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Abstract

The links between Shoham's preference logic and
possibilistic logic, a numerical logic of uncertainty
based on Zadeh's possibility measures, are
investigated. Starting from a fuzzy set of preferential
interpretations of a propositional theory, we prove
that the notion of preferential entailment is closely
related to a previously introduced notion of
conditional possibility. Conditional possibility is
then shown to possess all properties (originally stated
by Gabbay) of a well-behaved non-monotonic
consequence relation. We obtain the possibilistic
counterpart of Adams' e-semantics of conditional
probabilities which is the basis of the probabilistic
model of non-monotonic logic proposed by Geffner
and Pearl. Lastly we prove that our notion of
possibilistic entailment is the one at work In
possibilistic logic, a logic that handles uncertain
propositional formulas, where uncertainty is modelled
by degrees of necessity, and where partial
inconsistency is allowed. Considering the formerly
established close links between Gardenfors'epistemic
entrenchment and necessity measures, what this paper
proposes is a new way of relating belief revision and
non-monotonic inference, namely via possibility
theory.

1 Introduction

For more than ten years, Artificial Intelligence researchers
have devoted a lot of efforts for developing various
approaches to the handling of incomplete, uncertain or
partially inconsistent knowledge in reasoning processes. At
a superficial level a dichotomy is usually made between
purely symbolic approaches and approaches which rely on
the use of numerical scales for grading uncertainty. This
obvious and sometimes convenient distinction tuns out to
have a limited significance when we observe that the
numerical and the non-numerical methods can deal with the
same kind of examples and that there may exist more
fundamental differences between two symbolic, or between
two numerical approaches than between a symbolic and a
numerical one in some cases,; see the comparative study by
Lea Sombe [1990] on these points.

Moreover different kinds of unifying results have been
provided at the theoretical level in the recent past years. On

the symbolic side, Kraus, Lehnmann and Magidor 11990],
following pioneering works by Gabbay [1985] and
Makinson [1989], have studied non-monotonic logic
systems from an axiomatic point of view. They have related
these systems to the preference relation-based logic advocated
by Shoham [1988] for unifying non-monotonic inference
systems at the semantic level. Also on the symbolic side,
more recently, Makinson and Gardenfors have established
connections between non-monotonic logic and belief
revision mechanisms (see [GaYdenfors, 1990] for a summary
sketch). They are based on so-called epistemic entrenchment
relations [Gardenfors, 1988].

On the numerical side, probabilistic semantics of defaults
have been proposed by Geffner [1988] and Pearl [1988] on
the basis of Adams [1975]'s logic of conditionals. This logic
displays all properties of a well-behaved non-monotonic
logic. Neufeld et al. [1990] also try to equip defaults with
probabilistic semantics related to the confirmation property
"o favours q" i.e. the fact that the probability of assertion g
is strictly increased when the truth of assertion p is
established. Besides, qualitative necessity relations [Dubois,
1986], whose unique numerical counterparts are necessity
measures, are characterized by a system of axioms which
was recently proved to be equivalent to the one
characterizing epistemic entrenchment relations [Dubois and
Prade, 1990b], where necessity measures are just the dual of
possibility measures introduced by Zadeh [1978J. With this
result in mind, the ability of possibilistic logic —a logic of
classical formulas weighted in terms of necessity
measures— to deal with partially inconsistent knowledge
bases and to exhibit in that case non-monotonic reasoning
behaviors, is not very surprizing [Dubois, Lang and Prade,
1989]. Besides, several researchers, including Goodman and
Nguyen [1988], Dubois and Prade [1989, 1990a] have
developed a new model of measure-free conditioning, trying
to give a mathematical and a logical meaning to conditional
objects g t p independently of the notion of probability, but
still in agreement with this notion in the sense that
Prob(q i p) can indeed be considered as the probability of the
entity q | p. As already suggested in Dubois and Prade
[1989], there is more than an analogy between the logical
calculus developed on conditional objects and non-
monotonic consequence relation systems ; more precisely, it
has been recently shown that there is a one-to-one
correspondence between the inference rules governing the
non-monotonic consequence relation ~ and ordering
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relationships between conditional objects equipped with a
conjunction operation [Dubois and Prade, 1991]. Moreover
conditional objects correspond to a qualitative view of
conditioning which is compatible not only with probability
but also with other uncertainty models including possibility
measures and Shafer belief functions.

