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Wireless communication systems have evolved and offered more smart and advanced systems like ad hoc and sensor-based
infrastructure fewer networks. These networks are evaluated with two fundamental parameters including data rate and spectral
efficiency. To achieve a high data rate and robust wireless communication, the most significant task is channel equalization at
the receiver side. The transmitted data symbols when passing through the wireless channel suffer from various types of
impairments, such as fading, Doppler shifts, and Intersymbol Interference (ISI), and degraded the overall network
performance. To mitigate channel-related impairments, many channel equalization algorithms have been proposed for
communication systems. The channel equalization problem can also be solved as a classification problem by using Machine
Learning (ML) methods. In this paper, channel equalization is performed by using ML techniques in terms of Bit Error Rate
(BER) analysis and comparison. Radial Basis Functions (RBFs), Multilayer Perceptron (MLP), Support Vector Machines
(SVM), Functional Link Artificial Neural Network (FLANN), Long-Short Term Memory (LSTM), and Polynomial-based
Neural Networks (NNs) are adopted for channel equalization.

1. Introduction

In wireless communication systems [1–3], the performance
may be severely degraded because of wireless channel issues.
The transmitted signal passes through the communication
channel and has faced various impairment issues such as
Intersymbol Interference (ISI), Doppler shift, and fading
effects. All these effects tend to degrade and limit the data
throughput during data communication [4]. To achieve
higher data rates, it is mandatory to mitigate the effects of
channel-induced impairments. This requires an adaptive fil-
ter for equalization to nullify the effects of the wireless chan-
nel and recover the originally transmitted data. Recently, the
use of Machine Learning (ML) [5, 6] techniques especially

Artificial Neural Network- (ANN-) based methods has
gained interest due to its remarkable success in the fields of
Computer Vision (CV), speech recognition, and Natural
Language Processing (NLP). These techniques although
invented in the mid-20th century were not very popular
due to the lack of required computational power. The avail-
ability of high-speed computational resources and the suc-
cess of ML in various other fields have provoked its
applications for the development of robust communication
systems [7]. Many researchers have proposed the use of
ML for designing communication systems and have demon-
strated improved results in terms of Bit Error Rate (BER).
However, still, there are some concerns and questions which
require answers such as the following:
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(i) What will be the maximum performance gain in
terms of BER by using NN and its variants such as
Multilayer Perceptron (MLP), Radial Basis Func-
tions (RBFs), Functional Link Artificial Neural Net-
work (FLANN), Support Vector Machines (SVM),
and Long-Short Term Memory (LSTM)

(ii) Is it possible to train the NN to estimate a wireless
channel in real time as required by the modern-day
channel equalizers to mitigate the channel in real
time? Typically, an equalizer is required to train its
taps in less than a few microseconds. What possible
methods can be used to achieve this task

During data transmission, networks have experienced
various types of impairments such as path loss which results
in attenuation of the signal, AWGN, and multipath effects
caused by the reflections of the electromagnetic waves from
various obstacles. The input digital data is fed into the source
encoder which effectively transforms the bitstream into the
compressed form by using Huffman encoding. The input
can be an audio source, text, binary, or any other sensor
input, which may require A/D conversion before feeding to
the source encoder block [8].

The digital data at this stage can also be secured using
encryption algorithms.

The resulting data sequence at the output of the source
encoder is passed to the channel encoder which adds redun-
dancy in a controlled manner, to help the receiver to detect
and correct the channel-induced errors. This step should
make the data robust against harsh channel conditions. In
the next step, the output of a channel encoder is given to a
modulator that applies digital modulation methods such as
BPSK, QPSK, or some variants of FSK. The output of the
modulator is fed to the frequency upconverter which trans-
lates the baseband signals to passband frequency, and finally,
the signal is amplified to the appropriate levels and then
transmitted through the antenna. The motivation of this
research work is as follows.

