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ABSTRACT Text recognition in natural scene images is a challenging problem in computer vision.
Different than the optical character recognition (OCR), text recognition in natural scene images is more
complex due to variations in text size, colors, fonts, orientations, complex backgrounds, occlusion,
illuminations and uneven lighting conditions. In this paper, we propose a segmentation-free method
based on a deep convolutional recurrent neural network to solve the problem of cursive text recognition,
particularly focusing on Urdu text in natural scenes. Compared to the non-cursive scripts, Urdu text
recognition is more complex due to variations in the writing styles, several shapes of the same character,
connected text, ligature overlapping, stretched, diagonal and condensed text. The proposed model gets
a whole word image as an input without pre-segmenting into individual characters, and then transforms
into the sequence of the relevant features. Our model is based on three components: a deep convolutional
neural network (CNN) with shortcut connections to extract and encode the features, a recurrent neural
network (RNN) to decode the convolutional features, and a connectionist temporal classification (CTC)
to map the predicted sequences into the target labels. To increase the text recognition accuracy further,
we explore deeper CNN architectures like VGG-16, VGG-19, ResNet-18 and ResNet-34 to extract
more appropriate Urdu text features, and compare the recognition results. To conduct the experiments,
a new large-scale benchmark dataset of cropped Urdu word images in natural scenes is developed.
The experimental results show that the proposed deep CRNN network with shortcut connections
outperform than other network architectures. The dataset is publicly available and can be downloaded
from https://data.mendeley.com/datasets/k5fz57zd9z/1.

INDEX TERMS Cursive text recognition in natural images, Urdu scene text recognition, natural scene
text recognition, convolutional recurrent neural network, segmentation-free scene text recognition

I. INTRODUCTION

Text in natural scene images contains rich and valuable
information that has great importance with several real-
world applications, such as automatic license plate recog-
nition, content-based image or video retrieval, geo-location,
assisting visually impaired people, robot navigation, street
and road signs recognition and helps in image understand-
ing [1]–[3]. Regardless of remarkable improvements in nat-
ural scene text recognition, it still remains a challenging task
due to complex backgrounds, variations in text size, colors,
orientations, low resolution, occlusion, environmental noise
and blur [4]. In addition, several non-text objects such as

leaves, bricks, fences and other patterns as illustrated in
Figure 1 that resemble with text decrease the recognition
accuracy when present in natural scene images.

Recently, deep learning methods have been developed to
address the above challenges in natural scene text recogni-
tion [5]. It is noteworthy that most of these developments
have focused on the Latin scripts [6], [7]. However, for
cursive scripts such as Arabic and Urdu, text detection
and recognition in natural scene images is an emerging
field. In recent years, segmentation-free methods have been
demonstrated for the handwritten, printed or artificial Arabic
and Urdu text recognition in the scanned documents and
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FIGURE 1: Non-text objects such as bricks, fences and
leaves resembling with text in natural scene images.

video images [8]–[11]. The state-of-the-art techniques such
as a convolutional recurrent neural network (CRNN) have
been applied that achieved remarkable results for handwrit-
ten and printed Urdu text recognition [12], [13]. Due to
plain background, unique font color, size and style, the
printed Arabic or Urdu text is not as complex as natural
scene text. Although significant work has been performed
for the handwritten, printed or artificial text in Arabic or
Urdu scripts, the recognition of Arabic and Urdu text in
natural scene images has not demonstrated significant results
yet [14], [15]. Moreover, most existing research works
reported in the literature are limited to the isolated Arabic
and Urdu character recognition [16]–[20].

Urdu is a type of cursive script written in right to left
direction. It is the official language of Pakistan and is

FIGURE 2: Urdu text in natural images. The red and blue
rectangles show two Urdu characters ‘seen’ and ‘noon’ in
their different positions. On the other hand, the yellow
rectangles show Urdu character ‘ray’ in its isolated and last
form.

widely spoken in western India [21]. The Urdu script has
joiner and non-joiner characters. The joiner characters can
appear in one of the four positions in a word (initial,
middle, final and isolated) as demonstrated in Fig. 2, while
the non-joiner characters have two forms (isolated and
final). The initial form connects another character at its left
position, the middle form connects two other characters at
its left and right positions, the final form connects another
character at its right position and the isolated form does not
connect any character at its either positions. Moreover, in
Urdu script, the isolated characters have no meaning unless
they are connected to other characters as demonstrated in
Fig. 2. Due to different positions of the same character in
a word, the implicit segmentation becomes very complex.
Similarly, more than one shapes of the same character in-
crease the complexity of text recognition. Several additional
characteristics such as inter and intra ligature overlapping,
character diagonality, context-sensitivity and stretched text
associated with the cursive script like Urdu make the text
recognition problem further complex. Fig. 3 demonstrates
some complexities associated with the Urdu text in natural
scene images. The multilingual OCR system [22] that have
been used for the text recognition in scanned documents,
failed when applied for the Urdu text recognition in natural
scene images. This is mainly due to the complex structure
of the Urdu script and the challenges related to the text in
natural images.
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FIGURE 3: Characteristics of Urdu text in natural scene
images. The blue, cyan, green and red rectangles show the
intra-ligature overlapping, inter-ligature overlapping, context
sensitivity and character diagonality respectively.

In this paper, we propose a segmentation-free deep CRNN
to recognise the cropped Urdu word image text in natural
scene images. We combine the CNN and RNN, where the
CNN part is used to extract the relevant features from the
Urdu word images and encode them into feature sequences.
On the contrary, the RNN part separately implementing
a bi-directional long short term memory (BLSTM) and
a bi-directional gated recurrent unit (BiGRU) is used to
decode the corresponding feature sequences into the pre-
dicted labels. A connectionist text component (CTC) cost
function is applied to map the predicted labels with the
target labels. In the experiments, deep CNN structures such
as VGG-16 [23] and VGG-19 [23] with different depths are
exploited for encoding robust image features. However, the
text recognition accuracy of the deep CNN structures like
VGG-19 [23] is decreased due to the vanishing gradient
problem. To overcome the vanishing gradient problem,
ResNet [24] networks are utilised. Further, a new deep
VGG-16 [23] architecture with shortcut connections is pro-
posed to deal with the degradation problem and improve the
text recognition accuracy. A large-scale dataset of cropped
Urdu word images in natural scenes is developed to evaluate
the proposed models. To the best of our knowledge, this is
the first dataset developed for the Urdu text recognition in
natural scene images. The main contributions of this paper
are summarised as follows:

1) Several deep structures of the CNN including VGG-16,
VGG-19, ResNet-18 and ResNet-34 are explored and
modified for the challenging problem of cursive text
recognition in natural scene images.

