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Abstract

The internet of radio light (IoRL) home network is described together with its architectural
design using software defined network (SDN), network function virtualisation (NFV) and
virtual network function (VNF) virtualisation technologies jointly to support the identified
use cases, implementation scenarios and fifth generation (5G) key performance indicators
(KPIs). The preliminary testbed on which the loRL home network will be implemented and
tested is introduced and evaluated using practical scenarios and measures.
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Executive summary

This document describes the infrastructural design of the loRL home network with respect to
recent advancements for building, managing and orchestrating virtual networks with 5G
capabilities. It does so, by initially performing systematic survey analysis to identify
contemporary findings on virtualisation technologies such as SDN and NFV, while classifying
the key conjunction between these technologies to effectively approach the highly dynamic
nature of the IoRL system and the interfaces for connecting and managing the remote radio
heads to it. It then studies the components of the considered infrastructure such as physical
nodes, compute node load, connections, hypervisor, number of virtual machines, etc. to
design network function management mechanism with interconnections control, which can
maintain consistency between the IoRL’s abstractly defined topology and the actual user
connections. The document concludes by developing a preliminary simulation testbed in an
effort to capture the practical significance of the outcomes using experiments with measures
considering the identified use cases and scenarios.

The results of this deliverable will guide the identification of the functional requirements and
development of the system architecture, which will be presented in deliverables 3.2 and 3.3.
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D-NFV Distributed Network Function Virtualization
DoS Denial of Service

DPDK Data Plane Development Kit

DPI Deep Packet Inspection

EMS Elemental Management Systems

EPC Evolved Packet Core

ESCAPE Extensible Service Chain Prototyping Environment
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ETSI
FE

FG
ForCES
FSM
FW
GNF
GO
GUI
HeNodeB
HetNets
HIPG
HTTP
laaS
ICT
IDPS
IDS
IETF

IL

IMS
INBI
loRL

loT

ISF
ISG
JSON
KPI
KVM
LAN

European Telecommunications Standards Institute

Forward Elements

Forwarding Graph

Forwarding and Control Element Separation
Finite State Machine

FireWall

Glasgow Network Functions

Global Orchestrator
Graphical User Interface

Home eNodeB

Heterogeneous Networks

Home Internet Protocol Gateway
HyperText Transfer Protocol
Infrastructure-as-a-Service
Information and Communications Technology
Intrusion Detection Prevention Systems
Intrusion Detection

Internet Engineering Task Force
Infrastructure Layer

Internet Protocol Multimedia Subsystem
Intent-Based Northbound Interface
Internet of Radio Light (project)

Internet of Things

Internet Protocol

Integrated Security Framework

Industry Specification Group

JavaScript Object Notation

Key Performance Indicator

Kernel-based Virtual Machine

Local Area Network
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LED
LFBs
LoS
LTE
LVAP
MAC
MANO
MDNS
MEC
MIMO
mmWave
MNH
MSO
MTP
MVNO
Naa$S
NC
NDB
NE

NF
NFV
NFVI
NFVIaaS
NFVO
NIC
NICE
NMS
NOS
NR
NRM

Light Emitting Diode

Logical Functional Blocks
line-of-Site

Long-Term Evolution

Light Virtual Access Point

Medium Access Control
MANagement and Orchestration
Multi-Domain Network Service
Mobile Edge Computing

Multiple Input Multiple Output
Millimeter Wave

Multi-domain Network Supervisor
Multi-domain SDN Orchestrator
Mobile Transport and computing Platform
Mobile Virtual Network Operators
Network-as-a-Service

Network Controller

Network Debugger

Network Elements

Network Function

Network Function Virtualization

Network Function Virtualization infrastructure

Network Function Virtualization infrastructure-as-a-Service

Network Function Virtualization Orchestrator
Network Intent Composition

Notes Install Cleanup Executable

Network Management System

Network Operating System

New Radio

Node Resource Management
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NS Network Service

NS-3 Network Simulator 3

NSD Name Server Daemon

NSO Network Service Orchestration

OAN Open Access Network

OBSAI Open Base Station Architecture Initiative
ODL OpenDayLight

OFDMA Orthogonal Frequency-Division Multiple Access
OFRewind OpenFlow Rewind

OFTest OpenFlow Test

oL Orchestration Layer

ONF Open Networking Foundation

ONOS Open Network Operating System

OPEX Operational Expenditure

OPNFV Open Platform Network Function Virtualization
ORI Open Radio Interface

oS Operating System

0OSGi Open Services Gateway initiative

OSM Open Source Management

0SS Operations Support System

oTT Over-The-Top

0oVsS Open vSwitch

OVSDB Open vSwitch Database

Paa$S Platform-as-a-Service

PNF Physical Network Function

PoC Proof of Concept

PoE Power over Ethernet

POF Plastic Optical Fiber

PoP Point of Presence

QoE Quality of Experience
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QoS
RAN
REST
RFC
RO
RRLH
SDHN
SDI
SDK
SDN
SDWAN
SFC
SG

SL
SLA
SLApp
SMTP
SNR
SO
SON
SPAN
SR-IOV
STD
TAP
TCP
TLS

ul

URI
URLLC
UsB

Quality of Service

Radio Access Network
Representational State Transfer
Request for Comments

Resource Orchestration

Remote Radio-Light Heads
Software Defined Home Network
Software Defined Infrastructure
Software Development Kit
Software Defined Network
Software Defined Wide Area Network
Service Function Chaining
Service Graph

Service Layer

Service Level Agreement

Service Layer Application

Simple Mail Transfer Protocol
Signal to Noise Rate

Service Orchestrator
Self-Organizing Network

Switch Port Analyser

Single-Root Input/Output Virtualization
SDN Troubleshooting System
Terminal Access Point
Transmission Control Protocol
Transport Layer Security

User Interface

Uniform Resource Identifier

Ultra-Reliable and Low-Latency Communications

Universal Bus System
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VAP Virtual Access Point

VDU Virtual Deployment Unit

VHG Virtual Home Gateway

VIM Virtualized Infrastructure Manager
VIM-MM Virtualised Infrastructure Monitoring Manager
VLAN Virtual Local Area Network

VLC Visible Light Communication

VM Virtual Machine

vMB Virtual Middleboxes

VNF Virtual Network Function

VNFaa$ Virtual Network Function-as-a-Service

VNFC Virtual Network Function Components
VNFD Virtual Network Function Descriptor

VNFFG Virtual Network Function Forwarding Graph
VNFM Virtual Network Function Manager

VNF-MA Virtual Network Function Monitoring Agent
VR Virtual Reality

VTN Virtual Tenant Network

W3C World Wide Web Consortium

WAN Wide Area Network

WICM WAN Infrastructure and Connectivity Manager
WiFi Wireless Fidelity

WIN WAN Infrastructure Management

WMN Wireless MESH networks

XaaS Everything-as-a-Service

xDPd Extensible Data-Path daemon

XML Extensible Markup Language

XMPP Extensible Messaging and Presence Protocol
YANG Yet Another Next Generation
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Definitions

loRL home network

An loRL home network is a wireless system setting for indoor environments composed by
visible light communication (VLC), wireless fidelity (WiFi) and millimeter wave (mmW)
remote radio-light heads (RRLH) access points sharing same virtual infrastructure.

Indoor environment

An indoor environment is a single building setting in which the VLC, WiFi and mmW access
points are placed.

RRLH access point

A RRLH access point is a transceiver operating either using VLC, WiFi or mmW radio access
technology.

Virtual infrastructure

A virtual infrastructure is a system consisted by virtual network components such as
controllers, switches, monitoring tools, etc.

Intra-handover

Intra-handover refers to the handover process, which occurs between two coverage areas of
single RRLH controller, and integrates by routing packets to the RRLH controller medium
access control (MAC) addresses by the software defined network (SDN) controller.

Inter-handover

Inter-handover refers to the handover process, which occurs between the gNodeB (inside
the IoRL home network) and the e/gnodeB (outside the IoRL home network), and integrates
by switching the routing of packets from the Internet MAC address to the service gateway
MAC address, and vice versa.
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1

Introduction

1.1 Objective of this document

The main objectives of this document are to:

Identify the key research challenges of the synergy between SDN and NFV virtual
network technologies towards drawing a clear view on how to effectively implement
the lIoRL home network in practice, taking into account outcomes of relevant 5G
projects.

Design the loRL home network by selecting most suitable among contemporary
virtualisation tools by means of their stability, efficiency and monitoring, and identify
practical use cases with scenarios for being considered for demonstrations in the
project, using the outcomes of task 2.1.

Develop preliminary testbed to interpret SDN/NFV principles in the IoRL home
network, while setting the basis towards extended use cases and implementation
scenarios, which can potentially improve the outcomes of tasks 2.4-2.6.

1.2 Structure of this document

The rest of the document is organised as follows:

Section 2 studies the interpretation of joint NFV and SDN technologies in the loRL
home network architecture based on systematic survey of recent network
virtualisation advancements, which is important to identify the key challenges of the
loRL implementation,

Section 3 uses the outcomes of Section 2 to develop contemporary SDN and NFV
joint solutions for loRL-specific virtual processes, functions, services modelling, and
integrate the outcomes into the considered home network using first-step
preliminary testbed with real-world experiments.
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2 Interpretation of SDN/NFV approach in the loRL home network

The interpretation of joint SDN/NFV virtualisation in the loRL home network can be
perceived by answering the question: “What are the key differences among the architectural
designs of joint NFV/SDN solutions?”. This question seeks clarification on how ETSI, 5GPP
bodies along with the relevant literature have proposed designing architectures of
integrated joint NFV/SDN solutions. To answer the question above in this section we will
initially describe a taxonomy approach that organises the various decision-making levels for
the design of joint NFV/SDN architectures. Then, we will clarify the recent developments in
the content of SDN/NFV technologies to highlight the orchestrators, controllers, switchers,
processes, etc. that will be considered for the integration of the loRL home network.

2.1.1 Generalised taxonomy approach of joint SDN and NFV
structural elements

The proposed taxonomy approach will shed light on the structural architecture of SDN
elements in NFV frameworks. The purpose is to produce useful insight for simplifying the
role of SDN technology when applied on NFV solutions, such as loRL. Our viewpoint is that
NFV/SDN architectures design can be divided into two sides namely NFV-side and SDN-side.

The NFV-side is to decide whether or not to use the below features in the architectural
framework:

e Distributed NFV (D-NFV), which describes how the management and orchestration
(MANO) framework installs the virtual network functions (VNFs) such as data centres,
forwarding devices, virtualised customers premises equipment (CPE);

e Multiple virtualised infrastructure managers (VIMs), which are to support the multi-
domain administration and can be placed either in different NFV infrastructure points
of presence (NFVI-PoPs) or in the same NFVI-PoP to increase scalability and
performance;

e NFV MANO tools, which can provide complete solutions for MANO such as
OpenMANO, OpeNodeBaton, etc. frameworks.

The SDN-side is to place the SDN elements in the NFV framework such as:

e SDN Resources, which comprise of both physical and virtual switches and routers
such as 1) physical switch or router, 2) virtual switch or router, 3) e-switch (software-
based SDN-enabled switch in a server network interface card (NIC)), 4) switch/router
as VNF;

e SDN Controllers, which are responsible for controlling the SDN resources,
determining the behavior of network traffic such as 1) merged with the virtualised
infrastructure manager (VIM), 2) virtualised as a VNF, 3) as part of the NFVI (and not
as a VNF), 4) as part of the operations support systems and business support systems
(OSS/BSS), 5) as a physical network function (PNF);

e SDN applications, which are interfaces with one or multiple SDN controllers to
enforce high-level network policy, such as firewall, network address translation, QoS
and network management, and can be integrated 1) as part of a PNF, 2) as part of the
VIM, 3) virtualised as a VNF, 4) as part of an Elemental Management System (EMS)
for VNF monitoring.
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In this regard, Figure 2-1 illustrates our taxonomy approach of SDN/NFV elements
interpretation in the loRL home network, while rest sub-sections perform systematic survey
to identify the contemporary advancements of each considered architectural element.
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Figure 2-1 - lllustration of the proposed taxonomy approach for joint SDN and NFV structural interpretation
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2.2 SDN architectural advancements

After presenting our taxonomy approach we study in the sub-section the state-of-the-art of
network virtualisation including recent advancements on controllers, switchers, debugging
tools and emulators to highlight the importance of SDN technology in the IoRL project.

2.2.1 Requirement for SDN research and development

The use of distributed protocols and coordination of changes in conventional networks
remains incredibly complex involving the implementation of distributed protocols on the
underlying network hardware to facilitate multiple services for traffic routing, switching,
guaranteeing quality of service (QoS) applications, and providing authentication. Keeping
track of the state of several network devices and updating policies becomes even more
challenging when increasingly sophisticated policies are implemented through a constrained
set of low-level configuration commands on commodity of IoRL’s networking hardware. This
frequently results in misconfigurations in view that changing traffic conditions requires
repeated manual interventions to reconfigure the network. Therefore, the fundamental
requirement of an overall framework is to fulfil a range of operational requirements such as
ease of programmability, dynamic deployment, and provisioning, while facilitating
innovative applications emerges. In the following, we highlight some of the technology and
operational concerns that lead to development of current SDN technology.

e Automation: improving automation reduces operational expenditure and enables
effective troubleshooting to improve unscheduled downtimes, ease of policy
enforcement, provision of network resources/applications, etc.

e Dynamic resource management: adjusting the size of the network while updating its
topology and resources dynamically can be further aided by SDN virtualization.

e Orchestration: orchestrating control of wide range of hundreds or even thousands
network appliances such as in data centres or larger campus/building network
environments.

e Multitenancy: SDN can improve proliferation of cloud-based services such that
tenanted infrastructure can be separated from hosted services, e.g., tenants can be
able to complete control over their addresses, topology, routing, and security.

e Open APIs: developers and operators can choose between numerous modular
plugins to offer abstraction and define tasks by APIs with no concern about rest
implementation details.

o Greater Programmability: SDN can potentially increase the ability to change device
behavior and configuration in real time according to prevalent traffic conditions.

e Integrated security: SDN can lead to greater accuracy in detecting security incidents
and simplifying management by integrating security devices within the network
fabric.

e Effective resource management: in addition to security, multiple services such as load
balancers and resource monitors, can be provisioned on demand and placed in the
network fabric as and when required.

e Improved performance: SDN control frameworks can offer the ability to incorporate
innovative traffic engineering solutions, capacity calculation, load balancing, and a
higher level of utilisation that reduce ICT-related CO2 footprint.

e Real-time monitoring: SDN technology can improve real-time monitoring and
connectivity of devices in the network.

Page 18 of (104) © loRL consortium 2018



Deliverable D3.1 loRL H2020-ICT 761992

2.2.2 SDN architecture overview

The basic architecture of SDN utilises modularity-based abstractions, similar to formal
software engineering methods. A typical SDN architecture divides processes such as
configuration, resource allocation, traffic prioritisation, and traffic forwarding in the
underlying hardware using a 3-tier structure consisting by the application, control, and data
plane as highlighted below.

e Tier 1 - Data (forwarding) plane: Data plane is the set of network physical
components (switches, routers, virtual networking equipment, firewalls, middle box
appliances, etc.), almost same as in conventional networks. It aims to efficiently
forwarding network traffic based on certain set of certain rules instructed by Tier 2 -
Control plane. That way, SDN technology makes hardware (physical) infrastructure of
the network rather flexible by removing intelligence and isolated configuration per
network element, while moving these functionalities to the control plane.

e Tier 2 - Control plane: Control plane is the logic to decide on how traffic can be
routed through the network from one node to another based on end user application
requirements. Such control logic is incorporated into external software application
elements called SDN controllers. An SDN controller handles all Tier-1 forwarding
devices by translating individual application requirements and business objectives
(e.g. traffic prioritising, access control, bandwidth management, QoS, etc.) into
relevant programmable rules and announcing them to data plane. By introducing
programmability through these rules, flow tables can be manipulated in individual
elements and in real time based on network performance and service requirements.

e Tier 3 - Application plane: Application plane is the layer to include all applications and
services of the network. Conceptually, the application plane situates above the
control plane to enable applications communicating with data plane through
requesting network functions from control plane, while performing network related
tasks. Application plane uses APIs to capture the individual application parameters
(delay, throughput, latency, etc.) based on which the SDN controller configures the
individual network elements in the data plane for efficient traffic forwarding [1], [2].

Remark that the communication process between control-data, and control-application
planes, takes place using southbound and northbound communication standards,
respectively.

2.2.3 SDN communication standards

This Section presents the most prominent SDN communication standards, so-called
application programming interface (APIs) and provides some examples of recent efforts to
examine the evolution of these standards towards the 5G system.

2.2.3.1 Southbound communication standards
2.2.3.1.1 OpenFlow standard

The OpenFlow standard comprises three main elements, namely switches, controllers, and
protocols (southbound API) as shown in Figure 2-2. The OpenFlow Switches are responsible
for the data packet forwarding (i.e., data plane) according to the rules created and
maintained by the SDN controller [3]. In OpenFlow, the SDN controller is the main
component to support the network applications by determining the rules to be stored and
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Figure 2-2 - lllustration of the elements of the OpenFlow SDN standard

applied by switches. There are several OpenFlow controllers available, such as
OpenDaylight, Floodlight, ONOS, Ryu, POX, and NOX. An OpenFlow-based SDN controller
can use two types of interfaces to create rules on switches, namely: the OpenFlow protocol
and the Open vSwitch Database (OVSDB) management protocol.

e OpenFlow protocol: the OpenFlow protocol (ONF), maintained and updated by ONF,
is the first and most prominent southbound communication API. This protocol uses a
secure and encrypted channel (TCP/TLS) for performing the management of switches.
It includes a set of messages for different situations: establishment and configuration
of the management channel (e.g.,, Hello, Echo Request/Reply, Features
Request/Reply, Set-Config), receiving (Packet-in) and redirecting (Packet-out) data
packets, and OpenFlow rules management (Flow-mod). The OpenFlow protocol can
coordinate all OpenFlow-enabled switches.

e (OVSDB management protocol: Defined in RFC 7047 [4], this protocol uses a set of
operations available in Open vSwitch (programmatic extension) to manage OpenFlow
rules. Such operations allow insertion, updating, and deletion of forwarding rules
directly into the Open vSwitch Database. As a consequence, the OVSDB Management
Protocol is limited to use in virtual switches based on Open vSwitch.

As an example of using the aforementioned two OpenFlow-based protocols, the study in [5]
deploys multi-tenant service function to chain edge network functions, using OpenStack. It
does so, using the OVSDB management protocol via Neutron Open vSwitch Agent to provide
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connectivity to VNFs, and the OpenFlow protocol via POX controller to monitor the
throughput of OpenFlow rules.

2.2.3.2.1 Forwarding and control element separation (ForCES) standard

ForCES is an SDN standard defined by the Internet Engineering Task Force (IETF) [6]. In
ForCES, the plane separation occurs by dividing the Network Elements (NE) into two entities:
Forwarding Elements (FE) and the Control Elements (CE). FEs represent the Data Plane and
comprise both physical and virtual switches. ForCES models FEs by defining one or many
Logical Functional Blocks (LFBs) classes, realised by XML-based modelling. An LFB comprises
input and output ports and acts as a packet processing resource performing different
functions, such as filtering, classification, and measurement. Multiple LFB instances in the
same FE can be connected in a directed graph to create a network service. Each LFB provides
operational parameters, capabilities, and events to a CE that acts as an SDN controller. CE
uses the ForCES protocol as a southbound API to perform the per-LFB controlling.

As an example, the study in [7] proposes an NFV/SDN architecture using ForCES standard,
where the NFV infrastructure (NFVI) includes LFB hypervisor to allow creating FE/LFBs as
VNFs and CEs as EMS entities. Also, the NFVI provides LFBs acting as virtual switches to
interconnect these VNFs. Furthermore, [8] proposes a ForCES approach to evaluate PoC
architecture when applied for virtualisation of 4G Evolved Packet Core (EPC) components.

2.2.3.3.1 Extensible messaging and presence protocol (XMPP) standard

XMPP is a general communication standard offering messaging and information exchange
among clients through centralised servers [9]. Similar to message transfer protocol (SMTP),
each XMPP client can be identified by an ID which could be as simple as an email address.
Client machines set up connections with a central server to advise their presence, which
maintains contact addresses and may let other contacts know that a particular client is
online. Clients communicate with each other through chat messages which are pushed as
opposed to polling used in SMTP/POP emails. Every SDN object such as virtual machine,
switch, and hypervisor can have an XMPP client module awaiting instructions from XMPP
server for authentication and traffic forwarding, while each client updates its configuration
as per server request. XMPP API is an IETF standardisation of the Jabber protocol and is
defined for use with TCP connections in RFC 6121. A number of open source XMPP
implementations are also available with variations being used in programs including Google,
Skype, Facebook, and many games.