(i) To identify the performance metrics for the existing
channel estimation and equalization techniques

(ii) To identify an improved channel equalization tech-
nique for the selected wireless channel

To critically assess the performance of various channel
equalization techniques by performing simulations, the
mathematical formulation is presented in [8] for the com-
munication system where they considered sðtÞ to be the
transmitted signal. It is represented mathematically in
Equation (1). Figure 1 shows the transmitter and receiver
block:

s tð Þ = Re x tð Þejωct
� �

, ð1Þ

where xðtÞ is the baseband signal and “ωc = 2πf c” is the
center frequency of the passband signal. The received
signal is given as in

r tð Þ = 〠
N−1

m=0
γm tð Þs t − τmð Þ +w tð Þ, ð2Þ

where γmðtÞ represents the complex amplitude of the
channel, τm is the delay of the mth multipath, and N rep-
resents the total number of multipaths. wðtÞ represents the
AWGN. The resulting received signal can be written as in

r tð Þ = 〠
N−1

m=0
γm tð Þejωcτmx t − τmð Þ +w tð Þ, ð3Þ

r tð Þ =
ð∞
−∞

h τ, tð Þx t − τð Þdτ +w tð Þ, ð4Þ

where hðτ, tÞ =∑N−1
m=0γmðtÞejωcτmδðt − τÞ is the impulse

response of the time-varying channel. It is the main goal
of wireless communication systems to estimate hðτ, tÞ
which is the channel impulse response for the desired level
of performance.

1.1. Performance Issues in Wireless Communications. One of
the primary goals while designing a communication system
is to achieve the performance as closer to Shannon’s capacity
definition [9] as given in

C = B 1 + γð Þ, ð5Þ

where C is the capacity of the wireless channel, B represents
the bandwidth, and “γ” represents the Signal to Noise Ratio
(SNR). This theorem gives the fundamental bound on the
achievable capacity of the wireless channel. All communica-
tion systems tend to achieve Shannon’s capacity. As of
today, this goal has not been fully achieved due to many rea-
sons. Amongst the most notable reasons are

(i) the wireless channel

(ii) Signal to Noise Ratio (SNR)

(iii) link budget
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Figure 1: Transmitter and receiver block [8].
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Assuming the availability of the required bandwidth,
these three objectives must be served to achieve the desired
performance in wireless communication. SNR and link bud-
get can be improved using high gain antennas, more trans-
mit power, and better antennas; however, the effects caused
by the channel require more sophisticated handling. Its
effects must be mitigated using the channel equalization
method.

1.2. Channel Estimation Techniques. Channel estimation
techniques are broadly categorized into three main types,
the Pilot-Aided Channel Estimation (PACE) techniques,
Blind and Semiblind Channel Estimation (BSB) techniques,
and Decision-Directed Channel Estimation (DDCE) tech-
niques [10]. In [10], an estimation technique was presented
for the transmitter sending a known sequence of data sym-
bols to the receiver called pilot symbols. The receiver esti-
mates the channel with the help of received pilots using
mathematical techniques.

In [11], the receiver has no information about the input
signal of the channel. This technique uses the data symbols
for channel estimation by employing the precoding of the
symbols at the transmitter. The receiver knows the parame-
ters of the precoding used at the transmitter and then uses
correlation-based methods to estimate the channel informa-
tion [12–14]. In [15], the authors used the pilot symbols and
the demodulated symbols for the channel estimation. In the
absence of bit errors, the symbols can be used for estimation
of the channel impairments and start acting as the pilot sym-
bols. This technique proves to be more efficient as compared
to the pilot symbol based on channel estimation techniques
because it reduces the bandwidth by saving the number of
pilots required in pilot-based channel estimation techniques.

1.3. Channel Equalization. Channel equalization and chan-
nel estimation are interdependent. The inverse of the chan-
nel estimate can be used for channel equalization. The
performance of the equalizer is proportional to the accuracy
of the channel estimation.

The equalization mechanism can be divided into two
modes including a training mode and a decision-directed
mode. In the first mode, the equalizer is trained by sending a
training sequence. The training sequence is known as a priori
to the receiver. Equalizer weights are learned using the training

sequence. In the second mode, the equalizer is operated on the
channel to estimate the channel. Various types of equalizers
are used in the digital communication receiver. Figure 2
depicts the classification of the equalizers [16].

