’s callback function will be called.

2. The call instruction does not restrict the use of Gas by default
3. Complete the transfer operation before reducing the user account balance.

The call instruction has 7 parameters, the meaning of each parameter is
shown in Table 1. Considering the gas limit of the other two transfer operations
transfer and send are both 2300, if the gas can be greater than 2300, it is equal

Smart Contract Vulnerability Detection 203

Table 1. Parameters of call instruction.

Parameter Meaning

Gas Gas limit

Address Target address of the transfer operation

Value Transfer amount

In Input data address of the call instruction in EVM memory

Insize Length of input data

Out Output data address of the call instruction in EVM memory

Outsize Length of output data

to no restriction. So we use gas > 2300 as a vulnerability constraint. And if
the address can be equal to the malicious contract address, there may be a
reentrancy vulnerability.

Integer Overflow Vulnerability Detection. Integer vulnerabilities has been
widespreaded and brought a lot of loss. In EVM, there may be integer overflow
operations such as add, sub, mul, and div. The detection for these four operations
are shown in Table 2.

Table 2. Vulnerability detection methods for integer operation.

Op Detection

ADD Under the constraints of entering this node, if the sum of two operands is
less than one of the operands is solved, there may be an overflow error

MUL Under the constraints of entering this node, if the multiplication of two
operands is greater than 22̂56, there may be an overflow error

SUB Under the constraints of entering this node, if the minuend number is greater
than the subtracted one, there may be an underflow error

DIV Under the constraints of entering this node, if the divisor can be equal to 0,
there may be an underflow error

When encountering with these four instructions, add/sub/mul/div, enter the
integer overflow detection module to perform overflow detection. Perform differ-
ent functions for different operations, and if the solution result exists, add the
vulnerability information to the issue.

204 Y. Liu et al.

Unchecked Call Return Value Vulnerability Detection. The correct way
to write the call or send function should be:

1 require(msg.sender.send(value))

Due to the existence of require statement, if the return value of send
is false, it will directly revert and exit. When calling CALL/CALLCODE/
DELEGATECALL/STATICCALL or other commands, the return value of the
command is recorded and stored in a variable of z3 format. If this block is
normal ended by RETURN or STOP, take out the return value of the previ-
ous CALL/CALLCODE/DELEGATECALL/STATICCALL instruction. If the
value can be equal to 0, it means that the send/call operation can be failed. In
addition to other operations, there may be a vulnerability that does not check
the return value of call at this time.

4.4 Constraint Solving

The z3 solver supports all theoretical solution classifications, so we use the z3
solver here to solve the constraints of the path state. According to the parameter
types in EVM, use z3 solver to realize two types of variables, they are: Bool and
BitVec. Bool represents the Boolean type, BitVec is a bit array type. Generally
the length is 256 bits, because EVM does not have a series of data types such
as int8/int16/int24/.../int256 like Solidity. When this data type is converted to
bytecode, it will be stored as a 256bit variable. Aiming at these two data types
and using the z3 solving library function, the realization of the data operation
rules is redesigned.

5 Evalution

We did a vulnerability detection experiment on 1552 contracts from awesome-
buggy-erc20-tokens [9] data set, which shows 1320 contracts are detected as
vulnerabilities, and the accuracy rate of the vulnerability detection is 85.1%.
Figure 8 shows the vulnerability detection results.

We manually checked twenty contracts which are reported as vulnerable by
our system and we think all of them have vulnerabilities. For example, the con-
tract in 0x0b76544F6C413a555F309Bf76260d1E02377c02A1 has no-Approval,
owner-control-sell-price-for-overflow, owner-decrease-balance-by-mint-by- over-
flow, totalsupply-overflow and transfer-no-return issues defined by awesome-
buggy-erc20-tokens. Our tool has detected an integer overflow vulnerability in
this contract. Check the contract code snippets in Fig. 9, and we found line 5
does have an integer overflow problem.

1 https://etherscan.io/address/0x0b76544F6C413a555F309Bf76260d1E02377c02A.

https://etherscan.io/address/0x0b76544F6C413a555F309Bf76260d1E02377c02A

Smart Contract Vulnerability Detection 205

Fig. 8. Vulnerability detection results of awesome-buggy-erc20-tokens.

1 contract INTToken is owned , token

2 {

3 //....

4 function sell(uint256 amount) {

5 require(this.balance >= amount * sellPrice); //

checks if the contract has enough ether to buy

6 _transfer(msg.sender , this , amount); //

makes the transfers

7 msg.sender.transfer(amount * sellPrice); //

sends ether to the seller. It’s important to do this last

to avoid recursion attacks

8 }

9 //...