The aim of this paper is to pursue this exploration of the
links between formalisms aiming at mechanizing reasoning
under incomplete and uncertain information, by showing the
close relationship between Shoham's preference relation®
based semantics and possibilistic logic ; this is not
unexpected if we remember that possibilistic logic has a
semantics [Dubois, Lang and Prade, 1989] in terms of a
weight distribution on the set of worlds or interpretations,
which clearly induces a total ordering among the possible
worlds. More generally, possibilistic logic will be advocated
as a simple numerical formalism for non-monotonic
inference and beliefrevision which is in complete agreement
with purely symbolic approaches.

In Section 2, after introducing the necessary background,
we establish the link between Shoham's preference relation-
based semantics and conditional possibility measures.
Section 3 shows that conditional possibilities enjoy
properties similar to the ones of non-monotonic consequence
relations. Section 4 relates conditional possibility measures
to possibilistic logic and its semantics (which is itself in
close relationship with epistemic entrenchment relations and
belief revision processes as already said).

2  Preference logic and conditional
possibility

Let (S8, A, v, ) be a Boolean algebra induced by a set of
classical propositions of interest. Let £2 be the set of atoms
of B, i.e. the set of possible interpretations relative to 3.
Q) is assumed finite here for simplicity, If the proposition p
18 frue in the inerpretation @ € €2, we shall wnite o = p,
which reads " satisfies p". Starting with a preference
relation denoted by © (w0 © ' reads ' is preferred over w)
which equips £2 with a strict partial order, Shoham [1988]
says that ) preferentially satisfies p, written k=~ p, when

W= pand 3w, 0 o and ®' = p. Then preferential
entailment is defined by Shoham [1988] as follows :

PEc O VO,0Ep=20F Q) (1)
where p =~ q reads "p preferentially entails q". In other

words, p preferentially entails q iff the set of interpretations
that make q true (i.e. the set of models of q) includes the
preferred models of p, which has a fairly intuitive meaning.

Note that if p is a contradiction (i.e. 30, ® = p), p =¢ q

trivially holds because the set of preferred models of p is
empty. The intuitive appeal of preferential entailment is
then lost in that particular situation,

Let n be a function from Q to [0,1] called a possibility
distribution on 2 that describes the fuzzy set of preferred
interpretations. For each o € Q, © assigns a numerical
value which can be viewed as the assessment of a level of
possibility or acceptability of interpretation @, n(®) = 0
means that the interpretation o is totally impossible, totally
excluded, while n(w) = 1 only means that @ is among the
most plausible interpretattons (there may be distinct ® and

420 Knowledge Representation

@' such that n(w) = x(®')). Obviously, as soon as,
n{w) < n(m'), we can say that o' is preferred to ®, which
will be written @ T, @', i.e. 1t induces a strict partial order
on £ (as well as a total order 0 Cy ' & m(0) < n(W")).

Then a possibility measure [] is defined on B, following
Zadeh [1978], by

Vpe B, T1(p) =max{r(w) lwe Qandw=p}] (2)

and [I(1) = 0, [K(T) = 1, where L and T denote the bottom
(contradiction) and the top (tautology) elements of &,
respectively. The conditional possibility measure [I( - | p) is
defined as the maximal solution of the equation (first
proposed by Hisdal [1978]) :

Vq+LTIpA@=min(lKqip).[Ip)) (3

and [1(Ll i p) = 0. This solution has been first suggested in
[Dubois and Prade, 1986] and reads :

[lqip)=1ifTIP)=1pAr @ ;

[qIp) =Tl A if[IE)>I1(p A g (4)
since we always have [I(p) 2 Tl{(p A @) (indeed if o =p A g
then w = p and [] is monotonic with respect to entailment).
Justificauons for (3) can be found in Dubois and Prade
[1990a] ; in any case, the meaning of (3) is intuitively clear
stnce 1t looks like Bayes rule with product changed into
min. In the framework of possibility theory, the choice of
the maximal solution js based on the so-called mmimum
specificity principle (¢.g. [Dubois and Prade, 1988]) which
calls for the assignment of the greatest possibility degrees
compatible with the constraint(s) under consideration, Indeed
as already said the smallest the possibility degree, the
sronger the information that it conveys (recall that n{w) =0
means that @ is totally impossible while ={w) = 1 only
means that © is among the most plausible interpretations,
but does not mean at all that we are (somewhat) certain that
(0 iS the right mterpretation).

