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Abstract 

This thesis proposes and evaluates a unified collaborative and multimodal framework for indoor 

positioning and mapping using smartphones. The proposed framework aims to harness the 

potential of collaboration between different nodes for the positioning and mapping tasks, using 

only smartphones, without assuming the existence of any specific infrastructure. This objective is 

achieved by first exploring and enhancing the different building blocks of the proposed 

framework; followed by evaluating the accuracy gains from using a collaborative approach to the 

positioning problem. 

The first building block to be studied is the standalone navigation filter. The standard extended 

Kalman filter, the unscented Kalman filter, and the particle filter were evaluated for node 

positioning using the pedestrian dead reckoning model as a system model, while the 

measurement update is achieved using Wi-Fi fingerprinting with a Gaussian process model. 

The second component of the system is the Wi-Fi radio map. The proposed framework utilizes a 

new sparse Gaussian process model to represents the Wi-Fi radio map, used for Wi-Fi signal 

strength-based fingerprinting. The map building algorithm using the proposed model and its 

performance are presented and discussed.  

The collaboration between different nodes is examined in detail, and a new family of distributed 

particle filters for collaborative positioning applications are introduced. The detailed derivation 

of the filtering equation along with simulation evaluation of the filters are presented. 

The collaboration model used in the proposed framework is based on the relative range 

measurements. A ranging device based on ultra-wideband (UWB) technology is designed and 

implemented to evaluate the framework. The ranging device is based on the DW1000 UWB 

transceiver from Decawave. The device can reach centimetre-level ranging accuracy and 
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connects to a host microcontroller which controls the flow of ranging messages, computes the 

range, and communicate with a paired smartphone through Bluetooth Low Energy interface. On 

the smartphone, a logging application saves the range information from the UWB device along 

with other sensors data such as accelerometer, gyroscope, magnetometer, pressure, and Wi-Fi 

signal strength. Along with this software, a simulation environment is developed to model the 

motion of random nodes inside an indoor environment. This simulator was used in the evaluation 

of the proposed particle filters family. The thesis concludes by evaluating the proposed 

framework using multiple test trajectories and different operating scenarios in a challenging 

indoor environment. 
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Chapter One: Introduction 

The importance of indoor positioning and navigation is accentuated by two major technological 

trends that persisted for the last few decades. First, the proliferation of smart devices in all 

aspects of life and the continuous growth of its computational and sensing capabilities. And, 

second, the incessant increase in connectivity and bandwidth available to these devices, which 

was a crucial driver for the development of the next generation of mobile networks (5G) [1]. 

This is manifested by the expected growth of the location-based services (LBS) and the real-time 

location systems (RTLS) market value to US$ 68.85 billion by 2023 [2].  

Indoor positioning frameworks and algorithms are essential components to enable location-based 

services and real-time location systems. The commercial applications of LBS and RTLS include 

mobile advertising, navigation, tourism, local search, and location-based health information. The 

LBS and the RTLS can also be used for in an industrial context, to monitor inventory and assets, 

to control access to certain areas, and to ensure the safety of workers in hazardous situations. 

Additionally, indoor positioning and navigation have many applications in the military and law-

enforcement domains.  

The field of indoor navigation and positioning continues to be a very active research area, though 

the emphasis of the research community has shifted towards increasing accuracy, availability, 

and reliability of the indoor positioning solution, while in the same time addressing the practical 

aspects of system deployment and decreasing the cost and time of system training. The advances 

in indoor navigations and positioning field is highlighted in many survey papers and 

monographs, covering different aspects of the problem, see [3]–[14]. 

Indoor positioning algorithms can be categorized according to the type of the signal or the 

information used as an input to the algorithm [13]. Different signals can be used for indoor 
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navigation, including, but not limited to, Wi-Fi, Bluetooth, RFID, mmWave, acoustic signal, 

image, visible light, smartphone dead-reckoning, magnetic field, ultra-wideband (UWB), FM 

signals, and infrared. Another classification of the indoor positioning systems depends on the 

type of physical measurement inferred from the observed signal [15]. The different 

measurements include: distance measurement using the signal strength, the time of arrival, or the 

time difference of arrival; direction of arrival; area measurements, in which the signal coverage 

region is described by a geometric shape; hop count between different nodes, where the 

connection between nodes is limited by the maximum range of their radio; neighbourhood 

proximity measurements. 

Another possible classification of the navigation algorithms considers the type of the observed 

quantity used for navigation [16]: 

1. Proprioceptive: by observing quantities internal to the navigating nodes, using gyroscopes 

and accelerometers, the position of a mobile node can be determined by either using the 

classical form of inertial mechanization equations or by using pedestrian dead-reckoning 

(PDR). As such, this class of observations provides direct observations of the orientation and 

position states of the mobile nodes or its derivatives. 

2. Exteroceptive: by observing external environmental features, such as floorplan features, Wi-

Fi access points locations or signal levels, external magnetic field intensity, or distance from 

landmarks, the state of the mobile node is indirectly inferred from the observed 

environmental features. 

By considering the previous two classes, it would be clear that using internal information only 

will not involve any knowledge of the surrounding environment. The only requirement for a 

positioning system is to define a navigation frame of reference–either local or global–along with 



 

3 

an initial value for the position state and its derivatives, according to the order of the model. 

However, the accuracy of the position solution derived using this form of dead-reckoning 

degrades with time, due to the accumulation of sensor errors. As a result, the meter-level 

positioning accuracy is not attainable by this approach alone. One approach to mitigate this 

problem is to make use of the environmental features to enhance the overall accuracy of the 

positioning solution. 

 

 

 

(a) (b) (c) 

Figure 1–1 Different configuration of standalone navigation; (a) proprioceptive sensors, (b) 

proprioceptive and exteroceptive sensors, (c) proprioceptive and exteroceptive sensors, 

with autonomous maps creation 

In addition to the internal state observation, provided by inertial sensors, for example, the mobile 

nodes can observe a multitude of environmental features. These observations are then fused with 

the internal observations, to limit the state drift. In order to use these features, they should be 

associated with a specific physical location within the navigation frame, through a map. Then, 

this information can be used to infer the position of the mobile node indirectly.  
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However, building this kind of maps is both cost- and labour- intensive. Much research is 

directed towards automating and increasing the efficiency of map generation. The research in 

this category can be classified into two schemes [10]: 

1. Explicit crowdsourcing approaches. The users are consciously collecting data, and tagging 

the location of the observed environmental features, or landmarks, observed by the mobile 

node. Then, this data is aggregated into databases or maps and shared among the different 

users of the system. 

2. Implicit crowdsourcing approaches. The users are unaware of the data collection and 

database or map building process. The data collection process runs in the background, while 

users are navigating through the area of interest. 

   

(a) (b) (c) 

Figure 1–2 Collaboration configuration for navigation; (a) centralized approach, (b) 

distributed approach, (c) hybrid approach 

This classification of standalone navigation according to the type of used sensors and features, is 

summarized in Figure 1–1. Figure 1–1 (a) shows a standalone navigation scheme utilizing only 

proprioceptive sensors, along with an example of the used algorithms to calculate the position of 

the mobile node. Figure 1–1 (b) shows a navigation scheme utilizing both proprioceptive and 
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exteroceptive sensors, with pre-built maps of the environment. Finally, Figure 1–1 (c) shows the 

same configuration but with the autonomous map creation scheme. 

Another classification for the navigation algorithms is concerned with whether the positioning 

and navigation algorithm is collaborative or carried out by each mobile node individually.  

In collaborative approaches, the position of each mobile node is calculated, taking into 

consideration the positions and uncertainties of a subset of the collaborating nodes. In this 

scheme, a method of evaluating the relative position between different nodes is required. 

In non-collaborative approaches, the position of each node is considered separately, without 

taking into consideration its relation to the surrounding nodes. 

Figure 1–2 summarizes the different approaches for collaborative navigation, which are 

described as follows: 

1. A centralized approach, where the state estimates for all participating nodes are calculated in 

a centralized remote computer. In this approach, all participating nodes send their 

observations to the remote central node, and then they receive their estimated states from that 

remote node. This approach is only feasible when high bandwidth data links are available, 

the amount of transmitted data is low, or the number of collaborating nodes is relatively 

small. 

2. A distributed approach, in which each node is responsible for its state estimation. Though, 

each node also shares the estimate, the observations, or a combination of them with some of 

the neighbouring nodes. This process can be performed once, or repeated for several times 

until the entire population of mobile nodes reaches a consensus. 

3. A hybrid approach, in which the mobile nodes share a subset of their state estimate to 

enhance the overall positioning accuracy of the collaborating nodes. Additionally, the 
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different nodes can communicate with a centralized node, to exchange map information and 

to facilitate peer discovery and communication.  

Any collaborative positioning framework involves several components such as the standalone 

navigation algorithm, the collaboration methods, and the overall positioning framework. In 

order to design and evaluate a collaboration scheme between multiple nodes, the following 

questions should be examined:  

1. How to calculate/update the state of each node, regardless of the type of collaboration

adopted in the system? Specifically, what is the definition of the node internal states, what is

the type of observables, and what is the relation between the observables and the internal

nodes?

2. What is the collaboration type between nodes? How collaboration occurs between different

nodes? Moreover, what kind of data is shared among the collaborating nodes? Do the

participating nodes share their full states and the raw measurements every time epoch?

3. Where to compute the updated states of the collaborating node? Does this process take place

inside each node individually? Alternatively, does it take place inside a centralized

processing center, then it is distributed to the collaborating nodes?

4. What environmental features to map, and how to represent and build the maps? Moreover,

how to disseminate the maps between the individual nodes, and how incorporate them in a

globally shared map?

This thesis will attempt to answer these questions in the context of indoor positioning and 

navigation problem, to conceive a unified framework for indoor positioning for mobile nodes 

equipped with smartphone devices. The rest of this chapter will try to elaborate on the current 
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state-of-the-art answers for the previous questions. The following section will discuss the 

motivations and objectives of this thesis. Finally, the outline of this thesis is presented. 

1.1 Background 

The section starts by reviewing the basic concepts of wireless positioning. Then, it reviews the 

recent advances in Wi-Fi positioning and localization as an answer to the single node 

localization, with a focus on fingerprinting methods. The following subsection reviews recent 

and prominent contributions in collaborative indoor navigation. It is worth noting that the 

fingerprinting techniques are not unique to Wi-Fi signals, and it can be applied to other types of 

signals, such as magnetic fields [17]–[20]. Finally, using simultaneous localization and mapping 

(SLAM) algorithms for indoor navigation, to mitigate the laborious and expensive process of 

mapping the environmental features, is discussed, and the recent advances are reviewed. 

1.1.1 Wireless Positioning Concepts 

Radio signals have been used as a tool to measure distances between transmitters and receivers 

since the early days of wireless communication [21]–[23]. The use of radio signals for indoor 

positioning started to gain traction more recently, with the evolution of the wireless 

communication technologies, the continuous improvements in microelectronics, and the wide 

adoption of personal and portable communication devices. 

Early indoor localization systems used custom-built hardware for identifying users. Such legacy 

systems used technologies ranging from infrared-based proximity detection, ultrasound-based 

trilateration, and magnetic-field tracking. They also explored using Wi-Fi or vision technology 

for localization [24]. More recently, the focus has shifted to Wi-Fi positioning and localization, 

the use of wireless fingerprinting techniques, and the online fingerprinting technologies  [25], 

[10], [12], [11], [14]. 
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Figure 1–3 summarizes the main methods of wireless positioning. The distinction between each 

category is based on the type of information derived from the wireless signal, which dictates a 

specific receiver and antenna configuration. In brief, the use of wireless signals for localization 

and positioning can fall under one of the following three categories [25]: 

1. Triangulation: using the wireless signal Angle of Arrival (AOA). This method can be 

implemented using an antenna array on the receiver side, and the phase difference between 

different antenna indicates the direction to the transmitter. 

2. Trilateration: which can be further divided according to the specific property of the wireless 

signal that is used to infer distance: 

a. Time of Arrival (TOA): in this approach, the transmitter and receiver should be 

synchronized, and the signal travel time is recorded. The travel time can be converted into 

the distance by multiplying the time by the signal propagation speed. 

b. Received Signal Strength (RSS): by measuring the received signal strength, the distance 

between the transmitter and receiver can be inferred, by the use of the log-distance path 

loss model from radio signal propagation [26]: 

𝑃𝑟(𝑑) = 𝑃0 − 10 ∙ 𝑛 ∙ log (
𝑑

𝑑0
) + 𝜖𝑟 (1.1) 

𝑃𝑟(𝑑) is the received signal power received at distance 𝑑, 𝑃0 is the power at a reference 

distance 𝑑0, 𝑛 is the power loss exponent, and 𝑛 = 2 for free space, and it ranges from 

1.6 to 3.3 for different types of indoor environments (ibid., Table 2), and 𝜖𝑟 is a zero-

mean Gaussian random variable, in 𝑑𝐵 units. 

3. Fingerprinting: this technique usually utilizes the RSS values–or the channel state 

information (CSI) [27], [28]–from the different Wi-Fi access points. It is divided into two 
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steps; offline site surveying, and online positioning. In the offline stage, the RSS values and 

the associated physical locations are recorded. Then, in the online stage, the mobile node 

collects RSS signals and compare it with the pre-surveyed map, to determine its current 

location. More information about this technique is provided in the following section. 

 

Tx #1

Tx #2

θ1

θ2

 

 
 

(a) (b) (c) 

Figure 1–3 Wireless positioning basics; (a) triangulation, (b) trilateration, (c) RSS 

fingerprinting 

The trilateration and triangulation methods require the knowledge of the precise locations of the 

access points, or the wireless transmitters in general, to be able to localize the mobile in the 

mapping frame. On the other hand, fingerprinting techniques require accurate maps of the 

environmental features used–for example, Wi-Fi RSS signal, radio channel CSI, or magnetic 

field intensity. These maps are usually hard to obtain and maintain, and building them from 

scratch is a labour- and time-intensive task–possible solutions to this problem are discussed in 
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Sections 1.11.1.3 and 1.1.4. Additionally, trilateration and triangulation methods are sensitive to 

multipath effects and require a direct path between the receiver and the wireless transmitter. This 

line-of-sight requirement is dropped for the fingerprinting techniques. 

1.1.2 Wi-Fi Fingerprinting Overview 

Using Wi-Fi fingerprinting for positioning is typically divided into two stages: an offline pre-

surveying phase, and an online positioning phase [18], [29]. In the first stage, the Wi-Fi 

fingerprints database, or map, is built as tuples of the Wi-Fi RSS vector from all visible access 

points (AP), along with the location of the observation: 

𝐹𝑃𝑖 = {𝑋𝑖, (𝑀𝐴𝐶𝑖,1, 𝑅𝑆𝑆𝑖,1), (𝑀𝐴𝐶𝑖,2, 𝑅𝑆𝑆𝑖,2), … , (𝑀𝐴𝐶𝑖,𝑁 , 𝑅𝑆𝑆𝑖,𝑁)}, (1.2) 

where, 𝐹𝑃𝑖 is the 𝑖-th entry in the fingerprints database, 𝑁 is the total number of observed access 

points at the location 𝑋𝑖, and (𝑀𝐴𝐶𝑖,𝑗 , 𝑅𝑆𝑆𝑖,𝑗) are the 𝑗-th AP MAC address and RSS value, 

correspondingly. In the online positioning phase, the location of a moving node can be 

determined by comparing the current Wi-Fi RSS reading against the pre-built fingerprint 

database, using different methods [18], [29]–[31]. The Wi-Fi fingerprinting systems can fall 

under one of the following categories; deterministic [32] and probabilistic [33], summarized in 

Table 1–1 and discussed briefly in the following subsections. 

Table 1–1 Summary of Wi-Fi Positioning Algorithms 

Type Positioning Algorithm Framework 

Deterministic Distance Minimization Nearest Neighbour 

(Weighted) Average K-Nearest Neighbour  

Binary Classification Support Vector Machine 

Probabilistic Posterior Expectation Bayesian Network 

Maximum a posteriori Naïve Bayes 

Minimize KLD Kullback-Leibler Divergence 

Maximum a Posteriori (Viterbi) Conditional Random Field 

Particle Filter Gaussian Process 

Maximum a Posteriori Gauss Markov Random Field 
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1.1.2.1 Deterministic Methods 

The deterministic methods determine the distance between the measurements vector and the 

training data, and use the position of the nearest point, or points, to estimate the position of the 

mobile node. The main difference between the different deterministic techniques is the method 

of calculating the distance between the measurements vector and the training data. A summary of 

several distance measures is presented in Table 1–2. 

Table 1–2 Summary of common distance measures 

Euclidian distance (2-norm) 𝐷𝐿2 = √∑(𝑟𝑖 − 𝑧𝑖)2
𝑁

𝑖=1

 

Manhattan distance (1-norm) 𝐷𝐿1 = ∑|𝑟𝑖 − 𝑧𝑖|

𝑁

𝑖=1

 

Infinity-Norm 𝐷𝐿∞ = max
𝑖
(|𝑟𝑖 − 𝑧𝑖|) 

Mahalanobis distance 𝐷𝑀 = √(𝑅 − 𝑍)𝑇𝑊(𝑅 − 𝑍) 
 

Where, 𝑧𝑖 represents the RSS measurement from the 𝑖-th access point, 𝑟𝑖 is the reference RSS for 

the 𝑖-th access point, 𝑁 is the total number of access points included in the current observation, 

𝑍 = {𝑧1, … , 𝑧𝑁}, 𝑅 = {𝑟1, … , 𝑟𝑁}, 𝑊 is a 𝑁 × 𝑁 weighting matrix, and 𝐷 is the measured 

distance. 

1.1.2.1.1 Nearest Neighbour Methods 

Nearest neighbour is one of the simplest methods to find the position of a node, in which the 

distance between the measurements vector and the training data is calculated. Then, positioning 

is achieved by finding the index of the fingerprint database entry that minimizes the calculated 
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distance. The position stored in that entry is assigned to the mobile node, �̂�, as shown in 

Equation (1.3). 

�̂� = argmin
𝑥
[𝐷] (1.3) 

The algorithm calculates the distance, 𝐷, and find the position of the entry, 𝑥, which minimizes 

the selected distance measure. 

1.1.2.1.2 K-Nearest Neighbours Method 

K-nearest neighbours (KNN) method is similar to the nearest neighbour method; however, 

instead of locating one nearest position, the average of the K nearest points are used to estimate 

the position of the mobile node [18], [34], [35]. The algorithm starts by calculating the distances 

using one of the distance measures; then, it uses Equation (1.3) to determine the K nearest points. 

The position of the mobile node is the average of the positions of the nearby training points, 𝑥𝑖: 

�̂� =
1

𝑘
∑𝑥𝑖

𝑘

𝑖=1

 (1.4) 

Another approach is to calculate the weighted k-nearest neighbour method [35], given by: 

{
 
 

 
 
�̂� =

1

𝑘
∑𝑤𝑖 ∙ 𝑥𝑖

𝑘

𝑖=1

∑𝑤𝑖

𝑘

𝑖=1

= 1

 (1.5) 

Where, 𝑤𝑖, is the weight given to each point of the k-nearest points. 

1.1.2.1.3 Support Vector Machine 

Support vector machine (SVM) can be used to determine whether a particular RSS vector 

belongs to a specific database entry or not [36]; i.e., a binary classification problem over each 

database entry. The training phase of the SVM involves finding a hyperplane that separates the 
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dataset into two regions while maximizing the margin between the boundary and the training 

dataset. 

The hyperplane equation is given by: 

𝑤𝑇𝑥 + 𝑏 = 0 (1.6) 

where 𝑥 is the RSS vector, and 𝑤 is the normal vector to the hyperplane.  The optimization goal 

is to maximize the separation between the hyperplane and closest training data point 𝑖: 

|𝑤𝑇𝑥𝑖 + 𝑏|

‖𝑤‖
 (1.7) 

This maximization can be expressed as minimization of ‖𝑤‖, the Euclidian norm of the vector 

𝑤, subjected to the condition [37]: 

𝑦𝑖(𝑤
𝑇𝑥𝑖 + 𝑏) ≥ 1 ∀𝑖 (1.8) 

where, 𝑦𝑖 is the training data label. This condition ensures that there are no training points in the 

gap separating the two classification regions. 

1.1.2.2 Probabilistic Methods 

This section introduces the general idea of the probabilistic approaches of positioning; then, it 

will highlight several probabilistic frameworks targeting positioning using Wi-Fi signal strength 

measurements. In probabilistic methods, the position of the mobile node is treated as a random 

variable, and the objective of the positioning algorithm is to find the posterior probability 

distribution of such variable, given an RSS measurements vector, 𝑍, and the pre-surveying map, 

𝐹𝑃. The position estimate could be the value that maximizes the posterior probability 

distribution, Equation (1.9): 

�̂� = argmax
𝑥
[𝑝(𝑥|𝑍, 𝐹𝑃)] (1.9) 
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Alternatively, the position estimate could be the mean of the posterior probability distribution 

[30], as shown in Equation (1.10): 

�̂� = ∫𝑥 ∙ 𝑝(𝑥|𝑍, 𝐹𝑃) d𝑥 (1.10) 

In order to estimate the position, the posterior probability distribution function has to be 

evaluated given the current measurements, 𝑝(𝑥|𝑍). Using Bayes rule, the posterior distribution 

can be represented by Equation (1.11): 

𝑝(𝑥|𝑍) =
𝑝(𝑍|𝑥) ∙ 𝑝(𝑥)

𝑝(𝑍)
=

𝑝(𝑍|𝑥) ∙ 𝑝(𝑥)

∑ 𝑝(𝑍|𝑥′) ∙ 𝑝(𝑥′)𝑥′
 (1.11) 

where, 𝑝(𝑍|𝑥) is the likelihood of the measurement at position 𝑥, and 𝑝(𝑥) is the prior 

distribution of the node position. 

Probabilistic methods can be categorized according to the description of the likelihood function. 

Additionally, they can be divided into static positioning approaches and recursive estimation or 

filtering approaches [38]. In the static positioning case, the estimate is not delay-sensitive, and 

the algorithm estimates the entire trajectory when all measurements are available. In the dynamic 

positioning case, the position estimate is updated in real-time with each newly available 

measurement. In this approach, the update is performed using a filtering algorithm, such as 

Kalman filtering or particle filtering. 

1.1.2.2.1 Bayesian Networks 

A Bayesian network is a directed acyclic graph (DAG), that represents a joint probability 

distribution between different random variables, along with the dependency between these 

variables [39]. The use of Bayesian networks for positioning, based on Wi-Fi signal strength, 

was first proposed by [40], where the Bayesian network is used to infer the location of a mobile 

node, based on the signal-to-noise ratio (SNR) values received from different access points. The 
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Bayesian network is used to evaluate the probability of being at a position 𝑥 given the 

observations vector 𝑍. In this approach, the distinguishable locations and measurements values 

are discrete. 

The likelihood function can take many forms, for example, a kernel form–such as Gaussian 

kernel–or a histogram form [30], [41]. The histogram representation of a probability distribution 

is built by dividing the possible variable range into a set of non-overlapping bins, resulting in a 

piecewise constant distribution function with 𝑘 parameters, where 𝑘 is the number of bins. The 

posterior over the location conditioned on the signal strength measurement, 𝑝(𝑥|𝑍), is calculated 

using Bayes rule assuming a uniform prior distribution, and the location is calculated as the 

expectation of the posterior distribution–if the location variable is numeric–i.e., 𝔼[𝑥|𝑍] =

 ∑ 𝑥𝑖 ∙ 𝑃(𝑥𝑖|𝑍)𝑥𝑖∈𝒳
. 

1.1.2.2.2 Naïve Bayes 

The naïve Bayes assumption is used to simplify the evaluation of the joint probability 

distribution during the offline training phase [42]. The naïve Bayes assumption postulates that 

the observations are independent. As a result, instead of evaluating the joint probability 

distribution of the observations directly, 𝑝(𝑧1, … , 𝑧𝑛), which requires a lot of training data, the 

joint probability is evaluated as the product of individual probability density functions of the 

different observations, ∏ 𝑝(𝑧𝑖)
𝑛
𝑖=1 , where 𝑧𝑖 is the signal strength observation from the access 

point 𝑖, and 𝑛 is the total number of the access points observed at a certain location. Each 

distribution 𝑝(𝑧𝑖) is evaluated as a normalized histogram. The online positioning is achieved by 

finding the location that maximizes the posterior distribution. Additionally, multiple samples can 
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be used to increase the accuracy of location estimation. The locations are clustered according to 

the common access points observed, to reduce the required search space. 

1.1.2.2.3 Kullback-Leibler Divergence 

The positioning problem of a mobile node, using signal strength measurements, can be posed as 

a hypothesis testing problem [43]–[46]. This stochastic framework depends on several stationary 

sensors in the environment, called cluster heads, which receives the transmitted signal by the 

mobile nodes themselves. Although this configuration is not the one typically used in Wi-Fi 

positioning techniques–it is more convenient in the wireless sensors network context–the 

theoretical approach is interesting for the usual case, in which the stationary points, i.e., access 

points, are transmitting signals, while the mobile nodes are measuring the signal strength values 

of the received signals. In this approach the cluster heads collect a sequence of observations from 

the mobile nodes and based on the result of the hypothesis test, it can assign the mobile nodes to 

one of a discretized set of possible locations.  

A similar approach is applied to solve the positioning problem using Wi-Fi signal strength 

measurements [47]. In which the statistical signature generated during run-time is compared to 

the statistical signatures of each cell. These signatures are generated during the training phase. 

The criteria used to quantify the separation between different probability density functions, 

corresponding to the signatures, is the Kullback-Leibler Divergence (KLD), which is defined as: 

𝐾𝐿(𝑝𝑟||𝑞𝑖) =∑𝑝𝑟(𝑠) ln
𝑝𝑟(𝑠)

𝑞𝑖(𝑠)
 (1.12) 

where, 𝑝𝑟(𝑠) is the run-time signature distribution, and 𝑞𝑖(𝑠) is the training distribution at cell 𝑖. 

The summation in Equation (1.12) is performed over all the pins in the distribution. 

The distribution of the signature is a multivariate Gaussian distribution, given by: 
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𝑝(𝑥|𝜇, Σ) =
1

(2𝜋)𝐾 2⁄ |Σ|1 2⁄
exp(−

1

2
(𝑥 − 𝜇)𝑇Σ−1(𝑥 − 𝜇)) (1.13) 

The Kullback-Leibler Divergence of this distribution is given by: 

𝐾𝐿(𝑝𝑟||𝑞𝑖) =
1

2
((𝜇𝑖 − 𝜇𝑟)

𝑇Σ𝑖
−1(𝜇𝑖 − 𝜇𝑟) + tr (Σ𝑟(Σ𝑖)

−1 − 𝐼) − ln|Σ𝑟(Σ𝑖)
−1|) (1.14) 

The location of the mobile node is the coordinates of the cell which minimize 𝐾𝐿(𝑝𝑟||𝑞𝑖). 

1.1.2.2.4 Conditional Random Field 

Conditional random field (CRF) [48] is used for localization using RSS measurements [49]. The 

conditional random field is an undirected probabilistic model that captures the conditional 

distribution 𝑝(𝑥|𝑍), without considering he marginal probability, 𝑝(𝑍). The main attraction of 

CRF models is the elimination of the need to model the dependence between the observations, 

without using the independence assumption–unlike the Naïve Bayes models. The proposed 

system depends on building a graph that represents all reachable locations over a given floorplan, 

thus capturing the physical constraints on the map. The states and transitions are constrained 

using multiple feature functions, 𝑓𝑖, which are combined to form a potential function, Ψ, defined 

by the Equation (1.15): 

Ψ(𝑆𝑗−1, 𝑆𝑗, 𝑍, 𝑗) = exp (∑𝜆𝑖 × 𝑓𝑖(𝑆𝑗−1, 𝑆𝑗 , 𝑍, 𝑗)

𝑚

𝑖=1

) (1.15) 

The conditional probability 𝑝𝜆
∗(𝑆|𝑍) is defined in terms of the potential functions, as shown in 

Equation (1.16): 

𝑝𝜆
∗(𝑆|𝑍) ∝∏Ψ(𝑆𝑗−1, 𝑆𝑗 , 𝑍, 𝑗)

𝑇

𝑗=1

 (1.16) 
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where 𝑆 = {𝑆0, … , 𝑆𝑇} is a sequence of the state variables representing the location of a mobile 

node, 𝑍 = {𝑍0, … , 𝑍𝑇} is a sequence of observations, and the subscript {0, … , 𝑇} indicates the 

time, and 𝜆𝑖 is a weighting factor determined during the training stage. The inference or 

localization stage of this approach is achieved by finding a trajectory 𝑆∗ that maximizes the 

conditional probability 𝑝(𝑆|𝑍): 

𝑆∗ = argmax
S
𝑝(𝑆|𝑍) (1.17) 

The solution to this optimization problem is achieved using the Viterbi algorithm. 

1.1.2.2.5 Neural Networks and Deep Learning 

A neural network is a non-linear statistical model that can be used for regression and 

classification [50]. In its purest forms, a neural network is composed of 𝑃 inputs, 𝐾 outputs, and 

it has one hidden layer containing 𝑀 nodes connecting the inputs to the outputs.  This simple 

network is fully described by Equation (1.18). 

𝑍𝑚 = 𝜎(𝛼0𝑚 + 𝛼𝑚
𝑇 𝑋),  𝑚 = 1,… ,𝑀, 

𝑇𝑘 = 𝛽0𝑚 + 𝛽𝑘
𝑇𝑍, 𝑘 = 1, … , 𝐾, 

𝑌𝑘 = 𝑓𝑘(𝑋) = 𝑔𝑘(𝑇), 𝑘 = 1,… , 𝐾 

(1.18) 

where 𝑋 = (𝑋1, … , 𝑋𝑀), 𝑍 = (𝑍1, … , 𝑍𝑀), 𝑇 = (𝑇1, … , 𝑇𝐾), 𝜎(∙) is the activation function, 𝑔𝑘(𝑇) 

is the output function, and {𝛼𝑚, 𝛽𝑚} are a set of weights. 

A typical selection for the activation function is the sigmoid function, shown in Equation (1.19): 

𝜎(𝜈) =
1

1 + 𝑒−𝜈
 (1.19) 

The objective of the learning process of the model is to find the values of the weights that fit the 

training data by minimizing a cost function using the back-propagation approach. 
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Artificial neural networks have been used for indoor positioning using Wi-Fi or Bluetooth 

fingerprinting [51]–[55]. An earlier approach used the artificial neural networks to learn the grid-

based and topological map of an indoor environment [56]. Recently, the resurgence of the deep 

learning algorithms has renewed the interest in using neural networks for indoor positioning. 

Deep neural networks have been used for channel state information (CSI) fingerprinting [28]. It 

has been used for Wi-Fi positioning and fingerprinting [57]–[60]. 

1.1.2.2.6 Gaussian processes and Gaussian Markov random field 

Gaussian processes (GP) [61], or Gaussian random field and Gaussian Markov random field 

(GMRF) [62] are used for mobile nodes localization using RSS measurements. The Gaussian 

Process model is a non-parametric model [63], which means it depends on training data in order 

to predict the RSS value at any given point. The training data set is composed of a trace of Wi-Fi 

signal strength values annotated by the location. The Gaussian process can be approximated as a 

Gaussian Markov random field by discretizing the continuous domain of the Gaussian process. 

The primary motivation of this approach is the computational efficiency of the GMRF compared 

to GP. A sequential prediction algorithm to evaluate a random field, modelled as a Gaussian 

Markov random field, is proposed by [64]. More details about using the Gaussian Process model 

is presented in the next chapter. The Gaussian Process model will be used throughout this work 

to model the signal strength of the Wi-Fi access points inside indoor environments. 

1.1.3 Collaborative Approaches to Positioning and Navigation 

Standalone localization and positioning systems suffer from several drawbacks. The estimated 

solution can drift with time when using inertial measurements units (IMU) only. Sometimes the 

available observations are insufficient for the estimator to work. With fingerprinting techniques, 

there is a possibility of finding matches in different locations, which gives rise to localization 
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ambiguities. Collaborative approaches are used to enhance the positioning accuracy and to help 

to resolve any ambiguities in the estimates. Collaborative techniques have been studied in 

different contexts, such as in emergency situations for first responders and firefighters and 

intelligent transportation solutions [65]. 