10 }

Fig. 9. Code snippets of 0x0b76544F6C413a555F309Bf76260d1E02377c02A

6 Conclusion

We investigate the most common contract security issues and the most widely
used smart contract vulnerability detection methods currently. Then we design
and implement a smart contract detection system. The main functions covered
by the system are as follows:

(1) Disassembly of EVM bytecode. Disassemble the EVM bytecode to gen-
erate an opcode sequence for specific instruction analysis in the next step.

206 Y. Liu et al.

(2) Generation control flow graph. Generate control flow graph of the con-
tract to provide a basis for symbolic execution.

(3) symbolic execution implementation. Implementation a simple
Ethereum virtual machine according to the Ethereum EVM instructions
and the EVM design principle. Perform path depth-first traversal on the
control flow graph, store each data as a variable in the form of z3, and use
symbolic variables to represent path constraints.

(4) Vulnerability detection. Detect integer overflow vulnerabilities, reen-
trance vulnerabilities, and unchecked call return value vulnerabilities of
smart contracts.

We tested the vulnerability detection system on awesome-buggy-erc20-tokens
data set and analyzed the experimental results which shows our system has a
good performance on the vulnerability detection accuracy.

Acknowledgments. This work is supported by CNKLSTISS and the National Nat-
ural Science Foundation of China (Grant No. 61802025).

References

1. https://ethereum.github.io/yellowpaper/paper.pdf
2. Luu, L., Chu, D.H., Olickel, H., et al.: Making smart contracts smarter. In: Proceed-

ings of the ACM SIGSAC Conference on Computer and Communications Security,
pp. 254–269 (2016). https://doi.org/10.1145/2976749.2978309

3. Torres, C.F., Schütte, J., State, R.: Osiris: hunting for integer bugs in Ethereum
smart contracts. In: Proceedings of the 34th Annual Computer Security Applications
Conference, pp. 664–676 (2018). https://doi.org/10.1145/3274694.3274737

4. Grieco, G., Song, W., Cygan, A., et al.: Echidna: effective, usable, and fast fuzzing
for smart contracts. In: Proceedings of the 29th ACM SIGSOFT International Sym-
posium on Software Testing and Analysis, pp. 557–560 (2018). https://doi.org/10.
1145/3395363.3404366

5. Jiang, B., Liu, Y., Chan, W.K.: ContractFuzzer: fuzzing smart contracts for vulner-
ability detection. In: 2018 33rd IEEE/ACM International Conference on Automated
Software Engineering (ASE), pp. 259–269. IEEE (2018). https://doi.org/10.1145/
3238147.3238177

6. Kalra, S., Goel, S., Dhawan, M., et al.: Zeus: analyzing safety of smart contracts.
In: NDSS, pp. 1–12 (2018). https://doi.org/10.14722/ndss.2018.23082

7. Tsankov, P., Dan, A., Drachsler-Cohen, D., et al.: Securify: practical security anal-
ysis of smart contracts. In: Proceedings of the ACM SIGSAC Conference on Com-
puter and Communications Security, pp. 67–82 (2018). https://doi.org/10.1145/
3243734.3243780

8. Krupp, J., Rossow, C.: teether: Gnawing at Ethereum to automatically exploit smart
contracts. In: 27th USENIX Security Symposium (USENIX Security 2018), pp.
1317–1333 (2018)

9. https://github.com/search?q=awesome-buggy-erc20-tokens

https://ethereum.github.io/yellowpaper/paper.pdf
https://doi.org/10.1145/2976749.2978309
https://doi.org/10.1145/3274694.3274737
https://doi.org/10.1145/3395363.3404366
https://doi.org/10.1145/3395363.3404366
https://doi.org/10.1145/3238147.3238177
https://doi.org/10.1145/3238147.3238177
https://doi.org/10.14722/ndss.2018.23082
https://doi.org/10.1145/3243734.3243780
https://doi.org/10.1145/3243734.3243780
https://github.com/search?q=awesome-buggy-erc20-tokens

Smart Contract Vulnerability Detection 207

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Smart Contract Vulnerability Detection Based on Symbolic Execution Technology
	1 Introduction
	2 Related Work
	3 Background
	3.1 Reentrancy Vulnerability
	3.2 Integer Overflow Vulnerability
	3.3 Unchecked Call Return Value Vulnerability

	4 Vulnerability Detection Methods
	4.1 Control Flow Generation
	4.2 Symbolic Execution
	4.3 Vulnerability Detection
	4.4 Constraint Solving

	5 Evalution
	6 Conclusion
	References