Let us observe that as soon as p entails q (1e. Vo,
WEp= w0k q)then p = p A q (where = denotes the
equivalence) and thus [I(p) = [I(p A @ and [I{q | p) = 1,
which is satisfying. Let us also note that if 1 2 [I(p} >
T1(p A @) then T1(q ! p) = [I(p A @) < 1. Moreover [1(q | p) is
defined even if II(p) = 0 and in that case [I(q | p) =
[1(—q | p) = 1 when q # 1, thus expressing total ignorance
about ¢ when p is impossible. By duality a so-called
necessity measure N (¢.g. [Dubois and Prade, 1988]) is
associated with [1, i.e.

Vp.N@p)=1-1-p) ()
which expresses that we become somewhat certain of
something when the contrary turns out to0 be more or less
impossible, (5) requires the normalization of &, dw e Q,
n(®) = 1 which guarantees [I(T) = 1. This also applies to
conditional possibility measures, and yields

Vp.N(glp) = DifNG N
—> = -
1-Tl(~qip)= {N(pu-}q)ifqgl(p—rql_,)}N(—up) (6)
where p —» g denotes matenial implication (—p v q).

Let us show now that conditional possibility is in
agreement with Shoham's preferential entailment,
Definition 1 : @ is said to be a x-preferential model of
pe B (denoted =4 p) if and only if ® = p, [I(p) > 0,



and 30’ such that ®' = p and nt(w) < n(w".

Lemmal: o =g pe ) =nw) >0

Proof : obvious since Vo', 0' = p = n(o') € r(w). Q.E.D.

The n-preferential entailment p =5 q is then defined by
pEgqedn,0-gpand VoELp, 0k q  (7)

This defimuion is equivalent to (1) where © has been changed
into C,. and the condition [I{p) > 0 is forced. This exura

condition enables preferential entailment to exclude the case
when p is a contradiction,
Proposition 1 : pi=y q < [1(q1p) > [TI(—q I p)
Proof -
(7Y oVo,(o=pand [I(p)=n(w)>0)=> v q
< {0, 0= p, (P = nw) >0]  {w, 0= q)
TIp)=TlpA g >Tlp A —q) (since no preferential
interpretation of p is an interpretation of —q)
=Ilqip=12TpArq) > A —q)=Tl(—g!p)
Q.E.D.
Thus given a possibility distribution n over the set of
interpretations, the set NMC(X ) of non-monotonic
consequences of a (consistent) knowledge base ., viewed as
a conjunction of (classical) formulas, will be defined by
NMC(K) = [qiTI(q! &) >I(—q !t K)). Our conventions
suggest that NMC(X)) = @ when X is inconsistent. It can
be easily seen that I1(q | p} > [1(—q | p) does not imply
ilig!p Ar)>Tl(—qp A 1), since the supremum of & over
the interpretations of p A g corresponds to inierpretation(s)
which do(es) not necessarily belong to the set of
interpretations of p A q A 1 (recall that YI(qip) > [1(—q | p)
means that all the interpretatons of p which maximize = are
among the interpretations of q). This explains the non-
monotonic behavior of [1{q | p) when greater than [{(—q | p).
Note that IT1(q | p) > IT(—~q | p) implies IT{g | p} = 1 (the
converse being false), However if [1(q | p) < 1 then
[1(q!p) = H1(p A @) and monotonicity is recovered.
An immediate corollary of Proposition 1 is obtained for
necessity measures

PEg¢e N@lp}>0 8)

1.e. p preferentially entails q (in the sense of the ordering
induced by n) if we are at least somewhat certain about the
truth of q in the context p. (8) is easily obtained noticing
that T1(q | p) > [T(—~q | p) is equivalent to II(—q | p) < 1,
since [1(q [ p) = 1 in that case. Note also that N(q I p) > 0 =
N(=q | p) = 0 due to (5). We now investigate the behavior of
conditional possibility from a proof-theoretic point of view
and mention its relation to the framework of conditional
objects.