2) Several structures of the RNN including LSTM,
BLSTM and BiGRU are exploited for better feature
decoding and label predictions. A CTC cost function
is used with the RNN structures for mapping predicted

sequences into the target labels.
3) To overcome the gradient vanishing problem, a new

VGG-16 architecture with shortcut connections is pro-
posed that outperformed than the original VGG-16 and
VGG-19 architectures.

4) A large-scale dataset of cropped Urdu word images
in natural scenes is proposed. This is the first dataset
developed for the Urdu text in natural scene images.

The remainder of this paper is organised as follows. The
existing state-of-the-art deep learning algorithms developed
for the cropped word text recognition from natural scene
images are presented in Section II. Section III describes
the proposed cropped Urdu word image text recognition
framework. The network training process is given in Sec-
tion IV. Section V demonstrates the experimental results
and analysis. Finally, Section VI summarises and concludes
this paper.

II. RELATED WORK
The traditional methods developed for text recognition in
natural scene images are either based on the isolated char-
acter or whole word recognition. Character-based methods
used sliding window [25], [26], connected component [27],
part-based tree structure [28] or stroke width transform [29]
to localise the individual characters. The character classifiers
with a combination of different feature descriptors such
as CNN [26], a histogram of oriented gradient (HOG)
with random ferns [25], and combination of multi-scale
mid-level features with random forest [30] were applied.
The individually recognised characters were grouped into
the words by applying some fixed lexicon-based clustering
methods. Jaderberg et al. [26] used a CNN to generate
text/non-text, a case-sensitive and case-insensitive character
and bi-gram saliency maps for detecting and recognising text
in natural scene images. They trained a supervised character
classifier to generate the abundant features and used the
intermediate layers of the network as features for text de-
tection, character and bi-gram classifications. Further, they
used a Viterbi algorithm to recognise the whole word from
a fixed lexicon. These methods only consider the individual
character recognition, which in some cases may reduce the
performance of the text recognition system due to the large
number of inter-character and intra-character variations as
well as character classes. Additionally, variations in the
shape of the same character, ligature overlapping, stretched
characters and different writing styles will further reduce
the performance of cursive scene text recognition systems.

To overcome the problem of false character detection
and recognition, word-level text recognition methods are
proposed that directly map the word string from the entire
image. Almazán et al. [31] embedded both word images
and label strings into the common subspace vectors, which
were then used to match the images with their labels.
Jaderberg et al. [32] gave whole word image as input to
the CNN model that generated fixed representations. They
generated a dictionary of 90k words and considered the text
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recognition problem as a 90k class problem, wherein each
class corresponded to a word. Although impressive results
are reported with this model, it is limited to recognise the
words available in the predefined lexicon file.

Recently, the scene text recognition problem has been
treated as a sequence-to-sequence problem. She et al. [33]
integrated the feature encoding, sequence modeling and text
transcription methods into an end-to-end trainable frame-
work for text recognition in natural scene images. The
network is able to handle text with arbitrary length with-
out using character level segmentation or horizontal scale
normalization. The network achieves remarkable results
on English scene text datasets using both lexicon-based
and lexicon-free text recognition tasks. Zhang et al. [34]
proposed an attention-based sequence-to-sequence network
to recognise text in natural scene images. The attention-
based encoder-decoder automatically concentrated on the
regions which were most relevant to the text. Lei et al. [35]
considered the text recognition problem as a sequence-to-
sequence recognition and combined convolutional and recur-
rent neural networks. They explored several feature extrac-
tion and sequence labelling architectures. Sheng et al. [36]
used a stacked self-attention sequence-to-sequence encoder
and decoder model. Further, they implemented a modality-
transform method that effectively transformed 2D natural
scene image features into the 1D feature sequences.

Some research works recently presented have focused on
Arabic text recognition in video images [8], [14], [37] and
natural scenes [14]. Zayene et al. [8] used a segmentation-
free method based on multidimensional LSTM and a
CTC to recognise Arabic text in news video images.
Yousfi et al. [37] used an RNN to persist long-range Arabic
video image text sequences. Further, they combined the
language models with the LSTM to improve text recognition
accuracy. To decode the LSTM sequences, they proposed
a beam search method that used both OCR and the lan-
guage models to predict the probabilities at each time step.
Jain et al. [14] demonstrated a hybrid segmentation-free
model for Arabic text recognition in video and natural
images. To make the model an end-to-end trainable as
in [33], they combined the CNN and RNN with a CTC
cost function. For the Arabic text in natural scene images,
they rendered artificial Arabic text on the backgrounds of
real images downloaded from the Google search engine.

In this paper, we propose a segmentation-free method that
transforms the text recognition problem into a sequence-
based temporal classification task. We show that the deep
CNN architectures with shortcut connections extract more
robust features. When combining CNN with bidirectional
recurrent structures, the network is able to learn long-
range contextual information in both forward and backward
directions. This contextual information obtained in both
directions is important in making more accurate predictions
when considering cursive scripts, in which many characters
have similar shapes. Further, integrating with a CTC cost
function, recurrent structures are able to perform text tran-

scriptions without any prior information about text elements
or their complex structures.