A collaborative positioning solution is used for first responders and soldiers [66], using ultra-

wideband (UWB) transceivers to measure the range between two mobile nodes and to exchange 

the position estimates and covariances between participating nodes [67]. The system is modelled 

according to the standard strap-down mechanization equations [68] and uses 15-state Extended 

Kalman Filter (EKF) to estimate the position, velocity, orientation, and sensor biases. The 

selection of this navigation algorithm is justified by the intended short operation period of this 

system, which is less than ten minutes. The range measurement is included in the EKF update 

step. The uncertainty of the position estimate of the collaborating nodes is projected to the 

connecting vector and added to the measurement uncertainty [69] to form the uncertainty of the 

range measurement equation. However, this formulation ignores the effect of state covariance 

arising from the collaboration between different nodes [70]. This issue was addressed by using a 

partially decentralized estimation architecture [71]. In this approach, the estimation problem is 

divided between two physically separated computational platforms; one is local to the mobile 

node, and the other is central and shared among all nodes. The local node uses IMU data for 

dead-reckoning, and update the node position and its variance, using a Kalman filter. The central 

estimator uses the locally-calculated positions along with the inter-node ranges to correct the 

positions of the participating nodes. In contrast to the local node estimator, the problem of 

constraining the position of two nodes with inter-node range is treated as a Bayesian estimation 

problem [72].  
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A collaborative approach is used to address the relative positioning problem of vehicles inside 

urban canyons [73], where the GNSS pseudo-ranges are affected by multipath reflections, 

causing positioning errors up to tens of meters. The collaboration in this system is done by 

exploiting the spatial correlation properties of the GNSS pseudo-range measurements between 

two nearby vehicles [74]. The raw pseudo-range observations are shared among the collaborating 

vehicles, along with the speed and direction of each vehicle. The positions of the collaborating 

vehicles are estimated using a single Kalman filter. Additionally, the uncorrelated pseudo-ranges 

are detected and removed from the measurement update of the relative positioning vector. In this 

approach, there is no explicit measurement of the ranges between the collaborative nodes. The 

relative positioning is estimated using a Kalman filter, given the velocities of the vehicles, and 

further refined by using the spatially correlated pseudo-ranges. 

Collaborative localization for wireless sensor networks (WSNs) is a well-established research 

area, and many of the algorithms and paradigms developed for WSNs localization and 

positioning can be adapted to smartphone applications [75]–[77]. The spatial and temporal 

aspects of collaboration between different nodes are defined [78], by showing the structure of the 

equivalent Fisher information matrix (EFIM) [79], which is used to evaluate the fundamental 

limits of collaborative positioning algorithms, or the Cramér-Rao Bound (CRB). The CRB is 

closely related to the geometric dilution-of-precision (GDOP), which is typically used to 

evaluate the quality of positioning algorithms [75]. The proposed network positioning algorithm 

depends on a distributed algorithm [76]. The authors examined different non-Bayesian and 

Bayesian cooperative localization approaches. For non-Bayesian approaches, the authors tested 

the least-squares (LS) and maximum-likelihood (ML) estimators. The Bayesian approaches 

depend on minimum mean-square errors (MMSE) or maximum a posteriori (MAP) estimators. 
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The node localization problem can also be solved as a robust free network adjustment (NA) 

problem [77]. The network adjustment is performed using iterative re-weighted least squares 

(IRLS) method, using a robust weighting function. 

It is important to note that the early work on cooperative localization in wireless-sensor nodes 

was mainly focused on stationary nodes [75], and the problem of locating mobile nodes was not 

the main concern of the related research, in contrast to the scope of the currently proposed 

research. Nonetheless, the inclusion of these resources is vital as they cover a significant body of 

knowledge, especially the theoretical aspects of distributed estimation. 

Different options are available for inter-node measurements such as received signal strength 

(RSS), time-of-arrival (TOA), time difference of arrival (TDOA), and angle of arrival (AOA). 

The time-of-arrival (TOA) is used as a measurement connecting different nodes [80]. The 

purpose of this system is to estimate the unknown positions of the collaborating nodes and to 

estimate the unknown channel conditions. This problem can be solved jointly by estimating the 

position and the channel conditions; or, it can be solved separately by estimating the channel 

conditions first, then estimating the positions given the channel conditions. In that work, the 

position and channel conditions are considered independent, to simplify the prediction step. The 

posterior of the mobile nodes positions and the channel conditions are estimated using a sample 

importance resampling (SIR) particle filter [81]. To estimate the posterior of the position of a 

specific node, the node should know the positions of all the mobile nodes and the position of all 

the anchor nodes, along with the inter-node measurements and the measurements between the 

nodes and the anchor nodes. This gives rise to two different Bayesian estimation problems; the 

joint position and channel condition estimation, and the separate position and channel estimation. 

The channel condition is also treated [82], where additional channel state is investigated, in 
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which the line-of-sight signal is present, but it may not be distinguishable from the non-line-of-

sight one. 

Table 1–3 Summary of Collaboration Algorithms for Indoors Navigation 

Reference 
Node State 

/Observable 
Inter-Node Measurement Framework 

[67] INS Mechanization UWB Range Decentralized – 

EKF/ZUPT 

[71] INS Mechanization 

+ PDR 

UWB Range Centralized – Bayesian 

Estimation 

[73] GPS Pseudorange + 

Vehicle Velocities 

- Centralized – Kalman 

Filter 
[80] Statistical Model RF TOA Decentralized – Particle 

Filter 

[83] Wi-Fi RSS Acoustic TOA Centralized – Graph 

Rotation + Translation 

[84] PDR Acoustic Signal – 

Approximate Location 

Decentralized – EKF 

[85] PDR Acoustic – Proximity Decentralized – Kalman 

Filter 

[86] PDR/Wi-Fi RSS Wi-Fi Direct RSS – 

Proximity 

Horus [33]/Particle 

Filter 

 

Inter-node ranging system can be achieved using acoustic signals [87]. The system is 

implemented on cell phones and achieved centimetre accuracy. The distance between two nodes 

is calculated using the elapsed time between two time-of-arrivals (ETOA), which designate the 

time of the round trip of an audio signal emitted by the speaker of one of the collaborating nodes, 

and receiver by the other one. A similar method proposed by [83] utilizes acoustic inter-node 

ranging and Wi-Fi RSS values of each node to enhance the localization accuracy of all nodes. 

The method mainly used graph rotation and translation across the Wi-Fi RSS map to determine 

the location of the collaborating nodes, constrained by the measured inter-node ranges. Another 

approach for using acoustic signals utilizes a set of single frequency sine waves and assign each 

frequency to a certain cell on a grid. The exchange starts by mapping the node location to the 
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corresponding frequency; then, each node sends a beacon with a frequency corresponding to that 

cell [84]. This approach provides a coarse relative location since the maximum error in the 

transmitted node position could reach 18 m, and the range information is not measured. Another 

approach depends on estimating the node position using PDR algorithm [85]. The state is 

updated using the position of a nearby collaborating node. The proximity detection is done by 

sensing a high-frequency acoustic signal sent by the collaborating node. Also, in this approach, 

there is no explicit ranging information provided by the acoustic signal [33]. 

Social-Loc is a collaborative framework to exploit social interaction between nodes to improve 

the existing indoor localization techniques [86]. The framework is set atop the standalone 

localization techniques, such as pedestrian dead-reckoning or Wi-Fi fingerprinting. Social-Loc 

takes the set of estimated positions of each node individually as an input. By using the 

interaction information, or the lack of thereof, the framework can eliminate the impossible 

positions of the collaborating nodes. The inter-node discovery is implemented using Wi-Fi direct 

RSS, and the detection event occurs when the RSS of another node is above a certain threshold. 

1.1.4 Simultaneous-Localization and Mapping for Smartphones 

Simultaneous-localization and mapping (SLAM) is a family of algorithms to concurrently 

estimate the position of a moving node and the map of the surrounding environment–whether 

this node is a robot, a vehicle, an object or a pedestrian. SLAM is a very active research topic, 

especially in the robotics community [88]–[90]. SLAM algorithms have been embraced in the 

navigation and positioning community with a lot of recent papers focusing on using odometry 

from a foot-mounted inertial navigation unit (IMU) [91], [92], using Wi-Fi ranging or 

fingerprinting [92]–[98], using magnetic field [99], [100], using radio signals available in the 

environment [101], or using the recognizable actions of pedestrians as features [102], [103]. It is 
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important to note that the standard SLAM techniques, such as those used in robotics applications 

[88], cannot be used directly in the pedestrian navigation case, especially with Wi-Fi or magnetic 

field fingerprinting techniques, because the standard SLAM algorithms depend on sensing 

distinct environmental features, either by using LiDAR data or by extracting visual features from 

images. The nature of Wi-Fi signal strength or magnetic field intensity is different, and it is 

modelled as a continuous field that changes smoothly with the position, not as a set of discrete 

features. Additionally, unlike robotics, the motion of pedestrian is not known a priori and could 

be challenging to model, predict, or control. This section will introduce the main research 

directions of SLAM algorithms that are geared towards the problem of indoor positioning and 

localization of smartphones.  

An exception to the theme of this section is the range-only method [104], which is an early 

approach for using SLAM to solve localization and navigation problems. However, this approach 

is limited by the accuracy of the range measurements, and it is mentioned in this review for 

completeness. 

Perhaps one of the first papers to propose using SLAM techniques to build a map for Wi-Fi-

based positioning is the paper by Ferris et al. [93]. They proposed mapping the high-dimensional 

Wi-Fi signal strength into a low-dimensional latent space, which corresponds to the device 

location, using the Gaussian Process Latent Variable Model (GP-LVM) [105]. The idea of using 

GP in Wi-Fi signal strength modelling was first described in [61]. The motion model for this 

approach is based on a Voronoi graph representation [106], where the environment is represented 

as a graph, with edges representing environment features–hallways, staircases, or elevators–and 

vertices connecting between different edges. The same idea is extended by adding polygonal 

regions to the graph [61], which represent large open areas, such as rooms and halls. The Wi-Fi 
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SLAM using GP-LVM does not depend on any other sensor; it uses only the Wi-Fi signal 

strength to estimate the position. 

FootSLAM is a Bayesian estimation SLAM framework for pedestrians [91]. The FootSLAM 

approach depends on the odometry data obtained from a foot mounted IMU. The authors also 

propose PlaceSLAM algorithm, which adds landmarks proximity sensing to the odometry-only 

based SLAM. The proximity sensing could depend on an RFID attached to well-known 

landmarks, or on a camera to detect different visual features of the environment. Finally, they 

propose FeetSLAM, which adds a cooperative mapping, in the sense of adding multiple datasets 

to the SLAM problem. The Wi-Fi SLAM algorithm extends the FootSLAM [94] using Wi-Fi 

received signal strength (RSS) in addition to the odometer data derived from foot-mounted IMU. 

In Wi-Fi SLAM, the RSS values are modelled by a distance-dependent signal propagation 

model. 

A smartphone-based SLAM algorithm, smartSLAM, is proposed in [107]. The system moves 

between different operational modes depending on the sensor data available to the mobile node 

to reduce the computational burden of the localization algorithm. The modes of the algorithms 

are PDR only; EKF, if the fingerprinting maps are available; EKF-SLAM, uses PDR data along 

with the Wi-Fi fingerprinting measurements sequence when the map is not available; PF-SLAM, 

uses particle filter, PDR, fingerprinting data, and magnetic field anomalies. 

Wi-Fi fingerprinting-based SLAM is augmented by exploiting the spatial and temporal 

coherence in sequences of Wi-Fi RSS measurements to detect the loop-closure of a mobile node 

[96]. This approach is based on the GraphSLAM algorithm [108], intended mainly for offline 

SLAM. 
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Magnetic field anomalies are shown to be able to provide global self-localization capabilities 

[20]. The local anomalies of the ambient magnetic field are used as input to the SLAM algorithm 

[99], [109], in addition to the odometry measurements. The three orthogonal components of the 

magnetic vector field are modelled by three independent Gaussian processes, and the pose 

posterior distribution is evaluated using a Rao-Blackwellized particle filter. Using magnetic field 

anomalies for indoor pedestrian navigation, using particle filter is proposed in [19]. This 

approach is an extension to the FootSLAM algorithm–it uses odometry information from foot-

mounted IMU, and augment it with magnetic field information, in a similar approach to [94]. 

Opportunistic sensing of RF signals-of-chance to perform indoor SLAM for pedestrians is 

proposed in [101]. Signals-of-chance includes television radio signals, commercial radio signals, 

and cellular networks transmission, in addition to Wi-Fi signals. The authors use a particle filter 

framework for online estimation of the mobile node position, against an occupancy grid map. 

ActionSLAM is another method for indoor localization, which utilizes foot mounted IMU to 

keep track with the user path, and body mounted IMUs (wrist mounted IMU and smartphone in 

the pocket) to recognize different user actions, which are used as landmarks [102]. ActionSLAM 

only recognizes action at the corresponding landmark location, making the position association 

problem a trivial one. ActionSLAM uses an action recognition (AR) block to differentiate 

between different user's actions and a ZUPT-PDR block to estimate the user's step length and 

direction. The position posterior is estimated using a particle filter. ActionSLAM estimates the 

position against a two-dimensional map, and it was extended to estimate position against three-

dimensional maps [103]. 
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Table 1–4 Summary of SLAM Algorithms for Indoors Navigation 

 
Dynamic Model Observation Framework 

RO-SLAM Probabilistic Model Range using TOF/Landmark Non-Linear Least-

Squares Optimization 

Wi-Fi SLAM Probabilistic Model Wi-Fi RSS GP-LVM 

FootSLAM  Probabilistic Model PDR/Layout Particle Filter 

WiSLAM Probabilistic Model PDR/Layout + Wi-Fi RSS Particle Filter 

MF-SLAM Odometry (Robot) Magnetic Field GP + Particle Filter 

MagSLAM PDR Magnetic Field GP + Particle Filter 

ActionSLAM PDR Action Type Particle Filter 

SmartSLAM PDR Wi-Fi, Magnetic Field or 

Both 

EFK, or Particle Filter 

Opportunistic 

Radio SLAM 

PDR Radio Signals: 

VHF, commercial radio, 

GSM, Wi-Fi 

Particle Filter 

 

1.2 Motivations and Objectives 

Reviewing the current literature reveals the significance and the extent of the research done in 

this field, which is evident by the diversity of solutions and approaches to the indoor positioning 

and mapping problem. Nevertheless, there are many opportunities to further the current state of 

the art for indoor positioning and mapping. 

One gap of the current literature is the study of the effect of inter-node collaboration on 

positioning performance. The importance of studying collaboration in indoor navigation is 

expected to increase in the near future, especially with the introduction of the 5G cellular 

technology, which has a potential for localization in addition to the support of device-to-device 

communication [1], [110]–[116]. 

The main objective of this thesis is to propose and evaluate a new collaborative and multimodal 

framework for indoor positioning using smartphones to exploit spatial and temporal 

collaboration between different nodes. The term multimodal refers to different navigation aiding 
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modes, characterized by the different types of mapped features, such as metric and topological 

floorplans, Wi-Fi access-point location map, Wi-Fi radio map, or magnetic field intensity map. 

In the context of this work, however, the focus will be mostly on Wi-Fi signal strength maps 

(radio maps). Furthermore, the term collaborative refers to the interaction between different 

node, which is defined along two dimensions: spatial and temporal. The spatial collaboration 

takes place when two or more nodes are in physical proximity. In this case, the range or 

proximity information between different nodes can provide additional constraints to the 

positioning algorithm, which helps in enhancing the precision of the position estimate for each of 

the collaborating nodes. The collaboration information can also be used to initialize the position 

of different nodes. The temporal collaboration occurs through the multimodal maps. This work 

introduces an efficient map representation to facilitate sharing these maps among the population 

of navigating nodes or to a centralized node or server. 

It is crucial at this point to provide a precise definition of the term framework. Essentially, the 

term framework refers to two things: the statistical model describing the different environmental 

features and the associated algorithms–which are used to build, update, and optimize this model; 

and to the inter-node collaborative state estimation algorithm–which describes how to use the 

inter-node measurements to enhance the positioning accuracy of the collaborative nodes. Given 

the previous definition of the framework, the proposed research will investigate a single 

configuration of that framework; which defines the map representation, the mapped features, and 

the associated collaborative estimation algorithms. 
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1.3 Thesis Outline 

Figure 1–4 shows a visual overview of the thesis. The next chapter starts by describing the 

Gaussian process models in more details; then, it examines the different standalone positioning 

algorithms based on the GP models. Chapter 3 discusses the new sparse Gaussian process model 

and evaluates its effect on positioning performance. 

In Chapter 4, the UWB-based relative ranging system is introduced, and a study of the 

achievable positioning performance using this system is discussed as well. A new particle filter 

family is introduced in Chapter 5, along with the mathematical derivation of the filtering 

equations and the performance analysis of the different filters. Chapter 6 and 7 present the 

experimental results of the entire framework and the conclusions. 

 

Figure 1–4 Thesis Overview  
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Chapter Two: Gaussian Processes for Wi-Fi Fingerprinting 

This chapter starts with a background section, providing an overview of the Gaussian Process 

(GP) models. Gaussian Process is a non-parametric representation of stochastic processes, and it 

is the method of choice to represent the Wi-Fi signal strength maps in this work. The next section 

introduces the Gaussian Process concepts, focusing on GP regression. The chapter proceeds to 

provide a comparison between different covariance kernel functions, along with a brief 

discussion about different optimization algorithms for the model hyperparameters.  

The problem of position estimation using Wi-Fi fingerprinting is addressed in the following 

section; specifically, the different filtering techniques used for position estimates using the Wi-Fi 

signal strength using Gaussian Process model are discussed and compared. The section starts 

with an overview of the different kinematic models of the state. Then, the measurement update 

equations and the different filtering approaches are discussed and evaluated. 

2.1 Background: Gaussian Process Models Overview 

2.1.1 Gaussian Process Regression 

Gaussian Process (GP) models are Bayesian tools for regression and classification [117]. GP 

models are non-parametric [63], i.e. the posterior distribution of the variable of interest is 

conditioned on the training data. In contrast, in the parametric models, the output is a function of 

the model parameters; for example, a Gaussian model is parametrized by the mean and variance 

of the distribution. In this work, the training data for the GP model is composed of tuples, which 

comprises the observed target value and its corresponding position.  

For modelling Wi-Fi signal strength, the GP determines the likelihood of the signal strength 

conditioned by the position and training data, as shown in Equation (2.1): 
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𝑝( 𝑦AP𝑖
∗ |𝑥∗,  𝐃AP𝑖) (2.1) 

where 𝑦AP𝑖
∗  is the estimate of Wi-Fi received signal strength indicator (RSSI) value from access 

point 𝑖 at position 𝑥∗, and 𝐃AP𝑖 is the training dataset for the 𝑖-th access point. The training data 

𝐃AP𝑖 can be expressed by Equation (2.2): 

𝐃AP𝑖 = {(𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑁 , 𝑦𝑁)} (2.2) 

where 𝑥𝑛 is the horizontal position of the training data, 𝑥𝑛 ∈ ℝ
2, 𝑦𝑛 is the RSSI value of access 

point 𝑖 measured at a point 𝑥𝑛, 𝑦𝑛 ∈ ℝ, 𝑁 is the total number of training points, and 𝑛 ∈

{1,… ,𝑁}. 

GP models the RSSI value according to Equation (2.3): 

𝑦 = 𝑓(𝑥) + 휀 (2.3) 

where 𝑦 is the RSSI value, 𝑥 is the position, 휀 is a zero-mean Gaussian noise, and 𝑓(𝑥) is an 

unknown, latent function. This formulation does not assume a linear relation between 𝑥 and 𝑦, 

nor it assumes a Gaussian distribution of 𝑦. However, the conditional distribution of 𝑦 given 𝑥, 

𝑝(𝑦|𝑥), is Gaussian, such that: 

𝑓(𝑥) ~𝒩(m(𝑥), k(𝑥, 𝑥′)) (2.4) 

where m(𝑥) is the process mean function, and k(𝑥, 𝑥′) is the covariance function. In other 

words, Equation (2.4) defines a Gaussian distribution over the function 𝑓(𝑥), with mean m(𝑥) 

and variance k(𝑥, 𝑥′). Any realization of this function may or may not have a mean of zero; 

however, for any 𝑥, the mean of sufficiently large 𝑓(𝑥) will converge to m(𝑥) [118]. 

Figure 2–1 shows the effect of the GP prior mean function on the posterior distribution. The 

black circles indicate the locations the values of the training data used to build the RSSI map for 

a single AP, and the surface indicates the value of the mean of the posterior. Two different mean 
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functions are considered: a zero-mean function, and a constant mean function. The zero-mean 

function will drive the estimated RSSI to zero in regions with no training data available, as 

shown in Figure 2–1 (a). However, the variance of the estimated RSSI value in these regions will 

be large enough to account for the lack of training data. However, this behaviour of the mean 

function does not represent what is expected from the RSSI signal. It is expected that the RSSI 

signal will decrease as the user moves away from the AP location. One solution is to use a mean 

function that decreases with increasing the distance between the user and the AP location if the 

locations of the APs are known [119].  A simple alternative for the mean function would be a 

constant, set to a low value, resulting in a more realistic estimation of the mean for regions with 

no training data, as shown in Figure 2–1 (b). 

The covariance function or kernel function, 𝑘(𝑥𝑝, 𝑥𝑞), defines the relation between different 

function values 𝑓(𝑥𝑝) and 𝑓(𝑥𝑞). It indicates how much effect of the training data will have on 

 

(a) (b) 

Figure 2–1 Effect of GP Mean Function of the Estimated RSSI Value;  (a) zero mean 

function, (b) constant mean function. 
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the estimated values at new positions. One of the commonly used kernels is called the Radial 

Basis Function (RBF), or the Squared Exponential Kernel, defined in Equation (2.5): 

𝑘(𝑥𝑝, 𝑥𝑞) = 𝜎𝑓
2 exp (−

1

2𝑙2
|𝑥𝑝 − 𝑥𝑞|

2
) (2.5) 

To account for any noise in the training data, an additional parameter can be added to the kernel 

function as shown in Equation (2.6): 

cov(𝑦𝑝, 𝑦𝑞) = 𝑘(𝑥𝑝, 𝑥𝑞) + 𝜎𝑛
2𝛿𝑝𝑞 (2.6) 

where 𝛿𝑝𝑞 is a Kronecker delta.   

The parameter 𝜎𝑓, 𝑙, and 𝜎𝑛 are the GP hyperparameters. The term 'hyperparameters' is used to 

reassert that these are parameters to a non-parametric model [63]. The objective of learning in 

the Gaussian Process context is to find the appropriate values of these hyperparameters, given 

the available training data. 

Equation 2.6 can be extended to all 𝑁 training points, as shown in Equation (2.7): 

cov(𝐘) = 𝐾 + 𝜎𝑛
2𝐼 (2.7) 

where 𝐾 is an 𝑁 × 𝑁 matrix, where the value of each element is defined as follows, 𝐾[𝑝, 𝑞] =

𝑘(𝑥𝑝, 𝑥𝑞). Equation 2.1 can be rewritten in terms of the mean and variance functions: 

𝑝(𝑓(𝑥∗)|𝑥∗, 𝐗, 𝐘AP𝑖) = 𝒩(𝑓(𝑥
∗); 𝜇𝑥∗ , 𝜎𝑥∗

2 ) (2.8) 

where AP𝑖 refers to a specific access point, 𝐗 is the position of all training data, and 𝐘AP𝑖 is the 

values of training data for a specific access point. The mean and the variance functions are 

defined by Equations (2.9) and (2.10): 

𝜇𝑥∗ = (k
∗)𝑇(𝐾 + 𝜎𝑛

2𝐼)−1𝐘AP𝑖 (2.9) 

𝜎𝑥∗
2 = 𝑘(𝑥∗, 𝑥∗) − (k∗)𝑇(𝐾 + 𝜎𝑛

2𝐼)−1k∗ (2.10) 
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where k∗ is the covariance between 𝑥∗ and the 𝑁 training points, 𝐗. 

The kernel function is described by a set of hyperparameters, 𝜃, defined as: 

𝜃 = ⟨𝜎𝑛, 𝑙, 𝜎𝑓⟩ (2.11) 

The strength of the GP model is that it provides a value estimate–i.e. mean function–along with 

an estimate of the accuracy of the value–i.e. the variance function. It is worth noting that 

although the likelihood calculated by Equation 2.8 follows a Gaussian distribution, the mean and 

variance are functions of the training data; they are not merely constants as in regular Gaussian 

models. 

GP models have been used extensively for indoor localization [61], [120], [121]. Additionally, it 

can be used with simultaneous localization and mapping algorithms to model the Wi-Fi RSSI 

values [93]. Moreover, GP could be used to model other environmental features, such as the 

magnetic field intensity values [100], [109]. 

2.1.2 The Gaussian Process Covariance Functions 

The covariance function describes the similarity between different points in the input space, or 

how the value of the target variable at a certain point can affect the value of the target function at 

another point. Different functions can be used to quantify this similarity; some of these functions 

are described in this section. 

The characteristic feature of these covariance functions is that they are stationary; in other words, 

they are a function of the distance between different points in the input space. The following 

covariance functions depend on the Euclidian distance between points, 𝑟. Where 𝑟 is defined as: 

𝑟 = ‖𝑥 − 𝑥′‖2 (2.12) 

Different examples of the covariance functions are shown in Equations (2.13)–(2.18): 

1. Squared Exponential Covariance Functions: 
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𝑘(𝑟) = exp (−
𝑟2

2𝑙2
) (2.13) 

2. Exponential Covariance Functions: 

𝑘(𝑥𝑝, 𝑥𝑞) = exp (−
𝑟

𝑙
) (2.14) 

3. Matérn Class of Covariance Functions: 

𝑘(𝑟) =
21−ν

Γ(𝜈)
(√2𝜈

𝑟

𝑙
)
𝜈

𝐾𝜈 (√2𝜈
𝑟

𝑙
) (2.15) 

where Γ is gamma function and 𝐾𝜈 is a modified Bessel function. 

a. Matérn 3/2 Kernel 

𝑘(𝑟) = (1 + √3
𝑟

𝑙
) exp (−√3

𝑟

𝑙
) (2.16) 

b. Matérn 5/2 Kernel 

𝑘(𝑟) = (1 + √5
𝑟

𝑙
+
5

3

𝑟2

𝑙2
) exp (−√5

𝑟

𝑙
) (2.17) 

4. Rational Quadratic Covariance Functions: 

𝑘(𝑟) = (1 +
𝑟2

2𝛼𝑙2
)

−𝛼

 (2.18) 

Figure 2–2 shows the estimated Wi-Fi RSSI map for one access point using different covariance 

functions. Figure 2–2 (a) shows the mean of the RSSI values conditioned on all the training data 

for this specific access point. Figure 2–2 (b) shows the standard deviation of the estimated RSSI 

value. The first panel to the left in Figure 2–2 shows the floorplan of the mapped area, with the 

training positions shown as square points.  

The purpose of the covariance function is to specify the relation between the training set and the 

target value, or the expected value, at any new position. It is clear that the covariance function 
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selection affects the behaviour of the expected value, and therefore, the map itself. The squared 

exponential kernel is the one usually used in related publications, e.g. [93], although without 

much justification. The rest of this section will examine different kernel functions selection and 

will attempt to justify the use of the squared exponential function for the rest of this work. 

By observing the estimated values in Figure 2–2 (a), it is clear that the squared exponential 

function closely resembles the expected behaviour of the radio signal strength. The difference 

between the different maps can be explained by noting the behaviour of the trained kernel 

function in Figure 2–3. The Rational quadratic kernel and the Exponential kernel are nearly 

constant over a large distance, that is attributed to the large characteristic length-scale [63], 

resulting from training the model. In contrast, the value of Matérn kernels drops more quickly. 

Another method to evaluate the trained model, and the kernel selection, is by using the K-fold 

cross-validation method [50]. In this method, the training data is divided into K parts of nearly 

equal sizes. One of the parts is left out of the training data, and the model is trained using the rest 

of the data. Then, the model is evaluated using the left part. This process is repeated for K times 

so that the model is evaluated using each of the K parts. The cross-validation error of the model 

is the average of the errors from each of the K iterations. 

Table 2–1 shows the estimated standard deviation of the Gaussian process trained using the full 

training set for each kernel function. Table 2–2 shows the RMS error from the K-fold cross-

validation of one of the access points RSSI maps. In this case, the K-folds are taken from all the 

available data. Table 2–3 shows the RMSE for one access point map, trained using the full 

training data and evaluated using the full training data.  
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(a) 

 

(b) 

Figure 2–2 Wi-Fi RSSI map using different covariance functions; (a) mean (dBm), (b) 

Standard deviation (dBm) 
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Table 2–4 shows the average weighted error across all the trained maps. In this case, the K-fold 

are taking with respect to the training positions. The weighted RMSE is evaluated using 

Equation (2.19). 

𝑤𝑟𝑚𝑠𝑒 =∑(
1

𝜎𝑖
√(𝑦𝑖 − 𝜇𝑖)𝑇(𝑦𝑖 − 𝜇𝑖))

𝑖

 (2.19) 

where 𝑤𝑟𝑚𝑠𝑒 is the weighted root-mean-squared error, 𝑖 refers to the 𝑖-th AP map, 𝑦𝑖 is the 

RSSI values vector at the test locations, 𝜇𝑖 is the estimated mean of the RSSI value, and 𝜎𝑖 is the 

estimated standard deviation of the RSSI value measurements. 

Across all the error measures used to evaluate the different covariance functions, the error of the 

squared exponential kernel is larger than the other kernel. This behaviour can be attributed to the 

more significant standard deviation of the squared exponential kernel, as shown in Table 2–1. 

This experiment shows that the exponential, Matérn and rational quadratic kernels tend to be 

overfitted to the training data, resulting in lower RMSE in the different evaluation scenarios. 

 

Figure 2–3 Trained covariance functions (kernels) 
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Given the previous discussion, the squared exponential kernel appears to be more suitable to the 

Wi-Fi RSSI training data. It estimates a higher process noise and a moderate length-scale. As a 

result, the squared exponential kernel is used throughout this work. 

 

Table 2–1 Estimated of the standard deviation of the Gaussian process (dBm) 

Covariance Function STD 

Squared Exponential 5.07 

Exponential 2.57 

Matérn 3/2 2.57 

Matérn 5/2 2.56 

Rational Quadratic 2.56 

 

Table 2–2 RMSE from a sample map, using K-fold cross-validation (dBm) 

Covariance Function RMSE 

Squared Exponential 4.10 

Exponential 3.06 

Matérn 3/2 3.60 

Matérn 5/2 4.16 

Rational Quadratic 3.04 

 

Table 2–3 RMSE from a sample AP map, using all the training data (dBm) 

Covariance Function RMSE 

Squared Exponential 4.88 

Exponential 2.22 

Matérn 3/2 2.23 

Matérn 5/2 2.22 

Rational Quadratic 2.21 
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Table 2–4 Weighted-RMSE from all APs maps, using K-fold cross-validation 

Covariance Function Weighted RMSE 

Squared Exponential 1.36 

Exponential 1.05 

Matérn 3/2 1.27 

Matérn 5/2 1.35 

Rational Quadratic 1.04 

 

2.1.3 Hyperparameters Optimization Algorithms 

When the training data is available, the value of the hyperparameters can be determined by 

minimizing the negative-log likelihood function, given by: 

ℒ= −log 𝑝(𝐘|𝐗, 𝜃) (2.20) 

ℒ =
1

2
𝑦𝑇(𝐾 + 𝜎𝑛

2𝐼)−1𝑦 +
1

2
log|𝐾 + 𝜎𝑛

2𝐼| +
𝑛

2
log 2𝜋 (2.21) 

This is a non-linear optimization problem, which could be solved using any nonlinear 

optimization algorithm, including the conjugate gradient descent algorithm, or any quasi-Newton 

methods such as the symmetric-rank-one (SR1) or the limited-memory BFGS (LBFGS) [122]. 

To do that, the gradient of the cost function, ℒ, with respect to the hyperparameters, 𝜃, should be 

calculated, as shown in Equation (2.22): 

𝜕ℒ

𝜕𝜃𝑗
=
1

2
trace ((𝐾−1 − (𝐾−1𝑦)(𝐾−1𝑦)𝑇)

𝜕𝐾

𝜕𝜃𝑗
) (2.22) 

Using a Radial Basis Function (RBF), expressed in Equation (2.5), with hyperparameters from 

Equation (2.11), the derivatives of kernel function with respect to each of the hyperparameters, 

𝜃𝑗 , are given by Equations (2.23), (2.24), and (2.25): 
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𝜕𝐾[𝑝,𝑞]

𝜕𝜎𝑓
= 2𝜎𝑓 exp(−

1

2
(
‖x𝑝 − 𝑥𝑞‖2

𝑙
)

2

) 

𝜕𝐾[𝑝,𝑞]

𝜕𝑙
= 𝜎𝑓

2 exp(−
1

2
(
‖𝑥𝑝 − 𝑥𝑞‖2

𝑙
)

2

) ×(
‖𝑥𝑝 − 𝑥𝑞‖2

2

𝑙3
) 

𝜕𝐾[𝑝,𝑞]

𝜕𝜎𝑛
= 2𝜎𝑛𝛿𝑝𝑞 

(2.23) 

(2.24) 

(2.25) 

The hyperparameters and the training data fully define the Gaussian Process model. 