2.2.3.4.1 Cisco OpFlex standard

Cisco OpFlex standard [10], has gained momentum among southbound APIs because it
facilitates control-data plane communication by implementing programming language across
physical and virtual environments. In comparison with OpenFlow standard, which centralises
the network control functions using SDN controller, Cisco OpFlex aims implementing and
defining these policies with minimum controller usage. In particular, OpFlex aims enhancing
policies to remove controller’s scalability and directly manage channel communication from
becoming the network bottleneck, pushing that way some level of intelligence to the
devices. The standard allows policies to be defined within a logical, centralised repository in
the SDN controller, such that OpFlex can communicate and enforce the respective policies
within a subset of distributed policy elements on the switches. The standard allows
bidirectional communication of policies, networking events, and statistical monitoring
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information. Real-time provision of information may in turn be used to make networking
adjustments. The considered switches contain an OpFlex agent supporting the Cisco OpFlex
standard. Some of the industry giants including Microsoft, IBM, F5, Citrix, and Red Hat have
shown commitment to embedding OpFlex agent in their product line. OpFlex relies on
traditional and distributed network control protocols to push commands to the embedded
agents in switches. One of the main reasons for the early adaption of OpenFlow has been
the level of control it can offer to developers for designing network control applications with
minimal support from network vendors. To standardise OpFlex, Cisco submitted the protocol
to IETF standardisation process and several vendors are presently working to standardise as
well as increase the adoption of the standard.

2.2.3.2 Northbound communication standards
2.2.3.1.2 Representational State Transfer (RESTful) standard (1996)

RESTful follows the software architecture developed for World Wide Web consortium (W3C)
encompassing all client-server communications. The standard was originally introduced by in
[11]. Its main goal is to offer scalability, generality, and independence by allowing the
inclusion of intermediate components between clients and servers to facilitate these
necessary functionalities. Both clients and servers can be developed independently or in
tandem by different vendors. In RESTful the server component is stateless, and clients keep
track of their individual states to allow scalability. Server responses can be cached for a
specified time. Every entity or global resource can be identified with global identifiers such
as a URI and is able to respond to create, read, update, and delete (CRUD) operations. The
uniform interface for each resource is GET (read), POST (Insert), PUT (write), and DELETE
(remove). Data types can define network components such as controller, firewall rule,
topology, configuration, switch, port, link, and hardware. RESTful is prevalent in most
controller architectures as the northbound API of choice along with Java APIs. One of the
major drawbacks of RESTful, however, is the lack of public subscription or live feed informing
the application/service of network changes. Like HTTP, REST does not tell when a page has
changed and requires frequent refresh. Application developers, therefore, periodically use
loop calls to retrieve and subsequently post updates to individual switches based on pre-
defined policies. RESTful support is included in almost all major SDN controllers including
Ryu [12] and OpenDaylLight [13] as well as several vendor proprietary platforms. According
to [14], the REST API has become a prevalent choice for the NBI in SDN, because it is highly
extensible and maintainable for managing services from both data and control planes.
Procera [15] and Frenetic [16] would be alternatives for northbound APIs, but they run on
top of a single OpenFlow Controller, and they are not as extensible as RESTful standard.

2.2.3.2.2 Open services gateway initiative (OSGi) standard (2000)

The OSGi standard includes a set of specifications for dynamic application composition using
reusable Java components called bundles [17]. Bundles publish their services with OSGi
services registry to find and use services of other bundles, which can be installed, started,
stopped, updated, and uninstalled. Modules define how a bundle can import and export
code. Security layer handles security and execution environment defines the methods and
classes available in specific platform. A bundle can either get service or listen for a service to
appear or disappear. Each service has properties to allow other services to select among
multiple bundles that offer the same service. Services are dynamic, and a bundle can decide
to withdraw its service which may cause other bundles to stop using the specific service.
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Bundles can be installed and uninstalled on the fly. Remark the OpenDaylLight project [13],
which is one major example of SDN controller platform built using the Java-based OSGi
framework. OSGi allows the starting, stopping, loading, and unloading of Java based network
(module) functionalities. In comparison, a Ryu controller [12] cannot offer OSGi support and
the controller has to be stopped and restarted with the needed modules or a custom REST
method is built with all required functionalities included to avoid controller restarts. A few
other SDN platforms supporting OSGi include Beacon [18], Floodlight [19], and ONQOS [20].

2.2.3.3.2 Model-Driven Service Abstraction Layer (MD-SAL) standard (2014)

The project in [21] designs Application containers, which can be built on top the OSGi
framework to simplify the operational aspects of packaging and installing of applications in
OpenDaylight controller. To further facilitate application development, the model-driven
approach MD-SAL in [22] abstracts some services used in the OpenDayLight controller and
offers to developers and network administrators the opportunity to unify the northbound
and southbound APIs with the data structures of multiple services and individual
components of the controller. The data structure itself is described by Yet Another Next
Generation (YANG) language used to model the service and data abstractions as single
system [23]. YANG can model semantics and data organisation including configuration
and/or operation data as a tree. The controller northbound API utilises the self-describing
data in XML, which simplifies the development of additional controller-driven functionalities
as well as SDN applications. Modules providing specific network functionality can define a
scheme to allow the interpretation of data structures through the MD-SAL in simple manner.
MD-SAL uses APIs to connect and bind requests and services and provides an extra layer
containing all the necessary logic to receive and delegate requests [24]. The SAL architecture
itself comprises (i) top-level sub-system consisting of controller components or applications
that use the controller SAL to communicate with other controller components and plugins
(data store, validator, etc.) and (ii) nested subsystems that expose a set of functionalities and
may have multiple instances attached to the overall system (network elements, virtual
systems, etc.). The MD-SAL approach is relatively agnostic supporting any service model.
Furthermore, the scheme stiches together horizontal modules and allows developers to use
generic interfaces for service discovery and subsequent utilisation.

2.2.3.4.2 Intent-Based Networking Approach (2015)

Intent-based northbound interface (INBI) represents an evolution from static to dynamic
network setup through simple application intent specification, programmed by the
controller into physical and virtual devices. INBI allows SDN applications to describe their
intent without necessarily having to specify the methods to achieve it. The SDN controller in
turn translates these intents into low-level configuration commands in the data plane for
subsequent execution. The application or user is therefore oblivious to the underlying
infrastructure configuration providing added flexibility and automation for application
developers and enabling agile deployment of services. With INBI’s intents, a compelling case
for implementation in SDN is ahead us with plenty of benefits such as application scalability,
greater portability, increased coherence, contextual management. However, to permit
practical deployment INBI requires a language for translating user or application intent [25],
[26] hence, recent focus has drawn on developing intent-based INBI for proprietary
controllers [27]. For instance, the aforementioned ONOS project [28] provides application
intent at the INBI, where intents are described to allow applications to specify policies, which
are compiled and installed as device flow rules. In terms of community efforts, the ONF INBI
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Working Group aims at specifying the information and architectural model for an intent-
based interface to the SDN controller [29]. Within this direction, the OpenDayLight Network
Intent Composition (NIC) initiative also aims assisting administrators in managing and
directing network services by describing the intent for network behavior through a
northbound interface by facilitating abstracted policy semantics instead of specifying data
plane (flow) rules [30], [31]. This project uses existing OpenDaylLight functions and
southbound plugins and is designed to be protocol agnostic, that is, able to use any control
protocol. Both OpenDayLight INBI Working Group and NIC initiative comprise a diverse set of
projects, operators, and vendors collaborating with the open source community to bring
intent-based approach to the SDN INBI.

2.2.4 SDN-based controllers

2.2.4.1 SDN controllers overview

A key abstraction of the SDN paradigm is the separation of the network control and
forwarding planes. Conceptually, in SDN networks, resources are treated as a dynamic
collection of arbitrarily connected forwarding devices with minimal intelligence. The control
logic is implemented on top of a so-called SDN controller. Figure 2-3 illustrates the
representative structure of a typical SDN controller. More precisely, the controller is a
software platform to test and validate the switching/controlling behavior focusing on
southbound protocol APIs. SDN controllers are seen as logically centralised entities
responsible for set of tasks, including the extraction and maintenance of a global view of the
network topology and state, as well as the instantiation of forwarding logic appropriate to a
given application scenario. In practice the SDN controller manages connections to all
substrate switches using a southbound protocol such as OpenFlow, and installs, modifies and
deletes forwarding entries into the forwarding tables of the connected switches by using
protocol specific control messages.

Fairly said, SDN controllers represent the focal point in the SDN system to oversee and
manage the flow of traffic among southbound switches/routers (network wise) by using APIs
according to each application requirements. In order an SDN controller to perform such
tasks, it requires some information regarding the state of the underlying network provided
by collections of pluggable modules, which perform different information gathering
procedures about the data link layer devices, providing full inventory of the network below,
as well as devices capabilities. In addition, when the SDN controller has full view of the
network, it adds extensions and bundles to improve the controller capabilities and provide
customised forwarding rules created using algorithms that analysed information and
statistics gathered from the network.

The architectural structure of SDN controllers comprises of three coexisting layers:

e Southbound layer that communicates to the networking devices via different types of
protocols such as OpenFlow, OVSDB, NETCONF, etc.;

e Northbound layer where the applications and services exist and developed making
use of the abstraction of the network provided by the central layer and
communicating to the controller via the northbound REST APIs;

e Central layer, which provides abstraction layer to the application developers allowing
them to develop applications and services. Central layer contains the data stores
(operational and configurational) where the required and current state of the system
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Figure 2-3 - lllustration of the structure of a typical SDN controller

stored, and also provide a message bus allows the northbound layer communicates
to the southbound layer.

2.2.4.2 Types of SDN controllers

To design and utilise SDN controllers, there exist two popular approaches: (i) the vertical
approach where multiple controllers are in effect managed by controller(s) at a higher layer
and (ii) the horizontal approach, where controllers establish a peer-to-peer communication
relationship [32], [33], [34]. In the following, we summarise most prominent of those SDN
controllers.

2.2.4.1.2 The NOX and POX controller

Developed at Stanford University, NOX was the first open source framework to develop SDN
controllers [35]. Due to its early availability and simplicity, NOX quickly became the de-facto
reference design for OpenFlow controllers. As a result, it has been used to test new
OpenFlow features, novel controller ideas and it has been employed extensively in research
and feasibility studies. NOX applications - called modules - are implemented using the C
programming language. NOX is event based; each module essentially consists of a collection
of call-back functions, triggered by the arrival of specific OpenFlow protocol messages. The
spin-off of NOX called POX [2] enables the use of Python for programming modules. POX is a
Python controller, support Linux, MAC OS, and Windows operating platform, works with
OF1.0 as southbound protocol, and support REST as northbound API, it can also function as
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an OpenFlow switch. While NOX/POX is extremely versatile it is not primarily aimed for
production use, as it is not optimised for performance and stability and lacks resilience
features. NOX is a C++ controller, support Linux operating platform, works with OF1.0 as
southbound protocol, and support REST as northbound API, NOX and POX suffer from poor
documentation. Also, since both NOX and POX are written in C++/Python, they support
OpenFlow version 1.0 only and therefore, both projects are currently discontinued. Most
recent studies using NOX and/or POX can be found in [5], [36], [37].

2.2.4.2.2 FloodLight controller

FloodLight is a Java-based OpenFlow cross-platform controller, support Linux, MAC
Floodlight is a SDN controller written in Java and supports the OpenFlow v.1.0-v.1.4 [38] and
1.3 southbound protocol, and support REST as northbound API, it has better documentation
than Beacon and RYU controllers. It is Apache-licensed and supported by engineers and
developers from Big Switch Networks. In addition to OpenFlow controller, Floodlight
provides a set of internal SDN applications (e.g., firewall and load balancing) and a REST API
for development of external applications. Recent SDN developments with Floodlight can be
found in [39], [40], [41], [42], [43], [44].

2.2.4.3.2 Ryu controller

Ryu is an open source framework (Apache 2.0 licensed) written in Python, created by NTT
and supports OpenFlow southbound APl v.1.0-v.1.5 [12]. Also, a REST API is available to be
used for external SDN applications. Currently, Ryu is fully integrated into Neutron
(OpenStack Networking Service). Recent SDN developments with Ryu can be found in [45],
[46], [47], [48], [49], [50].

2.2.4.4.2 Open network operating system (ONOS) controller

ONOS comprises an open source SDN controller for SDN/NFV solutions [28]. Like ODL, ONOS
was developed using Java on top of the Apache Karaf OSGi container and provides the
following main features: i) a GUI for the view the network state, support different SDN
southbound APIs, such as OpenFlow, NETCONF, and OpenConfig, ii) northbound abstractions
to simplify creating intent-based virtualised networks, and iii) high availability and scalability
support (e.g., cluster of ONOS instances). Recent SDN developments with ONOS can be found
in [51], [52].

2.2.4.5.2 OpenDaylight controller

OpenDayLight is the newest and content-widest SDN controller platform. It is backed by the
Linux Foundation and developed by an industrial consortium, which includes Cisco, Juniper
and IBM, among many others. OpenDaylight provide enhancement and support to cloud
and NFV, as well as greater integration with larger industry frameworks from OPNFV and
OpenStack. OpenDaylight is a Java-based OpenFlow cross-platform controller, support
Linux, MAC OS, and Windows operating platform, it works with OF 1.0, 1.3, 1.4, NETCONF,
OVSDB, and many other southbound protocols, as well as supporting REST as northbound
API, it is partnered with Linux foundation and over forty companies such as Cisco, IBM, and
NEC, and it has the best documentation amongst all the other controllers. OpenDayLight
includes numerous functional modules which are interconnected by a common service
abstraction layer. ODL is a modular SDN open source platform maintained by Linux
Foundation21 [53]. It is written in Java and aims to accelerate the development of SDN in
conjunction with NFV solutions in production environments. ODL offers plugins that support
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different SDN southbound APIs, such as OpenFlow (1.0 and 1.3) and OVSDB. Currently, the
newest version of the ODL is the Oxygen, released in March 2018. Recent SDN developments
with ODL can be found in [36], [40], [54], [55], [56], [57], [58], [59], [60], [61], [62], [63], [64].
Further, OpenDayLight provides a flexible northbound interface using Representation State
Transfer APls (REST APIs) and includes support for the OpenStack cloud platform. Current
OpenDaylight release is built upon the following four structural considerations:

e technology-specific plug-ins, for managing SDN and non-SDN devices with various
network configuration protocols;

e a service abstraction layer to unify the capabilities of the underlying technology-
specific plug-ins;

e a core of basic network services such as topology management, host tracking etc.;

e a set of northbound APIs (REST-based) for communicating with network
management applications.

2.2.4.6.2 Uncommon SDN-based controllers

Besides the aforementioned well-known controller frameworks, some other less used yet
known tools to design SDN controllers are:
e Beacon (Stanford University) [18]
e Floodlight (Big Switch) [65]
e Helios (NEC) [66]
e Trema (NEC) [67]
e SNAC (Nicira) [68]
e FlowVisor (Stanford University/Nicria) [69]
e Oflops (Cambridge, Berlin, Big Switch) [70]
e IRIS (IRIS Team-ETRI) [71]
e Maestro (Rice University) [72]

2.2.5 SDN-based switches

2.2.5.1 SDN switches overview

An OpenFlow switch is a software program or hardware device that forwards packets in a
SDN environment. When it receives a packet, which does not have a flow for (match + exit
port) the SDN switcher contacts the SDN controller (server) to ask for information of how to
handle this specific packet. The controller can then download a flow to the switch, possibly
including some packet manipulation as shown in Figure 2-4. Once the flow is downloaded to
the switch it will switch similar packets at wire-speed. Having a central server that is aware
about network’s layout and can make all the switching decisions, while building the routing
paths gives to SDN system the following advantages:

e the SDN controller could route non-critical/bulk traffic on longer routes that are not
fully utilised;

e the SDN controller can send the initial couple of packets to a firewall, and once the
firewall is happy/accepts the flow, the SDN controller can bypass the firewall thus
removing load from the FW and allowing multi-gigabit data centers to be fire-walled;
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Figure 2-4 - lllustration of the structure of a typical virtual network including SDN
controllers and switches

e the SDN controller can easily implement load-balancing also at high data rates by just
directing different flows to different hosts, only doing the set-up of the initial flows;

e network traffic can be isolated without the need for VLANSs, the SDN controller can
just refuse certain connections;

e makes easier to set up a network terminal access point (TAP) for any port or specific
traffic by programming the network and by sending duplicate streams to network
monitoring devices;

e SDN switching allows for the development of new services and ideas all in software
on the SDN controller.

2.2.5.2 Types of SDN switches
In the following, we summarise most prominent and widely-used SDN switches.

2.2.5.1.2 Open vSwitch switcher

Open vSwitch is one of the most widely deployed software switches. It employs an
OpenFlow stack that both can be used as a virtual switch in virtualised network topologies
and has also been ported to multiple hardware/commodity switch platforms [73]. The Open
vSwitch is a part of the Linux kernel since version 3.3 [74].

2.2.5.2.2 ofsofswitch13 switcher

ofsofswitch13 operates in the user space and provides support for multiple OpenFlow
versions [75]. The soft switch supports a management utility to directly control the

Page 28 of (104) © loRL consortium 2018



Deliverable D3.1 loRL H2020-ICT 761992

OpenFlow switch, namely Data Path Control (Dpctl), which enables the addition and deletion
of flows, query switch statistics, and modification of flow table configurations. Although
ofsofswitch13 supports a variety of OpenFlow features, it has recently run into some
compatibility issues with latest versions of Linux (i.e. Ubuntu 14.0 and beyond).

2.2.5.3.2 Indigo switcher

Indigo is an open source project to implement a range of physical switches by utilising
hardware features of existing Ethernet application-specific integrated circuit (ASIC) switches,
which operate using OpenFlow v.1.0 pipeline at line rates [76].

2.2.5.4.2 Pica8 PicOS switcher

PicOS by Pica8 is a network operating system to design flexible and programmable networks
using white box switches with OpenFlow [77]. Its main feature is that it allows integrating
OpenFlow rules in legacy layer 2 and layer 3 networks to create a new network from scratch
without disrupting the existing network structure.

2.2.5.5.2 Pantou switcher

Pantou modifies commercial wireless routers and access points to OpenFlow enabled
switches. It implements the OpenFlow standard on top of OpenWRT platform [78]. Pantou’s
OpenWRT platform relies on the BackFire release (Linux v2.6.32), while the corresponding
OpenFlow module is based on the Stanford reference implementation in user space.

2.2.5.6.2 Oflib-node switcher

This is a software switcher designing tool based on OpenFlow protocol library for Node.js to
offer design flexibility by converting input data between the protocol messages and
JavaScript objects [79].

Some other less used yet known platforms to design SDN switches are:

e OpenFlow)] [80];

e OpenFaucet [81];

e A10 Networks - AX Series [82];

e Big Switch Networks - Big Virtual Switch [83];
e Brocade ADX Series [84];

e IBM RackSwitch G8264 [85];

e HP (2920, 3500, 3800, 5400 series) [86];

e Juniper Junos (MX, EX, QFX Series) [87].

2.2.6 SDN-based network-as-a-service (Naa$S) platforms

In the SDN context, the NaaS approach is to design services for network transport
connectivity able to optimise the allocation of the available network and computing
resources jointly. In the following, we highlight the most popular platforms to apply NaaS in
SDN.

2.2.6.1 OpenNaas platform

The NaaS model has been instantiated in the OpenNaa$S easy prototyping and proof casing of
its concepts. OpenNaaS [88] is an open-source framework, which provides tools for
managing the different resources present in any network infrastructure. The software
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platform was created in order to offer a neutral tool to the different stakeholders comprising
an Open Access Network (OAN). It allows them to contribute and benefit from a common
NaaS software-oriented stack for both applications and services. It is based on a lightweight,
abstracted, operational model, which is decoupled from actual vendors’ specific details, and
is flexible enough to accommodate different designs and orientations. In fact, the OpenNaa$S
framework provides tools to implement the logic of an SDN-like control and management
plane on top of the lightweight abstracted model. Some deployment examples using
OpenNaaS can be found in the following list of European projects extending the OpenNaa$S
framework: OFERTIE [89], CONTENT and SODALES [90]. Furthermore, authors in [91] used
OpenNaaS in order to build a first proof-of-concept pilot for the VNF creation and
management.

2.2.6.2 OpenStack neuron platform

OpenStack Neutron [92], historically known as Quantum, is an OpenStack project focused on
delivering Networking as a Service (NaaS). Neutron provides a way for organisations to make
it easier to deliver networking as a service in the cloud and provides REST APIs to manage
network connections for the resources managed by other OpenStack services. Neutron
provides native multi-tenancy support (isolation, abstraction and full control over virtual
networks), letting tenants create multiple private networks and control the IP addressing on
them, and exposes vendor-specific network virtualisation and SDN technologies. Also,
Neutron includes a growing list of plugins that enable interoperability with various
commercial and open source network technologies, including routers, switches, virtual
switches and SDN controllers. Starting with the Folsom release, Neutron is a core and
supported part of the OpenStack platform. However, it is a standalone and autonomous
service that can evolve independently to OpenStack.