III. PROPOSED METHODOLOGY
The general architecture of the proposed cropped Urdu word
image text recognition framework is illustrated in Fig. 4.
The framework is based on three components: (1) the CNN
component for feature extraction, (2) the RNN component
to decode the feature sequences into per-frame predictions
and (3) the transcription component to map the per-frame
predictions into the target labels. This framework combines
two different networks (CNN and RNN) and is end-to-end
trainable with a single loss function. Combining CNN with
RNN for English text recognition in natural scenes was first
proposed in [33]. The proposed framework is inspired by
this network and applies several modifications to handle the
problem of Urdu text recognition. The framework proposed
in [33] used seven convolutional layers, four max pooling
layers and two batch normalisation layers [38] after the fifth
and sixth convolutional layers. However, the frameworks
proposed for cropped Urdu word image text recognition
use VGG-16 [23] model without fully connected layers,
ResNet [24] and its variant models, and a new proposed
network similar to [23] but with shortcut connections for
feature extraction. A bidirectional recurrent layer such as
BLSTM or a BiGRU is applied on top of the feature extrac-
tion module to predict per-frame label sequences. Finally, a
CTC layer is used to map the predicted sequences into their
target labels. Same as [33], we use VGG-16 network without
fully connected layers and BLSTM with 256 hidden units
in model 2 as shown in Table 1. Model 2 gives 84.26% and
90.82% WRR and WRR1F respectively. The configuration
of the model proposed in [33] is almost same as Model 2
however, the size of input in [33] is 100 x 32, whereas in our
case it is 100 x 64. If we compare the results obtained with
our proposed networks i.e., VGG-16 with skip connection
and ResNet-18 with v2 residual block the WRR and WRR1F
are 87.13%, 94.21%, 84.42% and 92.30%, respectively as
shown in Table 5. These results demonstrate that VGG-16
with skip connection performs much better than the original
model of VGG-16 network as used in [33] and Model 2 as
shown in Table 1. Moreover, the model proposed in [33] is
trained only on the synthetic images with English text only,
however, the proposed model is trained on the real natural
scene images of cursive text. Compared to [33] the proposed
model uses strided convolutional layers with ResNet models
and provides a detailed implementation of various networks
and compares their results.

A. CNN FOR FEATURE EXTRACTION
In the experiments, deep networks with different depths such
as VGG-16 [23], ResNet-18 [24] and ResNet-34 [24] are
exploited to better encode the image information in the CNN
part of the proposed framework. To further analyse the effect
of deep network depths for feature extraction on the recog-
nition ability of the model, a deeper network such as VGG-
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FIGURE 4: General architecture of the proposed cropped Urdu word image text recognition system.

19 [23], is used. However, VGG-19 did not perform better
than VGG-16 and decreased recognition accuracy due to the
problem of gradient vanishing. To overcome this problem, a
novel CNN architecture is proposed by introducing shortcut
connections within a VGG-16 network. The performance of
each feature extraction network is evaluated separately on
the test dataset. It is assumed that text in the images is a
sequence of characters; therefore, the purpose of the feature
extraction models is to find the best representations of the
sequential patterns from the given images and preserve the
critical information at different levels (characters or words).

As the direction of text in the dataset images is mostly
horizontal, the feature maps can be down-sampled in the
vertical direction several times until their height is reduced
to 1. However, down-sampling the feature maps excessively
in the horizontal direction may cause the problem of over-
lapping of two adjacent characters. Therefore, depending
upon the maximum length of text instances, the feature
maps can be reduced slightly in the horizontal direction. The
output of the last CNN layer can be a 1D feature map with a
variable width and a height of 1. In the proposed framework,
the output of the last CNN layer is 1 × 25 × C, where 1,
25 and C are the height, width and depth of the feature
map respectively. This feature map is then split column-
wise to make a feature vector as a time step and passed
to the recurrent layers. In CNNs, the convolutional, max
pooling and activation functions operate on a small region

and are translation invariant, such that they can recognise
an object regardless of its position within the feature map.
Each column in the feature map corresponds to a rectangular
region in the input image or the previous layer. These
rectangular regions are called receptive fields.

Each feature sequence not only contains the character
information, but also includes adequate contextual informa-
tion. In the proposed networks, the feature sequences are
denoted as x = {x1, x2, · · · , xN}, where xt ∈ R512 and
N is the length of the feature sequences. As this paper
exploits the VGG-16 model and VGG-16 model with the
shortcut connections as well as ResNet model, the modified
architectures of these models are described below.

1) VGG-16 Network
VGG-16 is the first model used to extract feature sequences
from cropped Urdu word images in natural scenes. The
architecture of the convolutional layers is the same as in
a VGG-16 network; however, an additional block with two
convolutional layers and a max pooling layer is used to
extract more abstract features and down-sample the height
of the feature map to 1. Fig. 5 illustrates the VGG-16 model
with additional convolutional block. This figure shows that
the network has 15 convolutional layers, except for the input,
which takes a cropped word image of the Urdu text with
a fixed size of 64 × 100 × 3 pixels. To down-sample the
feature maps, each convolutional layer is followed by a max
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FIGURE 5: VGG-16 network with additional convolutional
block implemented for cropped Urdu word recognition in
natural images.

pooling layer. The standard VGG-16 network uses a 3× 3
kernel size in the convolutional layers and a 2 × 2 max
pooling throughout the whole network. However, the VGG-
16 network implemented for cropped Urdu word recognition
uses different max pooling 2× 2 and 2× 1) windows.

2) VGG-16 Network with Shortcut Connections
VGG-16 is a sequential feature extraction network that uses
a stack of convolutional and max pooling layers to extract
the features sequentially from the top layer to the bottom
layer. As previously explained, increasing the depth of the
VGG-16 network causes the problem of gradient vanishing
and degrades the network performance while it is training.
This is due to performing repeated multiplications on the
gradients, which make their values very small when back-
propagated to the earlier layers. To handle the degradation
problem, a novel VGG-16 architecture is proposed that
incorporates shortcut connections. The differences between
the structures of the convolutional layers of the VGG-16
network and the proposed VGG-16 network with shortcut
connections are shown in Fig. 6. The output feature vector
o of the standard VGG-16 network is defined as

o = f
(
x,W

)
(1)

where x is the input vector of the previous layer and W is
the weight parameters of the learned features. f is a mapping
function that learns the best values of the W and maps x into
o. Further, x can be added after the f operation as described
in [39]. Hence, in the proposed VGG-16 network, the output
feature vector o is defined as

o = F
(
x, {Wi}

)
+ xl (2)
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FIGURE 6: Different structures of the convolutional layers
in the VGG-16 networks. (a) Structure of convolutional
layers in a standard VGG-16 network, (b) proposed structure
of the convolutional layers in the first two VGG-16 blocks
and (c) proposed structure of the convolutional layers in the
last four VGG-16 blocks.

where Wi is the weight parameters of the ith convolutional
layer and xl is the output feature vector of first convolutional
layer in the lth block.