3  Conditional possibility and the
non-monotonic consequence relation

Starting from a logical point of view, Gabbay [1983]
proposed several properties that a non-monotonic deduction
operation h should satisfy, and especially the cut and the
restricted or cautious monotonicity, i.e.
P~gipaghr g BRAIPHT
phr paqbr
(cut) (restricted monotonicity)

Note that 1n the above patterns of inference, the termsp b 1
and p A g i 1 are exchanged, as pointed out by Makinson
[1989]. It is then possible to put these two patterns together
and claim that given p & (, the non-monotonic deductions
P Aqb rand p b rarc equivalent. This is what Makinson
[1989] calls the cumulativity condition,
Moreover the following property [Adams, 1975] is also
worth considering
pr~q ¥ M q
pvrhgq
It can be checked that these properties, stated in terms of
conditional possibility, do hold, interpreting pb q as
P =g q, and using the equivalence between p =4 q and
[l(-qtip)<1:
Proposition 2 : Cut
N—~qip)<tiand[I(—ripar@<i=Tl{(-rip <t (9)
Proof : the two premisses of (9} are equivalent to
I1(p) > II(p A —q) and TI(p ~ @) > IT(p A g A —r) ; then
[Tp A =) = max{(TI(p A q A =D),JI(p A =g A 1)) £

max([I(p A g A =), JI(p A =q)) < max(I1l(p A q).[1(p)) =
[1(p) Q.L.D.

Proposition 3 : Restricted monotonicity
Ni—q p<land[-ripp<1=TH~rlpag <l (10)

Stated positively, (10) simply means that if all maxima of «
over the models of p are at the same time among the models
of q and among the models of r then these maxima are also
those of & over the models of p A q and they are among the
maodels of r. A formal proof as the one of (9) is as easy.

Proposition 4 : OR property
[Ii—qip)<land[l(~qin<1=]l(~qlpvr) <l (11)
Proof : from (4), [I(—q ~ p) < II(p), [I(—q A 1) < T1(r).
Using the axiom of possibility measures, it follows
g A@v)<Ilpvo. QED.
Other requirements for non-monotonic consequence
relations proposed by Kraus et al. {1990] hold as well. The
reflexivity axiom p b p obviously holds since [I(p I p) = 1
and [I(—p | p) = O except if p is a contradiction. Right
=p—q,T
rk g
[T-p )< 1= [l(—q | r) < 1, if p entails q, which holds
(since we have T](—q | r). € II(—p | 1) in this case). Left

(OR rule)

-
P corresponds (o

weakening, L.e.

logical equivalence =P ezg;rr "~ p holds with conditional

possibility since if =p < q then [I(r 1 p) = [l{r | @) due 10
[1(p) =T

Kraus et al. [1990] have shown that other rules can be
derived from the so-cailed system C (consisting of
reflexivity, cut, cautious monotonicity, right weakening and
left equivalence), e€.g. the equivalence rule

pPrq.9 t P:P™T In terms of conditional possibility, it
qmr

reads :

]'[(a-.qlp){ lin(—,plq){ 1 and]'l(—.rip)-cl
entail [I(—riq) < 1.

Inference based on conditional possibility is actually a mode!
for the non-monotonic inference system P of Kraus et al.
[1990] (i.e. C and the OR rule), as well as a model for the
non-monotonic system of Geffner [1988] after Adams
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[1975]. We have seen that the counterpart of the non-
monotonic consequence relation p t qis TI(—gq ! p) <1 or
equivalently N(g 1 p) > 0 in the conditional possibility
model. As pointed out in Pearl [1988], a probabilistic
counterpart is Prob(qg t p) 2 1 - € where € is infinitely
small, using results by Adams [1975] who showed that the
rules, named cut, cautious monotonicity and the OR rule
later on, are in full agreement with this semantics. However
this semantics is not very realistic in practice for default
rules since then the exceptions should have an infinitely
small probability to be encountered. By contrast, it may
seem more natural to view a "default rule" p ~ gasarule
which means that g is more possible than —q in the context
P (as seen above this is exactly what N(q | p) > 0 means).

In [Dubois and Prade, 1989] it has been shown that the
cut, the cautious monotonicity and the OR rule have exact
counterparts in the framework of symbolic conditional
objects. Counterparts of the other rules of Kraus et al,
system P are also discussed in this framework in [Dubois
and Prade, 1991], Conditional objects offer a natural
qualitative basis for defining conditional measures of
uncertainty. It can be shown [Dubois and Prade, 1989,1991]
that various conditional measures of uncertainty can be built
on top of conditional objects. It holds in particular for
probability, possibility measures and belief functions. Hence
the fact that conditional possibility leads to a system of non-
monotonic inference should not be too surprizing (since
conditional objects behave in a non-monotonic way).