Equalization is generally divided into two categories
including linear equalizers and nonlinear equalizers. The lin-
ear equalizers employ only a feedforward path and do not
use the output of the equalizer in the equalization process.
On the other hand, the nonlinear equalizers use the output
of the equalizer in the determination of the future samples.
Both the linear and nonlinear equalizers employ adaptive
algorithms such as LMS, NLMS, RLS, and Kalman filtering
for the adaptation of the equalizer weights. Amongst the
nonlinear equalizers, it is the Maximum Likelihood
Sequence Estimator (MLSE). This type of equalizer does
not use the filter for equalizing the channel but instead uses
the Viterbi algorithm to decode the sequence and chooses
the sequence with maximum probability as the output.

2. Machine Learning-Based Channel
Equalization Technique Results

ML is a subfield of computer science that focuses on the
development of algorithms to learn and solve complex prob-
lems. Unlike the traditional approach, it does not use prede-
fined models or a set of equations to solve the given
problem; instead, it learns to solve the problem. It consists
of the human brain-like neurons termed “perceptrons.” A
perceptron is a simple mathematical model (function) that
maps the set of inputs to the set of outputs and performs
three basic operations: multiplication, summation, and acti-
vation. Each input value is multiplied by its corresponding
weight.

The previously weighted inputs are then summed up and
passed through the activation function. The activation func-
tion determines the output of the neuron concerning its
input. The commonly used activation functions are thresh-
old, linear, sigmoid, and “ReLU.” Mathematically, a percep-
tron can be defined in Equation (6). By subtitling the values,
Equation (6) becomes (8):

y xð Þ = φ wTx + b
� �

: ð6Þ
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Figure 2: The classification of equalization techniques [16].
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Here, w is a weight vector, b is a bias, and wTx is a dot
product of w and x as represented in Equation (7):

z = 〠
N

i=1
wixi, ð7Þ

y xð Þ = φ 〠
N

i=1
wixi + b

 !
: ð8Þ

φð·Þ is the activation function. A sigmoid and “ReLU”
functions are defined in

φ xð Þ = 1
1 + e−x

, ð9Þ

φ xð Þ =max 0, xð Þ: ð10Þ

3. Related Work

NNs are capable of processing nonlinear data and can pro-
duce complex decision regions. A new framework based on
exploiting feature selection and neural network techniques
has been proposed for identifing focal and nonfocal Electro-
encephalogram signals in TQWT domain [17]. Therefore,
NNs can be employed for equalization purposes to over-
come the difficulties associated with channel nonlinearities
[18–20]. The performance of NN-based equalizers has been
reported as superior to other conventional adaptive equal-
izers. In the recent past, the use of NNs has gained popular-
ity in the design of software-defined radios where DNN,
CNN, and RNN have been applied for classical radio opera-
tions [21–24]. In [25], the deep NNs have been used for the
channel estimation of doubly selective channels which expe-
rience variations both in time and frequency. The deep
learning-based algorithm is trained in three steps including
the pretraining step, training stage, and testing stage. During
the first two steps, the model is developed offline using train-
ing data. During the testing stage, the channel is estimated
and equalized. The results show improved BER performance
as compared to Linear Minimum Mean Square Error
(MiMeSqEr). In [26], the ML and NN have been used in
the Frequency Division Duplexing (FDD) system which is
a double selective channel, and the results showed improve-
ments in terms of MiMeSqEr in the prediction of the
channel.

In [27], the NN and DL methods have been used to pre-
dict the behavior of the Rayleigh channel, and it has been
reported through simulations that the MSE performance
compared with the traditional algorithms has improved. In
[22, 28], DL has been thoroughly investigated and provided
a review of the various ML-based techniques for wireless
communication. It has been shown that traditional theories
do not meet the higher data rate requirements of communi-
cation and limit the efficiency due to complex undefined
channel requirements, fast processing, and limited block
structure. On the other hand, AI-based communication sys-
tems face some challenges that need to be addressed. These
challenges include the availability of a large amount of data

and how easily it can be integrated into classical infrastructure
[29]. Similarly, ML has been applied to the physical layer for
modulation recognition and classification [26, 30–33].