2.2.6.3 OpenDayLight virtual tenant network (VTN) platform

OpenDaylLight VTN [93] provides multi-tenant virtual network on an SDN controller. VTN
provides an abstraction that enables the complete separation of the logical plane from
physical plane of the network. This allows users to design and deploy virtual networks for
their customers without needing to know the physical network topology or underlying
operating characteristics. The VTN also allows the network designer to construct the virtual
networks using common L2/L3 network semantics. Moreover, VTN allows the users to define
the network with a look and feel of conventional L2/L3 network. Once the network is
designed on VTN, it is automatically mapped onto the underlying physical network, and then
configured on the individual switches leveraging an SDN control protocol. The definition of
the logical plane makes it possible not only to hide the complexity of the underlying network
but also to better manage network resources. It achieves a reduction in the reconfiguration
time of network services and minimising network configuration errors.

2.2.6.4 FlowVisor platform

FlowVisor, [94] originally developed at Stanford University, has been widely used in
experimental research and education networks to support slicing where multiple
experimenters get their own isolated slice of the infrastructure and control it using their own
network OS and a set of control and management applications. FlowVisor has been deployed
on a Stanford production network and sponsors, such as GENI, Internet2, NEC and Ericsson,
have been contributing to it and using it in their research labs. The SDN research community
considers FlowVisor an experimental technology, although Stanford University has run
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FlowVisor in its production network since 2009. FlowVisor lacks some of the basic network
management interfaces that would make it enterprise-grade. For example, it currently does
not any CLI or Web-based administration console but requires users to make changes to the
technology with configuration file updates.

In technical terms, FlowVisor consists the ON.LAB network slicer to allow multiple tenants
sharing the same physical infrastructure. In particular, a tenant can be either a customer
requiring his own isolated network slice; a sub-organisation that needs its own slice; or an
experimenter who wants to control and manage some specific traffic from a subset of
endpoints. FlowVisor acts as a transparent proxy between OpenFlow switches and various
guest network operating systems. It supports network slicing and allows a tenant or an
experimenter to control and manage some specific traffic from a subset of end points. This
approach enables multiple experimenters to use a physical OpenFlow network without
interfering with each other.

2.2.6.5 OpenVirtex platform

OpenVirteX [95] is a network hypervisor to create multiple virtual and programmable
networks on top of a single physical infrastructure. Each tenant can use the full addressing
space, specify their own topology, and deploy the network OS of their choice. This NaaS
platform is actually a network hypervisor that enables operators to provide networks whose
topologies, management schemes, and use cases are under the full control of their tenants.
More specifically OpenVirteX builds on OpenFlow as protocol and FlowVisor for design. In
this respect they share some common properties i.e. act as proxies between tenants and the
underlying physical infrastructure. Unlike FlowVisor however, OpenVirteX provides each
tenant with a fully virtualised network featuring a tenant-specified topology and a full
header space.

2.2.6.6 OpenContrail platform

A popular NaaS platform that is attracting attention is led by Juniper Networks, named
OpenContrail [96]. It is a modular project that provides an environment for network
virtualisation and published northbound APIs. In particular, the network virtualisation is
provided by means of a set of building blocks and high-level policies; it integrates an SDN
controller to support network programmability and automation, and a well-defined data
model to describe the desired state of the network; an analytics engine is designed for very
large-scale ingestion and querying of structured and unstructured data. It also provides an
extensive REST API to configure and gather operational and analytics data from the system.

2.2.7 SDN emulators for network simulation

Besides SDN controllers, switchers and NaaS platforms, it is important to study SDN
emulation approaches, which provide network topology references for network event
simulation and monitoring. Next, we present some widely-used SDN emulators.

2.2.7.1 Mininet emulator

Mininet emulator [97] allows OpenFlow-based networks to be emulated over either single or
a cluster of machines. The distribution of Mininet nodes and links over clusters of machines
can utilise the resources at each machine, adding scalability to emulate larger networks,
where more computation and communication bandwidth is required than in the single
server case. Also, Mininet simplifies the development and deployment of new services by
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providing a flexible software platform to create virtual machines, hosts, and network
switches connected to an in-built (OVS-reference) or user defend controller for testing
purposes. The latest Mininet v2.2.2 supports OpenFlow versions up to 1.3 (along with Open
vSwitch v2.3) by default and can also be customised to use external user space switch such
as the sofswitch13 [75].

2.2.7.2 NS-3 emulator

The widely-used NS-3 network emulator can test and develop networking protocols and
services to support OpenFlow switches. Although the design simplicity featured, the main
drawback in NS-3 is that it is limited to early versions of OpenFlow (v.0.89 and earlier) [98]
thus, outdated compared to Mininet. While official work to update versions of OpenFlow in
NS-3 continues, in the meantime a specialised OpenFlow v.1.3 module for NS-3, namely
OFSwitch13, has been externally designed by NEC [99]. OFSwitch13 module relies on the
ofsofswitch13 library and provides switch implementations by converting messages (data)
from wire protocol (point-to-point) format, which makes NS-3 network emulation
compatible with up to v.1.3 version of OpenFlow.

2.2.7.3 OMNET emulator

OMNET is an object-oriented modular discrete event network simulation framework that
can be used to model wired and wireless networks, network protocols, and many other
things [100]. OMNET itself is not a network simulator, rather it is a framework that provides
infrastructure of components and tools called modules, which can be combined together to
form the simulated network. These OMNET modules have gates, which act as interfaces. The
gates are connected by predefined connection links. The modules communicate with each
other by sending and receiving messages through those modules' gates. At the top of this
ease-of-use hierarchy is the network, which has no gates to the outside world. In OMNET,
the models structure (gates, connections, etc.) is described in files written in NED (Network
description) language. The implementation of the modules behavior is written in C++, while
the parameters value that customize the module behavior and define the model topology
can be assigned in either the NED or “.ini” files.
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Figure 2-5 - lllustration of the basic building blocks of OMNET emulator

The active modules are written in C++, by using the class library of the OMNET, and they are
called simple modules (which sit at the lowest level of the module hierarchy). Simple
modules can be grouped to form compound modules. Simple modules in different
compound modules can connect with each other only through the compound module's
gates (the connections cannot sidestep module hierarchy) as shown in Figure 2-5. Overall,
the OMNET simulation model consists of simple modules communicating via messages. The
creation, deletion, modification, storage, transmission, and reception of messages is the
main job of the simple modules, hence the whole OMNET model is there to accomplish this
job. To create or destroy a message object you need to use the C++ New or Delete
operators. The message object is an instance of a class called cMessage, or one of its
subclasses. Practically, fields should be added to the cMessage to customize it upon your
simulation requirements, by creating subclasses to extend the cMessage class. The same
goes for the network packets, since it is an instance of the cPacket, which is sub-classed from
the cMessage.

INET framework represents the most known community-based simulation package written
for OMNET. The framework contains IPv4, IPv6, TCP, SCTP, UDP protocol implementations,
MPLS model with RSVP-TE and LDP signaling, and a detailed physical layer model, application
models and more. simulLTE and Openflow 1.3 are another simulation packages that extends
INET to provide simulation platform SDN oriented mobile network.

2.2.8 SDN debugging tools

These are specialised tools set to debug SDN behavior at the switcher and controller level.
Some robust approaches are the followings.

2.2.8.1 SDN troubleshooting system tool

SDN troubleshooting system (STS) simulates the network devices by allowing enough
flexibility to generate and examine various test case deployments via programming [101].
With STS users can interactively visualise the network states and the real-time changes, to
automatically determine the events that trigger deviant behavior and identify potential
bugs. The implementation of STS is based on the POX controller platform, with feasibility to
use other OpenFlow v.1.0 compliant controllers such as Ryu and Floodlight.
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2.2.8.2 Open vSwitch specific tool

This debugging tool relies on vSwitch OVSDB library [73]. It includes the (i) OVS-vsctl utility
for configuring the switch (daemon) configuration database (known as OVS-db), (ii) the OVS-
ofctl command line tool for monitoring and administering OpenFlow switches, (iii) the OVS-
dpctl utility to administer Open vSwitch data paths (switches) and enable visibility and
control over a single switch’s flow table, and (iv) the OVS-appctl utility for querying and
controlling Open vSwitch daemons.

2.2.8.3 NICE tool

NICE offers an automated testing tool to identify and check bugs in OpenFlow programs
[102]. It can apply model checking to explore the entire state of SDN controller, switcher(s),
and host(s). To address scalability issues during model checking, NICE uses symbolic
execution of event handlers, which can effectively identify the packets that exercise code
paths on the controller. NICE prototype tests Python applications using the NOX platform.

2.2.8.4 OFTest tool

OFTest is an OpenFlow-based debugging tool that includes a collection of test cases for SDN
switchers [103]. To host the switch under test, OFTest uses unit test module of the standard
Python distribution. Both control plane and data plane side of switch connections can be
tested by sending and receiving packets to the switch as well as polling switch counters.

2.2.8.5 Anteater tool

Anteater attempts to check network invariants that exist in network devices, such as
connectivity and consistency [104]. Its main benefit is that it is agnostic to protocols and
identifies errors due to faulty firmware and/or control channel communication.

2.2.8.6 VeriFlow tool

VeriFlow allows real-time verification and resides between the controller and the data plane
elements (switches) [105]. It is mainly used to perform pruning of flow rules that may result
in anomalous network behavior.

2.2.8.7 OFRewind tool

OFRewind is another tool to perform debugging of network events in both the control and
data plane [106]. Its main functionality is to localise troubleshooting efforts by building a log
of network events based on their impact on system’s operation, in order this log to be used
in case of problematic network operation.

2.2.8.8 Network debugger tool

Network debugger (NDB) tool implements traffic breakpoints and packet-back traces for an
SDN environment [107]. In NDB, users can isolate networking events that may have led to an
error during traffic forwarding. The tool works using the OpenFlow API to configure switches
and generate debugging events. NDB then acts as a proxy intercepting OpenFlow messages
between switches and the controller. The debugger relies on OpenFaucet Python module
implementing OpenFlow v1.0.

2.2.8.9 Wireshark tool

The popular network analyser Wireshark can be deployed on the controller or Mininet host
to view OpenFlow exchange messages between the controller and individual switches [108].

Page 34 of (104) © loRL consortium 2018



Deliverable D3.1 loRL H2020-ICT 761992

|— . 1 MANO layer
7 Operations Support System
Ow J Management and
L )
N _| orcherstration
i, ‘ | |
S 2| UNF | VNF | VNF | VNF ——
j; 1
- = Virtual
Compute Network infrastructure
w 3 | virtualisation virtualisation l anagey
S ©
= Physical
All : infrastructure
Servers Storage Networking WAN I in
hardware ‘ manager

Figure 2-6 - lllustration of the generalised viewpoint of NFV infrastructure

OpenFlow control packets can be directly faltered, while capturing using the TCP control
channel traffic ports (i.e. ports 6633 and 6653). The captured data packets provide a useful
learning tool to understand switcher’s and controller’s behavior.

2.3 NFV Architectural Advancements

This Section provides an in-depth study on research advancements of virtual applications
and functions to capture the evolution of NFV technology and correlate it with SDN in the
context of the IoRL home network.

2.3.1 NFV background and architecture

NFV technology was initiated in 2012 by the European Telecommunications Standards
Institute (ETSI) NFV Industry Specification Group (NFV ISG) to allow customers to transfer the
networking functions from vendor-specific and proprietary hardware appliances to software
hosted on commercial off-the-shelf (COTS) platforms [109]. The main idea is to provide the
network services in virtual machines (VMs) working in Cloud infrastructures, where each VM
can perform different network operations (e.g., firewall, intrusion detection, deep packet
Inspection, load balancing, etc.) [110]. The main benefits of deploying network services as
virtual functions are:

e Flexibility in the allocation of network functions in general-purpose hardware;

e Rapid implementation and deployment of new network services;

e Support of multiple versions of service and multi-tenancy scenarios;

e Reduction in capital expenditure (CAPEX) costs by managing energy usage efficiently;

e Automation of the operational processes, thus improving efficiency and reducing
operational expenditure (OPEX) costs.

The NFV infrastructure depicted in Figure 2-6 comprises of four main functional elements
[111].

e Virtual network function (VNF) layer virtualises a certain network function, which

operates independently by others. A particular VNF can run on one or more VMs and

it can be divided into several sub-functions called VNF Components (VNFCs). VNFCs
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monitoring is performed using Elemental Management Systems (EMSs). Automation
of the operational processes, thus improving efficiency and reducing operational
expenditure (OPEX) costs.

e The NFV infrastructure (NFVI) comprises of all hardware and software required to
deploy, operate, and monitor VNFs. Particularly, NFVI includes a virtualisation layer
necessary for abstracting the hardware resources (processing, storage, and network
connectivity) to ensure independence of the VNF software from the physical
resources. The virtualisation layer is usually composed of virtual server (e.g. Xen
[112], Linux-KVM [113], Dell-VMware [114], etc.) and network (e.g., VXLANs [115],
NVGRE [116], OpenFlow [3], etc.) hypervisors. The NFVI point of presence (NFVI-PoP)
defines a location for network function deployments as one or many VNFs.

e NFV management and orchestration (MANO) comprises three components:

i) The virtualised infrastructure manager (VIM), which manages and controls
the interaction of VNFs with physical resources under its control (e.g.
resource allocation, deallocation, and inventory);

ii) The VNF Manager (VNFM), which is responsible for managing the VNF life-
cycle (e.g., link initialisation, suspension, and termination)

iii) The NFV Orchestrator (NFVO), which is responsible for realising network
services on NFVI.

Also, NFVO performs monitoring operations of the NFVI to collect information for
operations and performance management.

e OQOperations support systems and business support systems (OSS/BSS) element
comprises the legacy management systems and assists MANO in the execution of
network policies. The two systems (OSS and BSS) can operate together by
telecommunications service providers, either automatically or manually to support a
range of telecommunication services.

2.3.2 Research advancements on NFV applications

This section examines the environments where NFV technology can been applied with the
intension to identify the open issues NFV promises to resolve.

23.2.1 NFV towards computer and network resources unification

NFV aims to unify wireless network resources by creating an abstraction layer (AL) on both
the computational and network resources in a way to provide unique and centralised view of
the whole environment. Implemented together with SDN, the joint NFV/SDN solution
focuses on creating the AL to deliver intelligent network services - regarding performance
and reliability - for different customer profiles such as end, retail, and enterprise users, as
well as over-the-top (OTT) providers, and developers [117]. AL can integrate two
orchestration functions, namely resource orchestration (RO) and network service
orchestration (NSO) [118]. RO utilises NFV VIM component with SDN to perform a global
resource management with resource virtualisation provisioning and management. The NFVO
uses NSO functions to implement the life-cycle management of network functions for VNF
forwarding graphs (VNFFGs), which can coordinate groups of VNF instances as network
services. These VNFFG functions use the services exposed by the VNF and RO allowing joint
instantiation and configuration along with connectivity and dynamic resource management.
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In this context, different computer and network resources can achieve unification, as done in
the EU-FP7 projects T-NOVA [119], UNIFY [120], SONATA [121], Project VITAL [122], 5GEx
[123] and 5G-Transformer [124].

2.3.2.1.1 Project T-NOVA

Project T-NOVA (2014-2016) aims at implementing an SDN-based MANO framework to
manage a federated network and cloud resources. Its primary objective is to deliver third-
party network functions (NFs) to operator’s customers in an automated and optimised
manner, introducing a “network function store”. For NF management, an orchestrator
platform was developed on top of common open source components such as OpenStack and
OpenDaylight [13]. Besides, the WICM (WAN Infrastructure and Connectivity Manager)
provides network connectivity between NFVI-PoPs (Points of Presence) and manages traffic
steering in virtual networks.

2.3.2.2.1 Project UNIFY

Project UNIFY (2013-2016) seeks to unite computer and network resources in a common
management framework. The UNIFY NFV/SDN architecture aims at creating and managing
the dynamic end-to-end network services from the home and enterprise networks to the
operator’s data centre. It provides a MANO framework that integrates both Cloud and WAN
domains and includes three layers, namely the service layer (SL), the orchestration layer
(OL), and the infrastructure layer (IL).

e The SL comprises business management concerned with service life-cycle, providing
operation support system (OSS) and business support system (BSS) functions related
to services from different tenants (e.g. enterprise users, service providers, etc.). It
also executes the NFVO and VNFM functions for the NS and VNF life-cycle
management.

e OL acts as a policy enforcement and VIM component to provide resource
orchestration (RO module) and deliver virtual resources views to SL. It also includes
the controller adapter (CA), and a multi-domain, multi-technology, and multi-vendor
controller. CA provides computing and networking abstraction by collecting
virtualised resources from lower layer domain-specific controllers and organising
them into a global virtualised resource view. CA offers an independent technology
control to the RO module. In the OL, SDN is also used for the creation and integration
of virtual networks in both domains.

e |L manages all IT and network resources (physical and virtual) needed for the VNF
execution. For this, it uses two types of domain-specific controllers, (i) the compute
controller (CC) to manage computational resources, and (ii) the network controller
(NC) to manage network resources. IL considers different kinds of resources such as
SDN enabled network nodes (e.g. OpenFlow switches), and cloud-enabled data
centres (e.g. OpenStack).

In general, the proposed UNIFY architecture is currently used as basis for the

implementation of several NFV/SDN solutions to different problems, such as

Middleboxes virtualisation and virtualised customers premises equipment (vCPE), which

we discuss in next Section.
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2.3.2.3.1 Project SONATA

Project SONATA [121] (2015-2017) targets to address two main technological challenges
envisioned for the 5G system: (i) flexible programmability and (ii) deployment optimisation
of software networks for complex services/applications. SONATA provides an integrated
development and operational process for supporting network function chaining and
orchestration [125]. The major components in SONATA solution consist of two parts: (i) the
SONATA software development kit (SDK) that supports functionalities and tools for the
development and validation of VNFs and NS, and (ii) the SONATA service platform, which
offers the functionalities to orchestrate and manage network services during their lifecycles
using MANO framework, as well as interact with the underlying virtual infrastructure
through virtual infrastructure managers (VIM) and wireless access network (WAN)
infrastructure managers (WIM) [126]. The project describes the use cases envisioned for the
SONATA framework and the requirements extracted from them. These use cases encompass
a wide range of network services including NFVI-as-a-service (NFVlaas), VNF-as-a-service
(VNFaaS), v-content delivery network (CDN), and personal security. One of the use cases
consists of hierarchical service providers simulating one multi-domain scenario. In this
scenario, service programming and orchestration for virtualised software networks
(SONATA) does not address the business aspects only the technical approaches are in scope.
SONATA intends to cover aspects in the cloud, SDN and NFV domains [127]. Moreover, the
project proposes to interact and manage with not only VNFs also support legacy [128].
Besides, it describes technical requirements for integrating network slicing in the SONATA
platform. SONATA framework complies with ETSI NFV-MANO reference architecture [128].

2.3.2.4.1 Project VITAL

Project VITAL [122] (2015-2017) is to address the integration of terrestrial and satellite
networks through the applicability of SDN and NFV technologies. Its main outcomes are (i)
the virtualisation and abstraction of satellite network functions, and (ii) the support of multi-
domain service and resource orchestration capabilities for a hybrid combination of satellite
and terrestrial networks [129]. The architecture followed by VITAL is in line with the main
directions established by ETSI ISG NFV [130], with additional concepts extended to the
satellite communication domains and network service orchestration deployed across
different administrative domains. This architecture includes functional entities (i.e. NFVO,
VNFM, SO, Federation Layer) for the provision and management of the NS lifecycle. In
addition, a physical network infrastructure block with virtualisation support includes SDN
and non-SDN (legacy) based network elements for flexible and scalable infrastructure
management. Implementing the relevant parts of the VITAL architecture, X-MANO (2017)
[131] achieves a promising cross-domain network service orchestration framework. It
supports different orchestration architectures such as hierarchical, cascading and peer-to-
peer. It also introduces an information model and programmable network service in order to
enable confidentiality and network service lifecycle programmability, respectively.

2.3.2.5.1 Project 5GEx

Project 5GEx (2015-2018) investigates end-to-end network and service elements to correlate
multi-vendor, heterogeneous technology and resource environments. Its target is to evolve
business relationships among administrative domains, including possible external service
providers without physical infrastructure resources. Architecturally, 5GEx addresses
business-to-business (B2B) and business-to-customer (B2C) relationships across multi-
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administrative domain orchestrator that might interface different technological domains.
5GEx extends ETSI NFV-MANO reference architecture with new functional components and
interfaces as well as by defining modules for topology abstraction, topology distribution,
resource repository, service level agreement (SLA) management, policy database, resource
monitoring, service catalog, inter-provider NFVO. 5GEx rely on the outcomes and open
source components of projects Unify and T-NOVA.

2.3.2.6.1 Project 5G-Transformer

Project 5G-Transformer [124] (2017-2019) is to transform current mobile transport network
into a type of mobile transport and computing platform (MTP) using SDN, NFV,
orchestration, and analytics, which brings the network slicing paradigm into mobile
transport networks. The project aims to support a variety of vertical industries such as
automotive, healthcare and media/entertainment. 5G-Transformer defines three new
components to the proposed architecture: (i) vertical slicer as a logical entry point to create
network slices, (ii) service orchestrator (SO) for end-to-end service orchestration and
computing resources, and (iii) mobile transport and computing platform for integrate
fronthaul and backhaul networks. The main decision point of the proposed system is the
service orchestrator, which interacts with other SOs to provide the end-to-end service
(de)composition of virtual resources and orchestrate the resources across multiple
administrative domains. The project architecture is still ongoing.