2.2 Gaussian Process Based Filter Architectures 

This section investigates different filter architectures for indoor positioning using Wi-Fi received 

signal strength indicator (RSSI), modelled as Gaussian Process. Different filter architectures are 

implemented to assess the complexity of using GP for indoor positioning, and their performance 

and computational complexity are evaluated. The filter architecture can be divided into two 

components: the kinematic model, and the measurement update stage. Two different kinematic 

models are presented using 2-D and 3-D state vectors. The measurement update stage is 

implemented using Extended Kalman Filter (EKF), Unscented Kalman Filter (UKF), and 

Particle Filter (PF). Additionally, to reduce the computational burden of evaluating the GP, the 

effect of using a reduced version of the GP training data set will be investigated. 

Three evaluation criteria are used to compare the different architectures: positioning accuracy, 

computation complexity, and convergence behaviour. First, the positioning accuracy of the 

proposed filters is evaluated against a reference trajectory. The computation complexity of 

different filters is evaluated using the simulation run-time. Finally, the convergence behaviour of 

the different filters is discussed. 
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Section 2.2.1 introduces two different kinematic models that could be used to update the state of 

the system in the absence of external measurements updates. Section 2.2.2 introduces the 

different filter architectures evaluated in this chapter. The simulation environment and the results 

are presented in Section 2.2.3. 

2.2.1 Kinematic Modeling 

This section reviews two different kinematic models for the mobile nodes, which will be used in 

the time-update section of the localization filters. Two different approaches are presented: full 

mechanization equations, and the pedestrian dead-reckoning approach. 

2.2.1.1 Full Mechanization Equations 

The standard mechanization equations are used for the kinematic modelling of inertial navigation 

systems (INS) [123]–[125]. In this formulation, the position, velocity, and orientation of the 

mobile node are represented by Equations (2.26), (2.27), and (2.28): 

𝑟 �̇� = [
�̇�

�̇�
ℎ̇

] = [

0 (𝑅𝑀 + ℎ)
−1 0

((𝑅𝑁 + ℎ) cos𝜙)
−1

0 0

0 0 1

] [

𝑣𝑒
𝑣𝑛
𝑣𝑢
] = 𝐷−1𝑉𝑙 

�̇�𝑙 = 𝑅𝑏
𝑙 𝑓𝑏 − (2Ω𝑖𝑒

𝑙 + Ω𝑒𝑙
𝑙 )𝑉𝑙 + 𝑔𝑙 

�̇�𝑏
𝑙 = 𝑅𝑏

𝑙 (Ω𝑖𝑏
𝑏 − Ω𝑖𝑙

𝑏 ) 

(2.26) 

(2.27) 

(2.28) 

where 𝜙, 𝜆, ℎ is the latitude, longitude, and height of the node; 𝑉𝑙 is the velocity vector in the 

local-level frame; 𝑣𝑒, 𝑣𝑛, 𝑣𝑢 is the node velocity in east, north, and up directions, respectively; 

𝑅𝑏
𝑙  is the rotation matrix from the body frame to the local-level frame; 𝑅𝑚, 𝑅𝑛 are the two 

principal radii of curvature of the earth; 𝑔𝑙 is the normal gravity vector; 𝑓𝑏 is the specific force 

measured in the body frame; and Ω𝑖𝑏
𝑏  is the skew-symmetric angular rate measured in the body 

frame.  
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The error state in the three-dimensional state vector case can be represented by perturbing the 

system propagation matrix defined by Equations (2.26), (2.27), and (2.28), around the most 

recent state estimate. The error state is given by the following equations [124]: 

[
𝛿�̇�

𝛿�̇�
𝛿ℎ̇

] = [

0 (𝑅𝑀 + ℎ)
−1 0

((𝑅𝑁 + ℎ) cos𝜙)
−1

0 0

0 0 1

] [

𝛿𝑣𝑒
𝛿𝑣𝑛
𝛿𝑣𝑢

] 

[

𝛿�̇�𝑒
𝛿�̇�𝑛
𝛿�̇�𝑢

] = [

0 𝑓𝑢 −𝑓𝑛
−𝑓𝑢 0 𝑓𝑒
𝑓𝑛 −𝑓𝑒 0

] [
𝛿𝑝
𝛿𝑟
𝛿𝑦
] 

[
𝛿�̇�
𝛿�̇�
𝛿�̇�
] = [

0 (𝑅𝑀 + ℎ)
−1 0

−(𝑅𝑁 + ℎ)
−1 0 0

− tan𝜙 (𝑅𝑁 + ℎ)⁄ 0 0

] [

𝛿𝑣𝑒
𝛿𝑣𝑛
𝛿𝑣𝑢

] 

(2.29) 

(2.30) 

(2.31) 

The state errors are evaluated using measurement update or using motion constraints [126]. 

2.2.1.2 Pedestrian Dead-Reckoning 

Pedestrian dead-reckoning (PDR) is a technique to calculate the position in two-dimensional 

spaces by detecting and accumulating the steps of the mobile node. Generally, the PDR 

algorithm is divided into two parts: step detection and position update. The step detection uses 

the vertical acceleration component and utilizes the Equation (2.32) to calculate the step length 

[127]: 

𝑆𝑆𝐿 = √𝑑2
4 × 𝐾 (2.32) 

where 𝐾 is a step scaling constant, and 𝑑2 is the difference between the peak and the valley of 

the upward acceleration, as shown in Figure 2–4, where the y-axis is the magnitude of the 

vertical acceleration, and the x-axis is the sample number in the processing buffer. 
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A step is detected when all the criteria defined in Table 2–5 are met. These criteria are set to 

ensure proper spacing between consecutive peaks and to ensure the selection of the prominent 

peak in the current search window.  

Table 2–5 Step Detection Criteria 

A step is detected if all the following conditions are met 

d1 > Min. Peak Value 

d2 > Min. Peak Difference 

d3 > Min. Peak Difference 

t1 > Min. Peak Distance 

t2 < Min. Peak Distance 

 

The full state of each node is the horizontal position (latitude and longitude) and the orientation 

of the mobile node (rotation quaternion), as shown in Equation (2.33): 

𝑥𝑘 = [𝜙𝑘 𝜆𝑘 𝑞𝑏
𝑙
𝑘] (2.33) 

where 𝑥 is the state vector, 𝜙 and 𝜆 is the node position, 𝑞𝑏
𝑙  is the rotation quaternion, and 𝑘 is 

the current time step. 

The state transition equation in the local-level frame is given by the Equation (2.34): 

 

Figure 2–4 Step Detection 
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[

𝜙𝑘+1 
𝜆𝑘+1
𝑞𝑏
𝑙
𝑘+1

] =

[
 
 
 
 
 
 𝜙𝑘 +

𝑆𝐿𝑘 × cos(𝐴)

(𝑅𝑚 + ℎ)

𝜆𝑘 +
𝑆𝐿𝑘 × sin(𝐴)

(𝑅𝑛 + ℎ) × cos(𝜙)

𝑞𝑏
𝑙
𝑘 +

1

2
(�̅�× × 𝑞𝑏

𝑙
𝑘 × 𝛿𝑡)]

 
 
 
 
 
 

 (2.34) 

where 𝑆𝐿𝑘 is the step length given by equation (2.32), ℎ is the height of the mobile node, which 

is kept constant, 𝐴 is the heading angle, 𝛿𝑡 is the time step, and �̅�× is the skew-symmetric matrix 

of the augmented rotation vector. The error state is modelled as the error in the east and north 

position and the heading error, Equation (2.35). 

𝛿𝑥𝑘 = [𝛿𝐸𝑘 𝛿𝑁𝑘 𝛿𝐴𝑘]
𝑇 (2.35) 

Linearizing the state propagation model will result in the error state transition matrix, shown in 

Equation (2.36). 

[

𝛿𝐸𝑘+1 
𝛿𝑁𝑘+1
𝛿𝐴𝑘+1

] = [

𝛿𝐸𝑘 + 𝑆𝐿𝑘 cos(𝐴𝑘) 𝛿𝐴𝑘
𝛿𝑁𝑘 − 𝑆𝐿𝑘 sin(𝐴𝑘) 𝛿𝐴𝑘

𝛿𝐴𝑘

] (2.36) 

2.2.2 Positioning Filter Architectures 

This section describes the different filtering approaches used for indoor localization using RSSI 

modelled using Gaussian Process models. It gives a brief overview of the filtering algorithm and 

shows the detailed measurement update equations for Wi-Fi RSSI updates. 

2.2.2.1 Extended Kalman Filter  

Kalman filter is an optimal state estimation algorithm that minimizes the root-mean-square error 

of linear systems with zero-mean noise. However, if the system is non-linear, there are several 

suboptimal approximations to the Kalman filter. One of the simplest approximations is the 

Extended Kalman filter (EKF) [128], [129]. In EKF, the probability density function (PDF) of 
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the state is propagated using one point, i.e. the mean of the PDF. The general form of the system 

and the measurements equations are given by Equations (2.37) and (2.38): 

𝑥𝑘 = 𝑓(𝑥𝑘−1, 𝑣𝑘) (2.37) 

𝑦𝑘 = ℎ(𝑥𝑘, 𝑤𝑘) (2.38) 

where 𝑣𝑘~𝒩(0, 𝑄𝑘) is a zero-mean Gaussian process noise with variance 𝑄𝑘, while 

𝑤𝑘~𝒩(0, 𝑅𝑘) is the measurement noise. An overview of the extended Kalman filter algorithm is 

described by Algorithm 2–1. 

ALGORITHM 2–1 EKF TIME UPDATE AND MEASUREMENT UPDATE ALGORITHM 

1. The non-linear system equation is linearized around the most recent estimate of the state 

vector (�̂�𝑘−1
+ ). 

𝐹𝑘 =
𝜕𝑓

𝜕𝑥
|
𝑥=�̂�𝑘−1

+
 (2.39) 

𝐺𝑘 =
𝜕𝑓

𝜕𝑣
|
𝑥=�̂�𝑘−1

+
 (2.40) 

2. The prior state estimate and the prior covariance matrix are calculated using the non-linear 

system model, and the linearized system model. 

�̂�𝑘
− = 𝑓(�̂�𝑘−1) (2.41) 

𝑃𝑘
− = 𝐹𝑘𝑃𝑘−1

+ 𝐹𝑘
𝑇 + 𝐺𝑘𝑄𝑘−1𝐺𝑘

𝑇 (2.42) 

3. When a new measurement is available, the measurement equation is linearized around the 

prior state estimate–the best available estimate of the state at this point. 

𝐻𝑘 =
𝜕ℎ

𝜕𝑥
|
𝑥=�̂�𝑘

−
 (2.43) 

𝑀𝑘 =
𝜕ℎ

𝜕𝑤
|
𝑥=�̂�𝑘

−
 (2.44) 
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4. The Kalman gain is calculated, and the updated state estimate along with the state covariance 

are calculated according to the following equations. 

𝐾𝑘 = 𝑃𝑘
−𝐻𝑘

𝑇(𝐻𝑘𝑃𝑘
−𝐻𝑘

𝑇 +𝑀𝑘𝑅𝑘𝑀𝑘
𝑇)−1 

�̂�𝑘
+ = �̂�𝑘

− + 𝐾𝑘(𝑦𝑘 − ℎ(�̂�𝑘
−)) 

𝑃𝑘
+ = (𝐼 − 𝐾𝑘𝐻𝑘)𝑃𝑘

− 

(2.45) 

(2.46) 

(2.47) 

5. Repeat from step 1. 

 

The measurement equation for the GP based Wi-Fi estimation is equal to the mean of the 

likelihood function expression, given by Equation 2.9. In this case: 

ℎ(𝑥𝑘) = 𝜇𝑥𝑘  (2.48) 

The linearization of the measurement equation around 𝑥𝑘 is given by the Equations (2.49), 

(2.50), and (2.51): 

𝐻𝑘 =
𝜕

𝜕𝑥
(k𝑇(𝐾 + 𝜎𝑛

2𝐼)−1𝐘)|
𝑥=�̂�𝑘

−
 (2.49) 

𝐻𝑘 = (
𝜕

𝜕𝑥
k|
𝑥=�̂�𝑘

−
)

𝑇

× (𝐾 + 𝜎𝑛
2𝐼)−1𝐘 (2.50) 

𝜕

𝜕𝑥
k|
𝑥=�̂�𝑘

−
=
1

𝑙2

[
 
 
 
 
𝑘𝑥,𝑥0(𝑥0 − 𝑥)

⋮
𝑘𝑥,𝑥𝑚(𝑥𝑚 − 𝑥)

⋮
𝑘𝑥,𝑥𝑀(𝑥𝑀 − 𝑥)]

 
 
 
 

𝑥=�̂�𝑘
−

 (2.51) 

Note that in the previous equations, 𝐾 and 𝐘 do not depend on 𝑥. They are both function only of 

the training data. 
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2.2.2.2 Unscented Kalman Filter 

The Unscented Kalman Filter (UKF) differs from EKF in the state PDF propagation method. In 

UKF the state propagation occurs using multiple points, called sigma points, instead of only one 

in EKF case. The estimated state is computed as a weighted sum of these sigma points [130], 

[131]. 

In order to reduce the run-time of the UKF, the measurement update is implemented using the 

UKF algorithm, while the state update is done using the linearized version, similar to the EKF 

algorithm. The implemented UKF algorithm for performing the measurement update against the 

GP map is summarized in Algorithm 2–2. 

ALGORITHM 2–2 UKF MEASUREMENT UPDATE ALGORITHM 

1. The state update is performed similarly to the EKF; Algorithm 2–1, steps 1-2. 

2. When a new measurement is available, calculate sigma points: 

𝜒0|𝑘+1 = �̂�𝑘+1
−  

𝜒𝑖|𝑘+1 = �̂�𝑘+1
− + (√(𝑁 + 𝜆)�̂�𝑘+1)

𝑖

𝑖 = 1,… ,𝑁 

𝜒𝑖|𝑘+1 = �̂�𝑘+1
− − (√(𝑁 + 𝜆)�̂�𝑘+1)

𝑖−𝑁

𝑖 = 𝑁 + 1,… ,2𝑁 

(2.52) 

𝛾 =  √𝑁 + 𝜆 (2.53) 

𝜆 = 𝛼2(𝑁 + 𝜅) − 𝑁 (2.54) 

where 𝑁 is the number of states, and 𝜅, 𝛼 are parameters that control the spread of the sigma 

points around the mean of the state estimate. 

3. Evaluate the expected Wi-Fi RSSI value and its variance using the GP model, using Equation 

(2.48), for each sigma point 𝑖: 
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𝑍𝑘+1
[𝑖] = ℎ (𝜒𝑘+1

[𝑖] ) (2.55) 

4. Evaluate the weights of each point: 

𝑤𝑚
0 =

λ

𝐿 + 𝜆
 

𝑤𝑐
0 =

𝜆

𝐿 + 𝜆
+ (1 − 𝛼2 + 𝛽) 

𝑤𝑚
𝑖 = 𝑤𝑐

𝑖 =
1

2(𝐿 + 𝜆)
𝑖 = 1,… ,2𝑁 

(2.56) 

(2.57) 

(2.58) 

where 𝛽 is a parameter related to the distribution of the variable 𝑥, for a Gaussian 

distribution, the optimal value of 𝛽 is 2 [130]. 

5. Calculate predicted measurement: 

�̂�𝑘+1 =∑𝑤𝑚
[𝑖]𝑍𝑘+1

[𝑖]

2𝑁

𝑖=0

 (2.59) 

6. Calculate measurement covariance and the measurement and state cross-correlation: 

𝑃𝑘+1
𝑧𝑧 = (∑𝑤𝑐

[𝑖] (𝑍𝑘+1
[𝑖] − �̂�𝑘+1) (𝑍𝑘+1

[𝑖] − �̂�𝑘+1)
𝑇

2𝑁

𝑖=0

) + 𝑅𝑘+1 

𝑃𝑘+1
𝑥𝑧 =∑𝑤𝑐

[𝑖] (𝜒𝑘+1
[𝑖] ) (𝑍𝑘+1

[𝑖] − �̂�𝑘+1)
𝑇

2𝑛

𝑖=0

 

(2.60) 

(2.61) 

7. Evaluate Kalman gain and update the state estimate along with the state covariance: 

𝐾 = 𝑃𝑘+1
𝑥𝑧 (𝑃𝑘+1

𝑧𝑧 )−1 

�̂�𝑘+1
+ = �̂�𝑘+1

− + 𝐾(𝑧𝑘+1 − �̂�𝑘+1) 

𝑃𝑘+1 = �̂�𝑘+1 − 𝐾𝑃𝑘+1
𝑧𝑧 𝐾𝑇 

(2.62) 

(2.63) 

(2.64) 

8. Repeat from step 1. 
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2.2.2.3 Particle Filter 

The particle filter (PF) is a non-linear state estimator; but, unlike the EKF and UKF, it uses the 

full non-linear system and measurement model, not just a first-order approximation such as the 

EKF, or a higher-order approximation such as the UKF. The PF approximates the posterior 

distribution of the state by a weighted set of particles [129], [132]. 

Initialization of the particle filter is done by sampling 𝑀 equally weighted particles from the 

known prior distribution of the particles 𝑝(𝑥0). The weights of the particles are updated based on 

the external measurement likelihood at each particle. Algorithm 2–3 gives an overview of a 

simple version of the particle filter algorithm. 

ALGORITHM 2–3 PARTICLE FILTER ALGORITHM 

1. At 𝑘 = 0, initialize 𝑀 particles and their weights. The initial particles are sampled from the 

prior distribution 𝑝(𝑥0). At initialization, the weights of all particles are equal. 

𝑥1,𝑖
+  ~ 𝑝(𝑥0) (2.65) 

𝑤1,𝑖 =
1

𝑀
 (2.66) 

2. For all next iterations, 𝑘 > 1, sample 𝑣𝑘,𝑖 for 𝑀 times from the system noise distribution and 

perform the time update using the non-linear system model: 

𝑣𝑘,𝑖~𝒩(0, 𝑄𝑘) (2.67) 

𝑥𝑘,𝑖
− = 𝑓(𝑥𝑘−1,𝑖

+ , 𝑣𝑘,𝑖) (2.68) 

3. When a new measurement is available, update the weights of the particles, according to the 

likelihood of observing the new measurements given each particle location: 

𝑤𝑘,𝑖 =
(𝑤𝑘−1,𝑖𝑝(𝑦𝑘|𝑥𝑘,𝑖))

(∑ 𝑤𝑘−1,𝑖𝑝(𝑦𝑘|𝑥𝑘,𝑖)
𝑀

𝑖=1
)
 (2.69) 
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4. The weighted particles approximate the posterior PDF, according to: 

�̂�(𝑥𝑘|𝑦𝑘) =∑𝑤𝑘,𝑖𝛿(𝑥𝑘, 𝑥𝑘,𝑖)

𝑀

𝑖=1

 (2.70) 

5. The estimated state could be approximated as the mean of the particles: 

�̂�𝑘 ≈∑𝑤𝑘,𝑖𝑥𝑘

𝑀

𝑖=1

 (2.71) 

6. Calculate the effective number of samples, 𝑀𝑒𝑓𝑓: 

𝑀𝑒𝑓𝑓 =
1

∑ (𝑤𝑘,𝑖)
2𝑀

𝑖=1

 
(2.72) 

7. If the effective number of samples is less than a certain threshold, 𝑀𝑡ℎ, resample the particles 

from the approximate distribution. The resampling is done by taking 𝑀 samples with 

replacement from the set of particles {𝑥𝑘,𝑖, 𝑤𝑘,𝑖} to produce {𝑥𝑘,𝑖, 1 𝑀⁄ }. 

8. Repeat starting from step 2. 

 

The resampling step is performed to overcome the particle depletion problem, where the weight 

of most of the particles tends to zero, so they do not contribute to the posterior distribution. In 

this case, the number of effective particles, that describes the state PDF is small. Resampling 

generates particles according to the estimated posterior distribution. 

2.2.3 Experimental Results 

The performance of the different filters is evaluated with data collected using a smartphone, in 

one of the buildings at the University of Calgary. The data is collected using a smartphone held 

steadily by the user to maintain the relative orientation between the smartphone and the user. The 
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ground-truth trajectory and the Wi-Fi reference map are calculated and used to evaluate the 

performance of the proposed filter architectures. The total length of the trajectory is 270 m, and 

the duration of the trajectory is 7 minutes. The testing area is located on the third floor of the 

CCIT building at the University of Calgary. The floorplan of the testing area is shown in Figure 

2–5 (a). The mean and variance of one instance of the Wi-Fi RSSI map is shown in Figure 2–5 

(b) and (c).  

 
(a) (b) (c) 

Figure 2–5 Reference Map: (a) floorplan, (b) mean of Wi-Fi RSSI map for one access point, 

(c) the variance of the Wi-Fi AP RSSI map 

The system models are evaluated first, then the performance of the filters is evaluated according 

to the localization accuracy, the run-time, and convergence characteristics of the filter. 
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2.2.3.1 Reference Trajectories Generation 

The reference trajectory of this experiment is along the centre line of the corridors travelled by 

the mobile node, as shown in Figure 2–7 (a). It is clear that the trajectory is composed of 

straight-line segments with sharp rotations between consecutive segments. However, this 

definition of the reference is missing the time information, needed to compare between the 

reference and the estimated trajectory. The temporal information of the reference trajectory is 

generated by performing a piecewise two-dimensional similarity transformation of the PDR 

trajectory, to align the time-stamped PDR trajectory with the known trajectory; thus, providing 

the needed time component to each point on the reference trajectory.  

Figure 2–6 shows the transformation of three sample segments to establish the time 

correspondence between the PDR trajectories and the reference trajectories. The time inside a 

 

Figure 2–6 Reference trajectory generation 
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single segment is synchronized in two stages: using the steps detection time; then, in between 

steps, the time is linearly interpolated. 

2.2.3.2 System Models Performance 

Figure 2–7 (a) shows the reference trajectory, the PDR trajectory, and the mechanization 

trajectory. It is clear that the error from the mechanization equation is increasing with large rate. 

Additional constraints could be used to enhance the performance of the mechanization equation, 

including using PDR system models [126]. However, for the rest of this section, only the PDR 

system model will be used to evaluate the performance of the different filter architectures. 

2.2.3.3 Localization Filter Performance 

Figure 2–7 (b) shows the trajectories generated using different filters, with different settings for 

the Wi-Fi map. This section compares the performance of the EKF, UKF, and particle filters, 

using a different number of training points in the map; this will be referred to as a full map, a 

half-map, a third-map, and a quarter-map. These settings are denoted as FM, 1/2M, 1/3M, and 

1/4M, respectively. The map reduction is achieved by dropping a point each two, three or four 

points from the complete training data set; and since the training data is collected sequentially, 

dropping points will not result in losing much information from the Wi-Fi map. There are two 

versions of the particle filter, one uses 50 particles to approximate the posterior distribution, 

while the other uses 25 particles. 

The cumulative distribution function (CDF) of the position error is shown in Figure 2–8. Also, 

the value of the mean, RMS, and maximum error in position along with the run time of each 

filter are shown in Figure 2–9 and in Table 2–6. The EKF and UKF can achieve similar 

positioning errors between 2.4 m to 2.8 m (RMS) while having very similar run times. The two 

particle filters can achieve positioning accuracy up to 1.5 m, with more processing time. 
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The effect of changing the map size is not significant on the positioning accuracy or on the total 

run time. The first observation can be explained by the fact that consecutive training points are 

correlated and dropping a few of them will not significantly affect the accuracy of the Wi-Fi 

map. Decreasing the map size results in decreasing the processing time; however, this decrease is 

not significant as expected with the 𝒪(𝑁3) complexity. This can be explained by the overhead in 

the algorithm computation and control code, which dominates the execution time. 

  

(a) (b) 

Figure 2–7 Trajectories: (a) reference and system model, (b) state estimates 
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2.2.3.4 Filter Convergence Characteristics  

In all simulations shown earlier the initial state of the different filters was assumed to be known 

within 1~2 m. Figure 2–10 shows the position error when the initial value is not known. In the 

EKF and UKF filters, this is achieved by setting the initial position to the map middle and 

increase the initial state covariance matrix. In the particle filter, this is done by choosing a 

uniform prior over the map area for the filter states. 

The particle filter can converge to its regular error levels within a few seconds of operation; after 

the first measurement update, the particle filter estimate was near the correct trajectory. On the 

other hand, EKF and UKF were able to estimate the correct trajectory eventually; however, it 

took them multiple measurements updates to converge to the correct estimation. 

 

Table 2–6 Position Error and Run-Time 

Filter Map 
Position Error (m) 

Time (s) 
MEAN RMS MAX 

PDR - 5.7 6.5 12.5 - - 

EKF2D  100% 2.1 2.5 8.0 103 100% 

EKF2D  50% 2.1 2.6 8.2 101 98% 

EKF2D  33% 2.1 2.6 8.9 100 97% 

EKF2D  25% 2.3 2.8 8.8 102 99% 

UKF2D  100% 2.1 2.4 6.8 133 129% 

UKF2D  50% 2.1 2.4 7.4 124 120% 

UKF2D  33% 2.2 2.6 7.1 121 117% 

UKF2D  25% 2.2 2.6 8.5 120 116% 

PF2D 25P  100% 1.6 1.9 5.6 395 382% 

PF2D 25P  50% 1.6 1.8 4.8 361 349% 

PF2D 25P  33% 1.6 1.9 5.1 351 340% 

PF2D 25P  25% 1.5 1.7 4.0 346 335% 

PF2D 50P  100% 1.3 1.6 4.2 600 581% 

PF2D 50P  50% 1.4 1.6 4.0 538 520% 

PF2D 50P  33% 1.3 1.5 3.6 517 501% 

PF2D 50P  25% 1.3 1.5 4.4 507 491% 
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Figure 2–8 Position Error CDF 

2.3 Summary 

This chapter presented an overview of the Gaussian process models, their use for regression, the 

different kernel functions that can be used to code the relation between the different points in the 

input space of the model, and the different optimization approaches that can be used to find the 

hyperparameters of the Gaussian process model. 

The chapter then addressed the problem of positioning using environmental feature maps built 

using the Gaussian process models. Different kinematic models and measurement update 

formulations were implemented and evaluated. The positioning performance, the execution time, 

and the convergence characteristics for each filter were evaluated and compared. 

This chapter defines the first component of the proposed framework: the standalone positioning 

filter. It describes the internal states of each node, the supported class of observables, and the 

state update algorithm for each node. 
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Figure 2–9 Position Error and Run-Time 

 

 

Figure 2–10 Position Error Convergence 
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Chapter Three: Efficient Wi-Fi Fingerprints Map 

This chapter starts by providing a brief overview of different Gaussian process sparsification 

algorithms. The following section introduces a new sparsification algorithm for Gaussian process 

models, named the parametric grid sparse Gaussian process model. In this algorithm, the target 

values of a set of pseudo-input data, defined over a subset of a parametric grid, are selected and 

optimized to represent the whole Gaussian process model using fewer training points. The details 

of the algorithm, along with the performance evaluation, in terms of positioning performance and 

computational complexity reduction, are presented and discussed. 

3.1 Background: Sparse Gaussian Process Overview 

The computation complexity of using a GP model to estimate the target value at a new input 

point is dominated by the calculation of the covariance matrix inverse, 𝐾−1, which is an 𝑁 ×𝑁 

matrix, where 𝑁 is the size of the training dataset. The computation complexity of the matrix 

inverse operation is in the order of 𝒪(𝑁3), while the most efficient algorithm can achieve 

𝒪(𝑁2.3727) complexity [133]. The complexity reduction of GP-based regression has motivated 

the effort to find an approximation to the full Gaussian process model [63]. Another equally 

important factor when using GP for indoor positioning application is the storage limitation and 

the bandwidth constraints imposed by using a mobile device. As a result, one of the main 

objectives of the proposed GP sparsification algorithm is to decrease the size of the transmitted 

dataset from a remote server to the mobile devices. 

The different GP approximations can be divided into two main categories: covariance matrix 

approximation and the likelihood function approximation [63], [134]–[137]. The likelihood 

function approximation is further divided into the fully independent training conditional (FITC) 

approximation and the deterministic training conditional (DTC) approximation. In the DTC 
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approach, a representative subset of the training dataset is used; in addition to several algorithms 

for the insertion and deletion of training points to the representative data subset. On the other 

hand, the FITC approach uses a set of virtual inputs, and optimize the location of these inputs 

along with the model hyperparameters and the target value at the location of the virtual inputs 

[134]. 

The sparse GP approach is used for target tracking [138], where a fixed grid based recursive GP 

algorithm is introduced. In this algorithm, the posterior distribution is evaluated locally over a 

fixed grid; then, a global map is built by fusing the local maps in a centralized data center. The 

main difference between this algorithm and the one presented in this work is that the grid in the 

proposed approach is not fixed. Instead, it is parametrized to offer more flexibility in the pseudo-

point selection. 

3.2 Parametric Grid Sparse Gaussian Process Model 

This section proposes and evaluates a new algorithm to increase the computation and storage 

efficiency and to reduce the bandwidth requirements of the Wi-Fi received signal strength 

indicator (RSSI) maps based on Gaussian process (GP) models. The GP models are non-

parametric models, in which the likelihood of the target variable is conditioned on a set of 

training data. The Parametric Grid Sparse GP (PGSGP) algorithm objective is to improve the 

efficiency of using GP maps. The PGSGP reduces the complexity of evaluating the likelihood 

function, by reducing the number of points in the training dataset, without significant loss of the 

mapping or positioning accuracy. This reduction is achieved by finding a set of pseudo-inputs 

arranged over a parametric grid, then optimizing the corresponding target values and the GP 

model hyperparameters to maximize the likelihood function of observing the actual training 

dataset. 
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Section 3.2.1 starts by discussing the details of GP optimization based on pseudo-input. Section 

1.2.2 outlines the proposed sparsification algorithm. Finally, section 3.3 presents the simulation 

environment and discusses the results. 

3.2.1 Pseudo-Input Gaussian Process 

The objective of the sparsification algorithm is to find a set of pseudo-inputs and their 

corresponding target values that maximize the joint likelihood function of the RSSI values 

observed at the location of the training points. In order to accomplish that goal, the likelihood 

function of each of the training point is expressed in terms of the pseudo-inputs set. Then, the 

joint likelihood function of the entire training set is evaluated. Finally, the negative log-

likelihood function is optimized to obtain the GP hyperparameters along with the pseudo-inputs 

position and target values. The likelihood function of a single training point, given a set of 

pseudo-inputs and targets, is given by Equation (3.1) [134]. 

𝑝(𝑦|𝑥, 𝜃, �̅�, 𝐟)̅ = 𝒩(𝑦|k𝑥
𝑇K𝑀

−1𝐟,̅ 𝐾𝑥𝑥 − k𝑥
𝑇K𝑀

−1k𝑥 + 𝜎
2) (3.1) 

where �̅� ∈ ℝ𝑀×2 is the pseudo-input set, and 𝐟̅ ∈ ℝ𝑀×1 is the pseudo-target set. 

[k𝑥]𝑚 = 𝑘(�̅�𝑚, 𝑥) (3.2) 

[K𝑀]𝑚𝑚′ = 𝑘(�̅�𝑚, �̅�𝑚′) (3.3) 

where 𝑚 = 1,… ,𝑀, and 𝑘(𝑥, 𝑥′) is the covariance function.  

The training inputs are independent, so the likelihood function of the 𝑁-points training dataset is 

the product of the individual points likelihood functions: 

𝑝(𝐲|𝐗, 𝜃, �̅�, 𝐟)̅ =∏𝑝(𝑦𝑛|𝑥𝑛, 𝜃, �̅�, 𝐟)̅

𝑁

𝑛=1

 

= 𝒩(𝐲|K𝑁𝑀K𝑀
−1𝐟,̅ 𝚲 + 𝜎2𝐈) (3.4) 
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where 𝐗 ∈ ℝ𝑁×2 is the position of the training dataset, and 𝐲 ∈ ℝ𝑁×1 is the training target 

values. 