An MLP is a feedforward NN that consists of an input
layer, a hidden layer, and an output layer. It has nonlinear
decision-making capabilities. The training of MLP is done
through the backpropagation algorithm [34]. The MLP is
the first neural network used for channel equalization [19,
20, 35–38]. Gibson et al. [20] introduced an MLP-based
nonlinear equalizer structure and demonstrated its superior
performance over the linear equalizer (LMS). The major
drawback of the MLP network is its slow convergence [39].
This is due to the backpropagation algorithm which operates
based on first-order information. A genetic algorithm [40]
can be used to solve this problem. The convergence can be
improved by using the second-order data like the Hessian
matrix, which is defined as the second-order partial deriva-
tives of the error performance. In [41], the authors proposed
an MLP-based DF equalizer with a lattice filter to overcome
the convergence problem to improve the performance of
MLP. However, this improvement increased the complexity
of the MLP structure.

The RBFNN is a three-layer network that comprises an
input layer, a nonlinear hidden layer, and a linear output
layer. The input layer contains the source symbols. In the
hidden layer, the input space is transformed into a high-
dimensional space by using nonlinear basis functions. The
output layer linearly combines the output of the previous
layers. RBFNN provides an appealing alternative to MLP
for channel equalization.

Many techniques have been developed to solve the
equalization problem using RBF [42–44]. In 1991 [19], the
authors used RBFNN for equalization. Similarly, an RBF-
based equalizer has been reported which showed satisfactory
performance [45, 46]. Another work has demonstrated the
use of RBFNN for equalization and found an improvement
in BER [47]. The performance of RBFNN is compared with
the Maximum Likelihood Sequence Estimator (MLSE) over
the Rayleigh fading channel [45, 48, 49]. Simulations have
confirmed that RBFNN is a reasonable choice with low com-
putational complexity. The authors in [50, 51] proposed a
complex RBF (CRBF) network, and improved performance
is observed. The drawback of RBFNN is that it is not suitable
for hardware implementation. The network needs a large
number of hidden nodes to achieve the desired performance.

In the last few years, FLANN is very famous [52]. It is a
single-layer NN that can form complex decision boundaries.
FLANN provides less computational complexity and greater
convergence speed than other traditional NNs. From the
perspective of hardware implementation, FLANN has a sim-
ple design, less computational complexity, and higher com-
putation performance [53, 54].

The input dimension is expanded by using nonlinear
functions which may lead to better nonlinear approxima-
tion. The expansion is done using three commonly used
functions, i.e., trigonometric, Chebyshev expansion, and
Legendre expansion. A traditional FLANN uses trigonomet-
ric functions, whereas the other two expansions are based on
Legendre [55, 56] and Chebyshev [57] polynomials. Ch-
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FLANN is another computational efficient network. It has
many applications in functional approximation [58], nonlin-
ear dynamic system identification [59, 60], and nonlinear
channel equalization [61]. In these networks, the expansion
is performed using Chebyshev polynomials.

RNN is a popular DL technique that was first introduced
for processing sequential data [24] and gained a lot of atten-
tion in the recent past. They have been proven better than
traditional signal processing methods in modeling and pre-
dicting nonlinear and time series [62] in a wide variety of
applications ranging from speech processing and adaptive
channel equalization [63–67].

Unlike ANN, which does not have memory and cannot
deal with temporal data, RNN has feedback loops which
make them attractive for the equalization of nonlinear chan-
nels. This means data can be fed back to the same layers. It
has been demonstrated through simulations that a reason-
able size of RNN can model the inverse of the channel.
RNNs are known to outperform FLANN, MLP, and RBF
[68, 69]. In [70], the authors discussed that equalizers based
on CNN and RNN reduce the channel’s fading effects but
also increase the overall coding gain by more than 1.5 dB.