2.3.2.2 NFV middleboxes virtualisation

Middleboxes are network devices used for traffic manipulation via packet forwarding to
increase system performance (e.g. traffic shaping, load balancing, TCP optimisation) and
provide security functionalities (e.g. firewalls, intrusion detection, prevention systems (IDPS),
deep packet inspection (DPI)). They can be categorised into hardware- and software-based
middleboxes.

e Hardware-based NFV middleboxes [55] incur high OPEX costs due to the
management complexity. They also come from different manufacturers and must be
deployed, configured, and managed individually. Furthermore, they incur high CAPEX
costs due to systematic hardware maintenance needed. When new network
functions are necessary, enterprises must purchase one or more middleboxes due to
the inflexibility in proprietary hardware that creates vendor lock-in and limits
innovation.

e Software-based NFV middleboxes use NFV/SDN architecture to deal with the
aforementioned challenges shown in Figure 2-7. The primary objectives are to reduce
both CAPEX and OPEX and provide fast delivery of network function, elasticity, and
dynamic service chaining. In particular, NFV can effectively manage virtual
middleboxes, while SDN can provide interconnection between VNFs to deliver
network services by means of service function chaining (SFC). In this context, [132]
considers two approaches to redirect network traffic to virtualised middleboxes for
further processing, namely Bounce and IP redirections. In the case of Bounce
Redirections, a certain enterprise gateway uses tunneling techniques to redirect both
ingress and egress traffic to the virtual middleboxes (grouped into SFC). This
approach requires minimal configuration (i.e. few static rules) at the gateway since it
only redirects traffic to a cloud provider hosting the middleboxes. However, Bounce
Redirections might increase the end-to-end delay due to these redirections for each
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Figure 2-7 - lllustration of the setting of NFV middlebox in the end-to-end virtual network

packet. On the other hand, to avoid the extra round-trips of the Bounce Redirection,
IP Redirection allows routing traffic directly to/from the cloud provider. In this case,
the cloud can be located in the middle of the communication between enterprise and
external sites. However, the provider must announce naming and addressing on the
company’s behalf (e.g. DNS redirection).

In this regard, NFV/SDN approaches have been proposed to deal with Middleboxes
virtualisation. For example, authors in [55] (2015) propose an NFV/SDN framework, so-called
Glasgow network functions (GNF), to deploy and manage container-based network services
in public [133] and private [55] cloud environments. This framework aims at overcoming the
limited network re-configurability in these scenarios, delivering network programmability
and fast deployment of new network services. GNF comprises three planes. (i) The
infrastructure plane to encompass the physical resources of network and computations, and
incorporate edge devices (e.g. virtual routers, loT gateways, etc.) [56]. (ii)-(iii) The VIM and
Orchestration planes, which are responsible for resource orchestration, where operator
deploys the GNF agent on all cloud servers and all edge devices by applying (a) local VNF
instantiation with Docker Engine [48] for fast deployments and low resource utilisation, and
(b) OpenFlow rules (via OVSDB) and virtual switches for local traffic steering management,
respectively. The GNF Manager is responsible for receiving NFV service requests (service
plane) and performing the necessary operations using the OpenDaylLight and GNF agent
instances.

Moreover, the study in [36] (2016) focus on the UNIFY project to extend its architecture by
creating a service function chaining control plane solution. The goal is to support SFC in
distributed cloud scenarios, where VNFs from the same SFC can run in different NFVI-PoPs.
To do so, authors built prototype framework, called extensible service chain prototyping
environment (ESCAPE) implemented in Python, on top of an OpenFlow POX controller. This
prototype can work with two protocols in the infrastructure layer (IL): Cloud and OpenFlow
protocol. The OpenStack cloud platform [134] and the OpenDayLight controller [13] perform
the management of cloud domains, while VNFs are deployed as kernel-based virtual
machines (KVMs). The OpenFlow protocol handles transport networks with Linux nodes
running Open vSwitches (OpenFlow support). The POX controller [35] (network
management) and the NETCONF/YANG (VNF management) manage these protocols, while
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VNFs are deployed as distinct processes (Linux groups) and run network functions
implemented in modular router.

Authors in [135] (2015) develop the VNGuard framework, which uses NFV to provide fast
and dynamic virtual firewalls in a cloud environment, for the protection of VNs. To address
VN’s changeable topology (i.e. VMs dispersion and migration), VNGuard framework uses
SDN to provide fast and flexible traffic steering to the virtual firewalls. It operates VIM using
OpenStack and VNF using CloudLab, which is a testbed that provides an infrastructure-as-a-
service (laaS) for cloud-based experiments [136].

2.3.2.3 NFV customers premises equipment

Traditionally, customers premises equipment (CPE) includes all equipment within the
customer domain that receives a communication service (e.g. router, modem, etc.). CPEs
have been a barrier to the current goals of both telecommunications companies and service
providers, due to the high cost of maintenance, management difficulties, and the
impossibility of remote upgrades. A promising solution to this issue is to apply virtualisation
in traditional CPE using NFV architecture (vCPE) shown in Figure 2-8.

In particular, vCPE is a service in which some or all of the functions associated with CPE are
virtualized [137]. Its main difficulty is how to instantiate network services in distributed
infrastructures (using multiple NFVI-PoPs, so-called distributed NFV) [138], where VNFs are
placed either in the service provider cloud platform (cloud CPE) or the on-premise CPE,
depending on where they are most efficient regarding latency, available resources, etc. A
solution to this problem is to apply the UNIFY architecture, which includes three layers. The
service layer application (SLApp), which represents the UNIFY SL and it main function is to
enable different players (operators and end users) to select their network services by
including an authentication mechanism and providing a high-level data model for defining
flexible network services, called service graph (SG). The global orchestrator (GO), which
represents the UNIFY orchestration layer (OL) and is to manage the forwarding graph (FG)
received from SLApp to enable the network service deployment according to the VNF
requirements and infrastructure capabilities. Note that in order to allow distributed NFV, GO
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includes multiple control adaptors for coordination of different infrastructures, and an
orchestrator component, which is responsible for the centralised coordination of multiple
control adaptors. On this basis, the GO can (i) select one of the infrastructures to implement
all the network service requested and (ii) host network services using either the integrated
or the OpenStack protocol. In particular, the integrated protocol represents the CPE (home
gateway) and receives an FG from the GO through the node resource manager (NRM) via
REST API. The NRM will instantiate all VNFs using Docker containers and DPDK process. For
traffic steering, NRM uses an extensible data-path daemon (xDPd) to create an OpenFlow
switch (and its correspondent controller) for each FG. Separately, the OpenStack node
represents a data centre and uses the OpenStack cloud platform for network service
deployment such that the KVM hypervisor can create the VNFs, and the OpenDayLight and
Open vSwitch can control the traffic steering. In this research direction, the works in [139]
and [140] propose the Cloud4NFV platform, which consists an NFV/SDN framework for Telco
network virtualisation. Cloud4NFV platform considers multiple NFVI-PoPs and WAN domains
when deploying new service function chaining along with a topology with multiples
customer sites (NFVI-PoPs). All NFVI-PoPs include an OpenStack distribution working as a
Cloud VIM and an OpenDaylLight controller to provide VNF connectivity. The VNFs are CPE
functions, and can be deployed as VMs in the NFVI-PoP closest to the customer.

23.24 On-demand and application-specific traffic steering

Traffic steering is the ability to direct users’ requests to the appropriate service/content
sources, and it can be dependent either on the available networking resources and
capabilities on the client and server side or user’s permissions and location. For example, for
a user who requests video streaming service that has stringent application performance
requirements, on-demand and application-specific traffic steering can guarantee the
efficient network resource usage and required quality-of-experience (QoE) for the user.

In the NFV framework context, SDN can enhance traffic steering between VNFs, providing
dynamic service chaining as shown in Figure 2-9. This is because, with the separation of
control and data planes, SDN can enable the exchange of information between the
application and network layers, allowing users’ services to have an overview of the general
state of the network, and to make intelligent decisions (to meet service requirements) on
how to steer traffic through VNFs in optimal manner. In this research direction, authors in
[141] (2015) propose a joint NFV/SDN design of cross-layer interface orchestration (CLO)
between the application and network layers that allows deploying network services with on-
demand and application-specific traffic steering. The proposed approach comprises by
application, control, and infrastructure layers. The application layer consists of network
services, which interface together with the APl at the control plane in order to communicate
their network requirements (e.g., bandwidth, maximum latency). The control plane has a
global view of computer and network resources and provides the traffic steering capabilities
to the application layer, with its main component to be the cross-layer orchestrator (CLO)
that acts as an NFVO and VNFM manager of the lifecycle of services over the cloud
(OpenStack-based) and WAN protocols (OpenFlow-based). The CLO solution can be
implemented using the OpenSDNCore orchestrator [142] and by using Java programming
language.
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2.3.3 Research advancements on NFV wireless networking

Modern wireless communication demands arise new network system requirements such as
mobility support, programmability, fast delivery of network services, performance, security,
etc. However, the management and configuration of today’s large WiFi networks are
complex and inflexible, while they do not include some application requirements or user
needs. In the following, we present the main problems addressed by NFV together with SDN
architectures designed for different wireless networks scenarios.

2.33.1 Wireless LAN (WiFi)

Most recent studies related to WLANs leverage abstraction of the so-called virtual access
point (VAP) by moving the MAC layer or middleboxes processing to the cloud. When
associated with the wireless network, each client acquires a VAP that is dedicated to this
client, e.g., each VAP is independent of the client migrating from one access point to another
(handover). Authors in [52] (2017) proposed an NFV/SDN approach, namely OpenSDWN, to
implement per client access points and virtual middleboxes. In particular, for the access
point case, the authors created an extension to Odin SDN framework [143], called light
virtual access point (LVAP), which uses SDN applications to abstract some functionality of the
802.11 access point (AP), such as authentication, handoff, and client associations. A physical
AP can support multiple LVAPs (i.e. one for each client) meaning that a certain

LVAP can serve as dedicated link between its client and infrastructure. The authors in [52]
also implemented virtual middleboxes (e.g. firewall), which can be deployed either on a
middlebox server or at the access point itself and can be integrated using LVAPs with virtual
networks. A service differentiation mechanism classifies the data flows to redirect traffic to
the correct v-middleboxes (vMB). The OpenSDWN controller performs all the above
functionalities, using the Floodlight and ONOS [140] as SDN controllers. Such an abstraction
allows the seamless mobility with the migration of both LVAPs and vMBs among APs.
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Figure 2-9 - lllustration of the OpenFlow mechanism for traffic steering

Furthermore, authors in [144] extended CloudMAC OpenFlow framework [145] to provide
QoS for VAPs, by setting each VAP as a VM in cloud environment, which is responsible for
the MAC layer management frames (e.g. beacons, probes request/response). In this study,
the physical AP redirects these frames to the destination VAP, using the OpenFlow rules,
while the QoS mechanism implements VAP traffic prioritisation using different strategies of
gueue management (e.g. stochastic fair queueing) for all the considered open vSwitches
between the APs and VAPs. The OpenDayLight controller is used to manage both traffic
redirection, prioritisation and handover rules.

2.3.3.2 Wireless MESH

To the best of our knowledge, the study in [146] (2016) is the only effort to examine
NFV/SDN solutions for wireless MESH networks (WMNs). In particular, the authors propose
the UrbanX, which is a multi-radio cognitive mechanism to dynamically self-adapt when
there are variations in the interference conditions on the WiFi channels. For this, each mesh
node includes an OpenFlow agent component that allows the instantiation of VNFs, while
the VIM component controls all these components. It uses an OpenFlow controller to
establish a path for end-to-end connectivity, including one or more mesh nodes, i.e., the VIM
uses the OpenFlow agent components to monitor link status and configure the path with
minimum latency. At the same time, the VIM instantiates TCP accelerators as VNFs at each
mesh node included in the path. In that way, the Urban-X improves TCP throughput to the
mesh clients.
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2333 Network slicing

Network slicing is the partitioning of a certain physical infrastructure, composed of both
network and computational resources, into multiple logical networks, called network slices,
where each slice is a self-contained network with its own virtual resources created on top of
the underlying infrastructure. Slices can be designed and optimised for a particular mobile
operator or service provider providing (i) better customisation of logical networks according
to service requirements; (ii) on-demand provisioning to scale resources up or down as
conditions change, and iii) network resource isolation for improved security and reliability,
compared to traditional physical networks. NFV and SDN technologies are capable of
providing the flexibility required for providing efficient resource sharing, traffic
differentiation per slice, and management and protection tools. For instance, a use case for
the use of NFV/SDN architectures in network slicing is for the creation of SDNenabled Virtual
Tenant Networks (VTNs). VTNs are virtual networks deployed to different tenants in an
isolated way (independent of underlying physical network resources) to support specific

QoS and service level agreement (SLA) requirements. By enabling network programmability,
SDN renders the abstraction necessary for its use as a network hypervisor. In the case of
SDN-enabled VTNs, one or more SDN controllers create a VTN (called an Infrastructure SDN
controller), while a new SDN controller is instantiated to manage this VTN (called a tenant
SDN controller). When an SDN-enabled VTN deployment takes place, the respective tenant
SDN controller can be manually installed and configured on a dedicated server, which is
time-consuming and complex process. However, using NFV/SDN, such tenant SDN
controllers can be virtualised towards faster and more dynamic VTN provisioning. In this
regard, authors in [41] and [57] (2016) propose an NFV/SDN solution for fast and dynamic
deployment of SDN-enabled virtual tenant networks over multiple data centres and WAN
domains. The proposed solution aims at providing geographically distributed cloud services
with specific QoS and SLAs. Particularly, NFV and cloud have been used to virtualise tenant
SDN controllers (either via OpenDaylLight or Floodlight) and control the underlying SDN-
enabled VTNs, providing fast and dynamic VTN provisioning. Also, for each data centre,
OpenStack have been utilised as VIM along with an OpenDayLight controller to interconnect
a virtual tenant SDN controller with its respective VTN. To create the VTNs, multidomain SDN
orchestrator (MSO) mechanism is used as a network operating system (NOS). The MSO is to
create abstractions over multiple domains including different transport network
technologies, enabling thereby the composition of end-to-end services over heterogeneous
WAN networks (HetNets). Multidomain network hypervisor (MNH) is also used to create
end-to-end SDN-enabled VTNs, over the abstraction provided by MSO. Based on the
developed global cloud and network orchestrator, the architecture can integrate
geographically distributed data centres and multiple WAN domains, providing a unified
cloud and network operating system for the creation of end-to-end NFV services over VTNs.

Furthermore several other research attempts focus on providing network slicing for the new
generation of mobile network such as [147], [148], [149].The 3GPP has identified network
slicing as the key technology to achieve the goals in the 5G system [148] due to its potential
to enable suitable flexibility addressing specific requirements of different use cases. In this
scenario, mobile operators can share the same physical network substrate, adding their
virtual networks with their services (e.g. 3G, 4G services) and a centralised management
plane, creating the so-called mobile virtual network operators (MVNO). As a way to maintain
privacy between operators, these logical networks are isolated from each other, which
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makes NFV to provide the mobile network services per operator as VNFs and, in turn, SDN
creates the slice as well as establishes network functions interconnectivity.

Authors in [150] (2016) design an NFV/SDN prototype architecture to support MVNOs in
cloud environment using non-open source FOKUS OpenSDNCore orchestrator [142] to
coordinate the network services between MVNOs. The proposed orchestrator uses
OpenStack as VIM to create the virtual tenant networks and to instantiate VNFs per mobile
operator such as evolved packet core (EPC) and IP multimedia subsystem (IMS).
Furthermore, [148] proposes a three-layer network slicing framework model for 5G
networks considering NFV and SDN technologies. The bottom layer is the 5G software
defined infrastructure (5G-SDI), which comprises multiple administrative and physical
domains (e.g. RAN, transport, core networks, etc.) with SDN-based control and
management. Their SDN-based approach uses hierarchically organised SDN controllers to
provide abstraction and distributed dynamic allocation of resources. In addition, RAN and
MEC can be deployed to enable a cloud-based infrastructure, while the virtual resource layer
can create network slices with virtual resources (radio, computing, and network) and VNFs
that are customised to meet the requirements of different types of services. The application
and service layer include the per-tenant services (e.g. connected vehicles, virtual reality (VR),
etc.) that will use these slices to perform their functionalities. Also, the life cycle of network
slices is managed and orchestrated by the slicing MANO that acts as (i) VIM, (ii) VNF
manager, and (ii) slice orchestrator. The NFV/SDN architecture proposed in [148] has been
adopted by many recent studies such as [58], [59], [60], [61], [62], [151] to implement 5G
scenarios, including the entire mobile network implementation approach (e.g. radio access
network) for fast and dynamic deployment of MVNOs. Besides, authors in [62], [152]
propose the ADRENALINE testbed, which can be considered on top of an NFV/SDN platform.
More precisely, ADRENALINE is an SDN/NFV packet/optical transport network and edge/core
cloud platform, which encompasses multiple interrelated although independent
components and prototypes, to offer end-to-end services, interconnecting users and
applications across a wide range of heterogeneous network and cloud technologies for the
development and test of 5G and loT services in conditions close to production systems.

2334 Mobile edge computing

Mobile edge computing (MEC) or multi-access edge computing has been a trend in mobile
networks. Like NFV, the MEC architecture has been standardised by ETSI through Group
specification (GS) MEC [153], [154] since 2016. MEC provides IT and cloud computing
capabilities within the radio access network (RAN). For this, a set of computer and storage
resources (e.g. data centres, clusters, etc.) are deployed at the edges of the mobile
operator’s network to assist the core data centre in supporting computing and
communication [155]. MEC focuses on delivering the services closest to the user, as a way to
meet certain critical application (e.g. video analytics, Internet-of-Things, augmented reality,
and data caching) requirements that are not supported only by cloud computing, such as
high bandwidth, low latency and jitter, context awareness, and mobility support. According
to 5G-PPP, MEC is vital technological component to enable 5G networks [156]. NFV/SDN
architectures are in line with current trends for MEC solutions, which however, is a new
technology thus, only a few studies have been found in this SLR. As an example, the EU
H2020 SELFNET project [157] (2016) investigates the design and implementation of the so-
called autonomic management framework for 5G networks, using technologies such as SDN,
NFV, self-organising network (SON), cloud computing, and artificial intelligence. This
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framework aims at reducing OPEX and improving QoE of the end users, addressing (i) self-
protection against distributed cyber-attacks, ii) self-healing against network failures, and iii)
self-optimisation of the network traffic. In this context, authors in [158] (2017) propose a
SELFNET approach to support SFC in MEC scenarios in order to meet 5G requirements
defined by the 5G-PPP initiative [159]. SELFNET relies on a federated cloud infrastructure
(i.e. multiples edge NFVI-PoP and a core NFVI-PoP) to provide IT and network resources and
execute VNFs that support some management elements and network services. The WAN
infrastructure management (WIN) uses SDN controllers to provide connectivity between
edge NFVI-PoPs and the core NFVI-PoP through the creation of virtual tenant networks.

2.3.4 Orchestrators

NFV orchestration is used to coordinate the resources and networks needed to set up cloud-
based services and applications. This process uses a variety of virtualisation software and
industry standard hardware. The big advantage of NFV is that it uses industry-standard
commercial off-the-shelf (COTS) hardware to deliver a service via software. Prior to the
advent of the NFV, operators build application-specific networks using proprietary hardware.
Now, these services can be deployed as VNFs on a NFV platform. This includes popular
software services such as a virtual firewall, virtual load-balancing, or other software-defined
wide area network (SD-WAN) service. Because NFV requires lots of virtualized resources, it
requires a high degree of software management, referred to as orchestration. Orchestration
coordinates, connects, monitors, and manages the needed resources from the platform for
the NFV services. Orchestration may need to coordinate with many network and software
elements, including inventory systems, billing systems, provisioning tools, and operating
support systems (OSSs). However, some of the existing orchestrating solutions are just tied
to a specific networking environment, and moreover, some of them can orchestrate an only
limited number of services [160]. This section presents an overview of main orchestration
frameworks, including open source, proposed and commercial solutions.

2341 Open source MANO orchestrator

Open source MANO [161] (2017) is an ETSI-hosted project to develop an open source
NFVMANO platform aligned with ETSI NFV information models and that meets the
requirements of production NFV networks. The project launched its third release [162] in
October 2017 and presented improvements in security, service assurance, resilience, and
Interoperability. One of its main goals is to promote the integration between standardisation
and open source initiatives. The OSM architecture has a clear split of orchestration function
between resource and service orchestrators. It integrates open source software initiatives
such as Riftware as network service orchestrator and GUI, OpenMANO as resource
orchestrator (NFVO), and Juju 5 server as configuration manager (G-VNFM). The resource
orchestrator supports both cloud and SDN environments. The service orchestrator can
provide VNF and NS lifecycle management and consumes open information and/or data
models, such as YANG. MANO architecture covers only single administrative domain.