3) Residual Networks
The core idea of the ResNet is to introduce an identity
shortcut connection in the network that can skip one or
more layers, as illustrated in Fig. 7. This connection adds
the output of previous layer(s) to the outputs of the next
layer without increasing network parameters. The ResNets
use two types of shortcut connections. First, the identity
mapping is directly performed when the dimensions of the
input and output are equal, as

o = F
(
x, {Wi}

)
+ x (3)

where o and x are the output and input feature vectors of the
layers considered. Second, when the input and output have
different dimensions, the shortcut connections still perform
identity mappings either by padding extra zeros to equal
the dimensions or by a linear projection Ws of the shortcut
connections to make the dimensions equal using 1 × 1
convolutions as

o = F
(
x, {Wi}

)
+Wsx (4)

This second type of the shortcut connection using 1× 1
convolution adds extra parameters in the form of Ws. It
is possible to represent multiple convolutional layers in the
function F

(
x, {Wi}

)
. However, the element-wise addition

is performed on two feature maps, i.e., the output of the
previous layer and the next layer. Therefore, the spatial
dimensions of both feature maps must be the same. A
structure of the residual block using two convolutional
layers proposed for ResNet-18 and ResNet-34 architectures
is shown in Fig. 7(a), while Fig. 7(b) shows the typical
structure of the residual block with three convolutional
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blocks in ResNet models. (a) ResNet-18 and ResNet-34 with
two convolutional layers, and (b) ResNet-50, ResNet-101
and ResNet-152 with three convolutional layers.
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FIGURE 8: (a) ResNet-18 architecture with two convolu-
tional layers in each residual block and (b) the proposed
ResNet-18 architecture with three convolutional layers in
each residual block and a max pooling layer of 2 × 1
following every block to reduce the feature maps vertically.

layers proposed for ResNet-50, ResNet-101 and ResNet-152
architectures.

Fig. 8(a) and Fig. 8(b) show the original and proposed
architectures of the ResNet-18 network respectively. The
original ResNet-18 architecture uses eight residual blocks,
each with two convolutional layers of 3 × 3 kernel size,
followed by rectified linear unit (ReLU) activation and batch
normalisation layers. The proposed ResNet-18 uses three
convolutional layers of 1 × 1, 3 × 3 and 1 × 1 kernel
sizes in the residual blocks. The original ResNet-18 uses
only one convolutional layer of 7 × 7 kernel size and a
stride of 2, followed by a max pooling layer of 2× 2. The
proposed ResNet-18 uses the first convolutional and max
pooling layers as in ResNet-18, but also uses an additional
max pooling layer with 2 × 1 after every residual block to
reduce only the height of the feature map and retain a fixed
width.

Following the baseline ResNet [24] model, different types
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FIGURE 9: Different architectures of the residual blocks
used for cropped Urdu scene text recognition. (a) Original
residual block used in ResNet-18, (b) residual block with
batch normalisation and ReLU activations used after the
convolutional layers (post–activation units) and (c) Residual
block with batch normalisation and ReLU activations used
before the convolutional layers (pre–activation units).

of shortcut connections are proposed by changing the ar-
rangements of the batch normalisation, ReLU and convo-
lutional layers [40]. In the baseline model, the activations
are applied after the convolutional layers, while in [40],
the activations are placed at different positions, including
before convolutional layers, as shown in Fig. 9(b) and
Fig. 9(c). Moreover, the post-activation residual block works
effectively when the network depth is small, such as in
ResNet-18 and ResNet-34, while the pre-activation residual
block yields better results when the network is deeper, as
in ResNet-101, ResNet-152 or ResNet-1001 [40]. Fig. 9 (a)
shows the structure of the residual block used in ResNet-
18, while Fig. 9(b) and Fig. 9(c) show the structures of
residual blocks with pre- and post-activations implemented
for cropped Urdu scene text recognition. During experi-
ments, the effect of both pre- and post-activation structures
is examined. The proposed ResNet-18 network with post-
activation units achieves the best recognition accuracy than
pre-activation units. Therefore, the residual block with post-
activation units, as shown in Fig. 9(c), is selected in all the
experiments regarding cropped Urdu scene text recognition.

B. SEQUENCE LABELLING

The recurrent layers in the RNN consist of a set of hidden
units with cyclic connections—that is, the activations atk of
hidden units k at time step t depend on the state of the
current input xtj at time t and the activations of the state
of the previous hidden units at time t − 1, stated as at−1i .
Therefore, for an RNN layer with N inputs and M hidden
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units, the activations atk are calculated as

atk = σ

(
N∑
j=1

wjkxi +
M∑
i=1

wika
t−1
i

)
(5)

where σ is an activation function and wjk and wik are
the weights of the current input and the previous state,
respectively. This type of cyclic connection in the structure
of the network allows it to persist its previous internal state.
The outputs of the network at time step t are calculated in
parallel by obtaining the activations of the hidden layer atk,
k ∈ {1, 2, · · · ,M} as input. This shows that the network’s
outputs are influenced implicitly by its current inputs and
previous states.

Although RNNs use a feedback loop within the recurrent
layers to persist information in the memory, when trained
on long-range sequence problems, they suffer from gradi-
ent vanishing and exploding problems [41]. This is due
to the exponential decrease in the gradients of the loss
function over a time period. To overcome these problems,
LSTMs [42] were introduced, which used gates to store
the current and previous state of the memory cell. LSTMs
can store long-range information; however, they can store
it only in one direction—from the past—as they receive
the input from the previous state. In some tasks, such as
text recognition, speech recognition and natural language
processing, both the future and past information is required
to make accurate predictions. To tackle this problem, [43]
proposed a special LSTM architecture: BLSTM. In BLSTM,
the hidden recurrent layer was replaced with two hidden
layers: a forward layer that processed the input sequences
from the past to future time steps and a backward layer that
processed the sequences from the future to past-time steps
in the opposite direction. The forward and backward layers
were not directly connected to each other, but their outputs
were connected to the same activation function in the output
layer. At each time step, the state ht of the cell was updated
by taking the current features xt and the previous state of
the cell ht−1 or ht+1 as inputs, such that{

h
(f)
t = LSTM1(xt, h

(f)
t−1)

h
(b)
t = LSTM2(xt, h

(b)
t+1)

(6)

where (f) and (b) are the forward and backward recurrent
layers.