RNN has one problem of exploding and vanishing gradi-
ent [71]. This problem arises when there is a long depen-
dency in a sequence. To solve this problem, LSTM is
proposed [72]. LSTM is slightly different from RNN. It has
some special units in addition to standard units. These spe-
cial units are called memory cells. These units can retain the
information for a long period. This means that LSTM
detected the patterns even in a long sequence. The sequence
problems can be efficiently solved by LSTM and can also
solve the channel equalization problem. In this case, future
samples can be predicted by taking previous symbols into
account. This means that variations in a channel can be eas-
ily tracked. We can specify the number of samples that
LSTM can hold for the prediction of future sequences. If it
is selected according to the delay spread of a channel, more
accurate results may be observed.

SVM lies in the category of supervised learning. Origi-
nally, it is developed for binary classification. Then, it has
been extended to perform regression and multiclass classifi-
cation problems [73–75]. It has the potential to generalize
well in classification problems by maximizing the margin.
The trained classifier contains support vectors on the margin
boundary and summarizes the information required to sep-
arate the data. It uses the parametric learning algorithm, in
which a model has fixed learnable parameters which are
adapted during the training process. Once the model is
trained, these parameters are then used exclusively for test-
ing while discarding all the training examples.

This makes the SVM more computationally efficient. On
the other hand, NNs are nonparametric as the number of
parameters increases with the number of layers. NN intro-
duces nonlinearity by using nonlinear activation function
whereas SVM uses kernel methods that implicitly transform
the input space into higher dimensions. RBF kernel is the
most commonly used kernel method. The SVM is suggested
to address the number of digital communication issues due
to its nonlinear processing capability. A DFE based on

SVM is proposed, and it is observed that the performance
of this equalizer is superior to MiMeSqEr DFE [76]. Similar
work is done in [77].

This section provides a comprehensive overview of the
channel estimation and equalization techniques. Different
neural network structures are discussed in the context of
channel equalization. The MLP network implementation is
simple, but training takes a lot of time. The main disadvan-
tage of the FLANN structure is its computational and time
complexity which gradually increases as the number of input
nodes increases. The RBF-based neural network equalizer is
an interesting alternative and is successfully used for blind
equalization. LSTM equalizers are superior to NN feedfor-
wards, including MLPs, RBFs, and FLANNs.

4. Performance Comparison of NN-Based
Channel Equalization Schemes

Channel equalization methods of the respective systems are
highlighted. A critical review of the methods is provided.
All the methods are found to perform well in Rayleigh com-
munication channels. However, there is a need to compare
the schemes and highlight the best possible NN scheme for
channel equalization. To the best of the knowledge of the
authors, this work is not being carried out in the literature.
In this work, the selected NNs are used for channel equaliza-
tion and their performance is compared.

4.1. Implementation of NN-Based Equalizers. ML techniques
are setting a path to replace the conventional communica-
tion techniques, and the combination of these two fields
has led to a lot of successful work. NNs are capable of pro-
cessing nonlinear data and can produce complex decision
regions. Therefore, NNs can be employed for equalization
to overcome the difficulties associated with channel nonlin-
earities [18–20]. The simulation setup is depicted in
Figure 3.

A typical NN-based channel equalizer is depicted in
Figure 4. The transmitter first transmits the training symbols
which are known to both the receiver and transmitter and
then transmits the actual data. The equalizer uses the
received training symbols to learn the equalizer weights.
The optimization criterion is to minimize the MSE.
Figure 4 shows the NN-based equalizer.

4.2. Data Generation and QPSK Modulation. Data is ran-
domly generated using the MATLAB rand function. It gen-
erates uniformly distributed data between 0 and 1. The
data is QPSK-modulated and then passed through the chan-
nel filter. QPSK uses two signals I and Q, where I is an in-
phase signal and Q is a quadrature signal. Both of these sig-
nals are at a 90° phase difference. This modulation is popular
due to its simpler design and efficient hardware realization.

The following steps are performed to produce a QPSK-
modulated signal.