2.3.4.2 ONAP orchestrator

ONAP [163] (2017) is based on the union of two open source MANO initiatives namely
OPEN-O [164] and OpenECOMP [165] frameworks. ONAP software platform deploys a
unified architecture and implementation, with robust capabilities for the design, creation,
orchestration, monitoring and lifecycle management of physical and virtual network
functions. ONAP’s functionalities are expected to address automated deployment and
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management and policies optimisation through achieving intelligent operation of network
resource using big data and artificial intelligence [166]. Authors in [167] identify two of the
biggest challenges to merge two large sets of code using ONAP. First, to define a higher-level
common information model unifying the predominant data models used by OPEN-O (TOSCA)
and OpenECOMP (YANG). Second, to create a standard process so that end users can
introduce onboarding and lifecycle management of VNFs using an automated process.

2343 X-MANO orchestrator

X-MANO [168] (2017) is an orchestration framework to coordinate end-to-end network
service delivery across different administrative domains. X-MANO introduces components
and interfaces to address several challenges and requirements for cross-domain network
service orchestration such as business aspects with architectural considerations,
confidentiality, and lifecycle management. In the business aspects case, X-MANO supports
hierarchical, cascading and peer-to-peer architectural solutions by introducing a flexible,
deployment-agnostic federation interface between different administrative and
technological domains. The confidentiality requirement is addressed by the introduction of
a set of abstractions (backed by a consistent information model) so that each domain
advertises capabilities, resources, and VNFs without exposing details of implementation to
external entities. To address the multi-domain lifecycle management requirement, X-
MANO introduces the concept of programmable network service based on a domain
specific scripting language allowing network service developers to use a flexible
programmable Multi-Domain Network Service Descriptor (MDNS), so that network services
are deployed and managed in a customised way.

2344 Open Baton orchestrator

Open Baton [169] (2017) is an open source reference implementation of the NFVO based on
the ETSI NFV MANO specification and the TOSCA standard. It comprises a vendor-
independent platform (i.e. interoperable with different vendor solutions), which is easily
extensible for supporting new functionalities and existing platforms. Current Open Baton
release 4 includes many different features and components for building a complete
environment fully compliant with the NFV specification. Among the most important are a
NFVO following ETSI MANO specification, a generic VNFM to deploy Juju charms or Open
Baton VNF packages, a marketplace integrated within the Open Baton dashboard, a driver
mechanism supporting different type of VIMs without having to re-write anything in the
orchestration logic, and a powerful event engine for the dispatching of lifecycle events
execution. Finally, Open Baton is included as a supporting project in the project Orchestra6.
This OPNFV initiative seeks to integrate the Open Baton orchestration functionalities with
existing OPNFV projects in order to execute testing scenarios (and provide feedbacks)
without requiring any modifications in their projects.

2.3.4.5 Agile reference Implementation of automation orchestrator

Agile Reference Implementation of Automation (ARIA) TOSCA [170] (2017) is a framework
for building TOSCA-based orchestration solutions to support multi-cloud and multi-VIM
environments, while offering a command line interface (CLI) to develop and execute TOSCA
templates with an easily consumable software development kit (SDK) for building TOSCA
enabled software. By taking advantage of its programmable interface libraries, ARIA can be
embedded into collaborative projects that want to implement TOSCA-based orchestration.
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For example, the Linux-based Open-O orchestrator [164] uses the ARIA TOSCA codebase to
create its SDN/NFV orchestration tool in Cloudify framework [171].

2.3.4.6 TeNOR orchestrator

TeNOR [172] (2016) is a multitenant multi NFVI-PoP orchestration platform developed by
project T-NOVA [119], with main focus to manage the entire NS lifecycle service, optimising
the networking and IT resources usage. TeNOR approaches an architecture based on a
collection of loosely coupled, collaborating services, known as micro-service architecture,
which can ensure a modular operation of the system. Micro-services are responsible for
managing, providing and monitoring NS/VNFs, in addition to forcing SLA agreements and
determining required infrastructure resources to support a NS instance. TeNOR architecture
is split into two main components namely (i) network service orchestrator, which is
responsible for NS lifecycle and associated tasks, and (ii) virtualized resource orchestrator,
which is responsible for the management of the underlying physical resources. To map the
best available location in the infrastructure, TeNOR implements service mapping algorithms
using NS and VNF descriptors. Both descriptors follow the TeNOR’s data model specifications
that are a derived and extended version of the ETSI name server daemon (NSD) and VNF
descriptor (VNFD) data model.

2.3.4.7 Tacker orchestrator

Tacker [173] (2016) is an official OpenStack project building a generic VNFM and a NFVO to
deploy and operate network services and VNFs on a cloud/NFV infrastructure platform such
as OpenStack. It is based on ETSI MANO architectural framework and provides a functional
stack to orchestrate end-to-end network services using VNFs. The NFVO is responsible for
the high-level management of VNFs and managing resources in the VIM. The VNFM manages
components that belongs to the same VNF instance controlling the VNF lifecycle. Tacker also
performs mapping to service function chain (SFC) and supports auto scaling and TOSCA NFV
profile using heat-translator. Tacker’s components are directly integrated into OpenStack
and thus, provide limited interoperability with other VIMs. However, Taker combines the
NFVO and VNFM into a single element, which means that its functionalities are limited and
divided, while it works in single domain environments offering limited design flexibility.

2.3.4.8 Cloudify orchestrator

Cloudify [174] (2015) is an orchestration-centric framework for cloud orchestration focusing
on optimization NFV orchestration and management. It provides a NFVO and generic-VNFM
in the context of the ETSI NFV, and can interact with different VIMs, containers, and non-
virtualised devices and infrastructures. Cloudify is aligned with MANO architecture but not
fully compliant. Besides, Cloudify provides full end-to-end lifecycle of NFV orchestration
through a simple TOSCA-based blueprint following a model-driven and application-centric
approach. It includes agile reference Implementation of automation (ARIA) as its core
orchestration engine providing advanced management and ongoing automation. In order to
help contribute to open source NFV-MANO adoption, Cloudify sponsors diverse NFV projects
and standard organisations, such as TOSCA specification, ARIA and ONAP.

2.3.4.9 XOS orchestrator

XOS [175] (2015) is a single uniform programming environment to unify SDN, NFV, and
cloud services (all running on commodity servers) towards the Everything-as-a-Service
(XaaS) approach. XOS software is organised around three main layers namely (i) data
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model, which can record the logically centralised state of the system, (ii) set of views
(running on top of data model) for customising access to the XOS services, and controller
framework, which is responsible for distributed state management. XOS runs on the top of
a mix of service controllers such as data centre cloud management systems (e.g.
OpenStack), SDN-based network controllers (e.g. ONOS), network hypervisors (e.g.
OpenVirtex), virtualised access services (e.g. CORD), etc. This collection of services
controllers allows the mapping to XOS onto the NFV architecture playing the role of a
VNFM. Using XOS as VNFM facilitates controlling both sets of EMs and VIM [176].

2.3.4.10 Gohan orchestrator

Gohan [177] (2015) is a MANO-based initiative for SDN and NFV orchestration, which keeps
the system architecture and deployment model simple by relaying on micro-services within a
single unified process. Particularly, Gohan services use JSON schema based on which the
orchestrator can deliver the so-called schema-driven service deployment that includes REST-
based API server, database backend, command line interface (CLI), and web user-interface
(WebUI). Some applicable use cases for the NTT’s Gohan approach are to use such
orchestration (i) in the service catalog on top of cloud services, and (ii) as a kind of NFV
MANO in order to manage both Cloud VIM and legacy network devices

2.3.4.11 ESCAPE orchestrator

Extensible Service ChAin Prototyping Environment (ESCAPE) [178] (2013) is a NFV
framework, which supports the three main layers of the project UNIFY architecture, i.e., (i)
service layer, (ii) orchestrator layer and, (iii) infrastructure layer [178]. It operates as a multi-
domain orchestrator for different technological domains, as well as different administrative
domains. ESCAPE can support remote domain management (recursive orchestration) and
operate based on joint resource abstraction models for networks and clouds [179]. Upon
receiving a specific service request on its REST API of the service layer, ESCAPE sends the
requested service function chains to the orchestration layer and maps the service
components to its global resource view. The calculated service parts are then sent to the
corresponding local orchestrators towards instantiating the service.

2.3.5 NFV cloud computing platforms

Cloud management platforms are integrated tools that provide management of cloud
environments. These tools incorporate self-service interfaces, provisioning of system images,
enabling metering and billing, and providing some degree of workload optimisation through
established policies. Through the self-service interface (e.g. based on OCCIl) the user can
request virtual infrastructure. This request is issued to a Cloud Controller, which provisions
this virtual infrastructure somewhere on available resources within the DC. The Cloud
Controller provides the central management system for cloud deployments.

The most popular cloud management platforms include open source solutions such as
OpensStack, CloudStack and Eucalyptus and commercial solutions from Microsoft and
VMware. This section provides an overview of some of these solutions, on the Cloud
Controller component. In the loRL context, the Cloud Controller is a key component that can
deliver end-to-end provisioning of virtual infrastructure, to enable full control over it and
also to provide a detailed and real-time view of the infrastructure load.
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2351 OpenStack NFV platform

OpenStack is a cloud OS that controls large pools of compute, storage and networking
resources throughout a DC, all managed through a dashboard that gives administrators
control while empowering their users to provision resources through a web interface. As an
open source solution, OpenStack is developed and supported by a global collaboration of
developers and cloud computing technologists. The project seeks to deliver solutions for all
types of clouds by being simple to implement, scalable and feature rich. The technology
consists of a series of interrelated projects delivering various components for a cloud
infrastructure solution. All OpenStack source code is available under an Apache 2.0 license.

OpenStack has a modular design that enables integration with legacy and third-party
technologies. It is built on a shared-nothing, messaging-based architecture with modular
components, each of which manages a different service; these services, together to
instantiate an laaS Cloud. The primary component of the cloud operating environment is the
Nova compute service. Nova compute orchestrates the creation and deletion of
compute/VM instances. Nova is designed to operate as much as possible as hypervisor-
agnostic. It works with open source libraries such as libvirt.

2.3.5.2 Nova NFV platform

Similar to OpenStack components, Nova is based on a modular architectural design where
services can be co-resident on a single host or, more commonly, on multiple hosts. The core
components of Nova include the following:

e The nova-api accepts and responds to end-user compute API calls. It also initiates
most of the orchestration activities as well as enforcing some policies;

e The nova-compute process is primarily a worker daemon that creates and terminates
VM instances via hypervisor APIs (XenAPI for XenServer/XCP, libvirt for KVM or
QEMU, VMwareAPI for vSphere, etc);

e The nova-scheduler process keeps a queue of VM instance requests and for each
request it determines where the VM instance should run (specifically, which compute
node it should run on).

Nova service itself does not come with a hypervisor, but manages multiple hypervisors, such
as KVM or ESXi. Nova orchestrates these hypervisors via APIs and drivers. For example,
Hyper-V is managed directly by Nova and KVM is managed via libvirt, while Xen and vSphere
can be managed directly or through management tools such as libvirt and vCenter.

2.3.5.3 Eucalyptus NFV platform

Elastic utility computing architecture linking our programs to useful systems (Eucalyptus) is
an open-source Cloud that provides on-demand computing instances and shares the same
APIs as Amazon’s EC2 cloud. Eucalyptus was designed as a highly-modular framework in
order to enable extensibility with minimal effort (Eucalyptus Systems, Inc, 2014). The Cloud
Controller (CLC) in Eucalyptus acts as the Cloud entry-point by exposing and managing the
virtualised resources. The CLC offers a series of web services oriented towards resources,
data and interfaces (EC2-compatible and Query interfaces). In addition to handling incoming
requests, the CLC acts as the administrative interface for cloud management and performs
high-level resource scheduling and system accounting. The CLC accepts user API requests
from command-line interfaces like euca2ools or GUI-based tools and the Eucalyptus
management console manages the underlying compute, storage, and network resources.
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2.3.5.4 Cloudstack NFV platform

Apache CloudStack is open source software designed to deploy and manage large networks
of virtual machines, as a highly available, highly scalable Infrastructure as a Service (laaS)
cloud computing platform. CloudStack is used by a number of service providers (e.g. BT) to
offer public cloud services, and by many companies to provide an on-premises (private)
cloud offering, or as part of a hybrid cloud solution. CloudStack is a turnkey solution that
includes the entire "stack" of features most organisations want with an laaS cloud: compute
orchestration, Network-as-a-Service, user and account management, a full and open native
API, resource accounting and a first-class User Interface (Ul).

CloudStack is a framework that allows pooling of computing resources in order to laaS cloud
services that can be used to provide IT infrastructure such as compute nodes (hosts),
networks and storage as a service to the end users on demand. CloudStack Management
Server is the main component of the framework, consisting of managing resources such as
hosts, storage devices and IP addresses. The Management Server runs on a dedicated host in
a Tomcat container and requires a MySQL database for persistence. The Management Server
controls allocation of VMs to hosts and assigns storage and IP addresses to VM instances.
This component also controls or collaborates with the hypervisor layers on the physical hosts
over the management network and thus controls the IT infrastructure.

2.355 VMware vCloud suite NFV platform

VMware’s vCloud Suite is a comprehensive, integrated cloud platform for building and
managing cloud environments. Tools for cloud management are delivered through VMware
vCenter Server, a centralised and extensible platform for managing virtual infrastructure.
The tools included in the vCenter Server framework support: configuration of ESX servers
and VMs, performance monitoring throughout the entire infrastructure, using events and
alerts. The objects in the virtual infrastructure can be securely managed with roles and
permissions.

2.4 loRL-specific taxonomy approach of joint SDN and NFV
structural elements

Having identified the architectural elements of joint SDN/NFV interpretation in
contemporary networking, we summarise the elements to be used in the loRL home
network. In particular, the loRL home network integrates:
e multiple controllers for distributed VNF performance, scalability, reliability, domain
interaction and NaaS management;
e VNF/VNFC, network connectivity and virtual network management;
e OpenFlow, OVSDB and ForCES southbound APlIs;
e RESTful northbound API;
e Open vSwitch SDN switch platform;
e virtualization of switchers and routers in NFV;
e SDN-based VIM for NFV-based allocation, deallocation and inventory management;
e SDN-based VNFs and OSS/BSS with initialisation, suspension and termination
lifecycle;
e OpenDaylLight controller;
e Open source MANO orchestrator.
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Recalling our generalised SDN/NFV taxonomy approach illustrated in Figure 2-1, we highlight
in Figure 2-10 the key loRL-specific SDN/NFV components, applications and services that will
be utilised, assessed and integrated into the lIoRL home network design.
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Figure 2-10 - lllustration of the loRL-specific taxonomy approach of joint SDN and NFV structural elements

[end of section 2]
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3 Integration of SDN/NFV approach in the IoRL home network

The loRL approach includes designing and controlling a radio-light communication system that
combines WLAN WiFi, mmWave and VLC access points (situated into RRLHs) at end-user
position e.g. inside a house) to enable the user access in the network. In such system, the
scope of joint SDN/NFV is to enable the intelligent data management and routing from cloud
computers variously located remotely from the radio-light access points (e.g. in the home cell
site or in external cloud network) to the different parts of the network. This can be achieved
by developing an open source environment of network operations for homes, able to (i)
effectively combine mmWave and VLC modules, while (ii) managing the requested network
services via intelligent home IP gateway (IHIPG). The open source environment includes an
integrated network management and operations plane API for buildings to abstract the home
network infrastructure softwarisation, control plane and forwarding/data planes, and create
customised network services for multi-network operators.

3.1 loRL-specific design and perspectives with joint SDN/NFV
integration

Having specified the role of joint SDN/NFV in the IoRL system, the considered software
defined home network (SDHN) architecture can be summarised in Figure 3-1 and Figure 3-2.

Specifically, from Figure 3-1 we see that loRL architecture relies on an intelligent home IP
gateway enhanced with a SDN switch so that IP packet flow can be routed to RRLHs or WLAN.
Such architectural approach can allow network service developers to write VNFs for location
sensing, multiple-source streaming intra- and inter- handover and security monitoring, while
providing the means to locate network operations and management functions between the
Intelligent HIPG and the CHDC server in a configurable way to meet the different OPEX and
CAPEX needs of different 4G/5G access points as shown in Figure 3-2. The concept of NFV can
be applied to the VLC and mmWave RANs to off-load the complexity of the electronic systems
required in the RRLH onto cloud home data centre (CHDC) servers or Intelligent HIPGs
because of the very confined space available in Light Rose housing. The design of strategies
for configuring the video streams to be transported with different percentage proportions
over the different available home networks and paths (WLAN WiFi, VLC, mmWave) is also
important for maintaining continued service connectivity in the presence of line-of-site (LoS)
radio transmission systems. The SDHN is to be realised from OpenFlow-enabled network
elements, such as HIPG and RRLH, by enhancing their dynamics using OpenFlow capabilities.

High speed gigabit IEEE Ethernet LAN technology will be used as the technical solution for
wireline home networking since current fronthaul interfaces (e.g., common public radio
interface (CPRI), open radio interface (ORIl), open base station architecture initiative (OBSAI))
can be used to encounter capacity bottlenecks when confronted with the considered RRLH
scenario that needs more transport capacity because it shifts more functional processing into
the Intelligent HIPG and/or CHDC server processor. Our architecture could also support WiGig
wireless LAN IEEE 802.11ad technology which can support the increasing demand for high
data rates, with the standard providing 6.7 Gb/s using GHz of bandwidth at 60 GHz mmWave
frequencies. For example, WiGig can be used to manage handovers between mobile network
and the home network and between the different rooms. On the other hand, LTE
communication protocols can be also considered for providing a radio-light broadband indoor
femto cell using mmWave physical layer modelling with a 6.67ms OFDM symbol duration, 200
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Figure 3-1 - lllustration of the SDN/NFV-based IoRl home network architecture

MHz channel bandwidth per component carrier and bit rate of 0.96 Gbits/sec under 64-QAM
modulation. In addition, handover procedures based on 3GPP LTE specification consisting of
hand-in, hand-out and inter-femto handovers, can be applied for handover between radio-
light broadband indoor femto cells in each room of a building and combined with 3GPP 5G
approach to support broadband, I0OT and ultra-reliable and low-latency communications
(URLLC) with real support of networking, NFV etc.

Since RRLH home communications does not interfere with the main transmitted mobile signal,
their deployment will no longer require the permission of MNOs, so MNOs will be able to
quickly provide indoor mobile service to all homes and businesses as opposed to only their
larger business clients as is currently the case.

The following sub-sections study the interconnection between the SDN/NFV-based VNF
applications that will be deployed in the IoRL home network by describing their structural
service mechanisms, descriptors and lifecycle management. Our purpose is to provide insights
on the appropriate NFVI resources needed to support services requested by users by
examining how effectively VNFs interact to each other, which can be useful for refining the
identified VNF interactions towards improving the IloRL virtual network. For the sake of
clarification, at the end of this section we provide an updated version of Figure 3-2 to include
all the identified mechanisms of the considered loRL-specific VNFs.

3.1.1 VNF deployment and configuration in the IoRL home network

The combination, implementation and evaluation of the identified perspectives rely on a
process to deploy and configure the identified VNF in the loRL network. Such process includes
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the management of plane applications to adapt the operation of the intelligent HIPG and NFV
servers, and the development of the use of meter, flow and group tables data to tailor a range
of resource management services for the needs of network users.

To initiate such VNF configuration/identification process the client should notify the
orchestrator to instantiate and deploy a registered VNF. This can be done by developing a VNF
selection module which allows each IoRL user to select one of the available VNFs and decide
when to start using it. Through the VNF selection module, the specific parameters of the
service are configured and passed to the orchestrator, along with the VNF to instantiate. As
result of the instantiation process, the orchestrator returns the IDs of the newly instantiated
VNFs.

A successful VNF Instance creation returns the unique: nsi_id (note the ‘i’ for ‘instance’),
generated by the orchestrator, which can be used by IoRL for future requests. A successfully
created VNF instance is left in the ‘Started’ state. It is assumed that only VNF instances in the
‘Stopped’ state can be deleted.

New VNF instances can be created based on most recent VNF registered version. Since the
VNF instance is a resource created within the orchestrator, this creation process returns a VNF
instance id that has to be used in further interactions with the orchestrator with respect to a
specific VNF instance.

Similar to deleting a VNF (above), deleting a running VNF instance might either:

e Fail if the VNF Instance is still running;
e Imply immediately stopping the VNF instance then be deleted;
o Be tagged as 'to-be-deleted' and wait for the VNF to be stopped and then be deleted

Possible states of a VNF instance are:

e Requested
e Started
e Stopped

The VNF instance is in the requested state, while it is being provisioned in the VIM. It is
expected that the newly and successfully instantiated VNF starts its lifecycle in the ‘started’
state.

Whenever, an lIoRL user needs to change any of its parameters in current VNF configuration
(e.g. the connection points, etc.), the orchestrator is notified about this change in the
configuration parameters for an already deployed VNF instance. The VNF is modified and the
result is returned to the orchestrator.

Below we highlight the main VNF applications to be integrated in the loRL home network.