[K𝑁𝑀]𝑛𝑚 = 𝑘(𝑥𝑛, �̅�𝑚) (3.5) 

𝚲 = diag(𝜆) (3.6) 

[𝜆]𝑛 = 𝐾𝑛𝑛 − k𝑛
𝑇K𝑀

−1k𝑛 (3.7) 

The following equations describe the mean vector and variance matrix: 

Μ = K𝑁𝑀K𝑀
−1𝐟 ̅ (3.8) 

Σ =  𝚲 + 𝜎2𝐈 (3.9) 

The optimization of the GP hyperparameters, pseudo-inputs and pseudo-targets follows the same 

path as the optimization of the full GP. In this case, the conjugate gradient descent algorithm is 

used to minimize the negative log-likelihood function, given by Equation (3.10). 

ℒ= −log 𝑝(𝐲|𝐗, 𝜃, �̅�, 𝐟)̅ (3.10) 

ℒ =
1

2
(𝐲 − Μ)𝑇Σ−1(𝐲 − Μ) +

1

2
log|Σ| +

𝑁

2
log 2𝜋 (3.11) 

The gradient of the loss function is calculated with respect to the elements of the GP 

hyperparameters vector, the pseudo-inputs, and the pseudo-targets. 

𝜕ℒ

𝜕𝜃𝑗
=
1

2
trace (Σ−1 (

𝜕

𝜕𝜃𝑗
Σ))

−𝛼𝑇 (
𝜕

𝜕𝜃𝑗
Μ)−

1

2
trace (𝛼𝛼𝑇 (

𝜕

𝜕𝜃𝑗
Σ))

 (3.12) 

where, 𝛼 = Σ−1(𝐲 − Μ), and 𝜃𝑗 ∈ {𝜎𝑛, 𝑙, 𝜎𝑓 , �̅�1, … , �̅�𝑀, 𝑓1̅, … , 𝑓�̅�}. 

The derivative of the mean and covariance functions with respect to the optimization parameter 

is given by Equations (3.13) and (3.14). 
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𝜕

𝜕𝜃𝑗
Μ = (

𝜕

𝜕𝜃𝑖
K𝑁𝑀)K𝑀

−1𝐟̅ + K𝑁𝑀K𝑀
−1 (

𝜕

𝜕𝜃𝑖
K𝑀)K𝑀

−1𝐟̅

+K𝑁𝑀K𝑀
−1 (

𝜕

𝜕𝜃𝑖
𝐟)̅

 (3.13) 

[
𝜕

𝜕𝜃𝑗
Σ]
𝑛𝑛

= (
𝜕

𝜕𝜃𝑗
𝐾𝑛𝑛) − 2k𝑛

TK𝑀
−1 (

𝜕

𝜕𝜃𝑗
k𝑛)

−trace ((K𝑀
−1k𝑛)(K𝑀

−1k𝑛)
𝑇 (

𝜕

𝜕𝜃𝑖
K𝑀)) + 2𝜎 (

𝜕

𝜕𝜃𝑗
𝜎)

 (3.14) 

The derivatives of the K matrix with respect to the GP hyperparameters are given earlier. 

The derivatives of the loss function with respect to the pseudo-inputs and pseudo-targets are 

given by Equations (3.15) to (3.18): 

𝜕

𝜕�̅�𝑚
K𝑁𝑀 =

1

𝑙2
[
0 … 0 𝑘(𝑥1, �̅�𝑚) × (𝑥1 − �̅�𝑚) 0 … 0
⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮
0 … 0 𝑘(𝑥𝑁 , �̅�𝑚) × (𝑥𝑁 − �̅�𝑚) 0 … 0

] (3.15) 

𝜕

𝜕�̅�𝑚
K𝑀 =

1

𝑙2
× 

[

𝟎 𝑘𝑖,𝑚 × (�̅�𝑖 − �̅�𝑚) 𝟎

𝑘𝑚,𝑖 × (�̅�𝑖 − �̅�𝑚) 0 𝑘𝑚,𝑗 × (�̅�𝑗 − �̅�𝑚)

𝟎 𝑘𝑚,𝑗 × (�̅�𝑗 − �̅�𝑚) 𝟎

]  

(3.16) 

𝜕

𝜕�̅�𝑚
k𝑛 =

1

𝑙2

[
 
 
 
 
 
 

0
⋮
0

𝐾𝑛,𝑚(𝑥𝑛 − �̅�𝑚)

0
⋮
0 ]

 
 
 
 
 
 

 (3.17) 

{
 
 

 
 [

𝜕

𝜕𝑓�̅�
𝐟]̅
𝑗=𝑖

= 1

 [
𝜕

𝜕𝑓�̅�
𝐟]̅
𝑗≠𝑖

= 0

 (3.18) 
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Figure 3–1 PGSGP Algorithm Overview 

As will be elaborated in the next section, the optimization of the sparse GP is performed twice. 

During the first optimization run, all parameters are allowed to change. While in the second run 

the positions of the pseudo-input are fixed. In the latter case, the derivative with respect to �̅�𝑚 is 

set to zero, and the GP hyperparameters and pseudo-inputs are the only parameters allowed to 

change. 

3.2.2 The Algorithm Overview 

Figure 3–1 shows an overview of the proposed sparsification algorithm. The input to the 

algorithm is a set of 𝑁 training data points. The objective is to obtain a set of 𝑀 pseudo-inputs, 

where 𝑀 < 𝑁, along with the GP hyperparameters and the target values at the pseudo-input set.  

The 𝑀 pseudo-inputs are constrained to be on the vertices of a parametric grid. Constraining the 

pseudo-inputs to the vertices of a parametric grid alleviates the need to store or transmit the 
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locations of the set. Instead, a remote server needs only to send the grid parameters, along with a 

set of indices tying the location of each of the pseudo-inputs to one of the grid vertices.  

ALGORITHM 3–1 PARAMETRIC GRID SPARSE GAUSSIAN PROCESS (PGSGP) ALGORITHM: 

1. Obtain 𝑁 training points. 

2. Optimize the negative-log likelihood function, to obtain the initial set of the GP 

hyperparameters 𝜃𝐺𝑃 = ⟨𝜎𝑛, 𝑙, 𝜎𝑓⟩. 

3. Initialize the position of 𝑀 points, by randomly assigning each one of them to the location of 

one of the training data [134].  

4. Optimize the GP hyperparameters, the pseudo-inputs positions and the target values, using 

(3.11). This step is similar to the FITC algorithm [134]. 

5. Determine the parameters of the irregular grid.  

For each dimension in the pseudo-inputs: 

1. Arrange the elements of the 𝑖-th dimension in a vector. 

2. Sort the 𝑖-th dimension elements in ascending order. 

3. Merge the 𝑖-th dimension elements with less than 1 m of separation. 

4. Find the coefficients of a second order curve that fit the 𝑖th dimension elements. 

6. Assign the pseudo-inputs to the nearest grid point. 

7. Fix the pseudo-inputs and optimize the GP hyperparameters and the target values. 

8. Return the GP hyperparameters, the grid parameters, the pseudo-input indices, and the target 

values. 

 

Figure 3–2 shows the transformations occurring to the training dataset at several steps of the 

algorithm. The result of the first optimization run–Algorithm 3–1, Step 2–is illustrated in the 
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upper-left quadrant of Figure 3–2, where the locations of the 𝑁 training points is not changing. 

Then, 𝑀 pseudo-points are selected, and their locations are initialized randomly to the locations 

of 𝑀 points from the original training dataset–Step 3. The other points are discarded as shown in 

the upper-right quadrant of Figure 3–2, where the discarded points are marked in orange. After 

the selection and initialization of the pseudo-inputs, another optimization run is performed–Step 

4. As a result, the initial positions might move slightly to maximize the likelihood function. The 

x- and y- positions of the pseudo-inputs are fitted to two second-order curves, (𝐂𝑥, 𝐂𝑦), as shown 

in the lower-left quadrant. Finally, as shown in lower-right quadrant, the pseudo-inputs are fixed 

to the grid vertices, then the final optimization run determines the GP parameters and pseudo-

target values–Step 7. 

3.3 Experiments and Results 

The performance of the algorithm is evaluated using multiple criteria: the reduction in the 

required storage and accordingly the bandwidth; the loss in mapping accuracy, relative to the 

reference map; and the effect of the sparsification algorithm on the positioning accuracy.  

 

Figure 3–2 Pseudo-Inputs Locations 

Cx

C
y
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Table 3–1 summarizes the reduction in size from using the PGSGP algorithm compared with 

using a subset of the training dataset. The target value is assumed to be stored in a one single-

precision variable, while the position in the subset of data case is assumed to be stored in two 

single-precision variables. On the other hand, for the PGSGP algorithm, the position is stored as 

an index to the parametric grid vertices, and it uses a single integer variable. However, the grid 

parameters are stored as well in the PGSGP approach and consume six float variables. The 

parameters are the coefficients of two second-order curves, approximating the locations of the 

pseudo-input locations. This table shows clearly the advantage of using the PGSGP algorithm. In 

the first row, without even reducing the number of points representing the map, approximately 

50% reduction in the storage size could be achieved. 

 

Table 3–1 PGSGP Size Reduction 

No. of 

Points 

Subset of Data PGSGP 

y X 
Total 

(bytes) 
Gain y X 

Total 

(bytes) 
Gain 

90 360 720 1080 - 360 180 546 49% 

60 240 480 720 33% 240 120 366 66% 

50 200 400 600 44% 200 100 306 72% 

40 160 320 480 56% 160 80 246 77% 

30 120 240 360 67% 120 60 186 83% 

20 80 160 240 78% 80 40 126 88% 

10 40 80 120 89% 40 20 66 94% 

 

The mapping error is evaluated by calculating the Root Mean Square Error (RMSE) between the 

estimated values and the reference values, at the locations of the training dataset. Another 

measure used is the Kullback-Leibler Divergence (KLD), which defines the distance, or the 

dissimilarity, between two probability distributions. In this case, the distributions are the one 
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obtained by using the reference full-GP, and the one obtained by using PGSGP. The KLD 

between two distributions is defined by Equation (3.19). 

KL(𝑝‖𝑞) = ∫𝑝(𝑥) log
𝑝(𝑥)

𝑞(𝑥)
𝑑𝑥 (3.19) 

For a Gaussian distribution, the KLD is given by Equation (3.20) [63]. 

KL(𝒩0‖𝒩1) =
1

2
log|Σ1Σ0

−1|

+
1

2
trace (Σ1

−1((Μ0 −Μ1)(Μ0 −Μ1)
𝑇 + 𝛴0 − 𝛴1))

 (3.20) 

Figure 3–3 and Figure 3–4 show the RMSE and the KLD as a function of the number of pseudo-

inputs. These curves are generated using multiple instances of the PGSGP maps, using different 

subsets of the training points as initialization to the algorithm. The two figures show the mean 

and the 1-𝜎 bar for the RMSE and the KLD. 

The maximum number of iterations for the conjugate gradient descent optimization algorithm is 

set to 50 iterations. The general trend of the curve shows that as the number of points increases 

 

Figure 3–3 Root Mean Square Error 
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the RMSE and KLD tends to decrease, which is expected; since using more points means that the 

approximated GP can capture more of the features of the reference map. The performance of the 

PGSGP is better than the unfixed inputs when the number of pseudo-inputs is about 55% of the 

full training dataset. It worth noting that the random assignment of the pseudo-inputs initial 

position causes the performance of the PGSGP to fluctuate around the mean. This fluctuation 

becomes more pronounced when the number of points decreases to a small fraction of the 

original dataset, because the randomly selected initial points may not be representative to the full 

likelihood function. 

The previous discussion focused mainly on different measures to quantify the mapping errors, 

resulting from applying the proposed sparsification algorithm. However, in mapping 

applications, the main concern would be the positioning error after applying the sparsification 

algorithm. Figure 3–5 shows the positioning results using different numbers of points in each 

access point map. The number indicates the maximum number that could be used for each map; 

when an access point has less training points than the limit, all available points are used. The 

 

Figure 3–4 Kullback-Leibler Divergence 
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positioning is performed using a particle filter with 50 particles. Figure 3–5 (a) shows the results 

assuming the initial position is known, basically using a Gaussian prior on the initial particles 

with a mean equal to the correct starting position and a small variance. Figure 3–5 (b) shows the 

results with a uniform prior over the entire area of interest; this is done to test the convergence 

performance of the filter and ensure that the solution will eventually converge to the correct path. 

Figure 3–6 shows the cumulative distribution function (CDF) of the positioning errors from the 

Gaussian prior case. Each line in Figure 3–6 is associated with the number of points used is the 

Wi-Fi RSSI maps. For example, 'N4' means that the maximum number of points used in all maps 

is 4. Table 3–2 lists the mean, the root-mean-square errors, and the maximum errors for the two 

priors. 

The general trend in the positioning errors shows an increase in the RMSE and the mean error 

with the reduction in the maximum number of points in each access point map, which is 

congruent with the expected behaviour. The main point to notice is that 50% of the errors across 

a wide range of points (4 to 74) is concentrated between 1-2 m. This can be explained by the fact 

that the area of interest has a dense Wi-Fi access point coverage. As a result, even when 

dropping most of the training points randomly, there would be enough points–across all available 

access points–to provide good positioning performance. Additionally, the non-monotonic 

decrease in the positioning error that could be observed in Table 3–2 is attributed to the random 

selection policy of the training points. 
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Table 3–2 PGSGP Positioning Error 

Max. No.  

of Points 

Initial Particle Distribution 

Normal Uniform 
Mean (m) RMS (m) MAX (m) Mean (m) RMS (m) MAX (m) 

4 1.88 2.06 4.09 1.95 3.26 29.48 

14 1.49 1.72 4.57 1.84 3.84 38.14 

24 1.52 1.73 4.49 1.72 2.96 26.78 

34 1.27 1.50 3.62 1.68 3.30 32.27 

44 1.32 1.59 4.65 1.58 3.29 32.64 

54 1.27 1.48 4.12 1.82 3.72 36.79 

64 1.42 1.67 4.66 1.81 3.72 35.81 

74 1.27 1.54 4.71 1.64 3.54 35.33 

 

  

(a) (b) 

Figure 3–5 Positioning Results; (a) Gaussian initialization, (b) uniform initialization 
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3.4 Summary 

This chapter presented the Parametric Grid Sparse Gaussian Process, a Gaussian process 

sparsification algorithm for efficient feature map representation. The objectives of the algorithm 

are twofold: to increase the computation efficiency of the GP model, and to decrease the storage 

and bandwidth requirements of the models. The first objective is accomplished by reducing the 

total number of points in the training dataset. The second objective is achieved by fixing the 

locations of the pseudo-inputs on a parametric grid. So, instead of storing the explicit location of 

the training points, or the pseudo-inputs, the points are indexed relative to the parametric grid. 

Using PGSGP can reduce the storage requirements by at least 50% while maintaining a 

reasonable mapping and positioning accuracy. 

This chapter proposed a light-weight map representation for the environmental features maps 

using a sparse Gaussian process. This representation allows for efficient map dissemination 

between nodes or between the nodes and a centralized processing centre, in addition to 

increasing the speed of any map-related operations.  

 

Figure 3–6 Positioning Error CDF 
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Chapter Four: UWB-Based Collaborative Positioning and Localization 

Ultra-wideband (UWB) technology can achieve centimetre ranging accuracy, and it could be 

used for relative range measurements between nodes. The basic operation principle of the UWB-

based localization systems is node trilateration using measured ranges to multiple anchors with 

known positions. In real-world indoor environments, the range measurements available locally 

for any given node could be unreliable or insufficient for localization–the reasons for this include 

anchors occlusion, excessive multipath errors, or poor anchors geometry. Additionally, the nodes 

are usually asymmetric–in terms of the available sensors onboard, the computational resources, 

and the power capacity. This asymmetry affects the positioning performance of the weaker, less 

resourceful nodes. Collaboration between different nodes is a key element to enable successful 

nodes localization when the measurements are insufficient or when the local resources are 

limited. In operating scenarios, where there is a group of nodes in the same physical proximity, 

and some of these nodes can position itself with higher relative accuracy, using relative 

measurements can augment the standalone observations of each node and improve the 

positioning accuracy of the ensemble. Using relative range measurements introduces additional 

constraint to the position estimation algorithm, which can improve the positioning accuracy of 

the collaborating nodes. Ultra-wideband (UWB) ranging devices can distinguish between 

different events with a precise temporal resolution, thus mitigate some multipath errors, thanks to 

the large channel bandwidth. This makes the UWB-based ranging systems capable of achieving 

centimetre-level accuracy in ideal operating conditions. 

This chapter describes the software and the hardware components of locSpeck, a collaborative 

positioning system based on a UWB ad-hoc and dynamic network. The ranging measurement 

component of the system is a custom-built ranging device, based on the DW1000 UWB 
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transceiver chip from Decawave, which could be paired to a set of smart devices equipped with 

asymmetric sensors. The described system supports online addition and removal of nodes, and 

dynamic node role assignment, either as an anchor or as a rover. The performance of the system 

is evaluated experimentally by using four locSpeck nodes. 

The chapter starts by introducing the UWB technology, the different positioning techniques used 

in conjunction with UWB range measurements, and the different network architectures used for 

range-based positioning applications. The following section introduces the UWB-based 

positioning system.  This section starts by describing the ad-hoc network architecture employed 

by the system. Then, it provides the implementation details of the hardware and software 

components of the ranging device–the basic building block of the proposed system. The structure 

of the ranging message and the medium access protocol are described later in this section. The 

following section provides an overview of the dynamic motion model of the nodes, along with 

the measurements update model. The results are presented in section 4.4, including the timing of 

the range measurements messages, the theoretical limits of the medium access control protocol 

performance, and the positioning and localization accuracy of the system. The chapter is 

concluded with a brief discussion.  

4.1 Background 

4.1.1 Ultra-Wideband Radios: A Very Brief Introduction 

The original idea behind the ultra-wideband (UWB) technology is to use impulses or very short 

pulses to spread the data over a wideband [139], [140]. The same concept, used earlier for radar 

applications, formed the basis for the ultra-wideband radio communication [141]. Ultra-

wideband radios are strong candidates for indoor communication systems, due to the robustness 
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of the UWB signal and its immunity to multipath fading [142]–a desired characteristic for a radio 

signal propagating in the cluttered indoor environments.  

UWB systems can have low-complexity and low-cost implementations. UWB systems can lower 

the possibility of interfering with the already existing wireless infrastructure. They are resilient to 

multipath propagation since the very short pulses make it easier to distinguish between the 

different components of the reflected signal. Moreover, they are capable of providing high 

resolution, required for positioning and tracking applications [139]. 

The breakthrough of ultra-wideband into the mainstream of consumer and commercial 

applications occurred on 2002, when the Federal Communications Commission (FCC) allowed 

the unlicensed use of the UWB-based communication and measurement devices in the 3.1-10.6 

GHz frequency band [143], with power limitation of -41.3 dBm/MHz [144]. The FCC report 

defines the UWB signal bandwidth to be at least 500 MHz or having a relative bandwidth of 

20%. On February 2007, the Commission of European Communities followed suit by publishing 

their regulatory framework for the UWB radio technology [145]. 

The IEEE standardization effort of the UWB systems resulted in two different implementations, 

the IEEE 802.15.3 and the IEEE 802.15.4–the former is targeting the small-range high-speed 

applications, and the latter is targeting the low-data-rate applications. The IEEE 802.15.4-2011 

standard defines the physical layer for UWB-based systems for low-power and low-complexity 

applications [146], which makes it a perfect candidate for wireless sensor networks [147]. 

4.1.2 UWB-Based Positioning Systems 

Ultra-wideband positioning and localization systems have been used in different scenarios that 

require centimetre ranging accuracy with constraints on the cost and the power of the ranging 

devices. The applications of UWB-based localization systems include first responders in 
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emergency situations, assets tracking and monitoring, medical and wellness applications, 

security and access control, nodes localization in wireless sensor networks, and for military 

applications [147]–[150].  

Positioning using ultra-wideband radios can be performed using different techniques: Angle-of-

Arrival (AOA), Received Signal Strength (RSS), Time-Difference-of-Arrival (TDOA), or Time-

of-Arrival (TOA) or Time-of-Flight (TOF) [148]. The angle-of-arrival based systems are 

complex since they require antenna-arrays on the same node, which increases the cost and the 

complexity of the implementation. The time-based approaches are more suited to the UWB 

systems as the high-bandwidth of the signal can provide very fine spatial resolution in addition to 

increasing its immunity to multipath effects. 

The Cramér–Rao bound for the time-of-arrival ranging accuracy using the IEEE 802.15.4a–the 

predecessor to the IEEE 802.15.4-2011–under single-path additive white Gaussian noise 

(AWGN) channel model, can be expressed as: 

𝜎𝑅 ≥
𝑐

2𝜋 × 𝛽 × √2(𝑆𝑁𝑅)
 , (4.1) 

where σR is the standard deviation of the range estimation 𝑅, 𝑐 is the speed of light, 𝛽 is the 

effective bandwidth, and 𝑆𝑁𝑅 is the signal-to-noise ratio [148], [151]. Setting 𝛽 = 500 MHz and 

𝑆𝑁𝑅 = 10, the standard deviation of the range estimation 𝜎𝑅 = 2 cm [21]. 

The RSS of the UWB signal is less susceptible to small scale fading compared to narrow-band 

signals [152], as a result of the large bandwidth of the UWB signals. However, the ranging 

accuracy achievable using RSS methods decreases with distance [153], making the achievable 

accuracy less than the accuracy obtained using the time-delay methods. The accuracy of the 

range measurement using RSS techniques can be expressed as: 
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𝜎𝑅 ≥
𝑙𝑛 10

10

𝜎𝑠ℎ
𝑛𝑝

 𝑑 , (4.2) 

where d is the distance between the two nodes, np is the path loss factor, and σsh is the standard 

deviation of the zero-mean Gaussian random variable representing the log-normal channel 

shadowing effect [148]. This accuracy could be sufficient for certain applications that do not 

require a centimetre ranging accuracy. RSS localization relies on two techniques. First, the range 

estimation knowing the path-loss-model (PLM) and the channel state information (CSI) [152], 

[154]. Second, signal strength fingerprinting [155] which requires a learning phase to collect the 

RSS fingerprints along with a set of reference points, then during the localization phase actual 

RSS value is compared to the previously generated fingerprint database to estimate the location 

of the UWB receiver in real-time. 

4.1.3 UWB Network Architecture 

The IEEE 802.15.4-2011 standard supports two network architectures for UWB devices in the 

context of the Personal Area Network (PAN) [146, p. 15], as shown in Figure 4–1: the star 

network architecture, and the peer-to-peer network architecture. A typical network configuration 

of UWB-based positioning system comprises a set of fixed anchors and one or more mobile 

nodes. The position and number of the anchors are usually known beforehand, and the location 

of the mobile nodes is estimated using the range measured between those nodes and the anchors. 

An example of a commercial system for positioning, based on the DW1000 [156] UWB radio 

from Decawave, is the Pozyx system [157], [158]. The Pozyx system supports a fixed network 

architecture [159], such that it requires the prior knowledge of the number of the mobile nodes 

and the fixed nodes in the network–referred to as tags and anchors, respectively. The position of 

tags is calculated sequentially using a Time-Division-Multiple-Access (TDMA) approach to 
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minimize the interference possibility between the different tags. In the Posyz system, the 

positioning and ranging procedures are effectively initiated from a single device in the entire 

network, which controls the other nodes or tags remotely according to the list of available nodes. 

Another aspect of network architecture is the design of Medium Access Control (MAC) 

protocols, which has been studied extensively in the context of wireless sensor networks 

(WSNs). The design of MAC protocol for sensor networks is guided by the operational goals of 

the network, and it is usually an attempt to balance between two conflicting goals: achieving 

high-throughput and maintaining energy-efficient operation. Several recent survey articles 

provide an insight into the taxonomy of MAC protocols and to the development of different 

MAC protocols [160]–[164]. The MAC protocols for WSNs can be categorized into 

  

(a) (b) 

Figure 4–1 IEEE 802.15.4-2011 supported network topologies; (a) Star network 

topology, (b) Peer-to-peer network topology 
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asynchronous, asynchronous, frame-slotted, and multi-channel protocols. Although the IEEE 

802.15.4-2011 standard includes a definition to the MAC layer, not every UWB radio chip 

implements the full standard. For example, the Decawave DW1000 does not implement the 

MAC layer from the standard and leaves this task to the host system [156]. 

4.2 Ad-Hoc UWB-Based Positioning System  

This section describes the hardware and the software aspects of the proposed ad-hoc UWB-based 

positioning system. The system supports ad-hoc network architecture, run-time inclusion and 

removal of nodes, and dynamic role assignment to nodes. The section starts by describing the 

supported network structure, then follows by describing the hardware and software 

underpinnings of the system. The details of the ranging messages and the medium access 

protocol are discussed later in this section. 

  

(a) (b) 

Figure 4–2 UWB-based network architecture for ranging and positioning applications; 

(a) Fixed role network, (b) Dynamic role network 
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4.2.1 Ad-Hoc Network Structure 

The nodes in the proposed system are connected by ad-hoc network architecture, with no fixed 

structure nor fixed roles. Since the main objective of the network is to perform ranging 

measurements between neighbouring nodes within the line-of-sight of their UWB receivers, the 

ad-hoc network described here has some different characteristics from an ad-hoc network used 

for communication application [165]. A summary of the network characteristics supported by the 

proposed positioning system is presented in the following points: 

▪ Flat network topology: the network is composed of symmetric nodes in terms of its 

communication capability, which means that each node can initiate a ranging request or 

respond to such request from other nodes. Besides, there are no coordinating nodes–as 

opposed to the peer-to-peer network architecture described in the IEEE 802.15.4-2011 

standard [166], [146]. The sensing and computational capabilities of the nodes can still be 

asymmetric. 

▪ Single-hop network: the nodes are only interested in exchanging ranging messages with 

neighbouring nodes, within the range of their UWB receivers. 

▪ Energy conservation: after either a failed or successful ranging exchange attempt, the radio 

chip goes into sleep mode for a defined period before retrying engaging in new ranging 

sequence exchange. 

▪ Flexibility: nodes can enter and exit the network in real-time, without the need to reconfigure 

or even notify the existing nodes. 

These characteristics emphasize the main objective of the network: ranging and positioning. The 

nodes are identical in terms of ranging capabilities, low-power, and could be spread over a large 
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physical space. The differences between the ad-hoc network topology and the fixed-role network 

topology for ranging and positioning applications can be seen in Figure 4–2. 

4.2.2 Node Hardware Architecture 

The dynamic nodes are the building blocks of the proposed ad-hoc UWB positioning system.  

Each node is composed of the ranging device and an associated smartphone. An overview of the 

hardware architecture of the nodes is shown in Figure 4–3. The ranging devices are based on 

commercial off-the-shelf components. The UWB radio module used is the DWM1000, which is 

based on the Decawave DW1000 radio and equipped with an onboard chip antenna [167]. The 

DWM1000 is attached to a CC2640R2 LaunchPad kit from TI [168], which hosts a CC2640R2F 

wireless microcontroller unit (MCU), enabling Bluetooth low-energy (BLE) communication with 

the attached DW1000 device. The UWB module and the MCU are connected through a Serial 

Peripheral Interface (SPI), allowing the host MCU to configure the UWB radio, initiate range 

measurements, and obtain data and status information from the radio. The UWB module and the 

BLE evaluation board from TI are enclosed in a custom-built plastic case, which hosts the 

 

Figure 4–3 Hardware platform overview 
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batteries and the power switch, as shown in Figure 4–4 (a). For comparison, the Pozyx system 

components–the anchor and the tag nodes–are shown in Figure 4–4 (b), (c). 

The host smartphone connects to the ranging device through a Bluetooth Low Energy (BLE) 

interface; the smartphone also runs the sensor logging application, shown in Figure 4–5. The 

ranging device firmware and the logging application communicates through the Generic 

Attribute Profile (GATT), which is part of the Bluetooth low-energy protocol stack, responsible 

 

 

(b) 

 

(a) (c) 

Figure 4–4 The locSpeck Ranging devices; (a) Ranging devices for the proposed UWB-

based positioning system, (b) Pozyx positioning system–anchor node, (c) Pozyx 

positioning system–tag node 
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for the actual data exchange between any two connected devices. The GATT stores and passes 

the data as a set of characteristics, stored in the memory of the BLE device. The GATT profile 

implemented by the locSpeck ranging device is summarized in Table 4–1. The locSpeck logging 

application can identify the attached UWB chip, read and change the configuration of the UWB 

chip, and log the range and the paired node ID. The locSpeck logging application can also collect 

data from the smartphone sensors (e.g., accelerometer, gyroscope, magnetometer, Wi-Fi RSSI, 

barometers), and it can record the GNSS position information. 

The locSpeck system allows all nodes to send their ranging measurements to a remote real-time 

database, enabling the implementation of a centralized and high-level positioning and mapping 

algorithms in the cloud. However, for the rest of this work, the positioning algorithm was 

   

(a) (b) (c) 

Figure 4–5 The locSpeck logging application on Android; (a) Data logging screen, (b) 

locSpeck node settings screen, (c) Decawave DW1000 settings screen 
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implemented on a desktop computer in a post-processing mode, and the locSpeck nodes and 

applications are used for logging data only. 

Table 4–1 The locSpeck BLE GATT profile. 

Characteristic Properties Size (bit) Description 

DEVID R 32 DW1000 Device ID 

PARTID R 32 DW1000 Lot ID 

OTPREV R 8 DW1000 OTP Revision 

Range R (Notify) 32 Range measured 

Pair ID R (Notify) 16 The ID of the paired node 

CONF R/W 16 Node settings 

Node ID R 16 Node ID 

 

4.2.3 Range Measurement Messages 

The ability of UWB systems to provide accurate ranging is the key motivation to use them for 

indoor positioning and localization. The relative range measurements between two UWB 

transceivers can be achieved using delay or time-based methods, angle-of-arrival methods, or 

received signal strength methods [148]. As shown earlier in Equations (4.1) and (4.2), the 

Cramér-Rao lower bound for range measurements using the received signal strength increases 

with the distance, lowering the achievable positioning accuracy. The angle-of-arrival method 

requires antenna arrays to distinguish the phase of each of the incident radio rays to calculate the 

relative angle between nodes. The superior theoretical performance and the simpler 

implementation makes the time-based ranging solution an attractive option for commercial 

positioning solutions such as receivers from Decawave, BeSpoon, and Ubisense [169], though 

the Ubisense system supports the angle-of-arrival (AOA) measurements as well. 

Before proceeding to describe the range measurement algorithm implemented by the locSpeck 

node, two time-based ranging methods will be briefly discussed: the time-difference-of-arrival 

(TDOA) and the time-of-flight (TOF) methods. In TDOA-based systems, the tag or the mobile 
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node sends a periodic message which is received by the surrounding anchors. The internal clocks 

of the anchors must be synchronized so that the anchors can compare the arrival time of the tag 

message using the same time reference. In TOF-based systems, two-way communication 

between the neighbouring nodes is required to calculate the time-of-flight without the need for 

synchronizing different nodes. The time-of-flight is converted to a range measurement by 

multiplying it by the speed of light. The DW1000 chip can implement both methods. However, 

the locSpeck system implements the time-of-flight method for range calculation. 

Figure 4–6 shows the message exchange for two different time-of-flight ranging techniques 

utilizing the Decawave DW1000 chip. Although the DW1000 chip does not implement the top-

level ranging technique, the chip provides means to precisely control the messages exchange and 

to accurately time-stamp the transmission of the messages [156]. The host system–in the case of 

locSpeck, the ARM Cortex-M3 MCU embedded on the TI CC2640R2 chip–is responsible for 

implementing the ranging algorithm. 