(i) The incoming digital data is converted into two
streams. One stream contains the odd bits, and the
other takes the even bits from the original stream
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(ii) The streams are then pulse-shaped using root-raised
cosine pulses. The duration of the pulse determines
the data rate of the transmitter. In this phase, the
incoming data is first upsampled by a factor “N”
which corresponds to the symbol duration and then
convolved with the RRC pulse. The resulting signal
is termed a baseband signal

(iii) The resulting I and Q streams are then multiplied
with I/Q carrier signals. In other words, these
streams are amplitude-modulating using I/Q signals

(iv) Finally, the two modulated signals are summed up
to form a QPSK-modulated signal. In QPSK, two
bits are used in one symbol

Mathematically, QPSK modulation can be derived as
follows.

Let mk represent the message signal, where mk = xi + jyi
is the complex representation of the ith message signal. This
complex representation represents the group of bits
together. One is represented as real, and the second one rep-
resents the imaginary bit. The message signal is QPSK-
modulated as presented in Equation (11):

sQPSK tð Þ = Re mke
j2πf ot

n o
, ð11Þ

sQPSK tð Þ = Re xi + jyið Þ coscos 2πf otð Þ + j sin 2πf otð Þð Þf g,
ð12Þ

sQPSK tð Þ = xicoscos 2πf otð Þ − yi sin 2πf otð Þ, ð13Þ
where xi = 0:7071A and yi = 0:7071A are the amplitudes of
the pulses. By substituting the values of xi and yi in Equation
(11), Equation (14) becomes

sQPSK tð Þ = 0:7071Acoscos 2πf otð Þ − 0:7071A sin 2πf otð Þ:
ð14Þ

Using trigonometric relations, the equation can be sim-
plified as

sQPSK tð Þ = Acoscos 2πf ot +
π

4
� �

: ð15Þ

From Equation (15), the four reference constellation
points of QPSK modulation are given in

Input digital
stream

Channel Equalization PSK demod Output digital
streamPSK mod

ReceiverNoiseTransmitter

Figure 3: The simulation setup.
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Figure 4: NN-based equalizer.
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mi = 0:7071 + j0:7071 − 0:7071 + j0:7071 − 0:7071f
− j0:7071 0:7071 − j0:7071:

ð16Þ

The received signal is demodulated as follows. The
received QPSK signal is multiplied with the local oscillators
which are at 90 degrees’ phase differences and are called I
and Q. The resulting signals are low pass filtered using the
RRC filters. This results in the recovery of the baseband
pulses which are further downsampled by N , and the signal
is received.

The received signal can be expressed mathematically in

r tð Þ = s tð Þ ∗ h tð Þ + η tð Þ: ð17Þ

Equation (17) shows that the received signal “rðtÞ” is the
sum of convolution of “hðtÞ” with transmitted signal “sðtÞ”
and with noise “nðtÞ” added.
4.3. Wireless Channel Model. The wireless channel model
describes the underlying communication medium. The per-
formance of the communication system is dependent on the
condition of the channel. Rayleigh and Rician fading chan-
nel models are widely used to simulate the channel in that
realistic wireless environment. The Rayleigh fading channel
[78–80] is the conceptual model assuming the fact that there
are several objects in the atmosphere. Due to these objects,
the transmitted signal may be dispersed and replicated. It
is also presumed that there is no direct path between the
transmitter and the receiver. On the other hand, the Rician
channel [78, 79, 81] assumes that there is a direct path
between the transmitter and the receiver. The received signal
contains both the dispersed and scattered (or reflected)
paths. In this case, the scattered (or reflected) paths appear
to be weaker than the direct path.

We have considered a complex-valued multipath chan-
nel mentioned in [51]. The coefficients of this channel are
defined as in

c = 1 − 0:3434j 0:5 + 0:2912j½ �, ð18Þ

H zð Þ = c1X zð Þ + c2z
−1X zð Þ: ð19Þ

5. Experimental Setup and Modeling

5.1. Simulation Setup

5.1.1. Simulation Parameters of NN. Different NN equalizers
are plugged into the configuration of Figure 4, and results
are obtained. These configurations and the respective results
are discussed in the sequel. The primary performance cri-
teria are used in BER. Loss function analysis and the compu-
tational complexity are also calculated. The detailed results
are compared and discussed in the later sections. The flow-
chart of the NN-based equalizer is depicted in Figure 5.