3.1.2 Introduction to VNF structure for inter- and intra-handover

The handover VNF is to support mobile services not only over 3GPP access but also over non-
3GPP defined radio access. To effectively implement the handover between loRL access and
3GPP access, a SDN-based network architecture is designed, which cooperates 5G core
network architecture that decouples data forwarding function and control function, as shown
in Figure 3-3. Form the figure we see the IoRL RAN as the access network for lIoRL. Note the
SDN controller, which is the network’s core component and hosts two lower Layer 1
processors. The controller first generates an IF signal to drive up to 8 VLC MISO modules, and
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Figure 3-3 - lllustration of the IoRL SDN-based network architecture

then it generates an IF signal to drive up to 8 mmWave RF duplex modules. The loRL RRLH
controllers are interconnected by 10G ethernet ring with common public radio interface.
Furthermore, intelligent home IP gateway is responsible for routing IP packets to 5G L2/L3
processor core or Internet. It contains SDN forwarding devices, the SDN controller and several
VNFs. The SDN controller is in charge of computing forwarding paths, generating forwarding
rules, and installing them into SDN forwarding devices. An SDN forwarding device is used to
route IP packets according to the forwarding rules. Also, VNFs are used to offload the
complexity of upper layer protocol processing of the communication systems in RRLH onto the
intelligent gateway, including network functions such as location, security and transcoding.

Especially, to cooperate with 4G/5G technology, 4G/5G user plane VNF and 4G/5G control
plane VNF are introduced.

e A4G/5G user plane VNF: it is used to route IP packets between loRL access and 4G/5G
access during the handover.

e 4G/5G control plane VNF: it can be used to manage the UE mobility such as handover
decision.

Meanwhile, it introduces the following reference points:

e N2: Interface between 4G/5G control plane VNF and the user plane in mobile network
operator EPC.

e N3: Interface between 4G/5G user plane VNF and the user plane in mobile network
operator EPC.

e N6: Interface between the user plane in mobile network operator EPC and data
network like Internet.

e X2:Interface between eNodeB and 4G/5G user plane VNF or 4G/5G control plane VNF.

3.1.3 Modelling of VNF application for intra-handover for non 5G
RANs

In loRL project Intra-building handover is performed by the 5G Layer 2, which is described in
deliverable 5.1 “Technical Specification of Radio-Light Receiver”. Intra-handover mechanism is
applied for UEs changing location from one RRLH/room to another within the same scenario
in the special case when non 5G RANs are used and there is no Layer 2 RRC to perform the
handover. In this case intra building handover is required to be performed at network layer 3,
where the mechanism involves UE application interacting with SDN application via Ryu
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Figure 3-4 - lllustration of the intra-handover scenario in the loRL home network

controller. This section presents the considered mechanism by adopting a scenario, when UE1
(IP 192.168.0.10) changes location from kitchen to the living room as shown in Figure 3-4. For
example, let us consider that UE1 is situated in the kitchen and sends his VLC ID K.01
constantly to update the user application data base with his serving VLC ID. Therefore, its
downlink data stream will always get to its updated location, where it receives downlinkl via
RRLH 00:00:00:00:00:01/VLC K.01. Then UE1 changes its location to the living room and sends
an update of the serving VLC ID (L.01). The SDN application will be notified of the change of
UE1 location then access the user application database and retrieve the current VLC ID. Then,
the SDN application uses the information illustrated in Table 01 and Table 02 of Figure 3-4.
(which are included in the SDN application), to augment the previous flow rule for this
destination. It does so by (i) adding the UE IP address, (ii) pushing the flow rule to OVS
through the controller and (iii) updating downlink path (dowinlink2) for RRLH MAC
00:00:00:00:00:02/VLC L.2. The SDN application augments the flows frequently by updating
UE IP addresses list in flow rules, based on the two-step mapping process, VLC ID - RRLH MAC,
and RRLH MAC - UE IP address. For the downlink packets destined for specific UE, the switch
sends the flow to the appropriate RRLH that covers that UE. The updating procedure is
illustrated in Figure 3-5.
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Figure 3-5 - lllustration of the intra-handover procedure in the loRL home network

The uplink traffic is simply exploited to store the MAC header of the RRLH in the database to
forward the downlink traffic to the RRLH covers the room within which the UE resides. The
RRLH will flood the packets to all 8 mmWave modules and VLC modules to get the destined
UE. To insure a valid destination RRLH, we develop a SDN application to send frequent uplink
traffic from each UE within our coverage area to extract the RRLH MAC address and update a
database table with UE-IP/RRLH-MAC information. Note that the forwarding rule for each UE
has idle time-out and hard-timeout and therefore, if the SDN application will not receive an
updated MAC address within the Idle-timeout period, the controller will forward the downlink
traffic to all RRLH controllers to ensure the downlink transmissions to all possible locations
within the coverage area. In case the hard-timeout timer expires without any MAC update,
then the UE will be considered out of the coverage area and deletes its entries.

3.13.1 Modelling of VNF application for inter-handover

Inter-handover mechanism refers to UEs which change between the gNodeB (inside the loRL
home network) and the e/gnodeB (outside the lIoRL home network). Inter-handover process
integrates by switching the routing of packets from the Internet MAC address to the service
gateway MAC address, and vice versa. The main steps to describe the architectural structure
of the inter-handover process are given as follows.

e The PGW is responsible for the allocation of the UE local IP address and the
advertisement of the UE public IP address to the Internet.

e Data trafficis forwarded by using tunnels between the UE and the PGW.

e The internet sees UE traffic coming from the public IP address advertised by the UE’s
PGW.

e The Internet has no knowledge for UE’'s movement and always uses the PGW address
to reach the UE.

e The UE, eNodeB, MMEs, SGWs and possibly the PGW exchange signaling messages to
modify the tunnel to redirect the traffic to the UE location, as shown in Figure 3-6.
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Figure 3-6 - lllustration of LTE based inter-handover mechanism

In the loRL network, data traffic is forwarded using the SDN sub-network directly through the
local interface to the Internet, after changing the source IP address to allow the Internet to
reach the UE. Therefore, to design a network that contains LTE and loRL deployment several
issues and obstacles need to be addressed. This includes:

e |oRL network does not use bearers, while LTE uses bearers
e UEs served by the IoRL can access the Internet through the IPHGW public IP
address and not via the 4G/5G PGW public IP address

To address these obstacles, three key architectures are considered, namely: standalone mode
and two types of inter-handover scenarios (1) integrated with mobile network, (2) integrated
with the mobile network through cloud gateway.

To realise each architecture separately, let us firstly focus on the basic structure of our system
shown in Figure 3-7, where the RAN is the access network for loRL. The core components of
such system are the RRLH controllers, where each one of them hosts two lower layer (i.e. L1)
processors and aims to generate (i) an IF signal that drives up to 8 VLC MISO modules, and (ii)
another IF signal to drive up to 8 mmWave RF duplex modules. The RRLH controllers in loRL
are interconnected through a 10Gbit ethernet ring with common public radio interface.
Furthermore, the intelligent HIPG is responsible for routing IP packets to higher layers’ (i.e.
L2/L3) processor core or the Internet, and consists of SDN FDs, the SDN controller and several
VNFs. Note the SDN controller, which is in charge of computing forwarding paths, generating
forwarding rules, and installing them into SDN FD that in turn, can route IP packets according
to forwarding rules. The VNFs are used to offload the complexity of upper layer protocol
processing of the communication systems in RRLH onto the intelligent HIPG, including
network functions such as location sensing, security monitoring and transcoding. In
conclusion, the IoRL system uses three different operation modes with slightly different
structures (i.e. RRLH = HIPG = VNFs) that can be flexibly orchestrated through SDN/NFV
deployment by means that they can either added or removed from the system at any time
instance.
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Figure 3-7 - The basic structure of IoRL system

Having realised the basic structure of the IoRL system, we can now proceed realising each of
the considered architecture separately.

3.1.3.2 Architecture of the inter-handover standalone mode

This mode the IoRL home network can be realised by observing Figure 3-7; from the figure we
see that the loRL network operates independently from the mobile core network, e.g., there is
no connection between the two networks. Therefore, in standalone mode, (i) 5G/4G control
and data plane VNFs are not included, while (ii) the loRL network is responsible for the IP
address allocation and the air interface security, which is provided by specialised VNFs.

Intra-handover process between different lights can be supported in standalone mode, and
seamlessly and efficiently handled by the Layer 2 processor. On the other hand, inter-
handover process cannot be supported because there is no link between the loRL and the
core network. Instead software can be used at the UE side to prioritise the IoRL links over the
4G connections. This way, UE data traffic can be always handled by the IoRL, whenever IoRL
coverage is available. Also, in standalone mode IoRL network can forward user requests to
either the local services or the Internet. For example, in the museum scenario, the IoRL
network can use the user location to intelligently provide to each user information about
exhibits these users currently observe. At the same time, UEs can have high speed connection
to the Internet through the HIPGW without consuming their subscription data bundle.

3.1.33 Architecture of the inter-handover process integrated with mobile network

In this mode the IoRL deployed as part of the MNO with tight integration with the MNO core
network, as shown in Figure 3-7. It means, UE authentication, air interface security
parameters and IP address allocation are provided by the MNQO’s EPC. In this mode, the IoRL
has specialised VNFs known as 5G/4G control plane VNF and 5G/4G data plane VNF. The
5G/4G control plane VNF is responsible for the transportation of the control signaling
messages between the UE and the MNQO'’s EPC, while the 5G/4G data plane VNF is responsible
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for the data traffic forwarding over GTP tunnels. Given that SDN/NFV deployment consists
major part of IoRL device design, the 5G/4G control plane VNF can work with the SDN
controller to build a map between the GTP TEID and VLAN tags to provide traffic separation
and differentiation.

On this basis, two types of inter-handover processes can be considered. The first type is the
handover from IoRL access to 4G/5G access, and the second type is the handover from 4G/5G
access to loRL access. Below we provide a detailed description on how to perform the SDN-
based handover in the considered two handover scenarios. Recall that the 4G/5G control
plane VNF is responsible for the setup and maintenance of the GTP tunnel with the MNQO’s
EPC while the 4G/5G data plane VNF for GTP encapsulation and decapsulation utilising
information provided by the 4G/5G control plane VNF. Communication messages between the
4G/5G control plane VNF and the SDN controller are tagged with specific VLAN (control VLAN
tag). The SDN-FD is pre-configured to send the traffic tagged with the control VLAN tag to the
controller.

* |oRL to 4G/5G inter-handover process

1. The UE uses loRL access system and IP packets are routed to IoRL RAN or Internet
according to the forwarding rules in SDN-FD. The forwarding rules are configured by
SDN controller;

2. Based on the measurement reports sent by the UE, the RRC makes the handover
decision, the request is sent to SDN-FD through IoRL RAN. The SDN-FD forwards the
handover request to the 4G/5G control plane VNF;

3. 4G/5G control plane VNF, notifies the SDN controller about the handover procedure
to modify the flow rules related to the UE in question. The controller updates the flow
rules to send the data traffic to the 4G/5G data plane VNF to be buffered;

4. 4G/5G control plane VNF, passes the handover request to the MNO’s EPC, the EPC
exchanges control signaling messages with the eNodeB to establish the radio bearer
between UE and the eNodeB, and also establishes a communication link between the
eNodeB and the EPC;

5. Upon receiving handover response from the EPC, the data related to UE can be
forwarded between 4G/5G user plane VNF and EPC via data plane link. At the same
time the SDN controller is notified to remove the flow rule entries;

6. The SDN controller generates flow delete message to delete the forwarding rules in
SDN-FD. These rules are used for data forwarding related to UE.

* 4G/5G to IoRL access inter-handover process

1. The UE is connected with 4G/5G access system. The uplink data are routed from
eNodeB to Internet through MNO EPC. The downlink data are transmitted along the
reverse direction;

2. Based on the measurement report sent by the UE the eNodeB makes handover
decision and forwards handover request to the EPC. The latter sends the handover
request to 4G/5G control plane VNF;

3. Upon receiving the Handover Request, the 4G/5G control plane VNF notifies the SDN
controller using the control signaling VLAN tag;

4. After receiving the message, the SDN controller installs the forwarding rules in SDN-FD
by sending flow-mod message. The rules include routing the downlink and uplink data
related to UE to lIoRL RAN and Internet respectively. Meanwhile, the rules also match
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Figure 3-8 - Integrated with the mobile network through cloud gateway

the data received from 4G/5G user plane VNF. During the handover, some data may
forward from EPC to 4G/5G data plane VNF;

5. Then, the SDN controller responds to the 4G/5G control plane VNF, and upon receiving
the message, the 4G/5G control plane VNF sends Handover Response message to EPC;

6. After receiving the Handover Response message, the EPC sends handover command to
the eNodeB which forwards the command to the UE to reconnect to the IoRL. At the
same time, control signaling is exchanged between the 4G/5G control plane VNF and
the EPC to setup the data bearer between the IoRL and the EPC;

7. Then, the EPC asks the eNodeB to release the network resource that includes radio
bearer between the eNodeB and the UE, and network resource between the eNodeB
and the EPC. The handover procedure has been completed.

3.1.34 Architecture of the inter-handover process integrated with the mobile network
through cloud gateway

In this mode multiple loRL RRLHs are connected to a cloud gateway, while the cloud gateway
is connected to the mobile network operator. This means there is no direct connection
between the loRL network and the MNQO’s EPC. The cloud gateway includes light mobility
management element to handle the handover between multiple loRL and at the same time
works with the MNQO’s EPC to perform inter-RAT handover between the IoRL and the MNQO’s
access network. Also, the cloud gateway is responsible for maintaining the UE bearers and
redirects them the MNO during the handover.

Page 65 of (104) © loRL consortium 2018



Deliverable D3.1 loRL H2020-ICT 761992

Note that by considering such setup, the MNQO’s EPC can realise the cloud gateway as another
eNodeB as shown in Figure 3-8. Also, the handover procedures explained in section 3.1.4.2
can be considered here with only differences that (i) the cloud gateway is the point of
interaction with the MNQ’s EPC instead of the loRL, and (ii) the functionality of the 4G/5G
control and data plane VNFs is included as part of the cloud gateway.

From Figure 3-8 we observe two cases, namely Case A (upper side of the figure) and Case B
(bottom side of the figure). Case A will help reducing the control signalling between the access
and the core network be letting UE 1 to be handled over from IoRL1 to IoRL2, whereas |oRL 2
can be handled locally through the cloud gateway and the IoRL SDN controllers without any
help from the MNQO’s EPC. In Case B, UE 2 will be handled over from IoRL 4 to the 4G/5G
access by performing procedure similar to this in section 3.1.4.2. The difference is that since
EPC can only see the cloud gateway (not the whole network as previously), the process in Case
2 focuses on the interaction between the cloud gateway and the MNQO’s EPC as highlighted
below.

1. Based on the reports form UE measurements, the IoRL network takes the handover
decision and the RRC sends handover request message through the SDN-FD to the
cloud gateway by utilising the control plane VLAN tag;

2. The cloud gateway keeps the UE data bearer’s information and upon receiving the
handover request message, it identifies that the handover to the MNQO’s access
network. In that way, the request is forwarded to the MNQ’s EPC to be forwarded to
the eNodeB in question;

3. All the communication continues between the cloud gateway and the MNQ’s EPC,
while only the handover command can be sent to the UE to change its attachment
points and control the signalling to the SDN controller, which is commonly used to
remove the flow rules from the SDN-FD.

After the exchange of control signalling between the involved entities, the inter-handover
command can be sent to the UE to reconnect to the MNQO’s eNodeB, while the SGW will be
able to redirect the GTP tunnels to the eNodeB.

3.1.4 Modelling of VNF application for security monitoring

Security monitoring VNF service is responsible to detect various types of network attacks,
scanning activity and denial of service (DoS). Its functionality is implemented as an integrated
security framework (ISF). The implementation of IoRL’s security monitoring takes place in a
single Linux-based dedicated VM, which comprises of three network interfaces as listed
below.

e Interface no. 1 - is connected to network available for all loRL RAN users;

e Interface no. 2 - is connected to the SDN management network, and allows access to
the SDN controller;

e Interface no. 3 - is connected to dedicated switch port analyzer (SPAN) port in Open
vSwitch, managed by SDN application.

Moreover, the security monitoring VNF include three main elements:

e Attack detection - is performed by a module to implement the main logic of the
detection mechanism by taking as input data from SPAN interface;
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Figure 3-9 - lllustration of multiple-source server with functional requirements

SDN security monitoring and application management - is performed via an SDN
application, with main role to manage the access to “interesting data” received from
and directed to the RAN. The optimal compunction method between security SDN
application and the SDN controller is a RESTful API;

web-based security dashboard - is to allow management of the whole ISF functionality
by users with appropriate access rights to IoRL system management. Additionally,
authorised users can use such dashboard to access logs that concern current security
state of the loRL system and its connected users.

3.1.5 Modelling of VNF application for multiple-source streaming

The loRL home network can manage data streaming in two different ways.

To stream the data from the server to the end user by using the loRL network as black
box that provides internet access. Such an approach allows our system to be
compatible with actual streaming services over the internet, especially video
communication tools.

To stream the data to the end user using multiple-source streaming process, which
allows streaming sub-flows of data from different sources, thereby increasing service
reliability at the application level. These sub-flows can be read either independently to
provide lower service quality or merged for higher service quality.

Multiple-source streaming over remote VLC head is composed of three main modules that
rely on the HTTP/TCP protocol for communication:

The multiple-source stream server, which is part of the server side and can be
deployed in the Intelligent home IP gateway as virtual functions shown in Figure 3-9.
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The multiple-source stream server is to be developed in Java with a tomcat server and
an SQL database;

e The multiple-source stream player, which can be deployed similarly to the multiple-
source stream server;

e The multiple-source stream transcoder, which can be deployed at the client side, as
part of an application running in the user equipment shown in Figure 3-10. The
multiple-source-stream transcoder is to be developed in NodelS and includes an
FFmpeg [180] tool for the transcoding.

On the client side, the multiple-source stream player can be seen as video player, which will
be integrated in a web page and accessed through a web browser. The client may also be
running in a native application for specific user equipment. As the algorithm of multiple-
source stream is defined as client-centric, the multiple-source stream client is responsible for
the creation of the HTTP requests sent to the multiple-source stream server through the RRLH
network and the relay WLAN WiFi access for a multiple-source streaming session. The
adaptation algorithm is implemented in the multiple-source stream client.

On the server side, the multiple-source stream server can be seen as an application that will
answer client requests for specific video contents. This module will be responsible for the
creation of video segments adapted to multiple-source streaming. The video segments are
created from video data transcoded in numerous different qualities. For that purpose, the
transcoder comes along with the server. Such a transcoder is a module that will transcode
input video data into multiple-source-ready video data in one or several qualities. These data
can then be pushed to the server to be available for the stream player at user equipment.
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The multiple-source streaming VNF application will be deployed in modules using gemu [181],
while the VMs will have a linux OS running on embedded Docker [182] containers. The

intended tests will include the following scenarios.
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Figure 3-11 - lllustration of multiple-source streaming process under video-on-demand
testing scenario

e End-to-end video-on-demand streaming service: in this scenario, the multi-streaming
transcoder will be used to transcode the videos into multi-stream compatible content,
while a user will be able to watch a video on its equipment by sending HTTP requests
to the stream server through different network access, e.g., VLC, WLAN WiFi,
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Figure 3-12 - lllustration of multiple-source streaming process under live streaming testing
scenario
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Figure 3-13 - lllustration of multiple-source streaming process under video streaming for a
moving user testing scenario

mmWave. An illustration of such testing scenario is shown in Figure 3-11;

e Live streaming service: in the scenario the transcoder will be used to transcode the
video stream of IP camera into multiple-stream-compatible live content and save them
into the video storage. A user will be able to watch a video live by sending HTTP
requests to the multiple-source streaming server through different network access as
shown in Figure 3-12.

e Application-level reliability, with fall-back on alternative WLAN WiFi network in case
VLC/mmWave network is unavailable: this testing scenario will demonstrate the
application level reliability of multiple-source streaming application considering the
case where a VLC access is unavailable due to obstacles between VLC modules and
users, while WLAN WiFi network is only available for accessing the network, as shown
in Figure 3-13.

3.1.6 Modelling of VNF application for location sensing

The main goal of VNF application for location sensing in the loRL home network is to support
the indoor location-based data access, monitoring and guiding. Its modelling includes a
location server, location service client, RRLH controller and location database described
below.
e Location database is a VNF implemented at IHIPG to store the measured VLC and
wwWave parameters and provide location estimates with location assistance data,
e.g., coordinates of mmWave antennas and LEDs lights;
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Figure 3-14 - lllustration of main components of the VNF for position sensing

Location server is a VNF implemented at intelligent HIPG to estimate location

coordinates of all connected UEs in the IoRL network. RRLHC and UEs measure location
relevant parameters that are used by location server in location estimation process;

RRLH controller is a VNF to collect new sets of mmWave parameters and report them

back to main SDN controller of the network using PDCP packets;

UE is a VNF to collect new sets of VLC parameters and report them to location
database using IP packets;
Location service client is a switch application situated at either the UE or cloud home

data control server. It requires location information for location-based data access, for
monitoring and guiding and for interactive applications.
The main components of the position sensing architecture are summarised in Figure 3-14.

More particularly, location database is a MySQL database, which stores three different sets of

parameters:

measured by RRLHC and UE;

Estimated location coordinates of all connected UEs;

Location relevant mmWave and VLC parameters of all connected UEs that are
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e Coordinates of all mmWave antennas and LEDs and eventually also floor plans.