Fig. 10 shows the architecture of a BLSTM and BiGRU
cell used in this paper. The features extracted either by
the VGG-16 or ResNet models from the given images
are passed to the RNN layer to be decoded into feature
sequences. Both the BLSTM and BiGRU are implemented
as a part of the RNN. Since the BLSTM and BiGRU take the
feature sequences in both forward and backward time steps,
each character of scene text recognition in the predicted
sequence considers the context before and after time step
xt. This results in a decreasing text recognition error rate.
The BLSTM and BiGRU are similar and use gates, but they
differ in terms of the number of gates; the BiGRU has two
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FIGURE 10: Architecture of the BLSTM and BiGRU imple-
mented for cropped Urdu text recognition in natural scene
images.

gates, while the LSTM has three. A BiGRU does not use
an output gate and has fewer parameters, which makes it
faster to train. On some sequence recognition problems, it
may outperform the LSTM when the training data samples
are small. The experimental results in Section V-E compare
the effectiveness of LSTM, BLSTM and a BiGRU for
cropped Urdu text recognition in natural scene images. The
VGG-16 and ResNet-34 networks with BLSTM have word
recognition rates better than those with the LSTM and
BiGRU, respectively. Therefore, BLSTM is used as part of
the RNN network in the experiments.

Unlike the network model in [33], the cropped Urdu text
recognition framework uses a single BLSTM layer on top
of the feature extraction component to decode the feature
sequences. Using a single BLSTM layer performs better on
scene text recognition and reduces the training time and the
network parameters. To select the proper number of hidden
units in the BLSTM, the proposed models are trained with
different numbers of hidden units such as 128, 256, 512
and 1024. The comparative analysis of the different number
of hidden units in the test set is described in Section V-D.
Finally, the number of hidden units in the BLSTM is set to
512 in all the experiments. A Softmax function is applied
on the output states of the BLSTMs to transform them into
the probability distributions of 96 character classes as

pt(c = cj |xt) = Softmax

([
h
(f)
t , h

(b
t

])
(7)

where h(f)t and h
(b)
t are the forward and backward hidden

states of LSTMs at time step t, j = 1, 2, · · · , 96 and
t = 1, 2, · · · , N . A Softmax function concatenates these
hidden states together and transforms them into the proba-
bility distributions of p = {p1, p2, · · · , pN}.

C. TEXT TRANSCRIPTION
Although LSTM networks are sufficiently powerful to per-
form classification tasks on sequential data, the major limi-
tation of these networks is that they require pre-segmented
training samples and a post-processing operation to trans-
form the output predictions of the network into the sequence
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of labels. Since the output of the BLSTM is a score for each
time step at a horizontal position in an image, it is, therefore,
necessary to specify the position of each of the characters
of the ground truth text in an image while network training.
For cursive scripts such as Arabic and Urdu, it is more
difficult to segment each character of the ground truth text
in an image due to the connected text and overlapping
ligatures. For example, if an image contains a piece of three-
character text it is necessary to specify where the
character starts and ends (e.g., starts from pixel 20 and
ends at pixel 35). The same process is performed for the
remaining characters in the ground truth text. This becomes
more complex when an image contains long sequences of

characters such as .
Another problem related to LSTM network-based se-

quence classification of cursive text is the length of time
steps for each character; that is, if a character is horizontally
stretched (which is common in Urdu text, see Section I), it
increases the width of the character. Hence, each character
occupies multiple time steps. In this case, transforming the
output scores of the LSTM for each character at every time
step will probably yield more incorrect results. Further, if the
ground truth text contains consecutive duplicate characters
in the same word, removing all the duplicate values while
decoding the LSTM outputs also leads to an incorrect
result. For example, the word has a duplicate
character appearing consecutively. If one of them is
removed during decoding, the resultant text transcription
would be , which is an incorrect output.

To overcome these problems, a temporal classification
method called CTC [44] is used for cropped Urdu text
recognition. The CTC has been commonly used in sev-
eral sequence-to-sequence recognition problems including
speech recognition [45]–[47], handwritten text recogni-
tion [48] and natural scene and video image text recog-
nition [37], [49], [50]. The purpose of CTC is to label
unsegmented data sequences through the LSTM or RNNs
without requiring pre-segmented data to train the network or
a post-processing operation to merge the individual recog-
nised characters into the complete output sequences. The
network is trained from the pairs (I,G) without specifying
the relative position of each character or the width of text
in the ground truth by using a CTC cost function. The CTC
cost function uses an additional special character called
‘blank’, denoted as ‘-’ in the sequences, to specify that
no character exists at the specified time step. Thus, the
output layer of the CTC has n + 1 the number of nodes
for n character classes. The ground truth text G is then
modified to G

′
by inserting the blanks. As the length of

the ground truth label sequences should be less than the
input feature sequences, there are many possible ways to
repeat the characters into their correct label sequences.
This way, each character may occupy several time steps
in the image. The blanks are also inserted between the
characters that occur repeatedly, eliminating the problem of

removing repeated characters in the ground truth text. For
example, one possible way to align the word could
be ; when removing all
the duplicate characters and then inserting the blanks, the
decoded output will be a correct ground truth text.

The CTC interprets the per-frame predictions of the
LSTM as a probability distribution score for every possible
G

′
text, then sums overall scores, which yields the loss

for the pair (I,G), conditioned on a given input sequence.
This probability distribution is then used to directly draw
a cost function to maximise the probabilities of the correct
label alignments. Since the cost function is independent of
the neural network architecture, a CTC layer can then be
added in any network and trained with the back-propagation
through time (BPTT) [51] algorithm.

The cost function C in the CTC is defined as the negative
log probability of the network correctly labelling the entire
training set, such that

C = −
∑

(x,g)∈S

lnP
(
g|x
)

(8)

where S is the entire training set consisting of input se-
quences x and target sequences g. P

(
g|x
)

is the conditional
probability of achieving the target sequences g through the
input sequences x. The objective of the cost function is to
minimise C, which is equivalent to maximising P

(
g|x
)

.
Since the cost function is differentiable from the inputs,

the probabilities p of the output activations of the BLSTM
are directly given as the inputs to the cost function C, such
that:

P (g|x) =
∑

π:β(π)=g

P
(
π|p
)

(9)

where π is the path of each sequence in G
′

and β is
an operator that decodes the sequences and removes the
duplicates and all the blanks from the sequence path.
This is a many-to-one mapping from G

′
to the set of

sequences with lengths less than or equal to G. For example,
β( ) = β( ) =
β( ) = .