Figure 4–6 (a) shows the messages exchanged between two nodes for the single-sided two-way 

ranging. The propagation time can be calculated using Equation (4.3): 

𝑇𝑝𝑟𝑜𝑝 =
1

2
(𝑇𝑟𝑜𝑢𝑛𝑑 − 𝑇𝑟𝑒𝑝𝑙𝑦) , (4.3) 

where 𝑇𝑟𝑜𝑢𝑛𝑑 and 𝑇𝑟𝑒𝑝𝑙𝑦 are the round-trip time and reply time, respectively. Each time quantity 

is measured on device A and device B using their local clocks, alleviating the need to 

synchronize the nodes. This method represents a simple approach to calculating the range, with 

the exchange of two messages only. However, the drawback of the single-sided ranging method 

is that the error in the range measurements increases as the reply time increases. The reason for 

this error is attributed to the small clock offset from its nominal value in the oscillator of each  
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chip. Figure 4–6 (b) shows the asymmetric double-sided two-way ranging method in which the 

ranging exchange requires three messages, where two round trips are combined to calculate the 

propagation time, reducing the ranging errors. The asymmetry in this exchange is manifested by 

the fact that the reply time of both nodes is not equal. The propagation time for the asymmetric 

two-way ranging can be calculated using Equation (4.4): 

𝑇𝑝𝑟𝑜𝑝 =
𝑇𝑟𝑜𝑢𝑛𝑑1 × 𝑇𝑟𝑜𝑢𝑛𝑑2 − 𝑇𝑟𝑒𝑝𝑙𝑦1 × 𝑇𝑟𝑒𝑝𝑙𝑦2

𝑇𝑟𝑜𝑢𝑛𝑑1 + 𝑇𝑟𝑜𝑢𝑛𝑑2 + 𝑇𝑟𝑒𝑝𝑙𝑦1 + 𝑇𝑟𝑒𝑝𝑙𝑦2
 . (4.4) 

The propagation time calculated in Equation (4.4) ensures that the error due to clock offset is 

minimized, compared to the single-sided method. 

 

(a) 

 

(b) 

Figure 4–6 Two-way ranging frame sequence; (a) Single-sided two-way ranging, (b) 

Asymmetric double-sided two-way ranging. 
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The locSpeck node implements the double-sided two-way method using three messages for 

ranging in addition to one final message to share the range between the nodes pair, as shown in 

Figure 4–7. In this example, the messages exchange is expressed as follows:  

▪ Device A begins the ranging exchange by sending a blink message to any of the surrounding 

nodes. The purpose of this message is to notify any available nodes that device A is prepared 

to proceed with the range measurement exchange. 

▪ If device B is within the communication range and is listening to the correct UWB channel, it 

receives the blink frame and replies by sending the range measurement initiation message, 

using the address of device A. 

▪ Device A receives the initiate message then it sends back a poll message to the other side and 

records the precise time of sending the poll frame. 

▪ Device B gets the poll message and stamps the arrival time. Then, device B sends a response 

message to device A and record the reply time (Treply1). 

 

(a) (b) 

Figure 4–7 Ranging message structure; (a) Decawave DWM1000 modules, based on 

DW1000 UWB radio chip, (b) Ranging messages exchanged between two nodes 



 

89 

▪ Device A gets the response frame and saves the arrival time stamp, and then calculates the 

first round-trip time (Tround1). After the second reply time (Treply2), device A sends the final 

message. 

▪ Device B receives the final frame and record the round-trip time (Tround2). Using Equation 

(4.4), device B calculates the propagation time (Tprop), and the range consequently. Finally, 

device B sends the propagation time back to device A. 

By the end of the messages exchange, the exact range value is available at both devices for 

further processing. The positioning algorithm uses the range information along with other 

sensors readings to update the position state of the nodes. 

4.2.4 Medium Access Protocol 

The locSpeck nodes are designed to operate in an unpredictable environment–unpredictable in 

terms of the number of the surrounding nodes and in terms of the possible structure of the 

network formed using these nodes. The nodes should support rapid deployment with no or 

minimum effort from the operator. As a result, locSpeck nodes implement a simple and light-

 

Figure 4–8 locSpeck medium access protocol 
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weight random-access medium access protocol based on the pure ALOHA protocol [170], [171]. 

Figure 4–8 shows an overview of the medium access protocol implemented by the locSpeck 

nodes. 

After powering up locSpeck nodes, they start in the sleep state. Each node sleeps for a random 

duration between 50 ms and 80 ms. When the sleep duration elapses, nodes wake-up and power-

up its receiver, waiting for any incoming frames. If a node receives a complete frame, it decodes 

the frame and checks if the incoming frame is a blink message. In the case of receiving a blink 

message, the node operates as an anchor. If the node receives a complete frame, and it is not a 

blink message, it concludes that the channel is currently occupied by the ranging sequence of 

another pair of nodes, and goes back to the sleep state, so it would not interfere with the current 

exchange. If no frames are received and the listening period elapses, the receiver timeout flag is 

asserted. In this case, the node assumes that the channel is free, and it switches to the tag mode 

and starts sending a blink message to any active node. 

While at the anchor or the tag states, each node sends or receive a sequence of messages. If any 

of the received messages does not match the expected message at that stage, the node will switch 

back to the sleep mode. Also, the nodes will go to the sleep mode, if there is any problem with 

messages transmission or reception, such as a receiver timeout, or any other problem related to 

the radio interface. Once a ranging sequence is completed successfully, the node saves the range 

and the node ID of the collaborator. Finally, each node sends a notification to the host 

smartphone before returning to the sleep mode for another random duration. 

The locSpeck medium access protocol assumes that all the nodes use the same UWB channel 

and the same preamble code for both communications and for ranging. The DW1000 supports 

the use of 6 RF channels out of the 16 channels defined in the IEEE 802.15.4-2011 standard. 
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Each node operating in the channel is assigned a preamble code from a set of 2 or 4 possible 

codes. The exact values of the preamble sequence are defined by the standard and are selected to 

ensure minimum cross-correlation between different codes. Assigning different nodes to 

different channels and assigning different preamble codes to the nodes operating in the same 

channel can increase the number of nodes operating in close proximity [172]. Although the 

multiple-channel and multiple-preamble approach can increase the effective number of nodes, its 

use was not considered in this work since it would increase the complexity of the system. To use 

this approach, more functionality is needed on top the current protocol to scan different channels 

and preambles and to keep track of nodes in each channel-preamble configuration. 

4.3 Collaborative Positioning Algorithm 

This section describes the positioning algorithm implemented by the locSpeck system. It 

highlights the dynamic motion model of the nodes, along with the measurements update model. 

The locSpeck nodes use two different measurement update models: relative range measurement 

updates and Wi-Fi fingerprinting updates. The locSpeck node positioning accuracy is evaluated 

and compared to the position estimates of the Pozyx system. The position estimation process for 

the locSpec nodes is performed using a particle filter, where the details of the filter 

implementation are discussed in the rest of this section. 

4.3.1 Dynamic Motion Model 

The dynamic model used in the locSpeck positioning filter is a random walk motion model while 

the state vector comprises the 2-D position of each node. The use of the other available sensors, 

such as the accelerometer, the gyroscope, or the magnetometer, can help improve the positioning 

performance. However, to keep the model simple, the use of these sensors is forgone for the 

evaluation of the ranging performance. The dynamic model is described by Equation (4.5): 
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[
𝑥𝑘+1
𝑦𝑘+1

] = [
1 0
0 1

] [
𝑥𝑘
𝑦𝑘
] + 𝑢𝑘+1, (4.5) 

where 𝑥𝑘+1, 𝑦𝑘+1 are the position of the nodes, and 𝑢𝑘+1 is a normally distributed, zero-mean, 

white noise, with variance 𝑄𝑘+1, i.e. 𝑤𝑘+1~𝒩(0, 𝑄𝑘+1). 

4.3.2 Measurements Update 

The weights of the particles in the filter are updated using the relative-range, and the Wi-Fi 

received signal strength indicator (RSSI) measurements, using Equation (4.6): 

�̃�𝑘+1
𝑖 ∝ 𝑤𝑘

𝑖 × 𝑝(𝑧𝑘+1|𝑥𝑘+1
𝑖 , 𝑦𝑘+1

𝑖 ), (4.6) 

where 𝑤𝑘
𝑖  is the current weight of particle 𝑖, �̃�𝑘+1

𝑖  is the updated weight, 𝑧𝑘+1 is the value of the 

observation, and 𝑝(𝑧𝑘+1|𝑥𝑘+1
𝑖 , 𝑦𝑘+1

𝑖 ) is the likelihood of observing 𝑧𝑘+1 at the location defined 

by 𝑥𝑘+1
𝑖  and 𝑦𝑘+1

𝑖 . Equation (4.6) is a simplified version of the weights update equation, in which 

the proposal density is the state transition model, defined by Equation (4.5). The details of the 

measurement likelihood equations for different measurement updates equations are presented in 

the following few lines. 

4.3.2.1 Range Measurement Update 

The measurement update using relative-range between a pair of collaborating nodes involves two 

pieces of information: the relative-range and the position of the collaborating node. The 

measurement can be described using Equation (4.7): 

ℎ𝑘+1
𝑖,𝑅 (𝑥𝑘+1

𝑖 , 𝑦𝑘+1
𝑖 ) = √(𝑥𝑘+1 − 𝑥0)2 + (𝑦𝑘+1 − 𝑦0)2, (4.7) 

where ℎ𝑘+1
𝑅 (∙) is the range measurement estimate at time step 𝑘 + 1; 𝑥𝑘+1

𝑖 , 𝑦𝑘+1
𝑖  are the position 

of the particle 𝑖; and 𝑥0, 𝑦0 are the coordinates of the collaborating node. The range estimate is 

used to evaluate the likelihood of the range measured given the position of each particle, 

𝑝(𝑧𝑘+1
𝑅 |𝑥𝑘+1

𝑖 , 𝑦𝑘+1
𝑖 ), as described by Equation (4.8). 
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𝑝(𝑧𝑘+1
𝑅 |𝑥𝑘+1

𝑖 , 𝑦𝑘+1
𝑖 ) = (2𝜋𝜎𝑅

2)−
1
2 exp(−

1

2

(𝑧𝑘+1
𝑅 − ℎ𝑘+1

𝑖,𝑅 )
2

𝜎𝑅
2 ) , (4.8) 

where 𝑧𝑘+1
𝑅  is the actual range measurement, which is modelled as a Gaussian random variable 

with mean equals to the measured range and covariance of 𝜎𝑅
2. 

4.3.2.2 Wi-Fi RSSI Fingerprint Update 

The Wi-Fi RSSI fingerprinting method used in this work uses a Gaussian process model to 

represent the RSSI map [173]. The Gaussian process model is fully defined by a mean function 

and a covariance function, 𝜇𝑤𝑖𝑓𝑖 and 𝜎𝑤𝑖𝑓𝑖
2  respectively [118]. Using the mean and covariance 

function, the likelihood of observing a certain set of Wi-Fi RSSI values can be described using 

Equation (4.9): 

𝑝(𝑧𝑘+1
𝑤𝑖𝑓𝑖

|𝑥𝑘+1
𝑖 , 𝑦𝑘+1

𝑖 ) = det(2𝜋𝛴𝑤𝑖𝑓𝑖)
−
1
2 exp(−

1

2
(𝑧𝑘+1

𝑤𝑖𝑓𝑖
−𝑀𝑤𝑖𝑓𝑖)

𝑇
𝛴𝑤𝑖𝑓𝑖
−1 (𝑧𝑘+1

𝑤𝑖𝑓𝑖
−𝑀𝑤𝑖𝑓𝑖)) (4.9) 

where 𝑧𝑘+1
𝑤𝑖𝑓𝑖

 is a vector with all the observed RSSI values at time step 𝑘 + 1, 𝑀𝑤𝑖𝑓𝑖 is a vector of 

the mean function values for each observed Wi-Fi access point (AP), i.e. 𝑀𝑤𝑖𝑓𝑖  =

 [𝜇𝑤𝑖𝑓𝑖
1 , … , 𝜇𝑤𝑖𝑓𝑖

𝑁 ]
𝑇
, and 𝛴𝑤𝑖𝑓𝑖 is the observations covariance matrix, which is a diagonal matrix 

with each element in the diagonal represents the covariance value for each observed AP, i.e. 

𝛴𝑤𝑖𝑓𝑖  =  𝑑𝑖𝑎𝑔 ([(𝜎𝑤𝑖𝑓𝑖
1 )

2
, … , (𝜎𝑤𝑖𝑓𝑖

𝑁 )
2
]). The mean and variance functions for each access point, 

𝑀𝑤𝑖𝑓𝑖 and 𝛴𝑤𝑖𝑓𝑖, are constructed using a set of training data, 𝐷 =

 {(𝑥1, 𝑧1), (𝑥2, 𝑧2), … , (𝑥𝑁 , 𝑧𝑁)}, where, 𝑥𝑖 is the horizontal position of the training data, i.e. 𝑥𝑖 ∈

𝑅2, and 𝑧𝑖 is the RSSI value, measured at the point 𝑥𝑖. More details about the exact 

implementation of the Wi-Fi RSSI model using Gaussian Process can be found in [173]. 
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4.4 Simulation and Experimental Results 

This section summarizes the results for several aspects of the locSpeck positioning system. It 

highlights the performance of the three building components of the system: the timing of the 

ranging frames, the efficiency of the medium access protocol, and finally the accuracy of the 

positioning and localization system using a sample test scenario for the locSpeck system. 

4.4.1 Range Measurement Messages Timing 

The timing characteristics of the ranging sequences and the individual messages in the sequence 

were measured and analyzed using DW1000 on-chip high-precision clock for time-stamping the 

different sequences. To obtain the range and the duration of the ranging frames, two locSpeck 

devices were placed 60 cm apart, and the firmware was modified to enable logging the frame 

duration measurements to a computer. The total duration of the ranging frame is affected by the 

DW1000 chip settings, such as the preamble length and the data rate. The DW1000 chip settings 

used for the rest of this section are summarized in Table 4–2. Changing the PRF, PLEN, and DR 

not only affects the frame time, but it can also affect the ranging performance. 

 

Table 4–2 Node settings 

Node Setting Value 

Channel number 5 

Pulse repetition frequency (PRF) 64 MHz 

Preamble length (PLEN) 1024 

Data rate (DR) 110 kbps 

Range between nodes 60 cm 
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Figure 4–9 shows the histograms of the error of the range measurement values and the total 

duration of the ranging frames for a sample of approximately 430 range measurements. The size 

of the data payload of each message in the ranging sequence and the duration of each message is 

listed in Table 4–3. These values were calculated according to the active DW1000 chip settings 

and the size of the payload data [174]. The measured ranges using the DW1000 can be affected 

by noise, uncalibrated bias, and received signal power-dependent biases [175]. The overall 

ranging frame duration is dominated by the messages sending time and by the processing delays 

mandated by the firmware implementation and the processor speed. Since the host 

microcontroller is handling multiple tasks concurrently, the total ranging frame time will account 

for any other background tasks running during the ranging sequence. The propagation time of the 

messages from one node to another is 2 ns, which is negligible relative to the transmission and 

processing delays. 

  

(a) (b) 

Figure 4–9 Range measurement frame statistics; (a) Range error probability density 

function (pdf), (b) Ranging frame duration pdf 
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Table 4–3 Ranging messages size and duration 

Messages  Size (byte) Duration (ms) 

Blink 12 2.57 

Initiate 22 3.32 

Poll 12 2.57 

Response 16 2.87 

Final 20 3.18 

Report 16 2.87 

Total 17.38 

 

Figure 4–9 shows the distribution of both the range error and the ranging frame duration. At 60 

cm separation distance between the two nodes, the mean of the measured range error is 1.6 cm, 

with 3.5 cm standard deviation. This error can be attributed to multiple factors: residual biases 

after node range calibration, or measurement setup inaccuracies. The residual bias arises from 

the fact that the nodes are calibrated using a constant value, whereas the bias is dependent on the 

power level of the received signal or equivalently on the separation between nodes. The mean 

and standard deviation of the range error and frame duration are summarized in Table 4–4. 

Figure 4–10 shows the messages time progression in a ranging sequence. This frame structure is 

used in evaluating the locSpeck medium access protocol, as discussed in the next section. The 

messages duration was calculated, as highlighted in Table 4–3, while the average processing 

time between messages was evaluated using the total ranging frame measurements, captured 

using the DW1000 precise timing capabilities, and distributed equally among the processing 

gaps between different messages transmission.  

 

Figure 4–10 Ranging frame–messages exchange timeline 
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Table 4–4 Range value and frame duration statistics 

 Range Error (cm) Frame Duration (ms) 

Mean 1.6 43.1 

Standard Deviation 3.5 2.0 

 

4.4.2 Medium Access Protocol Performance 

This section examines the performance of the locSpeck medium access protocol in terms of the 

ranging efficiency as a function of the number of the collaborating nodes. It is expected from a 

random-access protocol such as ALOHA–the basis of the locSpeck medium access protocol–that 

the utilization of the medium is reduced, due to collisions between different nodes attempting to 

initiate ranging sequence at the same time. Using the settings outlined in Table 4–2, the 

theoretical maximum ranging rate achievable by the locSpeck system is 20 measurements per 

seconds. The ranging rate is calculated using the average frame duration in addition to 15% of 

the ranging frame used as a guard interval between different ranging frames. 

Figure 4–11 shows the role transition of nodes with time according to the locSpeck medium 

access protocol, as outlined in Figure 4–8. Figure 4–11 (a) shows the state transition for a node 

acting as a tag. At time 0, the node wakes up and starts listening for any incoming messages. If 

no messages were received after 10 ms, the node concludes that the channel is free and is ready 

for transmission. The node role switches to tag and starts the ranging sequence by sending a 

blink message. If there is a listening node in the tag proximity, it sends a response, and the 

ranging sequence will continue for another 43 ms.  
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After finishing the ranging sequence, each node of the pair sleeps for 50 to 80 ms. The sleep 

interval is a random value which changes every time a node enters the sleep mode. Since the 

frame duration and the sleep interval is between 103 and 133 ms, the theoretical ranging rate 

between two locSpeck nodes is 7.5 to 9.7 measurement per seconds. The maximum ranging rate 

over the channel with the locSpeck medium access protocol is 18.9 measurement per seconds, 

assuming a new range measurement will start once the active node goes to sleep mode, which 

occurs every 53 ms. Figure 4–11 (b) shows the timeline when a locSpeck node switches to the 

anchor role. This switch will occur if the node detects a valid blink message during the listen 

interval. Since the blink message can be received at any point during the listen interval, the 

complete frame duration for the node in anchor role ranges between 76 to 116 ms, considering 

 

(a) 

 

(b) 

Figure 4–11 Medium access protocol–node role transition; (a) Tag node role, (b) Anchor 

node role 
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the uncertainty in the first 10 ms listening interval and the uncertainty in the 30 ms sleep random 

component. 

The simulated ranging rates versus the number of collaborating nodes are shown in Figure 4–12 

and the maxima of the raging rates are summarized in Table 4–5. The channel ranging rate as a 

function of the number of nodes is shown as a solid line in Figure 4–12. Under the tested 

configuration of the system, the maximum utilization of the channel is achieved with 18 nodes, 

reaching 7.9 measurements per second, which accounts to channel efficiency of 39.5% compared 

to the theoretical 20 measurements per second. It is worth noting that given fixed time, the 

ranging rate drops with the number of nodes until it is practically zero. The dotted line in Figure 

4–12 shows the average of the ranging rate per node, assuming range measurements are 

uniformly distributed across the node population. The maximum ranging rate per node is 2.1 

measurements per seconds with 5 active nodes achieving 10.4% of the theoretical rate. 

 

Figure 4–12 Simulated ranging rates results; the average ranging rate over the 

channel for all nodes and average ranging rate per node 
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Table 4–5 Ranging rate maxima. 

 Channel Node 

Number of Nodes 18 5 

Ranging Rate (meas/sec) 7.9 2.1 

 

4.4.3 Positioning and Localization Accuracy 

4.4.3.1 Experimental Setup 

The experiment is done on the main floor of the MacEwan Student Centre at the University of 

Calgary. The test area is an open lobby covering 300 m2 (20 m x 15 m), with no obstructions in 

the middle of the lobby. The duration of the experiment is 24 minutes. The experiment venue is 

open for the students, and several students were moving around in the vicinity of the experiment. 

The purpose of selecting this location is to test the system under realistic operational conditions. 

Figure 4–13 shows the floorplan of the experiment venue. 

The experiment setup consists of two separate UWB positioning systems, operating at the same 

time. The first system is LocSpeck–the ad-hoc system under test–and the other is the Pozyx 

system, which is used as a reference for comparison. LocSpeck system is composed of four 

ranging devices. Three of them are fixed at the limits of the test area to act as anchor points, and 

a fourth device is used as a mobile node. Although these three devices are used as anchors in this 

experiment, they are functionally identical to the mobile node. The Pozyx system is composed of 

six anchor nodes, distributed along the perimeter of the test area, in addition to a mobile tag. The 

area is covered with 25 test points, used to calculate the error in the trajectory. These test points, 

along with the anchor points from the two systems, were surveyed to establish the ground truth. 
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The experiment is divided into two stages: the static self-positioning stage, and the dynamic 

stage. In the first stage, the measurements between the anchors were collected and used to 

estimate the positions of the anchors. This process was done for the two systems separately. 

During the second stage, the two mobile nodes–or tags–are attached to the test subject at the hip 

level. The dynamic test is performed with the test subject moving between the reference points 

and stopping at a random reference point briefly. The difference between the actual position of 

the reference point and the estimated position using the two systems is recorded. The maximum, 

mean, and the root mean square error of the positioning error is calculated for different system 

configurations. 

 

Figure 4–13 Floorplan of the test area 
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4.4.3.2 Results and Discussion 

4.4.3.2.1 Self-positioning results: 

Figure 4–15 and Table 4–6 show the results of the self-positioning step in the experiment. The 

reported errors are between the estimated positions and actual surveyed positions of the anchors. 

Figure 4–15 shows the 95% confidence ellipse of the estimated position. Node #3 was fixed to 

the origin of the 2D mapping frame. Node #2 was initialized to be of the same horizontal line as 

 

Figure 4–14 Anchors and Reference Points Locations 
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the origin. However, nodes #2 and #1 were allowed to move to minimize the square root error 

for the actual range measurements. 

Although the UWB transceivers were calibrated, there is still a residual bias in the range 

measurements between the different nodes. These range biases result in a bias in the anchor node 

position estimate. The bias in the range measurement could be explained by the power dependent 

bias error [175] in the UWB transceiver, which was not compensated. The only error 

compensated during the calibration process is the constant bias, and it was compensated for short 

ranges. Table 4–6 shows the errors in millimetre for the horizontal positions of the nodes, along 

with the Eigenvalues of the scaled covariance matrix, corresponding to the 95% confidence 

ellipse. Note that the anchor position errors in the self-positioning stage will propagate to the 

mobile node position errors, during the dynamic positioning stage. The different scenarios used 

for the dynamic positioning will show the effect of the anchor location errors on the positioning 

error of the dynamic node. 

Table 4–6 Node Positions Error 

Node 
Error (mm) Eigenvalues (mm) 

𝑥 𝑦 2D 𝜆1 𝜆2 

1 -154.80 -420.20 447.80 1272.70 8.07 

2 -668.60 -22.10 669.00 2.72 229.19 

3 -17.60 -1.10 17.70 0.60 0.60 

 

4.4.3.2.2 Dynamic-positioning results: 

Figure 4–14 shows the locations of the three LocSpeck nodes, the six Pozyx anchors, and the 

locations of the reference points used to evaluate the positioning performance of the different 

combination of anchor nodes. There are 25 unique reference points on the floor. The dynamic 

node is allowed to move freely between the nodes and stop for a few seconds over one of the 
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nodes, the position estimate at the reference point is compared with the surveyed position of the 

node, and the difference is the error in the estimated position. The duration of the test scenario is 

24 minutes, and the total distance travelled is approximately 590 m. 

Table 4–7 summarizes the results of the dynamic positioning algorithm for different test 

scenarios. The first column in this table explains the corresponding test scenario briefly. The 

second and third columns give the number of the LocSpeck and Pozyx nodes used during the 

scenario. The following three columns show the maximum, mean, and the root-mean-square 

errors of the horizontal position of the dynamic node. Finally, the last column gives the average 

range measurements update rate during the scenario. 

Following a description of the different scenarios and the corresponding anchor combinations 

considered for the evaluation of the system: 

▪ Scenario #1: Three LocSpeck anchors, with no assisting Pozyx nodes. This scenario 

examines the intrinsic performance of the LocSpeck system. 

▪ Scenario #2: Three Pozyx anchors only. The three nodes in this scenario are selected to have 

similar geometry to that of the LocSpeck nodes in Scenario #1. The purpose of this scenario 

is to evaluate the performance of the two systems under the same relative conditions. 

▪ Scenario #3: This scenario uses the full set of LocSpeck nodes with two additional Pozyx 

nodes on the sides to help enhance the geometry of the anchor network. 

▪ Scenario #4: The full set of LocSpeck nodes are used along with four Pozyx anchors. 

▪ Scenario #5: Using the full set of LocSpeck nodes and the full set of Pozyx nodes. 

▪ Scenario #6: Use only the full set of Pozyx nodes. This scenario compares the performance 

of the Pozyx raw measurements, processed by the dynamic-positioning algorithm of the 

LocSpeck system to the reference solution, generated by the Pozyx system. 
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▪ Scenario# 7: This is the reference solution generated by the Pozyx system using the full set of 

Pozyx anchors. 

The first two rows in Table 4–7 shows that the measurement update rate achieved using the 

LocSpeck system is approximately half the update rate attainable by the Pozyx system. This 

result is expected because of the differences between the medium access protocol implemented 

in the two systems. The Pozyx system supports a time-division-multiple-access protocol, while 

 

Figure 4–15 LocSpeck anchors position error ellipses 
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LocSpeck depends on a random-access protocol, which intrinsically lowers the throughput of the 

system. 

Figure 4–16 and Figure 4–17 show the estimated position of the dynamic node and the reference 

trajectory generated by the Pozyx system. Figure 4–16 shows the estimated and reference 

positions for Scenario #1, using the LocSpeck anchors only. In this figure, there is a significant 

error in the estimated position after 10 minutes of the beginning of the trajectory. By including 

two Pozyx nodes to support the LocSpeck system, the maximum error at this point is reduced 

significantly, as shown in Figure 4–17. 

Table 4–7 shows that using three Pozyx anchors introduces a 30% reduction in the RMS error 

and 15% reduction in the maximum positioning error, compared to using three LocSpeck nodes 

with similar geometrical configurations. 

However, when using the LocSpeck anchors along with two Pozyx nodes, the maximum 

estimated error is reduced by 69.1%, and the RMS error is reduced by 60% to reach 1.19 m. As 

expected, the addition of more Pozyx anchors to the pool of active nodes reduces the positioning 

errors of the system. For example, when using the full set of anchors from the two systems, the 

RMS error reaches 0.45 m, which is equivalent to the reference performance achieved by the 

Pozyx system. 

The last two lines in Table 4–7 shows the effect of using the dynamic-positioning algorithm on 

positioning errors. When using the 6 Pozyx anchors without any LocSpeck nodes, the use of the 

LocSpeck dynamic-positioning algorithm introduces 24% error to the RMS error while 

increasing the maximum error to 1.94 m from 0.8 m in the reference solution. 
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Figure 4–16 Trajectory of Scenario #1 (LocSpeck Anchors Only) 

 

 

Figure 4–17 Trajectory of Scenario #3 (LocSpeck Anchors + Two Pozyx Anchors) 
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Table 4–7 Test Scenarios Description and Positioning Errors 

# Brief Description 
Anchor # Error 2D (m) Average 

Update 

Rate (Hz) L P Max Mean RMS 

1 LOCSPECK ONLY 3 0 14 1.77 2.95 0.62 

2 POZYX 

(6061 & 602C & 606A) - NO 

LOCSPECK 

0 3 11.95 1.35 2.04 1.32 

3 POZYX 

(6162 & 6056) 

3 2 4.33 0.74 1.19 0.66 

4 POZYX 

(6162 & 6056 & 6061 & 602C) 

3 4 1.52 0.38 0.49 0.83 

5 POZYX 

(6162 & 6056 & 6061 & 602C & 606A 

& 682d) 

3 6 1.38 0.37 0.45 0.97 

6 POZYX 

(6162 & 6056 & 6061 & 602C & 606A 

& 682d) 

0 6 1.94 0.43 0.52 1.16 

7 POZYX - Reference 0 6 0.8 0.39 0.42 1.63 

 

4.5 Summary 

This chapter presented LocSpeck, an ad-hoc UWB-based positioning system that achieves 

comparable positioning performance to the Pozyx system, a commercial UWB positioning 

system, under similar operating conditions. The proposed system can provide much more 

flexibility, thanks to the random medium access protocol. LocSpeck network can accommodate 

an arbitrary number of nodes operating in the same region. Additionally, it supports the dynamic 

inclusion or removal of nodes from the network.  

This chapter defined the collaboration type between different nodes using relative range 

measurements. The UWB ranging messages are also used for node-to-node communication, 

which enables the sharing of states or measurements among the collaborating nodes.  
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Chapter Five: Distributed Particle Filters for Collaborative Positioning 

This chapter presents the derivation of two algorithms for collaborative particle filters for the 

distributed estimation of nodes position using relative range measurements. The main objective 

of these filters is to estimate the posterior distribution of the local node position state while 

taking into consideration the correlation in the local states with those of the neighbouring nodes, 

arising from previous collaborations. This work adopts an approach similar to the Schmidt-

Kalman filter [70], [176] to consider the effect of the states of the neighbouring nodes, without 

estimating them. This filter is referred to as the 'consider' Kalman filter [177]. 

The rest of this chapter is organized as follows. The chapter begins with a brief overview of 

recent solutions to the distributed estimation problem. Next, the proposed collaborative particle 

filter family is introduced. Two different variations of the collaborative particle filter are 

presented in details. Then, the simulation environment used to evaluate the performance of the 

filter is described, along with the details of the different evaluation criteria. The results are 

presented in the same section. Finally, a summary section concludes this chapter. 

5.1 Background 

This chapter addresses the collaborative position estimation problem for mobile nodes in two-

dimensional global–i.e. shared among all nodes–coordinates using relative and absolute range 

measurements, under communication and sensing constraints. The proposed filter family was 

developed taking into consideration a dynamic and ad-hoc communication topology [178], in 

which the network topology is not constant, and the number of collaborating nodes is not 

constant or known in advance. Specifically, the filter is designed to estimate the marginalized 

posterior distribution of the position of each node, conditioned on a sequence of range 

measurements from fixed anchors and the neighbouring mobile nodes.  
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This work was initially inspired by [70], [176], in which a Schmidt-Kalman filter is used to 

account for the uncertainty in the states of collaborating nodes along with the correlation 

between the states of the collaborating nodes, arising from the relative range measurement 

update step. The concept of using a 'consider' filter for localization and mapping for indoor 

environments was evaluated in [179]. The use of particle filter in this context was proved to 

provide better performance for local nodes state estimation [180], especially when considering 

fusing information from sources such as Wi-Fi RSSI fingerprints or floorplan information [181]. 

The problem of distributed state estimation using relative and absolute measurements has 

attracted a lot of research effort in the last years. One appealing approach to solve this problem is 

by using the distributed particle filter approach, especially when the system or the measurement 

models are non-linear or described by non-Gaussian distributions. Recent surveys of the subject 

of distributed particle filter are presented in [182], [183]. Distributed particle filters can be 

categorized according to the type of data communicated among the nodes into statistics 

dissemination filters and measurements dissemination filters. In the first category, the nodes 

share the processed data, e.g. representation of the likelihood function or the locally-estimated 

posterior distribution. In the second category, the nodes share the local measurements. Sharing 

different measurements from different sensors will provide a better estimation of the underlying 

process. For example, in [184], the authors propose using the information state innovation (of the 

dimension of the state vector) instead of the conventional innovation vector (of the dimension of 

the observation vector). 

Decentralized sensor fusion algorithm with distributed particle filters was proposed in [185], in 

which the different nodes share a subset of the measurements. The approach uses a selective 

communication algorithm, in the form of a query sent by one of the nodes with a subset of the 
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particles approximating its local belief. The queried node will then search its local measurements 

database to find the most informative measurement to send back to the query initiating node, 

using the Kullback-Leibler divergence between the local belief of the querying node and the 

local belief conditioned on the new measurement. The application of a distributed particle filter 

algorithm using a hierarchical sensor network is described in [186], in which a class of sensors is 

assigned the task of sensing the environment, and another class of sensors with more energy and 

computational power is responsible for handling the entire computational load. The distributed 

resampling with non-proportional allocation (DRNA) algorithm is implemented to parallelize the 

resampling step in a distributed particle filter [187]. In which a particle exchange step is 

implemented, where a subset of the particles is transmitted along with its unnormalized weights. 

The particle exchange step is followed by a local weight update and resampling steps. The main 

objective of this algorithm is to solve the problem of particle degeneracy resulting from the local 

update of the importance weights. Cooperative self-localization and distributed target tracking 

algorithm, through particle-based distributed belief propagation algorithm and consensus 

scheme, is proposed in [188]. More recent distributed particle filter algorithms are presented in 

[189]. Robust distributed particle filter algorithm is described in [190]. The belief propagation 

algorithm was extended to non-parametric belief representations [191], [192], where the belief is 

represented using particles. This class of algorithms generalize the sequential Monte Carlo 

methods to arbitrary graphs, in contrast to the temporal nature of filtering problems. 