The location relevant signal parameters are measured by RRLH controller and by UE. RRLH
controller is measuring  mmW pseudo time-of-arrival in the uplink direction. UE is in charge
of VLC received signal strength which is measured in the downlink direction. Both VLC
received signal strength and the wwWave pseudo time-of-arrival measures are then uploaded
to location database to be processed by location server towards estimating the UE location
coordinates. Each entry of the location relevant that parameterises the database consists of
the UE ID, RRLHC ID, estimated mmWave/VLC parameters and a timestamp based on which
the parameters are estimated. The reason to store pseudo time-of-arrival instead of time-
difference-of-arrival measurements (as done conventionally) is to create a unique relationship
between antenna coordinates. Also, time-difference-of-arrival entries are more complex as
they need to additionally indicate which of the antennas were used to provide the estimates.
Instead, the proposed pseudo time-of-arrival approach is more robust as it is not necessary to
assess the relation between the antenna coordinates.

Location server is represented by a VNF implemented at IHIPG to compute position estimates
of all UEs that are connected to lIoRL home network. The computation is based on estimated
location relevant signal parameters, coordinates of mmWave antennas and LED lights situated
within RRLHs and eventually floor plans of the environment to enhance the precision as
shown in Figure 3-13. Location server includes three main algorithms to compute the location
estimation. The first algorithm estimates location coordinates based on VLC received signal
strength measurements. The second algorithm estimates location coordinates based on
mmWave pseudo time-of-arrival measurements. The third algorithm represents a set of data
fusion and tracking algorithms which fuse information obtained from VLC and mmWave
sensors and exploit additional assistance data such as ground plans etc.

Localisation procedure which involves interaction between RRLH controller and the UE is
enabled by means of the IoRL positioning protocol. Such protocol is an adaptation of the LTE
positioning protocol with its main function to initiate the localisation procedure in the IoRL
network as follows.
e For mmWave estimations
- RRLH controller provides UE assistance data (the base sequences, their group,
sequence number, cyclic shift, frequency hopping scheme, etc.)
- RRLH controller triggers the UE to issue a series of sounding reference signals for
uplink time-of-arrival measurements;
e For VLC estimations
- UE triggers the RLHC to issue a series of reference VLC orthogonal frequency division
multiplexing symbols for each RRLH in turn for downlink received signal strength
measurements at the UE.

Note that the IoRL positioning protocol will not be elaborated for IoRL demonstrations. It is
for the sake of holding the implementation of demos as simple as possible. Due to the fact
that IORL demonstrator will contain only very small number of UE units, there is no need for
protocol-based scheduling of the localization procedure - for providing the assistance data,
planning the resources and for requesting UEs/RRLHs to initiate the measuring the localization
procedure. In lIoRL demos the UEs and RRLH controllers will be preconfigured. More details for
the functionality of position sensing in the lIoRL system are available in D5.1.
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3.1.7 VNF descriptors

VNF descriptor (VNFD) is “a deployment template which describes a VNF in terms of
deployment and operational behavior requirements”. As the VNFs are participating in the
networking path, the VNFD also contains information on connectivity, interfaces and KPIs
requirements. The latter is critical for the correct deployment of the VNF as it is used by the
NFVO in order to establish appropriate Virtual Links within the NFV Infrastructure (NFVI)
between VNF Component (VNFC) instances, or between a VNF instance and the endpoint
interface to other Network Functions. This section attempts a specification of the VNFDs that
we will use for the implementation of the cache node and cache controller VNFs. The
described VNFD has been defined and is currently used by T-NOVA project. Assuming a VNFD
for a VNF that is composed by more than one VDUs, the VNFD contains the following
segments:

e The VNFD preamble, which provides the necessary information for the release, id,
creation, provider etc.

e The virtual deployment unit (VDU) segment, which provides information about the
required resources that will be utilised in order to instantiate the VNFC. The
configuration of this part may be extremely detailed and complex depending on the
platform specific options that are provided by the developer. However, it should be
noted that the more specific are the requirements stated here the less portable the
VNF might be, depending on NFVO policies and service-level agreement (SLA)
specifications. It is assumed that each VDU describes effectively the resources required
for the virtualisation of one VNFC. Fields within the VDU VNFD segment include:

i) IT resources and platform related information;

ii) The internal structure of the VNF and the connection points of the VDU (name
id, type) and the virtual links where they are connected;

iii) Monitoring parameters to be collected by this VNF, including system related
information and VNF specific metrics;

iv) Scaling parameters defining the thresholds for scaling in-out.

e VNF lifecycle events segment, which is related to lifecycle events, where the
technology used for interfacing with the VNF is defined, as well as the appropriate
commands allocated to each lifecycle event.

3.1.8 VNF lifecycle

Considering the virtualisation of the satellite hub elements and the ground segment functions,
it is necessary to define hereby the Network Function lifecycle, which comprises eight stages,
as depicted in Figure 3-15.

The development of the VNFs is performed by Function Developers, the role of which can be
played by either the Service Providers themselves, or third-party entities, but also software
houses, which will be capable of entering to the current HW-specific market, since many HW-
based elements will be gradually softwarised.

Validation and debugging is also an important procedure, to ensure that the developed
function works and performs as expected. Buggy function code can have severe impact on the
stability of the service, affecting both the performance and the reliability of the service
provider. Function code and VMs will be digitally signed to ensure authenticity and, in any
case, each service provider reserves the right to disallow the deployment of certain third-
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Figure 3-15 - Virtual network function lifecycle

party functions into the network infrastructure. Although network traffic analysed by the NFs
will correspond to a portion of the total network traffic, as the Orchestrator and SDN
functions will only forward specifically selected flows towards each VNF.

Publication of functions should be performed at various Function Stores, whose repository will
host both the function image (as stand-alone application or integrated VM) and the associated
description/metadata. Through the functions stores, the service providers will have the option
to download the respective function in a similar way as mobile apps are disseminated.
Alternatively, the SDN/NFV-enabled service provider may limit the installation of function to
only internal ones, without extending its installation to external sources.

In case that the external installation of a function is allowed by the business model, then
Function Brokerage is undertaken by the brokerage platform, which will be able to match user
“high-level” service requirements with the specific technical specifications of the NFs,
ensuring that the resources required for VNF deployment are available.

Upon VNF Selection by the user, the Deployment phase includes the transfer of the VM image
containing the function from the Store to in-network cloud infrastructure and the VM
instantiation. The Orchestrator utilises the SDN control plane for network reconfiguration.

After instantiation, to facilitate Management, the function will expose, as aforementioned, an
open VNF Control API for uniform VNF configuration and parameterisation by operator, the
customers and by their applications.

Function Termination involves the removal of the VNF instance from the virtualised
infrastructure, also involving the necessary network re-configuration.

A critical issue in programmable SatCom architectures will be security; deploying a third-party
network appliance on a programmable network raises several security issues and may cause
severe network malfunction due to either buggy code or malicious actions. This issue is of
particular importance in SDN-as-a-Service (SDNaaS) platforms, where users are enabled to
deploy arbitrary network applications for controlling network slices, but it does not fall within
the scope and the objectives of lIoRL project.

3.2 loRL-specific network service structure

The network service (NS) composition happens through the dashboard (customer portal)
allowing the choice of already defined NSDs, modifications of defined NS templates or the
composition of a new NSD through the catalogues of available VNFs and PNFs. To deploy a NS,
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different VNFs and PNFs need to be deployed and chained. The most important fields that the
NSD will contain are summarized as the following:

e The reference to the VNFD files, defining the virtual network functions to be deployed,
that will refer to the VNF packages already on-boarded on the NFV manager;

e The reference to the PNFD files defining the connectivity and configuration of the
needed physical network functions.

In short, VNFFG can be seen as a chain upon which the NFV Manager performs the correct
routing for the chaining.

3.2.1 Network service descriptors

Once the NSD is defined, it is passed to the NFV manager for the deployment via the SO-
NFVM interface. The NFV manager will be responsible for the applicability check of the NSD
and successively for its deployment. Note that in contrast with the ETSI MANO standard, for
the needs of the satellite service provision, the PNFDs is not providing only the description of
the connectivity information but also need to provide the necessary parameters to be set in
the PNFs. Generally speaking, each PNF parameter might have different implementation and
configurability. Since the NFVO is following the ETSI MANO approach, the check of the NS
prior to deployment will be composed by the following steps:

e The NSD is sent to the NFVO;

e The NFVO checks the applicability of the NS deployment, considering both the
requested VNFs and PNFs for connectivity (through its south-bound interfaces);

e The SO checks the applicability of the PNF related to the requested PNFs configuration.

If both applicability checks are satisfied, then the VIM deploys the VNFs and sets the
connection points between the deployed VNFs and the requested PNFs and the SO configures
the PNFs accordingly to the requested configurations in the NSD.

3.2.2 Network service lifecycle

The network service lifecycle refers to the stages a VNF application needs to follow to
implement successfully in the IoRL home network. It consists of six main stages namely (i)
development, (ii) publication, (iii) selection, (iv) deployment, (v) management and (vi)
termination.

e Development: This stage regards the software implementation of network services,
which is performed by function providers to allow services to be published and
aggregated in the IoRL system. During development stage a network service can be
uploaded as VNF to the NFVI using OpenStack APl and run in the execution
environment under the coordination of the loRL orchestrator. It also allows the VNF
developer to provide the metadata description of the network service, which includes
both functional and non-functional information that will be used by different elements
of the IoRL framework. The outcome of the development stage is one or more VM
images and the related metadata files to be available for publication.

e Publication: This stage performs the network service publication at the network store,
which includes a repository that can host both the service/function image (as stand-
alone application or integrated VM) and the associated description/metadata.

e Selection: This stage allows users the most suitable network services according to their
requirements. Note that the selection of appropriate service for desired services is
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based on the metadata of the VNFs. Thus, the selection can be made among the
already uploaded VNFs.

e Deployment: This stage installs and initialises the network services with their metadata
in the NFVI such that VNFs can be ready to be activated. Since the deployment stage of
a network service consists of transferring the VNF service from the VM image(s) to the
network infrastructure, it requires the interaction between the loRL orchestrator and
the VIMs.

e Management: This is the running stage of a network service and it is dedicated to real-
time management of the running VNF. During management stage, to setup and control
a VNF service in real-time, an APl is exposed to the orchestrator, which is composed by
the set of the following four sub-stage:

- set-up: The set-up sub-stage consists of the initialisation phase for network services.
During set-up the orchestrator asks the VIM to start the service, which
enables direct interactions with the VNFs (e.g. configuration of the IP
interfaces). The interactions occur through the IoRL API supported by the
VNF service. The bootstrap initialisation results from an indirect interaction
with the NFVI, while the NIC configuration is a direct interaction with the
orchestrator. NIC uses the network service metadata information for
learning about the VNF IP interfaces. Moreover, it needs to know the service
description for configuring the service graph or forwarding graph in the right
way. If needed, the orchestrator can also run network configuration tasks. In
this case the IoRL orchestrator asks the VIM to reconfigure the network. In
case a network service is composed by numerous VMs or numerous VNF
components the orchestrator repeats the set-up process for all VMs.

- start: Is a sub-stage to instruct VNFs to start providing their network services.

- stop: Is a sub-stage to instruct VNFs to stop providing their network services. When
stop command occurs VNFs receive a new start command to restart
providing their services, otherwise, the service lifecycle proceed to
termination stage. Note that there are two kinds of stop sub-stages: the
graceful and immediate stop. Graceful stop is a request to the VNF to stop
accepting new network service session request. However, active service
sessions continue to be supported until their natural termination. Immediate
stop is a request to force down the termination of all active service session.

- terminate: Is a sub-stage to terminate services from VNFs.

Notice that the management stage is controlled by the loRL orchestrator to allow
direct interactions between the VNFs and VIMs. However, indirect interactions
between the VNFs and the virtual infrastructure can also occur due to the execution of
the virtual machines through VNF composition. Such indirect interactions are common
to all VMs in the cloud network environment.

e Termination: This stage removes the VNF instance from the virtualised infrastructure
using network re-configuration process when necessary. This is the final phase of the
VNF lifecycle that occurs at the end of the provisioning of the service implemented by
the VNF. In case a VNF has been composed in numerous either VMs or VNF
components, the orchestrator repeats the termination process for all the involved
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Figure 3-16 - lllustration of the NFVI-PoP structure

VMs. In such instances the NIC configuration may require complex interactions with
the VNF.

From the aforementioned stages of the network service lifecycle we see that actual
interactions between the loRL orchestrator and network services form VNFs occur during
management and termination states.

3.2.3 Design of home IP gateway with NFVI-PoP layered architecture

This Section describes the IoRL NFVI infrastructure with orchestration and monitoring process
and presents the generic and specific metrics to be utilized for evaluating the internal status
and performance of each VNF in the loRL system.

3.23.1 NFVI infrastructure layer/hardware specifications

An NFVI compute cluster is inherently virtualisation-capable and consists by the three
domains illustrated in Figure 3-16.

e The Compute domain represents the lowest (physical) level of the virtual network and
comprises computing and storage equipment (standard high-volume servers with or
without specialized hardware accelerations and storage infrastructure). For standard-
scale data centre implementations, servers based on the x86 architecture are a
common choice. The adoption of features for hardware-assisted virtualization, such as
data-plane-development-kit support and single-root I/O virtualisation, seems quite
promising for the enhancement of VNF performance and is thus recommended.

e The Hypervisor domain is responsible for the abstraction of the physical compute and
storage resources (possibly aggregated across multiple physical elements) and their
assignment/allocation to VNFs. The hypervisor domain mediates the resources of the
computer domain to the virtual machines of the software appliances. Hypervisors as
developed for public and enterprise cloud requirements place great value on the
abstraction they provide from the actual hardware such that they can achieve very
high levels of portability of virtual machines. In essence, the hypervisor can emulate
every piece of the hardware platform even in some cases, completely emulating a CPU
instruction set such that the VM believes it is running on a completely different CPU
architecture from the actual CPU on which it is running. Such emulation, however, has
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a significant performance cost. The number of actual CPU cycles needed to emulate
virtual CPU cycle can be large. The hypervisor commonly exposes a northbound
interface for the interaction with the Management layer. Several choices are available
for the hypervisor technology (Hyper-V, VMware, KVM, Xen etc.), heavily depending
on the compatibility with the VIM and also with the physical infrastructure. KVM
would be a safe recommendation, given its openness, wide compatibility and full-
featured integration with OpenStack.

e The infrastructure network domain, which within the NFVI includes all networking
elements, such as SDN and non-SDN switches and routers that interconnect all the
compute/storage infrastructure of the compute domain. SDN-enabled switches are
considered throughout the loRL architecture for the NFV Infrastructure network
domain in order to facilitate SDN-based network management. Both physical and
virtual switches are foreseen. In regard to the SDN technology, Openflow would be the
prevailing candidate technology for network controller, due to its flexibility and
significant momentum, preferably at its latest version although other SDN alternatives
such as NETCONF/YANG could be also considered.

For the virtual switches, Open vSwitch is by far the prevailing option, used in many production
infrastructures, including large-scale cloud deployments.

3.2.3.2 Infrastructure management layer

In loRL virtual network, the core management element of the Infrastructure Management
Layer is the virtualised infrastructure manager (VIM), conforming to ETSI ISG NFV terminology,
which is the functional entity responsible for controlling and managing the infrastructure
(compute, storage and network) resources. The management scope of the VIM is generally
restricted within a single NFVI-PoP. Thus, in a full deployment architecture, multiple VIMs may
operate across operator data centres providing multi NFVI-PoPs that can operate
independently or cooperatively as required under the control of a Federator/Orchestrator.

While a VIM, in general, can potentially offer specialisation in handling certain NFVI resources,
in the IoRL context (but also in other architectures), the VIM is seen to encompass all
management and control functionalities needed for the proper administration of the
infrastructure, as well as the virtualised services running on top of it.

In specific, the following key tasks are performed by the VIM:

e Maintenance of a resource, capability and topology repositories/inventories, thus
establishing a comprehensive “map” of the underlying hardware;

e Joint management of the infrastructure (compute, storage, networking) resources;

e Association/mapping of the virtualised services to the infrastructure resources;

e Basic network control services, including topology management and path
computation;

e Management (create, query, update, delete) of service function chains i.e. the
interconnections among VNFs, by creating and maintaining Virtual Links, virtual
networks, sub-nets, and ports;

e Management of VM software images (add, delete, update, query, copy) that host
VNFs;

e Management of virtual networks, tunnels and QoS, where applicable;
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e Collection and communication of measurements and faults/events information
relative to physical and virtual resources.

In order to realise these tasks, the VIM needs to comprise the following components:

e A resource repository database - for maintaining a comprehensive landscape of the
underlying infrastructure, the exposed capabilities and the available resources;

e A topology and service function chain management module - this component
undertakes most network management tasks, including virtual network management,
interconnection of virtualised components and tunnel establishment;

e A compute/hypervisor management module - this component undertakes the
management of VMs/VNFs;

e An integrated monitoring and event/alarm management framework - for efficient and
effective collection of metrics and production of events/alarms;

e A set of southbound interfaces for managing the infrastructure (compute nodes,
hypervisors, network elements). These commonly come in form of “plug-ins” in order
to accommodate multiple infrastructure technologies (such as several hypervisors,
network management protocols etc.);

e A set of northbound APIs (commonly REST-based) for communication with the upper
layer (NFV Management).

From the implementation point of view, a VIM is commonly realized by coupling a network
controller and a cloud controller platform. As an example, most VIM platforms under
development, including the one to be released via the OPNFV initiative are based on a
customized combination of the OpenStack cloud controller with the OpenDayLight network
controller platform. Indeed, OpenStack and OpenDayLight constitute the two most popular
candidate technologies for VIM implementation to date.

3.2.33 NFV orchestration layer

In the loRL virtual network, we consider an NFVO platform as the single top-level
management entity of the domain. The NFV Orchestration layer includes for the lIoRL service
provider domain the management entity of the NFVI PoPs. The NFVO is the management
entity, which is responsible for the management of the NS lifecycle, which includes the NS
instantiation, the dimensioning and the termination.

The NFV manager receives appropriate commands from the upper layer, which include the NS
descriptors, which will initiate the VNF instantiation with the appropriate network
configuration internally in the NFVI PoP and the NMS will accordingly apply the appropriate
cross domain network rules, i.e., inter-NFVI-PoP connectivity.

The NFVO is the entity to maintain a complete view of the whole infrastructure of the domain;
it keeps a record of installed and available resources, as well as the infrastructure topology.

3.234 Introduction to NFVI-PoP monitoring

Up to this point we have identified the architectural concepts and requirements for the NFVI
and VIM layers of PoP. The technical requirements to drive the specification and development
of the loRL monitoring framework can be directly derived/inherited by the specific NFVI/VIM
requirements. In Table 1 we identify the NFVI/VIM requirements that - either directly or
indirectly - are associated to IVM monitoring, focusing on NFVI-PoP resources to describe how
each of these are translated to a specific requirement for the monitoring framework.
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Table 1 - NFVI/VIM requirements which affect the monitoring framework

IVM IVM Requirement . e
9 Requirement for the Monitoring Framework
Req.ID Name
Ability to handl
bility to handle The MF must provide a vendor agnostic mechanism for
VIM.1 heterogeneous . o
. physical resource monitoring.
physical resources
Ability to provision . .
. N . P The MF must be able to report the status of virtualized
virtual instances of the . .
VIM.2 . resources as well as from physical resources in order to
infrastructure . .
assist placement decisions
resources
The MF must provide an interface to the Orchestrator for
VIM.3 APl Exposure - Pro e .
the communication of monitoring metrics.
Translation of
VIMLG references between The MF must re-use resource identifiers when linking
’ logical and physical metrics to resources.
resource identifiers
The MF must monitor in real time the physical network
VIM.S Control and infrastructure as well as the vNets instantiated on top of it,
' Monitoring providing measurements of the metrics relevant to service
level assurance.
s The MF must keep up with dynamic increase of the number
VIM.9  Scalability iy
of resources to be monitored
VIM.18 Query APl and The MF must provide an APl for communicating metrics (in
) Monitoring either push or pull mode)
Virtualised The MF must collect performance and utilisation metrics
VIM.21 . . . .
Infrastructure Metrics  from the virtualised resources in the NFVI.
Compute Domain . .
C.7 p The MF must collect compute domain metrics.
Metrics
Hardware accelerator .
C.12 . The MF must collect hardware accelerator metrics
metrics
Compute Domain . .
H.1 . The MF must collect compute metrics from the Hypervisor.
Metrics
.2 Network Domain The MF must collect network domain metrics from the
’ Metrics Hypervisor.
H.12 Alarm/Error Publishing  The MF must process and dispatch alarms.
o The MF must collect metrics from physical and virtual
N.5 Usage monitoring . .
networking devices.
N.8 SDN Management The MF must leverage SDN monitoring capabilities.