This part of the network is then trained with a gradient
descent and the BPTT algorithm. Once the network is
trained, the goal of the sequence decoding is to find the
best path π that has the maximum probability of replicating
the ground truth sequence labelling though the BLSTM
sequence outputs as

h(x) = β(π∗) (10)

where π∗ = arg max
π∈Nt

P
(
π|x
)

, which is a concatenation of
the most active outputs at each time step t. The CTC loss is
visually represented in Fig. 11. The top illustration shows
the probability computation of the CTC for the BLSTM

output sequences at time t for an Urdu word .
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FIGURE 11: Visual representation of the CTC loss. The
probabilities of the BLSTM and BiGRU output sequences
are computed as a sum over all the possible alignments
of the input sequences that can be mapped to the output
sequences by considering that the ground truth labels may
occupy several time steps due to character stretching.

In addition to training RNN networks like BLSTMs with-
out pre-segmented data, the CTC also facilitates the network
in searching correct labels. These models, referred to as
discriminative models, have many advantages over genera-
tive models such as Hidden Markov Model (HMM) [52].
Moreover, the RNN- and CTC-based discriminative models
are able to directly calculate the posterior class probabilities
P
(
class|x

)
over the entire input sequences, whereas the

generative models first define the class conditional prob-
ability densities P

(
x|class

)
of each observation only on

their current states and then apply Baye’s theorem to imply
this to posterior probabilities.

IV. NETWORK TRAINING
In cropped Urdu scene text recognition, the BLSTM and
BiGRU networks with a CTC loss function are implemented
separately. The output feature vector of the convolutional
network has a dimension of 1× 25, which is given as input
to the BLSTM network. This input is fully connected to
the forward and backward hidden layers of the BLSTM of
256 cells each. The size of the cells in the hidden layers
is set empirically by performing several experiments. The
output of both the forward and backward hidden layers is
connected with the bidirectional dynamic recurrent layer
that uses the Softmax classifier to predict the probabilities
of each character class at each time step. Every character
at each position of the word is considered a class or a
label. Hence, for cropped Urdu text recognition, there are
96 different classes (including characters, digits and some
symbols) and an additional special class for the ‘blank’.
The network is trained with an SGD using momentum of
0.9 and an initial learning rate of 0.005. The learning rate
is exponentially decreased after every 7000 iterations by
using an exponential decay method. The batch size was set

to 32 and the network was trained upto 25000 epochs. The
network uses BPTT to calculate the error differentials in the
BLSTM part of the model. While network training, the value
of cost and the edit distance between the ground truth labels
and the validation labels is measured, so that the network
generalisation can be observed and the over-fitting problem
avoided.

Once the network is trained, a CTC-based the best path
decoding technique is applied to the output of the BLSTM
Softmax sequence predictions. The decoder concatenates the
most probable characters at every time step and removes
the duplicate characters and all the blanks to yield the final
recognised text.

V. EXPERIMENTAL SETUP AND RESULTS
To demonstrate the effectiveness of the proposed methods,
different experiments were conducted on a cropped Urdu
natural scene text recognition dataset. The experiments were
implemented on an NVIDIA GeForce GTX 1080 Ti with
12 GB of GPU memory using an open-source TensorFlow
library in python language.

A. IMPLEMENTATION DETAILS
The implementation of the proposed networks was based
on the VGG-16 [23], ResNet-18 and ResNet-34 [24] net-
works. The architecture of the convolutional layers in the
first proposed network is similar to that of VGG-16, with
additional convolutional and max pooling layers. Moreover,
in the proposed network, a batch normalisation [38] layer is
added after every convolutional layer. The VGG-16 network
does not change the dimensions of the feature maps in the
convolutional layers and uses max pooling layers with 2×2
kernel size and 2 × 2 stride to reduce the dimensions. In
the cropped Urdu word image dataset, the dimensions of
the input images are 64× 100× 3. Therefore, the proposed
network uses six max pooling layers, wherein the first two
pooling layers are unchanged and use the same 2×2 kernel
size with 2× 2 stride for pooling. The remaining four max
pooling layers use a 2 × 1 kernel size with 2 × 1 stride
to ensure that the width of the feature maps is not down-
sampled. Thereby, the width of the final feature map is
reduced to 25 pixels, which is one-quarter of the actual
image width and the height is reduced to 1. The purpose of
using the first two max pooling layers with a 2×2 kernel size
and 2× 2 stride is to reduce the dimensions of the feature
maps in the early layers, which will affect the reduction of
model computations. The final feature map of the network
outputs has 1× 25× 512 dimensions.

In addition to the VGG-16 network being used as part
of the CNN, a deeper network VGG-19 is tested, under
the assumption that a deeper network will improve the
recognition accuracy of the model. The architecture of the
VGG-19 is similar to the VGG-16; however, it uses an addi-
tional convolutional layer in the last three blocks. Compared
to the VGG-16, the VGG-19 did not improve recognition
accuracy—in fact, the accuracy slightly decreased. This
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proves that increasing the depth or number of layers in the
network is not guaranteed to improve its feature extraction
performance. However, deeper networks may take more
time to train and learn from the data, causing a gradient
vanishing problem. To avoid gradient vanishing and improve
the recognition accuracy of the network, a new VGG-
16 architecture with residual connections as implemented
in [24] is proposed for cropped Urdu scene text recognition.
In this architecture, shortcut connections are implemented to
reuse the activations of the previous layers. The shortcut
connections help the network to avoid the problem of
gradient vanishing.

To further analyse the problem of cropped Urdu scene
text recognition, two residual network architectures are
proposed. In the experiments, ResNet-18, ResNet-34 and the
modified ResNet architectures are implemented. Similarly
to the proposed VGG-16 model, the ResNet models down-
sample the width and height of the feature map by applying
max pooling layers. The first convolutional layer in the
ResNet models uses a 7 × 7 kernel size with a stride of
2 to halve the width and height of the input image. A
max pooling layer with a 2 × 2 kernel size and a 2 × 2
stride value follows the convolutional layer to further down-
sample the feature map by half. In the subsequent residual
blocks, a max pooling layer with a 2 × 1 kernel size and
a 2 × 1 stride value is used after every block to down-
sample only the height of the feature map, while keeping
the width unchanged. The final output obtained by the last
ResNet block after applying the max pooling layer has the
dimensions 1 × 25 × 512, the same as the output of the
VGG-16 network.