5.1.2. MLP-Based Equalizer.MLP is a simple three-layer net-
work that maps the input to the output. MLP is designed
using the “nntraintool” of MATLAB. It comprises an input
layer, a hidden layer, and an output layer. The input layer

contains two vectors. One vector is the real part of the input
signal (X), and another is the complex part of the signal. The
output layer generates four vectors “Y0” to Y3. The MLP is
trained with these parameters as shown in Table 1.

5.1.3. RBFNN. RBFNN is a three-layer network that com-
prises an input layer, a nonlinear hidden layer, and a linear
output layer. Radial functions are used as an activation func-
tion. Radial functions are special functions. The output of
these functions increases or decreases monotonically with
distance from a center. The K-means algorithm is used to

Start

Generate
data

PSK
mod

Rayleigh
channel

Last SNR

AWGN

Tarin

Predict

PSK
demod

Calculate
BER

End

Figure 5: The flowchart of NN-based equalizer.

Table 1: The simulation parameters of MLP.

Parameter Value

Hidden nodes 30

Input size (X) 1,000,000

Training algorithm Scaled conjugate gradient (SCG) [77]

Table 2: Simulation parameters of the RBFNN.

Parameter Value

Data set size 2000

Noise variance 0.01

Centers 16
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find the centers. So first, centers of clusters are determined in
an unsupervised manner, and then, classification is per-
formed to recover the signal. We have implemented this
work [51] and observed the improved BER. The simulation
parameters of RBFNN are shown in Table 2.

5.1.4. FLANN. FLANN is a single-layer neural network. The
main concept of FLANN is to convert the input data to a
higher dimension by using different functional expansions.
Due to the absence of hidden layers, these networks have
the following advantages: low computational complexity
with very few adjustable parameters:

(i) Faster training time

(ii) Simple design that can be implemented on hardware

Using the work in [54, 55], we have implemented the
FLANN-based equalizer. The block diagram of the equalizer
is shown in Figure 6.

The simulation parameters of FLANN, Le-FLANN, and
Ch-FLANN are given in Table 3.

5.1.5. SVM-Based Channel Equalizer. SVM is a supervised
algorithm used for classification problems. Channel estima-
tion is a classification problem, so it can be used to deal with
the nonlinear channel effects. In this work, we have imple-
mented a basic SVM model equalization. Simulation param-
eters of the SVM are shown in Table 4. The generalization
error computed during simulations is 0.00001 which indi-
cates the best performance.

5.1.6. LSTM Channel Equalizers. LSTM is a popular RNN-
based DL technique. It is different from feedforward NN
which does not have memory and cannot deal with temporal
data. The simulation parameters are given in Table 5. The
training model of LSTM is illustrated in Figure 7.

5.2. Simulation Analysis. All the simulations are executed
and compared in this section. Figure 8 depicts the BER com-
parison of all the simulated NNs. Generally, the trend ver-

ifies already established theories. As the SNR increases, the
BER performance is getting better and better. The perfor-
mance of FLANN is slightly worse as compared to the rest
of the schemes due to its single-layer architecture. The per-
formance of the traditional LMS algorithm is the worst. In
[51], similar results are observed. All the other ML-based
schemes are having the same BER performance.

In Figure 9, the zoomed version of the BER graph is
depicted. The LSTM is slightly bearing higher BER than
SVM and RBF-based ML methods. The performance of
FLANN when compared with the rest is almost 4 dB poorer
than the rest. The performance of LSTM is about 0.7 dB
poorer than the RBF and SVM and MLP. This may be
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input
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Figure 6: The block diagram of the implemented FLANN-based equalizer.

Table 3: Simulation parameters.

Parameters Value

Length of input 2000

FLANN order 30

Input size 4

μ 0.01

No. of iterations 10

Channel noise variance 0.01

Table 4: Simulation parameters of SVM.

Parameters Value

Input size 1,000,000

Kernel function KNN

Table 5: Simulation parameters of LSTM model.

Parameters Value

Training SNR 12 dB

Channel noise variance 0.01

LSTM nodes 16

Learning rate 0.01
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reduced by further tuning or by increasing the size of the
neural network. However, this will be at the cost of time
and computational resources which can be very expensive
in the communication systems.