To the reader, it must be clear that results presented above
do not require the use of the unit interval [0,1]. Any totally
ordered set V can be used to express degrees of possibility, O
and 1 standing for the least and the greatest element of V.
(2), (3), Definition 1, (7), and all Propositions remain true,
as long as we stick to possibility measures, and we obviate
necessity measures (although the latter could be properly
defined on V). Beyond the obvious convenience of a real-
valued scale for possibility degrees, the main reason to use
[0,1] explicitly is that it enables the link between degrees of
possibility and degrees of probability to be preserved. It is
well known indeed that degrees of possibility can also be
viewed as upper probabilities or degrees of plausibility in
the sense of Shafer's evidence theory [Dubois and Prade,
1988],

4  Preferential entailment in possibilistic
logic
A necessity-valued knowledge base K in possibilistic logic
Is a collection of pairs (pj,@;), i = 1,n, where p;1s a
classical logic formula, here a proposition for the sake of
simplicity, and o is a number belonging to (0,1] mterpreted
as a lower bound of the value of a necessity measure N for
Pi, 1.e. N(p;) 2 ¢, 1 = 1,n. This necessity measure N is
associated with a possibility distribution nt on the set of
interpretations 2, which represents the semantics of X and

which can be built in the following way [Dubois, Lang and
Prade, 1989]. To (p;,0a;) 1s associated the fuzzy set of

mierpretations
Uil@)=1if 0= p; 5 pi(w)=1-0; if © &= —p;
Then r is obtained by intersection of these fuzzy sets (since
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K is viewed as the conjunction of the pairs (p;,ct;)), i.c.
m(w) = minj—1 p Kj(w). It can be checked that the necessity
measure N defined from x, namely
N{p) = min{1 - m{®w)}, ® &= —p)

Is such that V 1 = 1,n, N(p;) = e;. In other words, in
agreement with the principle of minimum specificity, the
least restrictive, 1.e. the largest, possibility distribution & on
{}, which saturates the constraints N(p;) 2 a;, is in
accordance with the semantics associated with X.. Note that
here the possibility distribution n on the set of
interpretations is built from the weights given in X and is
not given a prion, as in Section 2, for defining © 4. The
degree of inconsistency of K., Inc(K.) is defined from n, by

Inc(K-) = 1 - max{m(w), w € 2}. In other words, K is
all the more inconsistent as « is subnormalized. When

Inc(K.) =0, K is said to be consistent. It can be shown
[Dubois, Lang and Prade, 1989] that the three following
statements are equivalent : i) Inc{(K ) =0 ii) K is
consistent in the usval sense where K is the set of
propositions obtained from . by ignoring the weights o; .
i1i} the assignment of the «;'s is such that Vp,
min(N(p),N(=p)) = 0. When 1 > Inc(K-}=a >0, K is
said to be a-inconsistent and we have Vp, min{N(p),N(—p))=
Inc(K) (indeed max(T1(p),I1(—p)) = max{m{w), w € Q} =
1 - Inc(K)).

Semantic entailment from such a possibilistic knowledge
base K. is defined by

AR >Inc(K), X = (p.f) e Np)>N=p) (12)
where N is defined from the possibility distribution ©
associated with K. Then N(=p) = Inc(K.) = 1 - [1(p) since
min(N(p).N(=p)) = Inc{K.}, and 3, N(p) 2 § > Inc(K.).
Let ker(K) = [w e Q, n(w) = 1 — Inc(K.)] be the set of
preferred interpretations with respect 1o the Inc( XK )-

inconsistent possibilistic knowledge base .. Then we have
the equivalence

Np)>N(-p)=kr(R)c{ue Q o=p} (13
Indeed N(p) > N(—p) <> 1 - Inc{K.) = [1(p) > TT(—p) (using
the duality between J] and N), which makes the result
obvious since [I{p) = max{n(w), @ = p).

Now let us prove the following equivalence which relates,
in the possibilistic framework, non-monotonicity and belief
revision
Proposition 5 : N(g I p) > 0 & 3f > Inc(K U {(p.1)}),
(A v {(p.D}) = (g.B8) where N is the necessity measure
defined from the possibility distribution associated with X..