After the convolutional layers, a single BLSTM layer with
forward and backward layers is used to decode the feature
sequences. The output sequences of the BLSTM are con-
catenated and a Softmax layer follows, which transforms the
BLSTM output sequences into the probability distributions
over 96 classes. Finally, a CTC layer is used to transform
the probability distributions into the sequence of characters.

As the ResNet architectures do not use max pooling layers
except after the first convolutional layer, in this research
work, the max pooling layers used after the residual blocks
are replaced with strided convolutional layers. This increases
the number of network-trainable parameters and improves
the expressiveness of the model. The max pooling layers
are replaced with the strided convolutions in various image
recognition benchmarks without decreasing the recognition
accuracy [53].

B. DATASET
To train the proposed models, we photographed more than
2500 natural scene images and developed a new dataset
of 14100 cropped Urdu word images. Some samples of
photographed images are illustrated in Fig. 1. Due to the
inter and intra character overlapping, all the word images
were manually segmented and resized to 100 × 64 pixels.
Some examples of the segmented word images from the

FIGURE 12: Some examples of segmented word images
of Urdu text in natural scene images in our proposed
dataset. The top two rows demonstrate machine printed
Urdu text with variant font styles, while the bottom two rows
demonstrate handwritten Urdu text written on the walls and
signboards in natural scene images.

Urdu natural scene images are illustrated in Fig. 12. The
dataset consists of a huge number of Urdu word images with
the possible number of text variations. The dataset also has
several images with handwritten Urdu text written on the
walls and signboards. Several cropped word images have
stretched, intra-lingature, inter-ligature and diagonal text.
The stretched, overlapping, diagonal and handwritten text
when available in the natural scene images is more complex
to recognize than the plain and typewritten (superimposed)
text. This is the first dataset that contains large number of
cropped Urdu word natural scene images, hence it can be
used as a benchmark. Moreover, the dataset can be used for
the natural scene text recognition of other cursive languages
such as Arabic, Persian and Sindhi. The dataset was divided
into 12600 training and 1500 testing samples. To speed up
the network training and network convergence, the input
features are normalised to 0 and 1 values. As deep networks
require more training samples to provide better accuracy, the
dataset is further increased by applying a data augmentation
technique to rotate the images at random angles (not more
than 10 degrees). The cropped Urdu word images generated
using data augmentation were used only in the training set.

C. EVALUATION METRICS

Generally, two evaluation metrics have been used to mea-
sure the performance of scene text recognition systems:
character-level evaluation metric measured as character
recognition rate (CRR) and a word-level evaluation metric
measured as word recognition rate (WRR). The latter evalu-
ation metric is more rigorous, as it recognises the predicted
word as a correct when each character in the ground truth la-
bel is identified correctly. However, for CRR, the evaluation
metric measures the distance between the predicted text and
the ground truth text, where the least distance is considered
to be the best. As the proposed methods for cropped Urdu
text recognition are segmentation-free, the performance of
the cropped word recognition was evaluated on the basis of
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the CRR as

CRR =
Nchar −

∑
ED(PT , GT )

Nchar
× 100% (11)

where Nchar is the number of characters, ED is the edit
distance, PT and GT are the predicted text labels and the
ground truth text labels, respectively.

The performance of the cropped word recognition was
evaluated in terms of the WRR as

WRR =
Ncword

Nword
× 100% (12)

where Ncword is the number of correctly recognised words
and Nword is the total words in a test set. While evaluating
the proposed method, it was observed that the WRR does not
perform a fair evaluation, since it considered a large number
of recognised words false if a single character among them
is not recognised correctly. Therefore, in this paper, an
additional evaluation metric for WRR was considered as

WRR1F =
Ncword +N1F

Nword
× 100% (13)

where N1F is the number of correctly recognised words
with one false character. In this way, if the evaluation
metric incorrectly recognises one character in a word, it
is considered as a correct word. If it recognises more than
one character as wrong, the whole word text is considered
incorrect.

D. SELECTING NUMBER OF RNN HIDDEN UNITS IN
BLSTM
As described in Section III-B, the modified models were
trained with different numbers of hidden units in the
BLSTM network. The accuracy of cropped Urdu scene text
recognition with VGG-16 using four different numbers of
hidden units 128, 256, 512 and 1024 is shown in Table 1.
The number of hidden units in the BLSTM affected the
accuracy of the model. This table shows that the VGG-
16 Model 4 used 1024 hidden units and achieved the
highest CRR and WRR of 94.63% and 86.47%, whereas
Model used 128 hidden units and produced the lowest
CRR and WRR of 91.35% and 73.40%, respectively. Model
3 used 512 hidden units and achieved CRR and WRR of
93.83% and 86.05%. The WRR of Model 3 is slightly less
than the Model 4. The test accuracy of Models 3 and 4
are almost equal, and in this case, increasing the number
of hidden units in the BLSTM does not much improve the
performance of the model. However, increasing the number
of hidden units in the BLSTM does increase the number of
network parameters and computation. Therefore, the number
of hidden units in the BLSTM for all the experiments were
set to 512.

Due to the various shapes of the same character and
similarity in the baseline structure of several characters,
the WRR performed unfair evaluations, i.e., if a single
character was not recognized correctly, the whole word text
was considered as incorrect. When evaluated with a new

metric as presented in eq. 13, all the models improved
the performance of WRR. As shown in the last column in
Table 1, the accuracy of Models 1, 2, 3 and 4 improved
by 11.99%, 6.56%, 6.36% and 5.83%, respectively. This
improvement in the WRR indicates that the recognition
performance of the network models can be improved by
using a language model in a post-processing step.

E. SELECTING CNN MODELS
After selecting the use of 512 hidden units for the BLSTM,
four more models were implemented as shown in Table 2.
Models 5 and 6 used VGG-16 and VGG-19 network,
while Models 7 and 8 used ResNet-18 and ResNet-34
with additional residual blocks. Each model was followed
by a BLSTM layer. The results in Table 2 indicate that
the recognition accuracy of the models decreases as the
number of convolutional layers are increased. In Model 6,
the recognition accuracy slightly decreased when three more
layers were added to Model 5. Moreover, when the residual
networks were added as a part of the CNN, the accuracy of
Models 7 and 8 was decreased as compared to Models 5
and 6. Both Models 7 and 8 used the structure of the
residual block with two convolutional layers, as illustrated in
Fig. 7. For the cropped Urdu scene text recognition problem,
simply increasing the number of layers or residual blocks
in the ResNet is not effective. One possible reason for this
could be the lower amount of training samples, since the
proposed networks are trained on 25, 200 samples only.