The distributed estimation problem is formulated as a set of linear equation constraints on the 

local coordinates of the sensor nodes with respect to the global coordinates by using local 

bearing information in [193]. An estimator based on the least-squares criterion for target 

localization using distances and angle of arrival is proposed in [194]. A different approach to 
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avoid the non-linear nature of the problem is proposed in [195], in which the coordinates of the 

nodes are reparametrized, and only a selected set of anchors are used for the localization of 

certain node. In [196], the problem is solved using an asynchronous consensus-based algorithm. 

The problem is formulated as a distributed least-squares problem. A similar formulation was 

discussed earlier in [197] and [198], where the optimal state estimate for each node is calculated 

iteratively using the Jacobi algorithm. A similar problem is presented in [199]; however, relative 

and absolute measurements are assumed to be available to the nodes. The problem of robust 

estimation from relative and unreliable measurements is addressed in [200]. In this work, the 

authors solve the problem using both centralized and distributed algorithms based on Least-

Squares regression and Expectation Maximization algorithm (LS-EM). However, the distributed 

algorithm requires knowledge of the noise parameters, which is modelled as a Gaussian mixture. 

A different approach to solving this problem is proposed in [201], using variations on the 

Randomized Kaczmarz method, which is an iterative algorithm to solve linear systems of 

equations [202]. Other solutions are described in [203]–[205]. 

5.2 A Family of Distributed Particle Filters 

This section describes the implementation and the derivation of the two distributed particle 

filters. The development of the filter family starts by the direct implementation of the 

collaborative particle filter, in which the considered states–the states of the remote nodes–are 

assumed to be linearly dependent on each particle and can be marginalized using the Rao-

Blackwellized approach. The second filter makes use of a Gaussian regularization kernel for the 

posterior distribution, where the parameters of the regularization kernel are estimated jointly 

with the considered state variance and covariance using a Schmidt-Kalman filtering step. 



 

113 

5.2.1 Rao-Blackwellized collaborative particle filter 

The formulation of the Rao-Blackwellized collaborative particle filter (RBCPF) starts by 

defining the augmented state vector, 𝒙𝑘, which comprises the considered state vector, 𝑥𝑘
𝑐, and the 

local state vector, 𝑥𝑘. This notation emphasizes that the considered state estimate is not 

important to the local estimator; only its effect on the local state is important. The posterior 

distribution of the local state is evaluated using the non-linear particle filter, while the posterior 

distribution of the considered state is evaluated using the linear Kalman filter. To put it formally, 

the objective of the Rao-Blackwellized filter, or the marginalized particle filter, is to evaluate the 

posterior distribution at time step 𝑘, given all the local observations available till step 𝑘, 𝑦1:𝑘. 

𝑝(𝑥1:𝑘, 𝑥𝑘
𝑐|𝑦1:𝑘) (5.1) 

The objective of the collaborative particle filter is to evaluate the marginalized posterior 

distribution of the local, or the non-linear, states. The collaborative particle filter evaluates the 

marginalized posterior distribution of the main states. 

𝑝(𝑥1:𝑘|𝑦1:𝑘) =  ∫𝑝(𝑥1:𝑘 , 𝑥𝑘
𝑐|𝑦1:𝑘) 𝑑𝑥𝑘

𝑐 (5.2) 

The development of the Rao-Blackwellized particle filter (RBPF) starts by factoring the joint 

distribution into a conditionally linear component and a nonlinear component: 

𝑝(𝑥1:𝑘, 𝑥𝑘
𝑐|𝑦1:𝑘) = 𝑝(𝑥𝑘

𝑐|𝑥1:𝑘 , 𝑦1:𝑘)𝑝(𝑥1:𝑘|𝑦1:𝑘), (5.3) 

where the first component of the joint probability, 𝑝(𝑥𝑘
𝑐|𝑥1:𝑘, 𝑦1:𝑘), is conditionally linear with 

respect to the non-linear part of the state vector. This conditionally linear distribution is 

evaluated using the Kalman filter. The second part of the joint probability, 𝑝(𝑥1:𝑘|𝑦1:𝑘), is the 

non-linear part, and it can be evaluated using the particle filter. 
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The development of the Rao-Blackwellized particle filter (RBPF) [206], [207] depends on a 

likelihood function of the form 𝑝(𝑦𝑘|𝑥𝑘
𝑛) to update the weights of the particles, and the 

dependence on the linear states is considered as a noise to the measurement. In this work, the 

dependence of the observations on both the linear and the non-linear states is considered in the 

development of the Rao-Blackwellized collaborative particle filter. With this assumption, the 

likelihood function is expressed as a Gaussian distribution with mean 𝜇𝑘
𝑦

 and variance 𝑅𝑘
𝑦

: 

𝑝(𝑦𝑘|𝑥𝑘, 𝑥𝑘
𝑐)~𝒩(𝑦𝑘; 𝜇𝑘

𝑦
, 𝑅𝑘

𝑦
), (5.4) 

where 𝑦𝑘 is the range measured between two nodes, 𝜇𝑘
𝑦

 is the expectation of range, and 𝑅𝑘
𝑦

 is the 

variance-covariance matrix of the observation. The expectation of the likelihood distribution is a 

function of the non-linear and linear parts of the state vector, and it is the Euclidian distance 

between the two nodes in two-dimensional space, and it is expressed as the 2-norm of the 

difference between the local and the collaborating node state: 

𝜇𝑘
𝑦
= ℎ(𝑥𝑘, 𝑥𝑘

𝑐)

= ‖𝑥𝑘 − 𝑥𝑘
𝑐‖2 (5.5)

 

Using regular particle filter to predict the joint posterior of the local and remote nodes states will 

require a large number of particles, which will increase exponentially with every collaboration 

[208]. An alternative to this approach is to use the Rao-Blackwellized PF and model the remote 

nodes states as linear states and perform the linear state prediction using a Kalman filter. 

The non-linear component posterior can be calculated by marginalizing Equation 5.3, to integrate 

out the linear component of the state: 

𝑝(𝑥1:𝑘|𝑦1:𝑘) = ∫𝑝(𝑥1:𝑘, 𝑥𝑘
𝑐|𝑦1:𝑘) 𝑑𝑥𝑘

𝑐

= ∫
𝑝(𝑦𝑘|𝑥1:𝑘, 𝑥𝑘

𝑐 , 𝑦1:𝑘−1)𝑝(𝑥1:𝑘, 𝑥𝑘
𝑐|𝑦1:𝑘−1)

𝑝(𝑦𝑘|𝑦1:𝑘−1)
𝑑𝑥𝑘

𝑐 (5.6)
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The joint probability, 𝑝(𝑥1:𝑘, 𝑥𝑘
𝑐|𝑦1:𝑘), is expanded using the regular particle filter measurement 

recursion equation. The term 𝑝(𝑦𝑘|𝑦1:𝑘−1) is a constant that does not depend on 𝑥𝑘
𝑐, and can be 

taken out of the integration.  

The posterior can be simplified as follows: 

𝑝(𝑥1:𝑘|𝑦1:𝑘) ∝ ∫𝑝(𝑦𝑘|𝑥𝑘, 𝑥𝑘
𝑐)𝑝(𝑥𝑘

𝑐|𝑥1:𝑘, 𝑦1:𝑘−1)𝑝(𝑥1:𝑘|𝑦1:𝑘−1) 𝑑𝑥𝑘
𝑐

= ∫𝑝(𝑦𝑘|𝑥𝑘, 𝑥𝑘
𝑐)𝑝(𝑥𝑘

𝑐|𝑥1:𝑘, 𝑦1:𝑘−1)𝑝(𝑥𝑘|𝑥1:𝑘−1, 𝑦1:𝑘−1)𝑝(𝑥1:𝑘−1|𝑦1:𝑘−1) 𝑑𝑥𝑘
𝑐

= 𝑝(𝑥𝑘|𝑥𝑘−1)𝑝(𝑥1:𝑘−1|𝑦1:𝑘−1)∫𝑝(𝑦𝑘|𝑥𝑘, 𝑥𝑘
𝑐)𝑝(𝑥𝑘

𝑐|𝑥1:𝑘, 𝑦1:𝑘−1) 𝑑𝑥𝑘
𝑐 (5.7)

 

The main difference between Equation 5.7 and a similar expression derived in [132] is the 

inclusion of the measurement likelihood function inside the marginalization integral since the 

measurement is a function of the linear and non-linear states components. 

The next step in the derivation is evaluating the recursive weights equation, starting from the 

usual weight equation: 

𝑤𝑘 =
𝑝(𝑥1:𝑘|𝑦1:𝑘)

𝑞(𝑥1:𝑘|𝑦1:𝑘)
, (5.8) 

where 𝑞(𝑥1:𝑘|𝑦1:𝑘) is the importance distribution, which can be expressed in a recursive form as 

follows [209]: 

𝑞(𝑥1:𝑘|𝑦1:𝑘) = 𝑞(𝑥𝑘|𝑥𝑘−1)𝑞(𝑥1:𝑘−1|𝑦1:𝑘−1) (5.9) 

By substituting the posterior expression from Equation 5.7, the weight update equation can be 

expressed as follows: 

𝑤𝑘 ∝
𝑝(𝑥𝑘|𝑥𝑘−1)𝑝(𝑥1:𝑘−1|𝑦1:𝑘−1) ∫ 𝑝(𝑦𝑘|𝑥𝑘, 𝑥𝑘

𝑐)𝑝(𝑥𝑘
𝑐|𝑥1:𝑘, 𝑦1:𝑘−1) 𝑑𝑥𝑘

𝑐

𝑞(𝑥𝑘|𝑥𝑘−1)𝑞(𝑥1:𝑘−1|𝑦1:𝑘−1)
(5.10) 

Noting that: 
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𝑤𝑘−1 =
𝑝(𝑥1:𝑘−1|𝑦1:𝑘−1)

𝑞(𝑥1:𝑘−1|𝑦1:𝑘−1)
(5.11) 

Following Equations 5.10 and 5.11, the recursive expression for the weights is given as: 

𝑤𝑘 ∝ 𝑤𝑘−1
𝑝(𝑥𝑘|𝑥𝑘−1) ∫ 𝑝(𝑦𝑘|𝑥𝑘, 𝑥𝑘

𝑐)𝑝(𝑥𝑘
𝑐|𝑥1:𝑘, 𝑦1:𝑘−1) 𝑑𝑥𝑘

𝑐

𝑞(𝑥𝑘|𝑥𝑘−1)
(5.12) 

The importance distribution could take any form, depending on the exact application. However, 

for simplicity, let 𝑞(𝑥𝑘|𝑥1:𝑘−1) = 𝑝(𝑥𝑘|𝑥𝑘−1), which result in the following recursive weights 

expression: 

𝑤𝑘 ∝ 𝑤𝑘−1∫𝑝(𝑦𝑘|𝑥𝑘 , 𝑥𝑘
𝑐)𝑝(𝑥𝑘

𝑐|𝑥1:𝑘, 𝑦1:𝑘−1) 𝑑𝑥𝑘
𝑐 (5.13) 

For each particle, this could be expressed as: 

𝑤𝑘
𝑖 ∝ 𝑤𝑘−1

𝑖 ∫𝑝(𝑦𝑘|𝑥𝑘
𝑖 , 𝑥𝑘

𝑐,𝑖)𝑝(𝑥𝑘
𝑐,𝑖|𝑥1:𝑘

𝑖 , 𝑦1:𝑘−1) 𝑑𝑥𝑘
𝑐,𝑖, (5.14) 

where the superscript 𝑖 refers to the particle number, 𝑖 = 1, … , 𝑁, and 𝑁 is the total number of 

particles. Recall that the conditional distribution of the considered state is evaluated using the 

Kalman filter and takes the following form:  

𝑝(𝑥𝑘
𝑐,𝑖|𝑥1:𝑘

𝑖 , 𝑦1:𝑘−1)~𝒩(𝑥𝑘
𝑐,𝑖; �̅�𝑘

𝑐,𝑖, �̅�𝑘
𝑐,𝑖) (5.15) 

where, �̅�𝑘
𝑐,𝑖, �̅�𝑘

𝑐,𝑖
 are the estimate and the covariance matrix of the consider state, obtained from 

the Kalman filter update step. The measurement likelihood function can be expressed as follows: 

𝑝(𝑦𝑘|𝑥𝑘
𝑖 , 𝑥𝑘

𝑐,𝑖)~𝒩(𝑦𝑘; 𝜇𝑘
𝑦,𝑖
= ℎ(𝑥𝑘

𝑖 , 𝑥𝑘
𝑐,𝑖), 𝑅𝑘

𝑦
) (5.16) 

The integral in Equation 5.14 can be expressed as follows: 
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𝐼 = 𝑝(𝑦𝑘|𝑥𝑘
𝑖 , 𝑥𝑘

𝑐,𝑖) × 𝑝(𝑥𝑘
𝑐,𝑖|𝑥1:𝑘

𝑖 , 𝑦1:𝑘−1)

= 𝒩(𝑦𝑘; ℎ(𝑥𝑘
𝑖 , 𝑥𝑘

𝑐,𝑖), 𝑅) ×𝒩(𝑥𝑘
𝑐,𝑖; �̅�𝑘

𝑐,𝑖, �̅�𝑘
𝑐,𝑖)

= (det(2𝜋𝑅))−
1
2 exp (−

1

2
((𝑦𝑘 − ℎ𝑘

𝑖 )
𝑇
(𝑅𝑘

𝑦
)
−1
(𝑦𝑘 − ℎ𝑘

𝑖 ))) ×

(det(2𝜋�̅�𝑘
𝑐,𝑖))

−
1
2 exp(−

1

2
((𝑥𝑘

𝑐,𝑖 − �̅�𝑘
𝑐,𝑖)

𝑇
(�̅�𝑘

𝑐,𝑖)
−1
(𝑥𝑘

𝑐,𝑖 − �̅�𝑘
𝑐,𝑖))) (5.17)

 

 ■ 

The integral given by Equation 5.17 is hard to evaluate analytically and needs to be computed 

numerically for every particle to update the weight associated with each particle. From the 

practical perspective, the limits of this integral could be set to a reasonable value to reduce the 

computational load for evaluating the likelihood function. Otherwise, the time required will not 

fit within the epoch processing time, for real-time or near real-time applications. 

The derivation of the filter equations so far does not provide a mean of preserving the covariance 

between the current estimate of the local states and the corresponding estimates of the remote 

states. In the context of reduced-order Kalman filter–the Schmidt-Kalman filter–the covariance 

information is stored in the off-diagonal blocks of the state covariance matrix. In the case of a 

centralized particle filter, the joint distribution of the states of different nodes is represented by 

the augmented state vector and approximated as a set of particles. However, in the proposed 

collaborative filter, the state of the remote nodes is replaced and reset each time a new relative 

range measurement is received. The solution adopted for the filter is to store the covariance 

between the posterior distribution of the local state and the posterior of the remote node 

calculated locally. This covariance is used to evaluate the remote state conditional on the local 

state, as shown in equations shortly after. Although the joint probability is not Gaussian and 

needs more than the second and first moments to describe its behaviour fully, only the second-
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order moment will be considered to minimize the amount of memory required to store this term. 

Additionally, this representation is compatible with the remote state approximation adopted for 

the collaborative filter. The cross-covariance of the consider and the local state is, by definition, 

expressed as follows: 

𝐜𝐨𝐯(𝑥𝑘, 𝑥𝑘
𝑐) = 𝔼[(𝑥𝑘 − �̂�𝑘)(𝑥𝑘

𝑐 − �̂�𝑘
𝑐)𝑇]

= 𝔼[𝑥𝑘(𝑥𝑘
𝑐)𝑇] − �̂�𝑘(�̂�𝑘

𝑐)𝑇 , (5.18)
 

where �̂�𝑘 is the mean of the non-linear state, and �̂�𝑘
𝑐 is the mean of the considered state. 

The mean of the non-linear state can be taken as the weighted mean of the particles. 

�̂�𝑘 =∑𝑤𝑘
𝑖𝑥𝑘

𝑖

𝑁

𝑖=1

(5.19) 

The covariance of the non-linear state is expressed as follows: 

𝐜𝐨𝐯(𝑥𝑘, 𝑥𝑘) = (∑𝑤𝑘
𝑖𝑥𝑘

𝑖 (𝑥𝑘
𝑖 )
𝑇

𝑁

𝑖=1

) − �̂�𝑘(�̂�𝑘)
𝑇 (5.20) 

The posterior of the considered state is represented as a Gaussian mixture distribution of the 

following form: 

𝑝(𝑥𝑘
𝑐) =∑𝑤𝑘

𝑖𝒩(𝑥𝑘
𝑐; 𝑥𝑘

𝑐,𝑖, 𝑃𝑘
𝑐,𝑖)

𝑁

𝑖=1

(5.21) 

The mean of the Gaussian mixture is the weighted sum of the means of every single component, 

given by: 

�̂�𝑘
𝑐 =∑𝑤𝑘

𝑖𝔼[𝒩(𝑥𝑘
𝑐; 𝑥𝑘

𝑐,𝑖, 𝑃𝑘
𝑐,𝑖)]

𝑁

𝑖=1

=∑𝑤𝑘
𝑖𝑥𝑘

𝑐,𝑖

𝑁

𝑖=1

(5.22)

 

The joint distribution of the consider and the local state can be expressed as follows: 
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𝑝(𝑥𝑘, 𝑥𝑘
𝑐) =∑𝑤𝑘

𝑖𝛿(𝑥𝑘 − 𝑥𝑘
𝑖 )𝒩(𝑥𝑘

𝑐; 𝑥𝑘
𝑐,𝑖, 𝑃𝑘

𝑐,𝑖)

𝑁

𝑖=1

(5.23) 

The first term in Equation 5.18 can be calculated as follows: 

𝔼[𝑥𝑘(𝑥𝑘
𝑐)𝑇] = ∫∫(𝑥𝑘(𝑥𝑘

𝑐)𝑇)𝑝(𝑥𝑘, 𝑥𝑘
𝑐) 𝑑𝑥𝑘 𝑑𝑥𝑘

𝑐

= ∫∫(𝑥𝑘(𝑥𝑘
𝑐)𝑇)∑𝑤𝑘

𝑖𝛿(𝑥𝑘 − 𝑥𝑘
𝑖 )𝒩(𝑥𝑘

𝑐 ; 𝑥𝑘
𝑐,𝑖, 𝑃𝑘

𝑐,𝑖)

𝑁

𝑖=1

𝑑𝑥𝑘 𝑑𝑥𝑘
𝑐

=∑𝑤𝑘
𝑖𝑥𝑘

𝑖 (𝑥𝑘
𝑐,𝑖)

𝑇
𝑁

𝑖=1

(5.24)

  

Substituting Equation 5.19, 5.22, 5.24 in Equation 5.18 results in the cross-covariance matrix 

expression: 

𝐜𝐨𝐯(𝑥𝑘, 𝑥𝑘
𝑐) = (∑𝑤𝑘

𝑖𝑥𝑘
𝑖 (𝑥𝑘

𝑐,𝑖)
𝑇

𝑁

𝑖=1

) − �̂�𝑘(�̂�𝑘
𝑐)𝑇 (5.25) 

Initially, the 𝐜𝐨𝐯(𝑥𝑘, 𝑥𝑘
𝑐) is equal to 0; however, after the first relative update from a certain 

node, the cross-covariance is calculated, and the value is used afterwards in calculating the 

conditional distribution of the remote node. The conditional distribution equation for Gaussian 

distribution can be represented as follows: 

𝑝(𝑥𝐴|𝑥𝐵)~𝒩(𝜇𝐴 + Σ𝐴𝐵Σ𝐵𝐵
−1(𝑥𝐵 − 𝜇𝐵), Σ𝐴𝐴 − Σ𝐴𝐵Σ𝐵𝐵

−1Σ𝐵𝐴) (5.26) 

The conditional distribution, 𝑝(𝑥𝑘
𝑐|𝑥1:𝑘, 𝑦1:𝑘−1), is calculated as follows: 

𝑝(𝑥𝑘
𝑐|𝑥1:𝑘, 𝑦1:𝑘−1) =

1

𝑁
∑𝒩(𝑥𝑘

𝑐; �̅�𝑘
𝑐,𝑖, �̅�𝑘

𝑐)

𝑁

𝑖=1

(5.27) 

�̅�𝑘
𝑐,𝑖 = 𝑥𝑘

𝑐 + 𝐜𝐨𝐯(𝑥𝑘−1, 𝑥𝑘−1
𝑐 )(𝐜𝐨𝐯(𝑥𝑘−1, 𝑥𝑘−1))

−1
(𝑥𝑘

𝑖 − �̂�𝑘−1
𝑖 ) (5.28)

�̅�𝑘
𝑐 = 𝑃𝑘

𝑐 − 𝐜𝐨𝐯(𝑥𝑘−1, 𝑥𝑘−1
𝑐 )(𝐜𝐨𝐯(𝑥𝑘−1, 𝑥𝑘−1))

−1
(𝐜𝐨𝐯(𝑥𝑘−1, 𝑥𝑘−1

𝑐 ))
𝑇

(5.29)
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where Σ𝐴𝐵 is the cross-covariance, 𝐜𝐨𝐯(𝑥𝑘−1, 𝑥𝑘−1
𝑐 ), Σ𝐵𝐵 is the covariance of the local state, 

𝐜𝐨𝐯(𝑥𝑘−1, 𝑥𝑥−1), and Σ𝐴𝐴 is the covariance matrix of the remote state, 𝑃𝑘
𝑐. Note that the 

conditional covariance matrix is calculated only once, while the conditional mean is evaluated 

for each particle. Algorithm 5–1 gives an overview of the Rao-Blackwellized Collaborative 

Particle filter: 

ALGORITHM 5–1 THE RAO-BLACKWELLIZED COLLABORATIVE PARTICLE FILTER (RBCPF) 

1.  Initialization: For 𝑖 = 1,… ,𝑁 

a. Particle Filter: Initialize each particle with the prior distribution, 𝑥0
𝑖~𝑝0(𝑥0). 

b. Kalman Filter:  

i. Initialize the considered states mean and covariance, {𝒙0
𝑐,𝑖, 𝑷0

𝑐,𝑖} = ∅. 

ii. Initialize the list of collaborating nodes ID, 𝒏𝒊𝒅0
𝑐 = ∅. 

2. Particle filter measurement update: For 𝑘 > 0 

a. Process incoming node-to-node range measurement {𝑛𝑖𝑑𝑘
𝑐 , 𝑥𝑘

𝑐 , 𝑃𝑘
𝑐 , 𝑦𝑘

𝑐}: 

i. If 𝑛𝑖𝑑𝑘
𝑐 ∉ 𝒏𝒊𝒅𝑘−1

𝑐 , augment the nodes ID set, 𝒏𝒊𝒅𝑘
𝑐 ← {𝒏𝒊𝒅𝑘−1

𝑐 , 𝑛𝑖𝑑𝑘
𝑐}, and 

augment the mean and covariance of the consider states for each particle, with 

the incoming values, 

𝒙𝑘|𝑘−1
𝑐,𝑖 ← [(𝒙𝑘−1

𝑐,𝑖 )
𝑇

(𝑥𝑘
𝑐)𝑇]

𝑇

 

𝑷𝑘|𝑘−1
𝑐,𝑖 ← [

𝑷𝑘−1
𝑐,𝑖 𝟎

𝟎 𝑃𝑘
𝑐] 

ii. If 𝑛𝑖𝑑𝑘
𝑐 ∈ 𝒏𝒊𝒅𝑘−1

𝑐 , replace the corresponding entries in the state vector, 𝒙𝑘|𝑘−1
𝑐,𝑖

 

and corresponding block in the covariance matrix, 𝑷𝑘|𝑘−1
𝑐,𝑖

, with the 

conditional mean and covariance, {�̅�𝑘
𝑐 , �̅�𝑘

𝑐}, using Equations 5.28, 5.29. 
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iii. Evaluate the likelihood function, 𝑝𝑛−𝑛
𝑖 (𝑦𝑘

𝑐|𝑥𝑘
𝑖 , 𝑥𝑘

𝑐,𝑖), using Equation 5.7. 

b. Process any anchor-to-node range measurement {𝑥𝑎, 𝑦𝑘
𝑎}: 

i. Evaluate the likelihood function given by, 

𝑝𝑎−𝑛
𝑖 (𝑦𝑘

𝑎|𝑥𝑘
𝑖 )~𝒩(𝑦𝑘

𝑎; ‖𝑥𝑎 − 𝑥𝑘
𝑖 ‖, 𝑅𝑘

𝑦
) 

c. Evaluate the total likelihood function, as follows: 

𝑝𝑘
𝑖 (𝑦𝑘|𝑥𝑘

𝑖 ) = (∫𝑝𝑛−𝑛
𝑖 (𝑦𝑘

𝑐|𝑥𝑘
𝑖 , 𝑥𝑘

𝑐,𝑖)𝑝(𝑥𝑘
𝑐,𝑖|𝑥1:𝑘

𝑖 , 𝑦1:𝑘−1) 𝑑𝑥𝑘
𝑐,𝑖) × (𝑝𝑎−𝑛

𝑖 (𝑦𝑘
𝑎|𝑥𝑘

𝑖 )), 

 where, 𝑦𝑘 = [(𝑦𝑘
𝑐)𝑇 (𝑦𝑘

𝑎)𝑇]𝑇. 

d. Evaluate the weights,  

�̃�𝑘
𝑖 = 𝑝𝑘

𝑖 (𝑦𝑘|𝑥𝑘
𝑖 ), 

then, normalize the weights: 𝑤𝑘
𝑖 = �̃�𝑘

𝑖 ∑ �̃�𝑘
𝑗𝑁

𝑗=0⁄ . 

3. Resample 𝑁 particles, such that: 

Pr{𝑥𝑘
𝑖 = 𝑥𝑘

𝑗
} = 𝑤𝑘

𝑗
 

4. KF measurement update: For 𝑖 = 1,… ,𝑁, update the mean and covariance matrix of the 

considered states for each particle, 

𝒙𝑘|𝑘
𝑐,𝑖 = 𝒙𝑘|𝑘−1

𝑐,𝑖 + 𝐾𝑘
𝑖 (𝑦𝑘 − ℎ(𝑥𝑘

𝑖 , 𝑥𝑘
𝑐,𝑖)) 

𝑷𝑘|𝑘
𝑐,𝑖 = (𝐼 − 𝐾𝑘

𝑖𝐻𝑘
𝑖 )𝑷𝑘|𝑘−1

𝑐,𝑖 (𝐼 − 𝐾𝑘
𝑖𝐻𝑘

𝑖 )
𝑇
+ 𝐾𝑘

𝑖𝑅𝑘
𝑦
(𝐾𝑘

𝑖)
𝑇

 

𝐾𝑘
𝑖 = 𝑷𝑘|𝑘−1

𝑐,𝑖 (𝐻𝑘
𝑖 )
𝑇
(𝐻𝑘

𝑖𝑷𝑘|𝑘−1
𝑐,𝑖 (𝐻𝑘

𝑖 )
𝑇
+ 𝑅𝑘

𝑦
)
−1

 

𝐻𝑘
𝑖 =

𝜕

𝜕𝑥𝑐
ℎ𝑘(𝑥𝑘, 𝑥𝑘

𝑐) =
𝜕

𝜕𝑥𝑐
‖𝑥𝑘 − 𝑥𝑘

𝑐‖2 

5. PF time update: For 𝑖 = 1,… ,𝑁, update the particles using the predictive distribution, 

𝑥𝑘+1
𝑖 ~𝑝(𝑥𝑘+1

𝑖 |𝑥𝑘
𝑖 , 𝑦𝑘) 
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6. KF time update: For 𝑖 = 1,… , 𝑁, update the covariance matrix of the considered states, 

𝑷𝑘+1|𝑘
𝑐,𝑖 = Φk

𝑐𝑷𝑘|𝑘
𝑐,𝑖 Φk

c + 𝑄𝑘
𝑐 

7. PF covariance update: Calculates the cross-covariance and the variance of the particle filter, 

according to Equation 5.20, 5.25. 

8. Advance the step index, 𝑘 ← 𝑘 + 1, and repeat from step 2. 

 

Notes on the RBCPF Algorithm: 

▪ The boldface state and covariance matrix, {𝒙𝑘
𝑐,𝑖, 𝑷𝑘

𝑐,𝑖}, refers to the augmented version 

maintained by the local estimator for each particle. 

▪ The collaborating node information sent along with each new range measurement is 

represented as {𝑥𝑘
𝑐 , 𝑃𝑘

𝑐}.  

5.2.2 Rao-Blackwellized Gaussian-importance collaborative particle filter 

The development of the Rao-Blackwellized Gaussian-importance collaborative particle filter 

(RGCPF) is addressed in this section. The RGCPF is a variant of the Rao-Blackwellized 

collaborative particle filter which utilizes a Gaussian regularization kernel for the posterior 

distribution, whose parameters are evaluated using the Schmidt-Kalman filter. The Gaussian 

kernel is used as the importance sampling distribution, as well. The development of the mean 

and variance equations for the modified Schmidt-Kalman filter (SKF), along with the updated 

algorithm, is presented in this section. The use of Gaussian distribution to model the importance 

distribution has been proposed and examined by several authors, for example, in [209], [210]. 

The main difference between this filter and the normal Rao-Blackwellized particle filter (RBPF) 
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is the order of the weight computation and the particle sampling steps.  This difference is 

highlighted in the listing of Algorithm 5–2.  

The derivation of the RGCPF algorithm starts by considering the Schmidt-Kalman filter update 

equations. These equations are used in two different locations: first, when generating the 

importance density for particles sampling; and second, when updating the covariance matrix of 

the considered states. 

The augmented state vector contains two parts: the non-linear part corresponding to the state of 

the local node and the considered state part corresponding to the states of the neighbouring or 

collaborating nodes. Note that predicting or correcting the actual value of the states of the 

collaborating nodes is not important since the local node does not have the required measurement 

update to improve the estimation of the remote state. However, the correlation between the states 

is of importance. 

The augmented state can be represented as follows: 

𝒙𝑘 = [
𝑥𝑘
𝑥𝑘
𝑐] (5.30) 

where, 𝑥𝑘 is the state of the local node, and 𝑥𝑘
𝑐 represents the considered states. Note, that the 

considered state vector size changes with time with the addition and removal of collaborating 

nodes.  

The dynamics state space model could be expressed using the following form: 

[
𝑥𝑘+1
𝑥𝑘+1
𝑐 ] = [

𝐴𝑘 0

0 𝐴𝑘
𝑐 ] [

𝑥𝑘
𝑥𝑘
𝑐] + [

𝑤𝑘
𝑤𝑘
𝑐] (5.31) 

where, 𝑤𝑘 and 𝑤𝑘
𝑐 are zero mean white Gaussian noise. 

The measurement model, in general, can be expressed as: 

𝑦𝑘 = ℎ(𝑥𝑘, 𝑥𝑘
𝑐) (5.32) 
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For the case of 2-D range measurement, this relation is given by: 

𝑦𝑘 = ‖𝑥𝑘 − 𝑥𝑘
𝑐‖2 (5.33) 

𝑯𝑘 =
𝜕

𝜕𝒙𝑘
ℎ(𝑥𝑘, 𝑥𝑘

𝑐) (5.34) 

𝑯𝑘 = [𝐻𝑘 𝐻𝑘
𝑐] (5.35) 

The measurement update equation is the regular Kalman filter update equations, give as follows: 

𝒙𝑘|𝑘 = 𝒙𝑘|𝑘−1 +𝑲𝑘(𝑦𝑘 − ℎ(𝑥𝑘, 𝑥𝑘
𝑐) ) (5.36) 

𝑷𝑘|𝑘 = (𝑰 − 𝑲𝑘𝑯𝑘)𝑷𝑘|𝑘−1(𝑰 − 𝑲𝑘𝑯𝑘)
𝑇 +𝑲𝑘𝑅𝑘𝑲𝒌

𝑇 (5.37) 

where, 

𝑲𝑘 = 𝑷𝑘|𝑘−1𝑯𝑘
𝑇(𝑯𝑘𝑷𝑘|𝑘−1𝑯𝑘

𝑇 + 𝑅𝑘)
−1

(5.38) 

The time step subscript used in the equation above, and in the following equations can be 

explained as follows: 𝑘|𝑘 − 1, refers to a quantity obtained via a time update step, using the 

predictive model, i.e. 𝑝(∙𝑘 |𝑥𝑘−1, 𝑦𝑘−1); the 𝑘|𝑘 subscript refers to quantities estimated using the 

current measurement update, i.e. 𝑝(∙𝑘 |𝑦𝑘). The superscript 𝑛, indicating the non-linear state, is 

added to some quantities related to the local state, to improve readability, and obviate any 

ambiguities in the cross-correlation term, 𝑃𝑘
𝑛𝑐, as will be shown later.  