Pioof - Ngip>0e peErgqe (ne Q21 o) =
[lp) >0} c (we Q, o= Q) = (e Q| o) =
I-Inc(K u {(pD)))>0) clue Q oE=q)

(since Inc(A w((p.1)}) = 1 -~ max (min(z(c),kpg(p)(®)),

we Q) =1 -max{n{w), ® = p} =1 - [1(p) where M(p) is
the non-empty set of models of p)

e ker(K v {p.D)c{oe Q, 0= q)

< 3B > Inc(X v {(p.1HD, (K v {(p.1))}) &= (g.B) using
(12-13) Q.E.D.



The above equivalence illustrates, in the possibilistic
framework, the translation in the sense of [GArdenfors, 1990]
of a non-monotonic formalism, namely N(q ! p) > 0 playing
the role of p M q (where K is a belief set representing our

background beliefs), into a belief revision siatement
q € K*y, using Girdenfors [1988, 1990}'s notations, where

K*p, denotes the result of the revision of K when adding p,

here expressed in our framework by (K U [{(p,1)}) = (g,00).
Moreover note that it ts also equivalent to preferential
entailment in the sense of Shoham (upto the trivial
entailment from contradiclory propositions), here denoted

p =q Q. Here, instead of a belief set K, closed under

deduction, we use any weighted set K. of propositions, and
we derive a preference relation on interpretations.

A machinery described elsewhere [Dubois, Lang and Prade,
1987, 1989], based on extended resolution and refutation
implements this non-monotonic/belief revision mechanism,
Let us briefly restate the main points before giving an
illustrative example, The necessity-valued possibilistic
knowledge base K. with which we start is supposed to be
put in clausal form. This i1s not constraining since if a
formula p is the conjunction of n formulas py, ..., pp, then

N() 2 @ < N(p] A... A Pp) = min(N(y), ..., N(Py)) 2
a < Vi1=1n, N(p;} 2 a. Extended resolution corresponds

(c,0) (c\.B)
(ReS(%,c , min(c,B))

Res{c.c’) 1s the classical resolvent of clauses ¢ and ¢'. The
refutation consists in adding to & the set of clauses
generated by the negation (—p,1) of the proposition p of
interest, with the weight 1 (total certainty). Then it can be
shown that any weight obtained with the empty clause by
the repealed application of the resolution pattern on
K U ((=p,1)) is indeed a lower bound of the value of the

necessity measure (associated with &) for the event "p is
true”. So we are interestied in obtaining the empty clause
with the greatest possible lower bound. A procedure yielding
such a refutation with the best possible weight first has been
implemented using an ordered search method. Let us denote

by K — (p,a) the fact that (L,o) can be obtained by a
refutation from K u {(—p,1)} (here o does not necessarily
correspond to the best lower bound). Then the following
soundness and completeness results holds, whether K is
totally consistent [Dubois, Lang and Prade, 1989] or
partially inconsistent [Lang et al., 1990] :

K (p,o) & K = (pa), for o > Inc(R)

which guarantees the perfect agreement of the extended
re{utation machinery with the semantics presented above.
Let us now give an illustrative example

Let X be the following knowledge base :

Cl. If Bob attends a meeting, then Mary does not.

C2. Bob comes to the meeting to-morrow.

C3. If Betty atiends a meeting, then it is likely that the
meeting will not be quet.

C4. If is only somewhat certain that Betty comes to the
meeling to-morrow. o

C3. If Albert comes to-morrow and Mary does not, then 1t 1s
almost certain that the meeling will net be guiet.

C6. It is likely that Mary or John will come to-morrow.

C7. If John comes to-morrow, it is rather likely that Albert
will come. o _

C8. If John does not come to-morrow, it is almost certain that
the meeting will be quiel

to the following patiern where

This can be represented by the following weighted clauses :
Cl (=Bob{x) v -Mary(x) 1) : C2(Bob{m)1)

C3 (—Betty(x) v —quict(x) 0.7) ; C4 (Betty(m) 0.3)

C5 (Mary(m) v —Albert(m) v —~quiet(m) 0.8)

C6 (John(m) v Mary(m) 0.7) ; C7 (John(m}) v quiet{m) 0.8)
C8 (—=John(m) v Albert(m) 0.6)

If we want (o try 10 prove that the meeting to-morrow will
not be quiet, we add the clause CO : (quiet(m) 1). Then it
can be checked that there exist two possible refutations : one
from CO, C3, C4 which gives (1,0.3) and another from CO0,
Cs5, C1, C2, C6, C8 which gives (L,0.6). The last
refutation is the optimal one. We proved that
N{—quiet(m)) = (.6, 1.e. it is rather likely that the meeting
to-morrow will not be quiet.