By consolidating the aforementioned requirements, it becomes clear that the basic required
functionalities of the IVM monitoring framework are as follows:

1. Collection of IT and networking metrics from virtual and physical devices of the NFVI. It
should be noted that at the NFVI/VIM level, metrics correspond only to physical and
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virtual nodes and are not associated to services since the VIM does not have
knowledge of the end-to-end Network Service. Metrics are mapped to Network
Services at Orchestrator level,

2. Processing and generation of events and alarms;

3. Communication of monitoring information and events/alarms to the Orchestrator in a
scalable manner;

The following Section overviews several technological frameworks for NFV monitoring which
could be partially exploited towards fulfilling these requirements.

3.2.3.5 NFVI-PoP monitoring architecture and functional entities

The overall architecture of the IoRL VIM monitoring framework can be defined by taking into
account the technical requirements, as identified in Section 2, as well as the technical choices
made for the NFVI and VIM infrastructure. The specification phase has concluded that the
OpenStack platform will be used for the control of the virtualised IT infrastructure, as well as
the OpenDayLight controller for the management of the SDN network elements.

In this context, it is proper to leverage the OpenDaylight (Statistics API) and OpenStack
(Telemetry API) capabilities for collecting metrics, rather than directly polling the network
elements and the hypervisors at NFVI layer, respectively. Theoretically, it would be possible
for the Orchestrator to directly poll the cloud and network controllers of each NFVI-PoP and
retrieve resource metrics respectively. This approach, although simple and straightforward,
would introduce significant scalability issues on the Orchestrator side. Thus, it seems
appropriate to introduce a mediator/processing entity at the VIM level to collect, consolidate,
process metrics and communicate them to the Orchestrator. We call this entity VIM
monitoring manager (VIM MM), as a stand-alone software component. VIM MM is designed
and developed in IoRL as a novel component, without depending on the modification of
existing monitoring frameworks. With regard to the collection of monitoring information,
OpenStack and OpenDaylight already provide a rich set of metrics for both physical and
virtual nodes, which should be sufficient for most IoRL requirements. However, in order to
gain a more detailed insight on the VNF and the NFVI status and operation, we consider
advisable to also collect a rich set of metrics from the guest OS of the VNF container -
including information which cannot be obtained via the hypervisor - as well as the compute
node itself.

For this purpose, we introduce an additional VNF monitoring agent (VNF-MA), deployed
within the VNF VMs. VNF-MA intends to augment VNF monitoring capabilities, by collecting a
large variety of metrics, as declared in the VNFD document of each VNF and also at high
temporal resolution. The monitoring VNF-MA can be either pre-installed in the VNF image or
installed upon VNF deployment. It must be noted, however, that in some cases the presence
of an VNF-MA might not be desirable by the VNF developer for several reasons (e.g. resource
constraints, incompatibilities etc.). In this case, the system can also work in VNF-MA -less
mode, solely relying on Ceilometer data for VNFs, which do not have an VNF-MA installed. In
addition to collecting generic VNF and infrastructure metrics, the VIM MM is also expected to
retrieve VNF-specific metrics from the VNF application itself. For this purpose, we have
developed specific lightweight libraries (currently in Python, but planned to expand to other
languages), which can be used by the VNF developer to dispatch application-specific metrics
to the VIM MM.
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Figure 3-17 - lllustration of the lIoRL VIM monitoring modules

Although traditionally the VNF metrics are supposed to be directly sent to the VNF Manager,
for the sake of simplicity we chose to exploit the already established VIM monitoring
framework to collect and forward VNF metrics to the VNF Manager through the VIM, rather
than implement a second parallel “monitoring channel”. Based on the above design choices,
we can define the architecture of the IoRL VIM monitoring as shown in Figure 3-17.

The VIM MM aggregates metrics by polling the cloud and network controllers and by receiving
additional information from the monitoring agents as well as the VNF applications,
consolidates these metrics, produces events/alarms if appropriate and communicates them to
the Orchestrator. For the sake of scalability and efficiency, it was decided that metrics will be
pushed by the VIM MM to the Orchestrator, rather than being polled by the latter. Moreover,
the process of metrics collection/communication and event generation can be partially
configured by the Orchestrator via a relevant configuration service to be exposed by the VIM
MM. More details on the introduced modules can be found in the sections to follow.

3.2.4 NFVI monitoring metrics
3.24.1 Generic metrics

A crucial task when defining the lIoRL approach for monitoring is the identification of metrics
that need to be collected from the virtualised infrastructure. Although the list of metrics that
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are available via the existing controllers can be quite extensive, it is necessary, for the sake of
scalability and efficiency, to restrict this list to include only the information that is needed for
the implementation of loRI use cases, as defined in Deliverable D2.1. In Table 2 we summarise
a list of such metrics, which are “generic” in the sense that they are not VNF application-
specific. This list is meant to be continuously updated throughout the project to align with the
technical capabilities and requirements of the components under development and the use
cases which are implemented.

Table 2 - NFV generic service quality monitoring metrics

Domain Metric Units Origin Relevant UCs

VM/VNF CPU utilisation (user & % VNF Mon.Agent ucC3, uca
system)

VM/VNF Free space in root FS MB VNF Mon.Agent UC3, uc4a

VM/VNF RAM available MB VNF Mon.Agent UC3, uca

VM/VNF System load % VNF Mon.Agent UCs3, Uc4a
(short/mid/long term)

VM/VNF No. of processes # VNF Mon.Agent UC3, uc4a
(running/sleeping etc)

VM/VNF Network Interface infout Mbps  VNF Mon.Agent  UC3, UC4
bitrate

VM/VNF Network Interface infout  pps VNF Mon.Agent  UC3, UC4
packet rate

VM/VNF No. of processes # VNF Mon.Agent  UC4

Compute Node CPU utilisation % OS Telemetry UC2, UC3, uc4a

Compute Node RAM available MB OS Telemetry UC2, UC3, uc4a

Compute Node Disk read/write rate MB/s  OS Telemetry UC3, Uc4

Compute Node Network i/f in/out rate Mbps  OS Telemetry UC3, Uc4

Storage (Volume) Read/write rate MB/s  OS Telemetry UC3, Uc4

Storage (Volume) Free space GB OS Telemetry UC2, UC3, ucsa

Network Port in/out bit rate Mbps ODL Statistics UC2, UC3, uca

(virtual/physical

switch)

Network Port in/out packet rate pps ODL Statistics UC3, uca

(virtual/physical
switch)
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Network Port in/out drops H ODL Statistics uc3, uca
(virtual/physical
switch)

In regard to metrics identification, ETSI defines and describes some metrics related to service
quality, as perceived by the NFV consumer. These metrics are overviewed in Table 3.

Table 3 - NFV service quality metrics specified by ETSI

Service Metric Category Spec Accuracy Reliability
Orchestration Step 1 VM Provisioning VM  Placement VM Provisioning
Latency Policy Reliability

(e.g. Resource Allocation,

Configuration and Setup) Compliance VM Dead-on-Arrival
(DOA) Ratio
Virtual Machine operation VM Stall (event VM Clock Error VM Premature Release
duration and Ratio
frequency)
VM Scheduling
Latency
Virtual Network VN Provisioning VN Diversity VN Provisioning
Establishment Latency Compliance Reliability
Virtual Network Operation Packet Delay Packet Loss Ratio Network Outage
Packet Delay Variation
(Jitter)
Delivered Throughput
Orchestration Step 2 - - Failed VM Release Ratio

(e.g. Resource Release)

From the table we see that apart from the service latency metrics which are related to the
provisioning and/or reconfiguration of the service and essentially refer to the response of
management commands (e.g. VM start), the remaining metrics can be directly or indirectly
derived from the elementary metrics identified in Table 2 as well as the events/alarms
associated. However, it is up to the orchestrator, which has a complete view of the service, to
assemble/exploit VIM metrics in order to derive the service quality metrics to be exposed to
the SP and the customer via the dashboard. These metrics will be used as input to enforce the
service level agreement (SLA) that will be finally evaluated at Marketplace level for the
applicability of possible rewards to the customer in case of failure.

3.24.2 VNF-specific metrics

Apart from the generic metrics identified in previous Section, each VNF generates specific
dynamic metrics to monitor its internal status and performance.

These metrics:
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e are specified inside the VNFD as monitoring-parameters (both for the VDUs and for the
whole VNF) to define the expected performance of the VNF under certain resource
requirements.

e are sent by the VNF application to the VIM monitoring manager, either via the agent or
directly (see details in Section 2.3.2.1)

e are processed, aggregated and forwarded, if required, to the upper layers
(orchestrator and marketplace).

At the Orchestration level, some of the VNF-specific metrics can be used for automating the
selection of the most efficient VNF flavour in terms of usage of resources, to achieve a given
SLA (for example using automated scaling procedures - see details in loRL Deliverable 3.3).

These VNF-specific metrics that may be part of the SLA agreed between SP and customer will
be evaluated for business and commercial clauses (e.g: penalties, rewards, etc.) that will
finally impact in the billing procedure (see D6.4).

Table 4, Table 5 and Table 6 present lists of VNF-specific metrics of the VNFs being developed
in loRL for virtual Home Gateway (VvHG), virtual proxy and virtual traffic classifier, respectively.
The presented lists are tentative and are meant to be continuously updated as the VNF
applications evolve. Notice most of these metrics, which refer to the specific functionality of
each VNF as well as its component software modules.

Table 4 - Monitoring metrics for VNF of virtual home gateway

Metric Description Units
remaining_storage_size Remaining Storage Size Bytes
transcoding_score Transoding Score double
httpnum Number of HTTP requests received # (incremental)
hits Cache hits percentage of all requests for the last 5 %

minutes
hits_bytes Cache hits percentage of bytes sent for the last 5 %

minutes
cachediskutilization Cache disk utilization %
cachememkutilization Cache memory utilization %

Table 5 - Monitoring metrics for VNF of virtual proxy

Metric Description Units
httpnum Number of HTTP requests received # (incremental)
hits Cache hits percentage of all requests for the last 5 %
minutes
hits_bytes Cache hits percentage of bytes sent for the last 5 %
minutes
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diskhits Disk hits percentage for the last 5 minutes (hits that %
are logged as TCP_HIT)

cachediskutilization Cache disk utilization %
cachememkutilization Cache memory utilization %
usernum Number of users accessing the proxy %
cpuusage CPU consumed by Squid for the last 5 minutes %

Table 6 - Monitoring metrics for VNF of traffic classifier

Metric Description Units

pps Packets per second processed pps

flows Flows per second # (average)
totalflows Total flows # (incremenetal)
protocols Application Protocols # (incremenetal)
mbits_packets_all Total Throughput Mbps

3.3 Deployment of the identified VNFs in the IoRL home network
with preliminary implementation testbed

Having identified the loRL-specific VNFs with network service structure and NFVI monitoring
metrics, we can now update Figure 3-2 with Figure 3-18 to summarise the virtualised
environment that will be integrated in the lIoRL home network. Such environment will be able
to transform VMs into VNFs and instantiate these VNFs with OSM, which gives rise to a means
fully controlling and monitoring all the SDN/NFV-related functions of the loRL home network.

Notice that in the context of VLC module implementation, shadowing phenomena arise due to
the physical susceptibility blocking and misalignment (or path) obstructions, which may
significantly limit QoS provision along with network reliability. In addition, although the
synergy between lighting industry and ICT seems promising, it is yet theoretically unexplored,
while practically untested, intriguing thereby to exploit the perceptual advantages of
SDN/NFV virtualisation towards evolving VLC-oriented networks according to 5G demands. In
this regard, next subsections present a first-step preliminary approach to implement an
SDN/NFV-assisted version of the IoRL network considering VLC with WLAN WIFi modules and
measure its performances using real-world testbed.

3.3.1 Aim of preliminary implementation testbed with system
modelling

For this first-step experimental attempt, we have yet considered elaborating with mmWave
module, which however is scheduled to be addressed in future experiments and in
accordance to the findings and products of the IoRL project partners. Our intension in this
experiment is to improve the provided QoS and assure reception quality by eliminating
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misalignment or path obstructions, especially focusing on users positioned in so called “dead
coverage zones”, which
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Figure 3-18 - lllustration of the IoRL Home Network with deployment of the identified VNF modellings in conjunction with SDN/NFV
recent findings
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Figure 3-20 - lllustration of the dead zones between two VLC lamps

regularly exist due to shadowing in the area between two consecutive VLC transmitters. Our
motivation rests on evaluating how the WiFi access network with the assistance of SDN can
effectively couple VLC connectivity across two LED lamps, facing loss of connectivity at the
dead zones. The considered topology has been reconstructed in lab environment and is
depicted in Figure 3-20.

In particular, the two LED lamps are placed in a relatively long distance apart, as usually
considered in typical indoor environment setting, in order to study how dead reception zones
(denoted as d) impact the system’s ability to provide service continuation, especially focusing
on most demanded zones that require constant data rate and higher QoS (e.g. video services)
than others. The scenario is that as users move away from the LED light centre, the signal-to-
noise rate (SNR) (by means of ambient lightning) decreases, decreasing thereby the reception
quality as well. Our scenario can be fully epitomised in indoor environments with users
moving across different VLC/LED lamps, where in such case, SNR fluctuates from maximum to

VLC Tranceiver

Ryu Controller

()
(- -

WiFi Access Point Laptop VLC Dongle OVS Switch Router

Figure 3-19 - lllustration of the experimental testbed setup
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Figure 3-21 - lllustration of the actual experimental testbed including CPE with VLC receiver
and Arduino photodetector

minimum values for each position change of the user between the installed lamps. Thus,
depending on their relative distance from VLC points, users may not only experience SNR
degradation, but also drop into “dead zones” and completely lose their connection with the
network.

To study such phenomenon, we initially consider setting with D=4m the relative distance
between VLC points and d=10cm the “dead zones” length. Then, we focus on the downlink
direction (e.g. VLC to user) to examine how the SNR fluctuation can be improved by
redirecting the user access to the WLAN WiFi module, and vice versa, using SDN-assisted
approach with corresponding application. The SDN-assisted approach aims to address how a
2.4GHz WiFi 802.11g access point can be used as the dynamically coupled access technology
in conjunction with VLC transceivers to address SNR fluctuation at “dead zones” where users
have poor reception quality.

An SDN application is also developed to handle the seamless switching of the access

( SDN State : Only_WiFi )
ctrl_msg _ .
received set timeout = 2 sec
TX ===> WiFi
No
RX==> WiFi
J
A No current state J

hybrid Ve

SDN State : Hybrid \

TX == LiFi
RX == WiFi

Start
Yes

Figure 3-22 - Flow diagram of the proposed SDN application

timeout
expired
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Figure 3-23 - Distance definition between the experimental setup
technology (i.e. WiFi or VLC) used each time to maintain good reception quality.

To this end, Figure 3-19 illustrates the experimental setup of both VLC and WLAN WiFi
modules in the considered topology to evaluate how SDN-assisted networks can guarantee
the continuous provision of adequate QoS to a moving user across “dead zones”. In particular,
our experimental setup includes an SDN network domain, which is managed by Ryu controller
using python-based SDN applications (see Section 2 for more details about the efficiency of
Ryu platform). We also consider a customer-premises equipment (CPE) device by means of a
laptop equipped with a VLC receiver dongle connected through universal-bus-system (USB)
and an Arduino-based luminance detector [183], placed next to the VLC dongle. Figure 3-21
depicts the actual system setup that was used for the execution of the experiment.

3.3.2 Proposed SDN architecture with development of SDN
application

The SDN approach executes the proposed experiment using three-tier structure. The first tier
comprises the physical network infrastructure to include all the required devices, which can
be virtualised at second tier through the Openflow protocol for SDN controller design. The
idea is to decouple the network control from network devices by transforming it into a
software application (i.e. the SDN controller). Such SDN controller can act as a strategic
control point in the SDN network by intelligently managing the flow control to the
switches/routers (via southbound APIs) and applications (via northbound APIs). These
controllers, used to initiate and terminate traffic, consist the second (virtualised) tier of the
architecture. Furthermore, the third tier refers to the SDN applications, which are specific
functions directly processed into the SDN controller. In other words, the SDN application is
the software program designed to perform a specific task in the SDN environment such as
programs for network virtualisation, intrusion detection (IDS), flow balancing (the SDN
equivalent of load balancing), network monitoring, etc. In our experiment, the SDN
application is to employ handover management by coupling the VLC access channel with
WLAN WiFi to reassure the user access and satisfaction of QoS requirements.
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Figure 3-22 illustrates the flow diagram of the developed SDN application from its finite state
machine (FSM) point of view. From the figure we see that the proposed SDN application
supports two modes of operation, namely the “WiFi only” and the “Hybrid” mode, which can
be described as below.

e The SDN application starts by gaining connectivity via the WLAN WiFi access
technology (i.e. “WiFi only” mode);

e Then, the SDN application performs continuous monitoring to capture VLC control
messages via the VLC receiver through which messages we can confirm that the user is
located at a coverage area of a VLC transceiver;

e Continuing, the SDN application mandates the SDN controller to apply the appropriate
OpenFlow commands at the SDN devices of the domain (in our experimental topology
an OpenVSwitch is used) in order the end-user terminal to start receiving the
download link via the VLC and the return link via the WiFi (i.e. “Hybrid” mode);

e While in “Hybrid” mode the user receives service data from the VLC access technology
and uses the WiFi channel only for requests and ACKs (as a return channel). Note that
the SDN application forces the system to remain in “Hybrid” mode for at least 2
seconds before performing a check loop for moving to the next state;

e Then, the system checks if the user remains at a coverage area of VLC lamp to either
remain in “hybrid mode” for another two seconds, or

e returns to “WiFi only” mode.

3.4 Experimental results considering SDN architecture with
application in the IoRL home network

We perform two key experiments to study how SDN applications can apply and implement in
an loRL home network consisting of VLC and WLAN WiFl modules for user access. The first
experiment regards measures for the distribution of LED power with respect to user
positioning and QoS provision, while the second experiment deals with SDN-enabled hybrid
access using either VLC or WLAN WiFi modules.

3.4.1 Experiment on LED lamp power distribution

Our first experiment aims to verify the QoS provide to an loRL user moving across LED lights
and dead zones by measuring the LED power distribution between two successive VLC
transceivers. In our setup, we situate the VLC lamps two meters higher than the luminance
sensor and VLC receiver position (e.g. at the ceiling) as shown in Figure 3-23. Our focus is to
measure the luminance intensity (in lux) and packet loss percentage using the CPE at time
points where the IoRL user requests an HTTP streaming video service, while setting the buffer
refresh rate at the client side at 1 second interval time. In Figure 3-25 we illustrate our
measurements taken by placing the CPE with the VLC module and luminance sensors at
distances from 0-300 cm (e.g. the distances between the LED lamp and the floor), following a
step of approximately 30 centimeters. We see that while the user moves away from the
centre of the LED light, the luminance power (which is respective to SNR) decreases in linear
fashion. This consequence is that as distance increases the reception quality becomes worse,
degrading thereby the status of the http-streaming video service which variates from normal
to no playback (e.g. occasional pauses occur). Gradually, luminance becomes equal to zero as
the user is positioned in a dead reception zone (e.g. between two successive lamps), where in
that case the http-streaming video service is always equal to zero (e.g. continuously paused).
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Figure 3-25 - Simulation result regarding the luminance LED power (in lux) versus distance
from CPE (in cm) considering VLC module with http-streaming video user QoS requirement

The video service playback re-initiates when the user reaches the ¢ overage area of next VLC
transmitter (e.g. when the distance from next LED light source decreases), where luminous
with SNR starts increasing gradually. In conclusion, using VLC setup, a moving user between
two successive LED lights, can experience reception fluctuations, which affect its QoS,
especially when the user is positioned in dead zones with no VLC service coverage.
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Figure 3-24 - Simulation result regarding the packet loss (%) versus distance from CPE (in
cm) considering VLC module with http-streaming video user QoS requirement
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Figure 3-26 - Simulation result regarding the packet loss (%) versus distance from CPE (in
cm) considering SDN/NFV-enabled joint VLC-WLAN WiFi module (orange graph) with
video user QoS requirement

3.4.2 Experiment on SDN-enabled hybrid VLC-WLAN WiFi access IoRL
home network

Our second experiment aims to study the QoS provision in the loRL home network by allowing
user access through either VLC or WLAN WiFl modules. For this experiment, we use a SDN
controller, which is configured according to the proposed SDN application. Our intension is to
study the packet loss at the http-streaming video service considering that user moves across
the VLC LED lights with step of approximately 30 centimeters.

As shown in Figure 3-24, when user covers two-meter distance (e.g. it reaches dead coverage
zone between two sequential LED lights), packet loss starts increasing. In that situation, our
SDN/NFV application can detect the packet loss using the so-called ctrl_messages via the VLC
channel, and within 2-second time intervals it instructs diverting the downloading flow to
WLAN WiFi module using the SDN/NFV appropriate commands in OpenFlow platform for
orchestrating the OVS switching process. The resulted performance in packet loss is shown in
Figure 3-26, which reveals that our OVS switching process performs seamlessly as it maintains
the required http-streaming video service with no pauses or QoS degradation. In conclusion,
using VLC together with WLAN WiFil setup driven by SDN/NFV application for OVS switching, a
moving user between two successive LED lights, does not experience reception fluctuations or
packet loss, while its QoS is not affected even moving in dead zones with no VLC service
coverage.
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