Kalman gain for this system is determined by the following equations: 

𝑲𝑘 = [
𝐾𝑘
𝑛

𝐾𝑘
𝑐] = 𝑷𝑘|𝑘−1 [

(𝐻𝑘
𝑛)𝑇

(𝐻𝑘
𝑐)𝑇

] (𝑆𝑘)
−1 (5.39) 

𝑆𝑘 = [𝐻𝑘
𝑛 𝐻𝑘

𝑐] [
𝑃𝑘|𝑘−1
𝑛 𝑃𝑘|𝑘−1

𝑛𝑐

(𝑃𝑘|𝑘−1
𝑛𝑐 )

𝑇
𝑃𝑘|𝑘−1
𝑐

] [
(𝐻𝑘

𝑛)𝑇

(𝐻𝑘
𝑐)𝑇

] + 𝑅𝑘

= 𝐻𝑘
𝑛𝑃𝑘|𝑘−1

𝑛 (𝐻𝑘
𝑛)𝑇 + 𝐻𝑘

𝑐(𝑃𝑘|𝑘−1
𝑛𝑐 )

𝑇
(𝐻𝑘

𝑛)𝑇

+𝐻𝑘
𝑛𝑃𝑘|𝑘−1

𝑛𝑐 (𝐻𝑘
𝑐)𝑇 + 𝐻𝑘

𝑐𝑃𝑘|𝑘−1
𝑐 (𝐻𝑘

𝑐)𝑇 + 𝑅𝑘 (5.40)
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By expanding Equation 5.39, two components of the Kalman gain–one for the nonlinear and one 

for the consider states–can be obtained as follows: 

[
𝐾𝑘
𝑛

𝐾𝑘
𝑐] = [

𝑃𝑘|𝑘−1
𝑛 𝑃𝑘|𝑘−1

𝑛𝑐

(𝑃𝑘|𝑘−1
𝑛𝑐 )

𝑇
𝑃𝑘|𝑘−1
𝑐

] [
(𝐻𝑘

𝑛)𝑇

(𝐻𝑘
𝑐)𝑇

] (𝑆𝑘)
−1

= [
𝑃𝑘|𝑘−1
𝑛 (𝐻𝑘

𝑛)𝑇 + 𝑃𝑘|𝑘−1
𝑛𝑐 (𝐻𝑘

𝑐)𝑇

(𝑃𝑘|𝑘−1
𝑛𝑐 )

𝑇
(𝐻𝑘

𝑛)𝑇 + 𝑃𝑘|𝑘−1
𝑐 (𝐻𝑘

𝑐)𝑇
] (𝑆𝑘)

−1 (5.41)

 

𝐾𝑘
𝑛 = (𝑃𝑘|𝑘−1

𝑛 (𝐻𝑘
𝑛)𝑇 + 𝑃𝑘|𝑘−1

𝑛𝑐 (𝐻𝑘
𝑐)𝑇)(𝑆𝑘)

−1 (5.42)

𝐾𝑘
𝑐 = ((𝑃𝑘|𝑘−1

𝑛𝑐 )
𝑇
(𝐻𝑘

𝑛)𝑇 + 𝑃𝑘|𝑘−1
𝑐 (𝐻𝑘

𝑐)𝑇) (𝑆𝑘)
−1 (5.43)

 

The different components of the state vector and the covariance matrix in the above equations 

are needed in different time steps during the execution of the algorithm. Consequently, the state 

vector and the covariance matrix will be expressed in terms of their block components: 

First, for the state vector update equation: 

𝑥𝑘|𝑘 = 𝑥𝑘|𝑘−1 + 𝐾𝑘
𝑛 (𝑦𝑘 − ℎ(𝑥𝑘|𝑘−1, 𝑥𝑘|𝑘−1

𝑐 )) (5.44) 

𝑥𝑘|𝑘
𝑐 = 𝑥𝑘|𝑘−1

𝑐 +𝐾𝑘
𝑐 (𝑦𝑘 − ℎ(𝑥𝑘|𝑘−1, 𝑥𝑘|𝑘−1

𝑐 )) (5.45) 

Second, the covariance matrix update equation: 

𝑷𝑘|𝑘 = [
𝑃𝑘|𝑘
𝑛 𝑃𝑘|𝑘

𝑛𝑐

(𝑃𝑘|𝑘
𝑛𝑐 )

𝑇
𝑃𝑘|𝑘
𝑐
] (5.46) 

𝑷𝑘|𝑘 = (𝑰 − [
𝐾𝑘
𝑛

𝐾𝑘
𝑐] [𝐻𝑘

𝑛 𝐻𝑘
𝑐]) [

𝑃𝑘|𝑘−1
𝑛 𝑃𝑘|𝑘−1

𝑛𝑐

(𝑃𝑘|𝑘−1
𝑛𝑐 )

𝑇
𝑃𝑘|𝑘−1
𝑐

] (𝑰 − [
𝐾𝑘
𝑛

𝐾𝑘
𝑐] [𝐻𝑘

𝑛 𝐻𝑘
𝑐])

𝑇

+[
𝐾𝑘
𝑛

𝐾𝑘
𝑐] 𝑅𝑘[(𝐾𝑘

𝑛)𝑇 (𝐾𝑘
𝑐)𝑇] (5.47)

 



 

126 

𝑃𝑘|𝑘
𝑛 = (𝐼 − 𝐾𝑘

𝑛𝐻𝑘
𝑛)𝑃𝑘|𝑘−1

𝑛 (𝐼 − 𝐾𝑘
𝑛𝐻𝑘

𝑛)𝑇 − (𝐼 − 𝐾𝑘
𝑛𝐻𝑘

𝑛)𝑃𝑘|𝑘−1
𝑛𝑐 (𝐾𝑘

𝑛𝐻𝑘
𝑐)𝑇

−𝐾𝑘
𝑛𝐻𝑘

𝑐(𝑃𝑘|𝑘−1
𝑛𝑐 )

𝑇
(𝐼 − 𝐾𝑘

𝑛𝐻𝑘
𝑛)𝑇 +𝐾𝑘

𝑛𝐻𝑘
𝑐𝑃𝑘|𝑘−1

𝑐 (𝐾𝑘
𝑛𝐻𝑘

𝑐)𝑇 + 𝐾𝑘
𝑛𝑅𝑘(𝐾𝑘

𝑛)𝑇 (5.48)

 𝑃𝑘|𝑘
𝑛𝑐 = −(𝐼 − 𝐾𝑘

𝑛𝐻𝑘
𝑛)𝑃𝑘|𝑘−1

𝑛 (𝐾𝑘
𝑐𝐻𝑘

𝑛)𝑇 + (𝐼 − 𝐾𝑘
𝑛𝐻𝑘

𝑛)𝑃𝑘|𝑘−1
𝑛𝑐 (𝐼 − 𝐾𝑘

𝑐𝐻𝑘
𝑐)𝑇

+𝐾𝑘
𝑛𝐻𝑘

𝑐(𝑃𝑘|𝑘−1
𝑛𝑐 )

𝑇
(𝐾𝑘

𝑐𝐻𝑘
𝑛)𝑇 − 𝐾𝑘

𝑛𝐻𝑘
𝑐𝑃𝑘|𝑘−1

𝑐 (𝐼 − 𝐾𝑘
𝑐𝐻𝑘

𝑐)𝑇 + 𝐾𝑘
𝑛𝑅𝑘(𝐾𝑘

𝑐)𝑇 (5.49) 

𝑃𝑘|𝑘
𝑐 = 𝐾𝑘

𝑐𝐻𝑘
𝑛𝑃𝑘|𝑘−1

𝑛 (𝐾𝑘
𝑐𝐻𝑘

𝑛)𝑇 − 𝐾𝑘
𝑐𝐻𝑘

𝑛𝑃𝑘|𝑘−1
𝑛𝑐 (𝐼 − 𝐾𝑘

𝑐𝐻𝑘
𝑐)𝑇

−(𝐼 − 𝐾𝑘
𝑐𝐻𝑘

𝑐)(𝑃𝑘|𝑘−1
𝑛𝑐 )

𝑇
(𝐾𝑘

𝑐𝐻𝑘
𝑛)𝑇

+(𝐼 − 𝐾𝑘
𝑐𝐻𝑘

𝑐)𝑃𝑘|𝑘−1
𝑐 (𝐼 − 𝐾𝑘

𝑐𝐻𝑘
𝑐)𝑇 +𝐾𝑘

𝑐𝑅𝑘(𝐾𝑘
𝑐)𝑇 (5.50)

 

Equations 5.44, 5.45, 5.48–5.50 can be simplified following the reduced-order or Schmidt-

Kalman filter approach by setting the Kalman gain for the considered state, 𝐾𝑘
𝑐, to 0 [129], [211]. 

The resulting update equations will not update the value of the consider state, while keeping 

track of its effect on the covariance of the local state.  

The simplified version of Equations 5.48–5.50 are expressed as follows: 

𝑃𝑘|𝑘
𝑛 = (𝐼 − 𝐾𝑘

𝑛𝐻𝑘
𝑛)𝑃𝑘|𝑘−1

𝑛 − 𝐾𝑘
𝑛𝐻𝑘

𝑐(𝑃𝑘|𝑘−1
𝑛𝑐 )

𝑇
(5.51)

𝑃𝑘|𝑘
𝑛𝑐 = (𝐼 − 𝐾𝑘

𝑛𝐻𝑘
𝑛)𝑃𝑘|𝑘−1

𝑛𝑐 − 𝐾𝑘
𝑛𝐻𝑘

𝑐𝑃𝑘|𝑘−1
𝑐 (5.52) 

𝑃𝑘|𝑘
𝑐 = 𝑃𝑘|𝑘−1

𝑐 (5.53)

 

The time update equations for the system defined by the state-space model in Equation 5.31 can 

be expressed as follows: 

𝒙𝑘+1|𝑘 = 𝚽𝑘𝒙𝑘|𝑘 (5.54) 

[
𝑥𝑘+1|𝑘
𝑥𝑘+1|𝑘
𝑐 ] = [

Φ𝑘
𝑛 𝟎

𝟎 Φ𝑘
𝑐] [

𝑥𝑘|𝑘
𝑥𝑘|𝑘
𝑐 ] (5.55) 

𝑥𝑘+1|𝑘 = Φ𝑘
𝑛𝑥𝑘|𝑘 (5.56) 

𝑥𝑘+1|𝑘
𝑐 = Φ𝑘

𝑐𝑥𝑘|𝑘
𝑐 (5.57) 

The covariance matrix calculations are given by the following equations: 

𝑷𝑘+1|𝑘 = 𝚽𝑘𝑷𝑘|𝑘(𝚽𝑘)
𝑇 + 𝑸𝑘 (5.58) 
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[
𝑃𝑘+1|𝑘
𝑛 𝑃𝑘+1|𝑘

𝑛𝑐

(𝑃𝑘+1|𝑘
𝑛𝑐 )

𝑇
𝑃𝑘+1|𝑘
𝑐

] = [
Φ𝑘
𝑛 𝟎

𝟎 Φ𝑘
𝑐] [

𝑃𝑘|𝑘
𝑛 𝑃𝑘|𝑘

𝑛𝑐

(𝑃𝑘|𝑘
𝑛𝑐 )

𝑇
𝑃𝑘|𝑘
𝑐
] [
(Φ𝑘

𝑛)𝑇 𝟎

𝟎 (Φ𝑘
𝑐)𝑇

]

+ [
𝑄𝑘
𝑛 𝟎

𝟎 𝑄𝑘
𝑐] (5.59)

 

𝑃𝑘+1|𝑘
𝑛 = Φ𝑘

𝑛𝑃𝑘|𝑘
𝑛 (Φ𝑘

𝑛)𝑇 + 𝑄𝑘
𝑛 (5.60)

𝑃𝑘+1|𝑘
𝑛𝑐 = Φ𝑘

𝑛𝑃𝑘|𝑘
𝑛𝑐 (Φ𝑘

𝑐)𝑇 (5.61)

𝑃𝑘+1|𝑘
𝑐 = Φ𝑘

𝑐𝑃𝑘|𝑘
𝑐 (Φ𝑘

𝑐)𝑇 +𝑄𝑘
𝑐 (5.62) 

 

The next step is to calculate the conditional distribution of the linear state, 𝑝(𝑥𝑘
𝑐|𝑥1:𝑘, 𝑦1:𝑘−1). 

The conditional distribution of the considered state given the non-linear state can be calculated 

using Equation 5.26 and using the terms calculated in Equations 5.36–5.50. This relation can be 

expressed as follows: 

𝑝(𝑥𝑘
𝑐,𝑖|𝑥𝑘 , 𝑦1:𝑘−1)~𝒩(𝑥𝑘

𝑐,𝑖; �̅�𝑘|𝑘−1
𝑐,𝑖 , �̅�𝑘|𝑘−1

𝑐,𝑖 ) (5.63) 

where, 

�̅�𝑘|𝑘−1
𝑐,𝑖 = 𝑥𝑘|𝑘−1

𝑐,𝑖 + 𝑃𝑘|𝑘−1
𝑛𝑐 (𝑃𝑘|𝑘−1

𝑛 )
−1
(𝑥𝑘

𝑖 − 𝑥𝑘|𝑘−1
𝑖 ) (5.64)

�̅�𝑘|𝑘−1
𝑐,𝑖 = 𝑃𝑘|𝑘−1

𝑐 − 𝑃𝑘|𝑘−1
𝑛𝑐 (𝑃𝑘|𝑘−1

𝑛 )
−1
(𝑃𝑘|𝑘−1

𝑛𝑐 )
𝑇

(5.65)
 

Note that 𝑥𝑘|𝑘−1
𝑖  is the mean of the Gaussian kernel for the 𝑖th particle, while 𝑥𝑘

𝑖  is the value of 

the particle sampled from this kernel, such that 𝑝(𝑥𝑘
𝑖 |𝑥0:𝑘−1

𝑖 , 𝑦1:𝑘) ∼ 𝒩(𝑥𝑘
𝑖 ; 𝑥𝑘|𝑘

𝑖 , 𝑃𝑘|𝑘
𝑛,𝑖 ). In 

contrast to the RBCPF algorithm, the conditional covariance matrix in Equation 5.65 is updated 

for each particle. 

𝑝(𝑥𝑘
𝑐,𝑖|𝑥𝑘 , 𝑦1:𝑘−1) = (det(2𝜋�̅�𝑘|𝑘−1

𝑐,𝑖 ))
−
1
2

× exp(−
1

2
((𝑥𝑘

𝑐,𝑖 − �̅�𝑘|𝑘−1
𝑐,𝑖 )(�̅�𝑘|𝑘−1

𝑐,𝑖 )
−1
(𝑥𝑘

𝑐,𝑖 − �̅�𝑘|𝑘−1
𝑐,𝑖 )

𝑇

)) (5.66)
 

The integral of the marginal likelihood function can be modified according to Equation 5.67: 
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𝐼 = 𝑝(𝑦𝑘|𝑥𝑘
𝑖 , 𝑥𝑘

𝑐,𝑖) × 𝑝(𝑥𝑘
𝑐,𝑖|𝑥1:𝑘

𝑖 , 𝑦1:𝑘−1)

= 𝒩(𝑦𝑘; ℎ(𝑥𝑘
𝑖 , 𝑥𝑘

𝑐,𝑖), 𝑅) ×𝒩(𝑥𝑘
𝑐,𝑖; �̅�𝑘|𝑘

𝑐,𝑖 , �̅�𝑘|𝑘
𝑐,𝑖 )

= (det(2𝜋𝑅))−
1
2

× exp(−
1

2
((𝑦𝑘 − ℎ𝑘

𝑖 )
𝑇
(𝑅𝑘

𝑦
)
−1
(𝑦𝑘 − ℎ𝑘

𝑖 )))

× (det(2𝜋�̅�𝑘|𝑘
𝑐,𝑖 ))

−
1
2 exp (−

1

2
((𝑥𝑘

𝑐,𝑖 − �̅�𝑘|𝑘
𝑐,𝑖 )

𝑇
(�̅�𝑘|𝑘

𝑐,𝑖 )
−1
(𝑥𝑘

𝑐,𝑖 − �̅�𝑘|𝑘
𝑐,𝑖 ))) (5.67)

 

 ■ 

The RGCPF algorithm can be summarized in the Algorithm 5–2 listing: 

ALGORITHM 5–2 THE RAO-BLACKWELLIZED GAUSSIAN POSTERIOR COLLABORATIVE 

PARTICLE FILTER (RGCPF) 

1. Initialization: For 𝑖 = 1,… ,𝑁 

a. Particle Filter:  

Initialize each particle using the prior distribution, 𝑥0
𝑖~𝑝0(𝑥0). 

b. Kalman Filter:  

Initialize the state vector and covariance matrix, {𝒙0|0
𝑖 , 𝑷0|0

𝑖 }, such that: 

i. Initialize the non-linear states and covariance, {𝑥0|0
𝑖 , 𝑃0|0

𝑛,𝑖}. 

ii. Initialize the consider states and covariance, {𝑥0|0
𝑐,𝑖 , 𝑃0|0

𝑐,𝑖 } = ∅. 

iii. Initialize the list of collaborating nodes ID, 𝒏𝒊𝒅0
𝑐 = ∅. 

2. Process incoming node-to-node range measurement {𝑛𝑖𝑑𝑘
𝑐 , 𝑥𝑘

𝑐 , 𝑃𝑘
𝑐 , 𝑦𝑘

𝑐}: 

If 𝑛𝑖𝑑𝑘
𝑐 ∉ 𝒏𝒊𝒅𝑘−1

𝑐 , augment the nodes ID set, 𝒏𝒊𝒅𝑘
𝑐 ← {𝒏𝒊𝒅𝑘−1

𝑐 , 𝑛𝑖𝑑𝑘
𝑐}, and augment the state 

vector and the covariance matrix of the consider states for each particle, with the incoming 

values, 

𝒙𝑘|𝑘−1
𝑖 ← [(𝒙𝑘|𝑘−1

𝑖 )
𝑇

(𝑥𝑘|𝑘−1
𝑐 )

𝑇
]
𝑇

 

𝑷𝑘|𝑘−1
𝑖 ← [

𝑷𝑘|𝑘−1
𝑖 𝟎

𝟎 𝑃𝑘|𝑘−1
𝑐 ] 

 Otherwise, update the corresponding entries in the state vector and the covariance matrix. 
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3. SKF measurement update for the non-linear part of the state vector: For 𝑖 = 1,… ,𝑁, update 

the state and the covariance matrix of the particles, to get {𝑥𝑘|𝑘
𝑖 , 𝑃𝑘|𝑘

𝑛,𝑖 }, using Equation 5.44, 

5.48. 

4. Sample from the importance distribution, given by: 

𝑥𝑘
𝑖~𝑞(𝑥𝑘|𝑥0:𝑘−1

𝑖 , 𝑦0:𝑘) 

where, 

𝑞(𝑥𝑘|𝑥0:𝑘−1
𝑖 , 𝑦1:𝑘) = 𝒩(𝑥𝑘; 𝑥𝑘|𝑘

𝑖 , 𝑃𝑘|𝑘
𝑛,𝑖 ) 

5. Particle filter measurement update: 

a. Evaluate the total likelihood function, as follows: 

𝑝𝑘
𝑖 (𝑦𝑘|𝑥𝑘

𝑖 ) = ∫𝑝𝑛−𝑛
𝑖 (𝑦𝑘

𝑐|𝑥𝑘
𝑖 , 𝑥𝑘

𝑐,𝑖)𝑝(𝑥𝑘
𝑐,𝑖|𝑥1:𝑘

𝑖 , 𝑦1:𝑘−1) 𝑑𝑥𝑘
𝑐,𝑖 × 𝑝𝑎−𝑛

𝑖 (𝑦𝑘
𝑎|𝑥𝑘

𝑖 ) 

where, 𝑦𝑘 = [(𝑦𝑘
𝑐)𝑇 (𝑦𝑘

𝑎)𝑇]𝑇. 

b. Evaluate the weights,  

𝑤𝑘
𝑖 = 𝑤𝑘−1

𝑖
𝑝(𝑦𝑘|𝑥𝑘

𝑖 )𝑝(𝑥𝑘
𝑖 |𝑥𝑘−1

𝑖 )

𝑞(𝑥𝑘
𝑖 |𝑥𝑘−1

𝑖 , 𝑦1:𝑘)
 

then, normalize the weights: �̃�𝑘
𝑖 = 𝑤𝑘

𝑖 ∑ 𝑤𝑘
𝑗𝑁

𝑗=0⁄ . 

6. If needed, resample 𝑁 particles, such that: 

𝑝(𝑥𝑘
𝑖 = 𝑥𝑘

𝑗
) = �̃�𝑘

𝑗
 

7. KF measurement update: Update the state and the covariance matrix of the consider states to 

get {𝑥𝑘|𝑘
𝑐,𝑖 , 𝑃𝑘|𝑘

𝑛𝑐,𝑖, 𝑃𝑘|𝑘
𝑐,𝑖 }, according to Equation 5.45, 5.49, 5.50. 

8. PF time update: For 𝑖 = 1,… ,𝑁, update the particles according to the predictive distribution, 

𝑥𝑘+1
𝑖 ~𝑝(𝑥𝑘+1

𝑖 |𝑥𝑘
𝑖 , 𝑦𝑘) 

9. KF time update: For 𝑖 = 1,… , 𝑁, update the covariance matrix of the consider states, 

𝑷𝑘+1
𝑐,𝑖 = Φk

𝑐𝑷𝑘
𝑐,𝑖Φk

c + 𝑄𝑘
𝑐 

10. Advance the step index, 𝑘 ← 𝑘 + 1, and repeat from step 2.  
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5.3 Simulation and results 

The performance of the proposed particle filter family is evaluated through simulation against a 

centralized and distributed particle filters. In the centralized filter, the states of all nodes are 

concatenated into one state vector. Thus, the joint distribution of the state of the entire node 

population is evaluated with each measurement update. The main challenge to this approach is 

the particle depletion problem, since the dimensionality of the centralized filter in 𝑀 times that 

of the distributed filter, where 𝑀 is the total number of nodes. 

The second filter configuration is the distributed filter configuration. In this case, each node 

estimates its state locally, according to range measurement updates either to the reference 

anchors or to the neighbouring nodes. In this configuration, the anchors and neighbouring nodes 

are treated equally, such that the uncertainty in the remote state estimates will be ignored by the 

local particle filter during the evaluation of the measurement likelihood function. Additionally, 

the local particle filter in this configuration is oblivious to the correlation between the local states 

and the remote node states. 

The performance is evaluated using the root mean square error (RMSE) of the positioning 

derived from the Cramér-Rao Lower Bound (CRLB) of each estimator. The CRLB criterion is 

useful to evaluate how the filter is behaving against the most efficient theoretical estimator of the 

state given the available measurements. The following section will provide a brief background of 

the CRLB along with the computation of the bound for the intended measurement and dynamical 

models. 
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5.3.1 Cramér-Rao Lower Bound 

Cramér-Rao Lower Bound (CRLB) defines a lower bound for the variance of any unbiased 

estimator. For any unbiased estimator, �̂�𝑘|𝑘, using a series of measurements, 𝑦1:𝑘, with a 

likelihood of 𝑝(𝑦1:𝑘|𝑥0:𝑘), given an initial a prior distribution, 𝑝(𝑥0), the variance is lower-

bounded using the following equation: 

cov(�̂�𝑘|𝑘) ≥ 𝐉𝐹
−1 (5.68) 

where 𝐉𝐹 is the Fisher information matrix (FIM) [212], [213]. 

The Fisher information matrix, 𝐉𝐹, is a 𝑛𝑥 × 𝑛𝑥 matrix, where the element (𝑖, 𝑗) of this matrix 

can be expressed using the following relation: 

[𝐉𝐹](𝑖,𝑗) ≜ −𝔼{
𝜕2 ln(𝑝(𝑦, 𝑥))

𝜕𝑥(𝑖)𝜕𝑥(𝑗)
} (5.69) 

Alternatively, 

𝐉𝐹 ≜ −𝔼{∇𝑥[∇𝑥 ln 𝑝(𝑦, 𝑥)]
𝑇} (5.70) 

■ 

The expression in Equation 5.70 can be evaluated recursively for estimating a state vector 𝑥1:𝑘 as 

follows [212], [214], for 𝑘 > 0: 

(𝐉𝐹)𝑘+1 = 𝐷𝑘
22 − 𝐷𝑘

21[(𝐉𝐹)𝑘 + 𝐷𝑘
11]−1𝐷𝑘

12 (5.71) 

where, 

𝐷𝑘
11 = −𝔼{∇𝑥𝑘[∇𝑥𝑘 ln 𝑝(𝑥𝑘+1|𝑥𝑘)]

𝑇
} (5.72)

𝐷𝑘
21 = −𝔼{∇𝑥𝑘[∇𝑥𝑘+1 ln 𝑝(𝑥𝑘+1|𝑥𝑘)]

𝑇
} (5.73)

𝐷𝑘
12 = −𝔼{∇𝑥𝑘+1[∇𝑥𝑘 ln 𝑝(𝑥𝑘+1|𝑥𝑘)]

𝑇
} = [𝐷𝑘

12]𝑇 (5.74)

𝐷𝑘
22 = −𝔼{∇𝑥𝑘+1[∇𝑥𝑘+1 ln 𝑝(𝑥𝑘+1|𝑥𝑘)]

𝑇
}

−𝔼{∇𝑥𝑘+1[∇𝑥𝑘+1 ln 𝑝(𝑦𝑘+1|𝑥𝑘+1)]
𝑇
} (5.75)
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The initial Fisher information matrix at 𝑘 = 0 depends in the initial a priori distribution, 𝑝(𝑥0), 

and is given as follows: 

(𝐉𝐹)0 = −𝔼{∇𝑥0[∇𝑥0 ln 𝑝(𝑥0)]
𝑇
} (5.76) 

■ 

Discussion about the Cramér-Rao Lower Bound for the distributed positioning architecture can 

be found in [215], which provides an example for a set of collaborating nodes in a small region. 

All the nodes are stationary and share measurements through anchors and other nearby nodes. 

Other resources covering the same topic is given in [212], [216]–[220]. 

The bound provided by the previous equations above is called the joint unconditional CRLB, and 

it does not provide the tightest bound [221], meaning that the actual performance of the optimal 

estimator may fall far from that lower bound. However, for this work, the real value of the bound 

is not significant as it is just an indication of the achievable error variance. 

The Cramér-Rao lower bound of the filter is calculated for the case of the intermittent 

observations. In which only one active connection is used to achieve the relative range 

measurement. As opposed to a continues observation mode, where each node can obtain multiple 

range measurements simultaneously. The rest of this section is used to derive the CRLB to be 

used to evaluate the RMSE performance of the filters. The bound adopted for the evaluation of 

the performance of the filter is the joint unconditional bound. 

The first step is to evaluate the initial information matrix (𝐉𝐹)0. Assuming a Gaussian prior 

distribution, the initial two-dimension position is described as a group of uncorrelated nodes with 

a certain mean that corresponds to the actual location and a variance. 

𝑝(𝑥0) = 𝒩(𝑥0; 𝜇0, Σ0) (5.77) 
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where 𝜇0 = [(𝑥1)
𝑇 … (𝑥𝑛)

𝑇]𝑇, Σ0 = 𝜎0
2𝑰, 𝑰 is the 2𝑛 × 2𝑛 identity matrix, and 𝑛 is the total 

number of nodes. 

𝑝(𝑥0) = |2𝜋Σ0|
−
1
2 exp(−

1

2
(𝑥0 − 𝜇0)

𝑇Σ0
−1(𝑥0 − 𝜇0)) (5.78)

log 𝑝(𝑥0) = −
1

2
log|2𝜋Σ0| −

1

2
(𝑥0 − 𝜇0)

𝑇Σ0
−1(𝑥0 − 𝜇0) (5.79)

 

The expectation of the log-likelihood is calculated with respect to the prior distribution, 𝑝(𝑥0).  

∇𝑥0 ln 𝑝(𝑥0) = ∇𝑥0 (−
1

2
log|2𝜋Σ0| −

1

2
(𝑥0 − 𝜇0)

𝑇Σ0
−1(𝑥0 − 𝜇0)) (5.80)

= −Σ0
−1(𝑥0 − 𝜇0) (5.81)

 

∇𝑥0[∇𝑥0 ln 𝑝(𝑥0)]
𝑇
= ∇𝑥0(−Σ0

−1(𝑥0 − 𝜇0))
𝑇

= ∇𝑥0(−(𝑥0 − 𝜇0)
𝑇Σ0

−1)

= −Σ0
−1 (5.82)

 

(𝐉𝐹)0 = −𝔼{∇𝑥0[∇𝑥0 ln 𝑝(𝑥0)]
𝑇
}

= 𝔼{Σ0
−1}

= Σ0
−1 (5.83)

 

Assuming a random walk dynamic model and a Gaussian measurement model, the parameters of 

the recursive Fisher information matrix, Equations 5.72–5.75, can be expressed as follows: 

𝑝(𝑥𝑘+1|𝑥𝑘) = |2𝜋Σ0|
−
1
2 exp(−

1

2
(𝑥𝑘+1 − 𝑥𝑘)

𝑇Σ𝑘
−1(𝑥𝑘+1 − 𝑥𝑘)) (5.84)

log 𝑝(𝑥𝑘+1|𝑥𝑘) = −
1

2
log|2𝜋Σ𝑘| −

1

2
(𝑥𝑘+1 − 𝑥𝑘)

𝑇Σ𝑘
−1(𝑥𝑘+1 − 𝑥𝑘) (5.85)

 

The gradient of the log-likelihood function with respect to 𝑥𝑘 and 𝑥𝑘+1 can be expressed as 

follows: 

∇𝑥𝑘 log 𝑝(𝑥𝑘+1|𝑥𝑘) = Σ𝑘
−1(𝑥𝑘+1 − 𝑥𝑘) (5.86)

∇𝑥𝑘+1 log 𝑝(𝑥𝑘+1|𝑥𝑘) = −Σ𝑘
−1(𝑥𝑘+1 − 𝑥𝑘) (5.87)
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∇𝑥𝑘[∇𝑥𝑘 log 𝑝(𝑥𝑘+1|𝑥𝑘)]
𝑇
= −Σ𝑘

−1 (5.88)

∇𝑥𝑘+1[∇𝑥𝑘 log 𝑝(𝑥𝑘+1|𝑥𝑘)]
𝑇
= ∇𝑥𝑘[∇𝑥𝑘+1 log 𝑝(𝑥𝑘+1|𝑥𝑘)]

𝑇

= Σ𝑘
−1 (5.89)

∇𝑥𝑘+1[∇𝑥𝑘+1 log 𝑝(𝑥𝑘+1|𝑥𝑘)]
𝑇
= −Σ𝑘

−1 (5.90)

 

The measurement likelihood function is represented as: 

𝑝(𝑦𝑘+1|𝑥𝑘+1) = |2𝜋𝑅𝑘+1|
−
1
2 

× exp(−
1

2
(𝑦𝑘+1 − ℎ(𝑥𝑘+1))

𝑇
R𝑘+1
−1 (𝑦𝑘+1 − ℎ(𝑥𝑘+1))) (5.91)

log 𝑝(𝑦𝑘+1|𝑥𝑘+1) = −
1

2
log|2𝜋𝑅𝑘+1| 

−
1

2
(𝑦𝑘+1 − ℎ(𝑥𝑘+1))

𝑇
R𝑘+1
−1 (𝑦𝑘+1 − ℎ(𝑥𝑘+1)) (5.92)

 

∇𝑥𝑘+1 ln 𝑝(𝑦𝑘+1|𝑥𝑘+1) = −
1

2
∙ ∇𝑥𝑘+1 ((𝑦𝑘+1 − ℎ(𝑥𝑘+1))

𝑇
R𝑘+1
−1 (𝑦𝑘+1 − ℎ(𝑥𝑘+1))) (5.93)

= (𝑦𝑘+1 − ℎ(𝑥𝑘+1))
𝑇
R𝑘+1
−1 (∇𝑥𝑘+1ℎ(𝑥𝑘+1)) (5.94)

 

∇𝑥𝑘+1[∇𝑥𝑘+1 ln 𝑝(𝑦𝑘+1|𝑥𝑘+1)]
𝑇
= −(∇𝑥𝑘+1ℎ(𝑥𝑘+1))

𝑇

R𝑘+1
−1 (∇𝑥𝑘+1ℎ(𝑥𝑘+1)) (5.95) 

where, 

𝐻𝑘+1 = ∇𝑥𝑘+1ℎ(𝑥𝑘+1) (5.96)

(𝐻𝑘+1)𝑖 =
𝜕

𝜕𝑥𝑖
ℎ(𝑥𝑘+1) =

𝜕

𝜕𝑥𝑖
‖𝑥𝑖 − 𝑥𝑗‖2

=
𝑥𝑖 − 𝑥𝑗

‖𝑥𝑖 − 𝑥𝑗‖2

(5.97)

 

The parameters of the recursive relation can be expressed as follows: 

𝐷𝑘
11 = Σ𝑘

−1 (5.98)

𝐷𝑘
21 = 𝐷𝑘

12 = −Σ𝑘
−1 (5.99)

𝐷𝑘
22 = Σ𝑘

−1 + 𝔼{𝐻𝑘+1
𝑇 𝑅𝑘+1

−1 𝐻𝑘+1} (5.100)
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The calculation of the expectation in Equation 5.100 is not straight forward. Note that the 

expectation is taken with respect to the state vector. One solution is to use numerous simulations 

and replace the expectation operator with the ensemble average of the trajectories [212], [214]. 