Moreover, adding to a consistent knowledge base K, a
clause (c,a) that makes it partially inconsistent, produces a
non-monotonic behavior, Namely, if from & a conclusion
(p.B) can be obtained by refutation, it may happen that, from
XK'= K v {(c,a)}, an opposite conclusion (-p,y))} with
¥ > Inc(K.") 2 B can be derived.

Suppose we add to K- in the above example the clause
(—John{m),1), L.e. o = 1, expressing that we are now certain
that John will not come to-morrow. Let &' be the new
knowledge base. The inconsistency degree of &' is 0.7, i.e.
Inc(K.") = 0.7 (as given by refutation from C1, C2, C6 and
(—=John(m), 1)). Now the proof of (—quiet(m) 0.6} (it
corresponds to B = 0.6) is no longer valid ; but we can prove
(quiet{(m),0.8), i.e. ¥ = (.8 ; which is obtained by a
refutation from (~quiet(m),1), C7 and (—John(m},1), using
only a consistent subpart of K- w {{(=John(m),1}}. Thus a
non-monotonic behaviour can be captured in this framework.

The above example shows not only the ability of
possibilistic logic to cope with partial inconsistency but
also that a revision mechanism is implicitly working in it.
The deep reason for that has been recently discovered
[Dubois and Prade, 1990b). It is basically due to the
equivalence between the system of axioms defining the so-
called epistemic entrenchment relations (on which weli-
behaved revision processes should be based [Gdrdenfors,
19881) and the systems of axioms characterizing qualitative
necessity relations. Qualitative necessity relations [Dubois,
1986] are binary relations denoted £ where p £ ¢ means q 18
at least as certain as p, are the perfect qualitabve counterpart
of necessity measures in the sense that for any necessity
measure N there exists a qualitative necessity relation € such
that the following equivalence holds ¥ p, g, p € @ < N(p) €
N(q). Conversely only necessity measures are numerical
representations of such kinds of ordering.This emphasizes
the qualitative nature of possibility and necessily measures
and points out that the numbers which are used in practice,
as in the above example, have mainly an ordinal meaning.

5 - Conclusion

This paper has tried to take one more step towards the
unification of symbolic and numerical knowledge
representation approaches for reasoning under uncertainty.
Namely possibilistic logic belongs to the family of non-
monotonic systems based on preferential models. Moreover
the identity of axioms between necessity measures and
epistemic entrenchment puts possibilistic logic in the
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current stream of ideas on belief revision. Stated compactly,
any possibilistic knowledge base K induces a preference
relation among interpretations. This preference relation is
consistent with an epistemic entrenchment relation over
formulas that can be deduced from K ; adding a new
formula to K produces a revision effect, in accordance with
this epistemic entrenchment relation, that is achieved by
applying the resolution principle extended to necessity
valued clauses. Moreover, deduction from a partially
Inconsistent possibilistic knowledge base has all properties
of a well-behaved non-monotonic deduction. Note that our
investigation parallels the one of Pearl and others on
probabilistic semantics of default, but here in a purely non-
probabilistic framework.

A further topic of interest would be to try to bridge the
gap between possibilistic logic and conditional logic,
following the path opened by Bell [1990] who reinterprets
Shoham's preference logic in the framework of conditional
logics. This would enable Delgrande [1986]'s logic of
typicality to be better understood in its links with other non-
monotonic logics. Note that our notion of conditional
possibility and certainty have symbolic counterparts in
Bell's logic.

Moreover the definition of these conditional measures of
uncertainty is based on the minimum operation here
(FKp A q) = min(n(p | q)JI(q))), but clearly most of the
results obtained here carry over to the case where min is
changed into product, i.e. conditional possibility is then in
accordance with Dempster rule of conditioning. This fact
suggests that the close relationships displayed here between
non-monotonic reasoning, belief revision and possibility
theory might extend to belief functions .

Lastly, there is an obvious proximity of ideas between
possibilistic logic and constraint-directed programming
where constraints have various levels of priority [Satoh,
1990]. This topic will also be investigated in the future,
interpreting a necessity-valued clause as a soft constraint.
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