The loss function is an important parameter of the opti-
mization and is therefore discussed. The lesser the value of
the loss function, the better performance is considered. In
Table 6, the values of the loss function for all the algorithms
used in this text are depicted. It shows that all the NNs are
well trained.

The minimum value of the loss function achieved is in
the case of SVN where the value is 0.00001. The BER results
depicted in Figure 9 are very much in line with these results.
The loss function values of RBF, FLANN, and LSTM can be
further reduced by using more training data and by using
better optimization algorithms.

5.3. Computational Complexity. Computational complexity
analysis of the algorithms is presented. This presents the
number of computation resources required to perform the
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Figure 7: The LSTM model.
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respective ANN. Table 7 presents the computational com-
plexity of various algorithms. The number of additions, mul-
tiplications, and other computational resources such as
exponentiation, powers, and trigonometric functions is
enlisted [82]. This analysis is useful for the HW implemen-
tations and for estimating the computational requirements
for embedded systems.

The computational complexity analysis of the mentioned
algorithms is verified by timing the MATLAB® implementa-
tions. The time of all the algorithms used in this work is
measured using the MATLAB® built-in function called
“timeit.” The number of iterations performed for each algo-

rithm is 106. The machine used for the computation is
DELL® 7920 running MATLAB® 2019b. The CPU is Intel®
Xeon® Silver 4116 CPU running at 2.1GHz. The time is
enlisted in Table 8. The computational time computed
endorses the computational complexity as given in Table 7.
The minimum computational time achieved is for the
SVM. SVM is running a KNN algorithm that is computa-
tionally efficient. Its BER results are also amongst the best.
RBF and MLP bear good performance, but their computa-
tional time is more.

6. Conclusions

The communication system is an ever-evolving, well-
established field of research and has shown major advances
in signal estimation, equalization, and other fields such as
channel coding. Channel equalization is very critical for
achieving high data rates and improved spectral efficiency
and has been achieved using the traditional theory of least
squares estimation and minimum mean squares estimation
techniques such as LMS, NLMS, RLS, and Kalman filtering.
The use of NN- and SVM-based channel equalization
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Figure 9: The zoomed comparison plot of BER.

Table 6: Loss function values.

ANN Loss function value

Radial Basis Function 0.001

SVN (KNN-based) 0.00001

MLP 0.003

FLANN 0.005

LSTM 0.003
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methods is currently under research and is proving to be
performing better than the conventional methods men-
tioned above.

In this article, we have addressed the application of
information theory-based methods for channel equalization
comprising of neural networks and SVM techniques. It
revealed that the methods used in traditional communica-
tion systems are difficult to understand and implement as
compared to the ANN-based methods. Channel equalization
when treated as a classification problem using ANN tech-
niques resulted in simpler receiver structures especially in
the case of OFDM. The results achieved are also found to
be improved in terms of BER. Another advantage with the
use of ANN-based methods is that this has resulted in a rel-
atively simpler way to understand the communication sys-
tems, and many of the computer scientists who are not
well versed with the communication system theories can also
attempt to develop better communication systems by using
their computer science and software development skills.

This work can be extended in many ways. The following
is the list of possible emerging research areas. Computa-
tional complexity analysis and computing platform optimi-
zations of the algorithms are mandatory for efficient
implementation on hardware platforms such as ARM pro-
cessors and FPGA and GPUs. In this work, the preliminary
computational complexity analysis has been worked out.
However, this can be further extended when the implemen-
tation of these algorithms will be carried out on the FPGAs
or when optimized for the implementation on the microcon-
trollers and DSP processors. Two-dimensional treatment of
the received signal is similar to time-frequency analysis
where several frames are gathered and then processed as a

block. This will enable the use of advanced neural network
methods such as CNN, DNN, and RNN methods. Existing
frameworks such as AlexNet may also be used. Currently,
performance evaluation is performed using QPSK modula-
tion. Performance evaluation using higher-order constella-
tions such as 16QAM, 64QAM, and 8PSK may also be
carried out in the future. Validation by developing hardware
may be carried out.
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