5.3.2 Results 

The performance of the proposed filter family is evaluated using a two-dimensional simulation 

environment, running two static scenarios. The objective of both scenarios is to estimate the 

unknown positions of two different sets of static nodes using a combination of relative and 

absolute range measurements. The relative measurements are between the nodes, and the 

absolute measurements are between the nodes and the reference anchors. All nodes share the 

knowledge of the position of the anchors; however, the location estimates of the nodes are not 

shared until a relative measurement occurs. During a relative range measurement exchange, the 

two participating nodes exchange their most recent estimates in addition to the corresponding 

covariance. As outlined in a previous section, the state posterior of the nodes is approximated 

using a Gaussian distribution to reduce the communication overhead. 

Figure 5–1 and Figure 5–2 show the floorplan of the simulation environment, the location of 

nodes and anchors, and the range of the sensors. The floorplan in both test cases is a rectangular, 

empty plan with four anchors at the corners of the floorplan. None of the nodes can get a position 

fix using absolute measurements only and need to collaborate with other nodes to do so. Figure 

5–1 shows the layout of the four nodes case, which is a 40 m by 30 m rectangle. The upper-right 

and the lower-left nodes can measure ranges to one anchor point and can collaborate with 

another two nodes. The nodes on the upper-left and the lower-right corners can measure ranges 

between themselves, two anchors, and the two other nodes. The layout of the eight nodes case is 

shown in Figure 5–2, which is a 60 m by 40 m rectangle. The nodes form a symmetric lattice. 
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Figure 5–1 Floorplan, 4 Nodes 

      

 
Figure 5–2 Floorplan, 8 Nodes 
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Each of the four corner nodes is connected to one anchor, another corner node, and two middle 

nodes. The middle nodes are connected to each other and to the two corner nodes. None of the 

middle nodes can connect directly to the anchor nodes. 

The range measurements between nodes are intermittent, such that at each time step nodes can 

communicate with only one node or anchor. The intermittent measurement model is based on the 

expected behaviour of an ad-hoc network of nodes equipped with radio ranging transceivers, 

such as UWB-based ranging transceivers. Such ranging devices are assumed to provide unbiased 

distance measurement. The nodes and anchors are paired randomly, as a result of the ad-hoc 

nature of the sensor network topology examined in this work. The effect of the random ranging 

measurements structure is seen in Figure 5–3 and Figure 5–4. These figures represent the 

connectivity graph between all nodes by the end of the simulation time of sample run for the four 

nodes and the eight nodes cases, respectively. The vertices of the graph represent the nodes and 

anchors and are labelled accordingly. The edges represent the range measurement between two 

vertices, and each is weighted by the frequency of the measurement. The number on the edges is 

the total number of measurements between the connecting vertices. It is clear from Figure 5–3 

and Figure 5–4 that this configuration poses a challenge to the positioning application since the 

quality of the geometry of the measurement is not guaranteed, and there are weak links in the 

graph, where the absence of range measurements can reduce the positioning accuracy of the 

nodes set. 

The performance of the filter is characterized by two parameters: the average of the RMSE for 

500 sample runs of the two proposed filters for 30 seconds, with 2 Hz range measurement update 

rate, and the effective number of particles after the weight update step for a sample run. 
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Figure 5–3 Connectivity Graph, 4 Nodes 

 
Figure 5–4 Connectivity Graph, 8 Nodes 

The RMSE is compared to that of a centralized particle filter and a distributed particle filter in 

addition to the Cramér-Rao Lower Bound, for the two simulation scenarios–four and eight 

nodes. Figure 5–5 and Figure 5–6 compare the RMSE performance of the proposed filters and 

the two reference implementations for the two testing scenarios. The implementation of the three 
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distributed filters uses 150 particles for the state of each filter, while the centralized 

implementation utilizes 600 and 1200 particles to represent the joint distribution of the states for 

the four and eight cases respectively. 

In these two simulation scenarios, the average RMSE performance of the RBCPF is shown to be 

more conforming with the CRLB than the other three filters. It is clear that the error in the case 

of the RBCPF is converging to the lower-bound at a higher rate. In the case of four nodes, the 

RGCPF is matching the performance of the RBCPF closely. However, in the case of the eight 

nodes, the RGCPF lags in terms of RMSE performance and is matching the performance of the 

distributed particle filter. In all cases, the RMSE performance of the centralized particle filter is 

trailing behind the other filters. 

 

 

 
Figure 5–5 RMSE Using CRLB and Particle Filters–150 Particles, 4 Nodes, 500 Runs 
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The reasons why the centralized and the distributed particle filters are falling behind the RBCPF 

are different. The centralized particle filter suffers from the curse of the dimensionality since the 

number of particles required to represent the state will increase exponentially with the addition of 

new states. This can be confirmed in Figure 5–7 and Figure 5–8 showing the effective number of 

particles for the four filters. For the case of the particle filter, the percentage of the effective 

particles is remarkedly lower than others since only a few particles at any moment will be 

representing the true joint state of the nodes. On the other hand, the distributed particle filter does 

not consider the correlation between the nodes, so it is faster to converge to a solution, as shown 

in Figure 5–7 and Figure 5–8, albeit not necessarily the correct solution as evident in  Figure 5–5 

and Figure 5–6. 

 

 

 
Figure 5–6 RMSE Using CRLB and Particle Filters–150 Particles, 8 Nodes, 500 Runs 
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Figure 5–7 Effective Number of Particles, 4 Nodes 

 

 
Figure 5–8 Effective Number of Particles, 8 Nodes 
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Figure 5–9 to Figure 5–12 show the cumulative measurement graph for the four nodes scenario 

along with the posterior distribution of one of the nodes for the first few measurements updates. 

The figures show the evolution of the posterior distribution. At time zero, the state is initialized 

using a uniform a priori distribution, with no active range measurements between nodes. With 

every new measurement, the posterior is updated. In the cases of the centralized and the 

distributed particle filter, the particles population collapses rapidly, for the reasons outlined 

above, slowing the convergence of the filters to the correct state. However, the RBCPF and the 

RGCPF generally maintain a more diverse particles population, making the convergence faster 

as more observations become available. The execution time of the different filters in the two 

scenarios are compared in Table 5–1 and Table 5–2. The RBCPF takes 6-18 times more 

execution time than the reference centralized filter implementation, while the RGCPF consumes 

16-23 times more. 

 

Table 5–1 Relative Run-Time–150 Particles, 4 Nodes 

PF Centralized PF Distributed RBCPF RGCPF 

1.00x 1.31x 6.24x 16.74x 

 

 

Table 5–2 Relative Run-Time–150 Particles, 8 Nodes 

PF Centralized PF Distributed RBCPF RGCPF 

1.00x 1.29x 17.54x 22.50x 
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Figure 5–9 Posterior Distribution for Centralized PF, 4 Nodes 

 



 

144 

 
Figure 5–10 Posterior Distribution for Distributed PF, 4 Nodes 
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Figure 5–11 Posterior Distribution for RBCPF, 4 Nodes 
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Figure 5–12 Posterior Distribution for RGCPF, 4 Nodes 
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5.4 Summary 

This chapter presented two new collaborative particle filters, using the state marginalization 

concept to introduce the considered state into the particle filter–similar to the way the original 

Rao-Blackwellized particle filter handles linear substructures in the state-space model. The Rao-

Blackwellized Collaborative Particle Filter (RBCPF) treats the considered state as a 

conditionally linear random variable, dependant on each particle values. The considered state is 

updated locally, and the cross-covariance information is calculated and used in later time steps to 

evaluate the conditional distribution of the considered states. The Rao-Blackwellized Gaussian-

importance Collaborative Particle Filter (RGCPF) adds a Gaussian proposal distribution and 

treats the considered state in a similar way to the Schmidt-Kalman filter. 

The performance of the two filters is evaluated against a centralized and distributed particle 

filters and compared to the RMSE derived from the Cramér-Rao Lower Bound (CRLB). The 

filters are used to estimate the positions of multiple collaborating nodes in a plan, using 

intermittent relative and absolute range measurements. The simulations showed that on average, 

the RBCPF and the RGCPF could achieve better performance compared to the centralized 

particle filter implementation, with the RBCPF significantly outperforming the centralized and 

the distributed counterparts. The RBCPF achieve better performance in terms of the achievable 

RMSE and in terms of achieving a higher percentage of effective particles compared to the 

centralized and the distributed particle filters. 

This chapter defined two vital elements of the proposed framework: the type of data shared 

between nodes along with an algorithm to use this shared data to update the state of collaborating 

nodes in a decentralized way.  
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Chapter Six: Experiments and Results 

6.1 Experimental Setup and Testing Scenarios 

This chapter describes the results of the experimental evaluation of the proposed framework. The 

experiments took place on the second floor of the engineering block E (ENE) building at the 

University of Calgary. The surface area of the testing region is 360 m2, the length of the testing 

region is 48 m, and the average width is 7.5 m. Figure 6–1 shows the floorplan of the testing 

area, the locations of the Pozyx fixed anchors, and the locations of the reference points fixed on 

the floor of the testing area. 

The experiments carried out using four dynamic nodes; one of them is the main node, while the 

other three nodes are the collaborating nodes. This chapter will evaluate the positioning 

performance of the main node, which was connected to the Pozyx system to collect the ground-

truth trajectory. Each node is equipped with a smart device, running the data collection 

application, and the locSpeck UWB device. Table 6–1 shows the technical details of the smart 

devices used by the collaborating nodes. 

The complete experiment is divided into three separate trajectories. Each trajectory starts with 

the four nodes at rest. Once the experiment starts, the nodes walk in a random trajectory inside 

the testing area. The nodes occasionally stop on the reference position during their travel. 

However, only the reference trajectory of the main node is captured using the Pozyx reference 

system. 

The data logging application runs on each of the smart devices and collects readings from the 

available sensors, the wi-fi received signal strength indicator along with information about the 

corresponding access point, and the UWB range measurement along with the address of the 

collaborating node. This information is processed later, on a desktop computer. 
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Table 6–1 Technical details of the collaborating nodes 

Device Role OS Used Sensors 

Nexus 9 

(2014) 

Main Android 7.1.1  

(3.10.103) 

Accelerometer, Gyroscope, 

Wi-Fi 802.11 a/b/g/n/ac, dual-band 

Samsung Galaxy J1 

(2015) 

Support Android 6.0.1 Accelerometer,  

Wi-Fi 802.11 b/g/n 

Huawei Nova Plus 

(2016) 

Support Android 7.0  

(3.18.31) 

Accelerometer, 

Wi-Fi 802.11 b/g/n 

LG G6 

(2017) 

Support Android 7.0 

(3.18.31) 

Accelerometer, Gyroscope, 

Wi-Fi 802.11 a/b/g/n/ac, dual-band 

 

 

Figure 6–1 Testing environment floorplan 
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The rest of this chapter will discuss the results of the different testing scenarios. The next section 

evaluates the standalone positioning performance of the main node. In this scenario, all the 

sensors available to the main node are used by the positioning filter. The Wi-Fi fingerprint map 

used in this scenario is the reference map, which was created previously using a dedicated 

trajectory. The objective of this scenario is to establish a performance baseline to which the 

performance of the collaborative approach is compared. 

The following section is dedicated to the evaluation of the collaborative positioning algorithm. In 

this section, different collaboration scenarios are used. In the first scenario, the main node is not 

using any of the available sensors, except for the UWB ranging device. While the supporting 

nodes are estimating their positions using all the sensors available to them, along with the Wi-Fi 

reference map. The main node uses only the relative range measurements to estimate its position. 

The objective of this scenario is to evaluate the effect of collaboration in the case of node 

asymmetry. The main node, in this case, is in a disadvantageous position where it could not 

estimate its location without external aid from the collaborating nodes. 

The second scenario testing for collaborating nodes uses the complete set of sensors on all nodes, 

main and supporting. The objective of this test is to assess the effect of collaboration when the 

active node already has a good estimate of its position using only measurements local to the 

device, without any external sources. A final scenario is tested, where the filter is providing 

position estimates based on a random-walk model. This final scenario, though seems trivial, is 

used to establish the performance lower bound. 
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6.2 Standalone Positioning Scenarios 

6.2.1 Positioning Filter Overview 

The standalone position algorithm is implemented using a particle filter. The version used for 

these results uses a pedestrian dead-reckoning (PDR) algorithm for the state update using input 

from the gyroscope and the accelerometer. The filter uses Wi-Fi fingerprinting to update the 

weights of the particles, using a Gaussian process model as the reference map. The details of the 

pedestrian dead-reckoning and the Gaussian process-based fingerprinting were discussed earlier 

and will not be repeated here. The filter also uses floorplan information to ensure that the 

effective particles are within the area of interest and eliminate out-of-bound particles. The right 

panel in Figure 6–1 shows the floor map mask used to discriminate the out-of-bound particles. 

Equation (6.1) shows the weight update equation using the floorplan information: 

�̃�i = {
𝑤𝑖, 𝑥𝑖 ∈ 𝐹𝑃
0, 𝑥𝑖 ∉ 𝐹𝑃

 (6.1) 

where 𝑥𝑖 is the position of the 𝑖-th particle, with weight 𝑤𝑖, and 𝐹𝑃 is the floorplan. 

After the weight update step, a weight normalization and resampling steps are implemented to 

remove the undesired particles. The filter is implemented with relatively low particle count to 

reduce the processing time required. The positioning filter is the RBCPF with 150 particles. 

6.2.2 Reference Trajectories and Fingerprints Maps 

The framework performance is evaluated using three different trajectories covering the same test 

area. Figure 6–2 shows the reference solution for the test trajectories. This reference is created 

using the Pozyx UWB-based system. The locations of the Pozyx anchors are highlighted in Figure 

6–1. The position error is evaluated at any of the pre-surveyed reference points.  
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Table 6–2 Pozyx positioning error summary 

Trajectory # Mean Absolute Error (m) RMS Error (m) 

1 0.37 0.45 

2 0.57 0.65 

3 0.60 0.72 

 

The reference solution for each trajectory is compared to the pre-surveyed reference points on 

the ground. The performance of the Pozyx solution is summarized in Table 6–2. For all the tested 

scenarios, the position error is evaluated when the node reaches and stops over one of the 

reference points. This event is captured from the Pozyx reference trajectory in addition to the 

stop detection algorithm applied to the accelerometer data from the node of interest. The Pozyx  

 

Figure 6–2 Pozyx reference trajectory 
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trajectory is not used directly to evaluate the performance. It is used to indicate the location of 

the nearest reference point on the floor, which location is known precisely, and this reference 

point is used to evaluate the error in the position estimate. The small positioning error of the 

Pozyx system is vital to be able to distinguish between the densely-placed reference points. 

The reference radio map is created using the Pozyx reference trajectory in a separate run. The 

fingerprint map is built by observing the signal strength indicator at the reference points, then fit 

a Gaussian process model, for each visible access point, using the position and signal strength  

pairs. During the positioning scenarios, the resulting Gaussian process models are used by the 

different dynamic nodes to aid the positioning filter. 

6.2.3 Standalone Positioning Results 

Figure 6–3, Figure 6–4, and Figure 6–5 show the positioning results of the main node in the 

standalone scenario. Each scenario is run through the positioning filter for 20 times, and the 

results for these runs are overlapping in the figures. The cumulative distribution function of the 

positioning error is shown in Figure 6–6. The standalone positioning error statistics for the three 

trajectories are summarized in Table 6–3. 

For this scenario, the main node is using all the sensors available onboard the smart device; i.e. 

gyroscope, accelerometer, and Wi-Fi information. The root-mean-square (RMS) positioning 

error across the three trajectories ranges from 4.28 m to 6.65 m, while the overall RMS 

positioning error, in this case, is 5.92 m, as shown in Table 6–7. 

Table 6–4 shows the results of the IPIN competition winners from 2015 to 2018 [222], [223]. 

These results are shown for comparison with the achievable performance of the standalone mode 

of the framework. The 75% percentile of the position error is not far from the top indoor 

positioning system available, although the winner of the 2018 off-site track can achieve much 
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better accuracy. However, the inclusion of the results in Table 6–4 does not imply that the 

different systems can be compared directly since the performance of any positioning system will 

vary according to the operating conditions. The sole purpose of showing these results is to give a 

sense of the performance of current state-of-art systems. 

The performance of the standalone solution acts as a baseline to which the collaborative 

positioning approach is evaluated. The left panel in Figure 6–3, Figure 6–4, and Figure 6–5 show 

the instantaneous position estimate along the x and the y directions. Generally, the filter in the 

standalone mode can track the correct trajectory. However, the filter can lose track of the correct 

 

Figure 6–3 Position estimates for trajectory #1 
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trajectories, as shown in the figures. For example, in Figure 6–4, the filter loses track of the 

correct trajectory near the end of the trajectory. 

 

Table 6–3 Standalone positioning results summary 

Error Stats. (m) Traj. #1 Traj. #2 Traj. #3 Overall 

Mean 3.80 4.33 4.84 4.36 

Min 0.27 0.02 0.28 0.02 

Max 9.14 40.84 21.85 40.84 

50% Percentile 3.34 3.77 4.41 4.09 

75% Percentile 5.30 5.62 5.14 5.34 

90% Percentile 6.82 7.13 6.57 6.85 

RMS 4.28 6.65 5.75 5.92 

Std. dev. 1.97 5.04 3.10 4.01 

 

 

Figure 6–4 Position estimates for trajectory #2 
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Table 6–4 Performance of indoor positioning competitions (75% percentile) 

Competition Track Accuracy (m) 

IPIN 2015 Smartphone (on-site) 6.6 

IPIN 2015 Smartphone (off-site) 8.3 

IPIN 2016 Smartphone (on-site) 5.4 

IPIN 2016 Smartphone (off-site) 5.8 

IPIN 2017 Smartphone (on-site) 8.8 

IPIN 2017 Smartphone (off-site) 3.48 

IPIN 2018 Non-Camera based Positioning (on-site) 5.5 

IPIN 2018 Smartphone (off-site) 1.1 

 

The same behaviour can be noticed in Figure 6–5, where the filter occasionally loses track in the 

region between 230 s and 280 s. In this case, the filter was able to recover and converge near the 

 

Figure 6–5 Position estimates for trajectory #3 
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correct trajectory. However, near the end of the trajectory, the filter sometimes diverges and 

remains at the wrong side of the testing region. 

6.3 Collaborative Positioning Scenarios 

In this section, two collaboration scenarios are considered. The first scenario consists of four 

nodes, the main node, and three supporting nodes. The main node will not use any of its onboard 

sensors. However, the node will use the UWB device to measure the relative ranges between 

itself and the other collaborating nodes. The other nodes will use all the sensors available to 

them, along with the range measurement device. The objective of this scenario is to evaluate the 

achievable performance using relative range measurements to dynamic nodes. The second 

scenario is similar to the first one with one change; the main node will be using all the sensors 

available onboard, in addition to the range measurement device. The objective of this scenario is 

to assess the effect of the collaboration on the participating nodes. 

6.3.1 Performance using Random-Walk Model 

Before proceeding to evaluate the performance of the collaborative approach using relative range 

measurements, it would be useful to consider the error in the absence of the collaboration 

between the main node and the other nodes. 

Figure 6–7 shows the CDF for this case, while Table 6–7 shows the positioning error statistics in 

this case. Without collaboration, the mean of the position error is 18.46 m, while the RMS of the 

position error is 21.60 m. The 75% percentile of the error is 26.57 m. 
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Figure 6–6 Positioning error CDF for standalone scenario 

 

 

Figure 6–7 Positioning error CDF for the random-walk model 

 

6.3.2 Collaborative Positioning using Relative Range Measurements 

The estimated position for the three test trajectories are shown in Figure 6–8, Figure 6–9, and 

Figure 6–10. These figures show the two-dimensional position estimate along with the 

instantaneous position in the x and the y directions. Figure 6–11 shows the CDF of the 

positioning error for each trajectory. 
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Table 6–5 shows the performance summary for the collaborative positioning approach, using the 

relative range measurement only. As expected, the performance, in this case, is worse than the 

performance of the standalone case. However, in this scenario, the mobile node is using only the 

range measurements, without any of the onboard sensors. In his case, the use of the collaborative 

positioning framework improves the positioning error for the main node by 50%. 

The run-time behaviour of the filter is shown in Figure 6–8, Figure 6–9, and Figure 6–10. In this 

case, the filter diverges more frequently than the standalone case. Additionally, the estimated 

trajectory is more prone to sudden jumps. This behaviour is expected while positioning using 

relative range measurements. Especially that the collaborating nodes are not fixed, with 

relatively low ranging rate, and there is no guarantee that the geometry between the different 

nodes will result in a reasonable position estimate. 

Another factor that can affect the performance of the main node in the collaborative setting is the 

availability of the supporting nodes. The nodes availability is illustrated in Figure 6–12, where 

each horizontal line represents the activity of the corresponding node. The gaps in the lines 

indicate that the node is not active. Although there are three supporting nodes, only two of them 

are active most of the time, and the third is fluctuating between the active and inactive state. The 

effect of the node availability is evident in the second trajectory, which has the most significant 

errors among the three trajectories. 

6.3.3 Collaborative Positioning using All Sensors 

This scenario evaluates the effect of the collaboration on the main node while using the full set 

of sensors available on board. Using the full sensors, the main node should achieve a 

performance level similar to the performance of the standalone solution. Figure 6–13 shows the 

CDF of the positioning error for this case, for the three trajectories. 
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Table 6–5 Collaborative positioning results summary (no sensors) 

Error Stats. (m) Traj. #1 Traj. #2 Traj. #3 Overall 

Mean 8.58 10.65 8.36 9.51 

Min 0.02 0.00 0.06 0.00 

Max 34.61 43.21 27.44 43.21 

50% Percentile 6.49 6.99 6.70 6.79 

75% Percentile 10.91 16.48 12.89 13.38 

90% Percentile 15.90 23.80 16.77 22.42 

RMS 10.57 14.32 10.15 12.43 

Std. dev. 6.18 9.58 5.77 7.99 

 

 

Figure 6–8 Position estimates for trajectory #1 
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Figure 6–9 Position estimates for trajectory #2 

 

 

Table 6–6 Collaborative positioning results summary (all sensors) 

Error Stats. (m) Traj. #1 Traj. #2 Traj. #3 Overall 

Mean 5.98 5.36 5.49 5.54 

Min 0.03 0.01 0.01 0.01 

Max 27.26 42.35 23.08 42.35 

50% Percentile 4.44 4.96 4.84 4.81 

75% Percentile 8.97 6.94 6.35 7.06 

90% Percentile 11.16 10.00 9.02 10.36 

RMS 7.30 6.92 6.54 6.90 

Std. dev. 4.18 4.37 3.55 4.11 
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Figure 6–10 Position estimates for trajectory #3 

 

Figure 6–11 Positioning error CDF for collaborative positioning without using sensors on 

the main node 



 

163 

 

 

Figure 6–12 Node activity graph 
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Figure 6–13 Positioning error CDF for collaborative positioning while using the full 

sensors set on the main node 

Table 6–6 shows a summary of the positioning performance of the collaborative positioning, 

while the main node is using all its sensors. The collaboration negatively affected the 

performance of the main node, when it uses all the sensors. The mean error has increased by 

27%, the RMS error by 16.6%, and the 75% percentile error by 32.2%.  

One possible explanation of the performance degradation could be related to the fusion of an 

erroneous estimate from one of the collaborating nodes. This case is exacerbated when the filter 

of a collaborating node suffers from particle depletion. As a result, the filter will generate new 

particles through resampling. These particles will have less diversity, and the corresponding 

particles covariance will be small. When a filter with these characteristics collaborates with 

another, it will provide false confidence in its position estimate. Consequently, it will drive the 

estimates of the collaborating nodes in the wrong direction. The performance degradation due to 

an erroneous state estimate or an overconfident remote note could be mitigated by implementing 

filter integrity measures to ensure that each filter has a realistic covariance estimate, possibly by 

utilizing the actual values of the measurement likelihood function. 
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Figure 6–14 The combined positioning error CDF for the four scenarios 

 

 

Table 6–7 Positioning Results Summary 

Error Stats. (m) 
Standalone 

(full sensors) 

Collaborative 

(full sensors) 

Collaborative 

(no sensors) 
Random-walk 

Mean 4.36 5.54 9.51 18.46 

Min 0.02 0.01 0.00 0.25 

Max 40.84 42.35 43.21 43.79 

50% Percentile 4.09 4.81 6.79 17.89 

75% Percentile 5.34 7.06 13.38 26.57 

90% Percentile 6.85 10.36 22.42 32.63 

RMS 5.92 6.90 12.43 21.60 

Std. dev. 4.01 4.11 7.99 11.2 
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6.4 Summary 

This chapter provided an overview of the positioning performance using the proposed 

collaborative framework. Figure 6–14 shows the cumulative distribution function of the position 

error of the main node in the four scenarios described earlier in this chapter. Table 6–7 list the 

overall performance for each of the tested scenario.  

It is evident that using the collaborating framework provides a significant advantage to nodes 

with little or no sensors. Without fusing information from the collaborating nodes, these weak 

nodes will not be able to estimate its position. 

However, for the strong nodes in the process, the performance can suffer a hit. This performance 

loss can be alleviated by implementing measures to improve the integrity of the filter, such as 

divergence monitoring [224], or by increasing the number of the particles to better resembles the 

posterior of the filter. 
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Chapter Seven: Conclusions and Future Work 

7.1 Conclusions 

This thesis proposed and evaluated a unified collaborative and multimodal framework for indoor 

positioning and mapping using smartphones. This objective is achieved by evaluating the 

different building blocks of the framework and improving each of these building blocks to 

enhance the overall performance and efficiency of the system. The thesis investigated different 

standalone filtering approaches for the use with environment maps modelled as Gaussian 

processes. Then, the thesis moved to the mapping task, focusing on developing an efficient 

representation of the environment maps. The collaboration between the different nodes is 

achieved by an ad-hoc and dynamic ranging network. To this end, a ranging device is developed 

and evaluated. 

Different simulations and experiments were performed to evaluate the individual components of 

the framework, along with the whole framework. These experiments confirm the advantage of 

the proposed framework as discussed earlier in the corresponding chapters, and are outlined in 

the following section. The outcomes of this thesis prove that using collaborative positioning 

approaches can provide pronounceable improvement in the performance, especially for situations 

involving asymmetric nodes, where the weak nodes can benefit from the superior sensing or 

computational power available in nearby nodes. 

7.2 Contributions Summary 

The objective of this thesis was to propose and evaluate a new collaborative and multimodal 

framework for indoor positioning using smartphones. This objective is achieved by proposing 

and evaluating an indoor collaborative positioning framework that uses relative range 

measurements and environmental features modelled as Gaussian process models. The relative 
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range measurement is based on UWB ranging, and the environmental feature is the Wi-Fi signal 

strength fingerprint. 

The thesis defined and evaluated the different building blocks of the proposed framework, while 

the effectiveness of the entire framework is evaluated through a combination of simulations and 

real-world experiments. 

The major contributions of this thesis can be summarized as follows: 

1. Evaluate different standalone filter architecture for nodes localization 

The abundance of Wi-Fi access point in indoor environments makes it a practical candidate 

for aiding localization algorithms. One technique for localization using Wi-Fi signals is 

fingerprinting of the Wi-Fi received signal strength indicator (RSSI), modelled by Gaussian 

process (GP) models. The thesis proposes and evaluates different filter architectures to utilize 

the Wi-Fi RSSI information, along with inertial sensors available on the smartphones. 

Different kinematic models and update architectures were evaluated in terms of the 

positioning accuracy, the run-time, and the convergence characteristics of each filter. 

2. Design and evaluate a light-weight Wi-Fi fingerprint map representation using sparse 

Gaussian process models 

The environmental feature maps modelled using Gaussian processes are the core of the 

proposed framework, e.g. the Wi-Fi fingerprint maps. Gaussian process (GP) models are 

non-parametric models used to evaluate the likelihood function of the Wi-Fi RSSI values at 

every point on the floorplan, conditioned on a set of training points. A new sparse GP 

representation is presented to increase the computation efficiency and reduce the storage 

requirements of the Wi-Fi RSSI maps. The proposed representation is called the Parametric 

Grid Sparse GP (PGSGP) model. PGSGP reduces the complexity of evaluating the likelihood 
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function, by reducing the effective number of points in the training dataset, without 

significant loss of the mapping or positioning accuracy. The PGSGP model is constructed by, 

first, finding a set of pseudo-inputs arranged over a parametric grid, then optimizing the 

corresponding target values and the GP model hyperparameters. 

3. Propose a family of distributed particle filters for collaborative positioning 

The collaborative particle filters are designed to enable using relative measurements between 

different nodes using a distributed estimation approach, alleviating the need for a centralized 

fusion computer. Positioning with range measurements in indoor environments is affected by 

anchor occlusion, weak or unreliable signals caused by multipath effects, or poor geometry, 

rendering positioning using range measurements to anchors unachievable. This thesis 

provides a detailed derivation of the filtering equation for the new collaborative particle filter 

family along with its performance evaluation. The proposed filter family poses no restrictions 

on the connectivity of the nodes nor assumes the immutability of the connectivity structure. 

The nodes share only an approximation of the locally calculated posterior distribution and the 

relative range measurements. The algorithm is tested in a multi-node positioning 

environment using relative and absolute range measurements. 

4. Implement and evaluate UWB ranging device and the associated logging software 

The collaboration between nodes in the proposed framework is contingent on the availability 

of relative range measurements between different nodes. This thesis describes the software 

and the hardware components of a collaborative positioning system based on UWB 

transceiver working in an ad-hoc and dynamic network setting. The ranging measurement 

component of the system is based on the DW1000 UWB transceiver chip from Decawave. 

The hardware component of the system is a standalone ranging device which is composed of 
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a UWB transceiver and a Bluetooth Low Energy (BLE) interface to pair the ranging device 

to a smartphone. The software component of the system comprises the firmware of the 

ranging device and an Android logging application running on the smartphone. The 

described system supports real-time addition and removal of nodes, and dynamic node role 

assignment, either as an anchor or as a rover. The performance of the system is evaluated by 

a real-world test using a group of four devices navigating an indoor environment. 

7.3 Future Work 

The proposed framework is designed to be as flexible and expandable as possible. The following 

lines suggest some directions for improving and extending the functionality of the proposed 

framework: 

▪ Improve the performance of the standalone positioning algorithm by incorporating more 

observations and estimating the biases and parameters of the model in real-time. 

▪ Include more environmental features maps; such features include the ambient magnetic field 

intensity, the ambient light intensity, or visual landmarks. 

▪ Investigate methods to improve the efficiency of the proposed ad-hoc peer-to-peer network 

by utilizing multiple radio channel simultaneously or by using different preamble codes. 

▪ Build a custom board for the locSpeck ultra-wideband ranging device to reduce the overall 

size of the device and increase its applicability. 

▪ Evaluate the framework using 5G hardware for indoor and outdoor applications. 

▪ Extend the framework for outdoor navigation and positioning by including GNSS 

observations, cell towers information, or the geomagnetic field information. 

▪ Enhance the integrity of the distributed positioning algorithm by, for example, implementing 

methods to monitor the particle divergence in the particle filter. 
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▪ Migrate the framework codebase to a light-weight and efficient language, and optimize its 

performance for real-time applications, whether targeting smart device or embedded 

processors. 

▪ Investigate the use of simultaneous localization and mapping algorithms within the 

framework, using the proposed efficient map representation. The ability to collaboratively 

build a map of the different environmental feature is a key extension of the current 

framework. 
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