To further analyse the effect of different RNN struc-
tures, different experiments were conducted on the LSTM,
BLSTM and BiGRU cells. A comparative analysis of these
RNN structures is shown in Table 3. Models 10, 11, 13, 14,
16 and 17 contained a BiGRU and LSTM after the CNN
part of the network. The BiGRU is a bidirectional type of
RNN with similar performance to the BLSTM, whereas the
LSTM uses the contextual information in one direction, and
preserves only past information. Compared to the BLSTM
and BiGRU models, the performance of the LSTM models
was the worst. Moreover, the LSTM-based models took
more time to converge than the BLSTM or BiGRU models.
Therefore, LSTM was not considered a part of the RNN in
the experiments.

Typically, ResNet architectures apply only one max
pooling layer after the first convolutional layer. However,
in the experiments, both max pooling and convolutional
layers with strides were used after every residual block
to down-sample the width and height of the feature map.
The kernel size and stride values in the max pooling and
convolutional layers were set to 2 × 1, so that the width
of the feature map became consistent and only its height
was down-sampled. The performance accuracy of applying
max pooling and convolutional layers with strides is shown
in Table 4. Model 19 and Model 21 used the strided
convolutional layers and have an accuracy improvement of
0.32% and 1.04% in terms of the WRR than the Model 18
and Model 20, respectively. The last column in Table 4
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TABLE 1: Text recognition accuracy comparison between different numbers of RNN hidden units in the BLSTM network.

Model CNN Type RNN Structure No. of RNN Hidden Units CRR (%) WRR (%) WRR1F (%)

1 VGG-16 BLSTM 128 91.35 73.40 85.39
2 VGG-16 BLSTM 256 93.61 84.26 90.82
3 VGG-16 BLSTM 512 93.83 86.05 92.41
4 VGG-16 BLSTM 1024 94.63 86.47 92.30

TABLE 2: Text recognition accuracy comparison between different CNN models.

Model CNN Type RNN Structure No. of RNN Hidden Units CRR (%) WRR (%) WRR1F (%)

5 VGG-16 BLSTM 512 93.83 86.05 92.41
6 VGG-19 BLSTM 512 93.37 85.73 91.79
7 ResNet-18 BLSTM 512 92.32 80.04 89.56
8 ResNet-34 BLSTM 512 91.27 83.00 90.08

TABLE 3: Text recognition accuracy comparison between different RNN architectures.

Model CNN Type RNN Structure No. of RNN Hidden Units CRR (%) WRR (%) WRR1F (%)

9 VGG-16 BLSTM 512 93.83 86.05 92.41
10 VGG-16 BiGRU 512 93.37 84.71 91.79
11 VGG-16 LSTM 512 89.72 79.53 87.13
12 ResNet-18 BLSTM 512 92.32 80.04 89.56
13 ResNet-18 BiGRU 512 92.59 80.92 89.17
14 ResNet-18 LSTM 512 88.75 77.19 85.57
15 ResNet-34 BLSTM 512 91.27 83.00 90.08
16 ResNet-34 BiGRU 512 91.00 82.66 88.76
17 ResNet-34 LSTM 512 85.56 77.12 83.32

TABLE 4: Text recognition accuracy comparison between max pooling and strides convolutions.

Model CNN Type RNN Structure No. of RNN Hidden Units CRR (%) WRR (%) WRR1F (%)

18 ResNet-18 + Max Pooling BLSTM 512 90.32 79.72 87.80
19 ResNet-18 + Conv with strides BLSTM 512 92.32 80.04 89.56
20 ResNet-34 + Max Pooling BLSTM 512 92.96 81.96 89.94
21 ResNet-34 + Conv with strides BLSTM 512 91.27 83.00 90.08

TABLE 5: Text recognition accuracy of the proposed VGG-16 with skip connection and ResNet-18 with v2 residual block.

Model CNN Type RNN Structure No. of RNN Hidden Units CRR (%) WRR (%) WRR1F (%)

Proposed I VGG-16 with skip connections BLSTM 512 95.75 87.13 94.21
Proposed II ResNet-18 with v2 residual block BLSTM 512 94.03 84.42 92.30

shows the performance of the models in terms of the WRR1F
evaluation metric.

F. TEXT RECOGNITION RESULTS OF THE PROPOSED
MODELS

To further improve the text recognition accuracy, two ad-
ditional models were proposed. The first model proposed a
new VGG-16 network with residual connections, as shown
in Fig. 6(b) and Fig. 6(c). The features of the first convolu-
tional layer in every block were added with the features of
the last convolutional layer in the same block. These features
were then passed to the next block. The accuracy of the

proposed new VGG-16 model (proposed I) is summarized
in Table 5. This model improved the CRR, WRR and
WRR1F to 1.92%, 1.08% and 1.80% respectively over the
standard VGG-16 model as shown in Table 2. Similarly,
in the second proposed model (proposed II), the standard
ResNet-18 architecture was modified with the residual block
containing three convolutional layers. Table 5 shows that
this modified architecture (proposed II model) improved
the CRR, WRR and WRR1F to 1.71%, 4.38% and 2.74%
respectively over the standard ResNet-18 model as shown
in Table 2. Although the use of residual connections with
deep VGG-16 network improved the recognition accuracy
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اینڈ اینڈ ھوٹل ھوٹل سپر سپر غلام غلام صاف صاف دعا دعا نور نور بسم بسم

ٹریڈرس ٹریڈرس غریب غریب اسٹور اسٹور آٹوز آٹوز روڈ روڈ حیدرآباد حیدرآباد انٹرنیٹ انٹرنیٹ نیا نیا
(a)

(b)

سروس سروس سینٹر سینٹر فاسٹ فاسٹ ھوٹل ھوٹل سینٹر سینٹر ورکشاپ ورکشاپ جنرل جنرل چائے چائے

مکہ مکہ بھی بھی تیار تیار آٹوز آٹوز سندھ سندھ دواخانہ دواخانہ نیا نیا جب جب

FIGURE 13: Qualitative results of correctly recognised cropped Urdu scene text using the (a) proposed I model and
(b) proposed II model. For each word image, the annotations at the bottom left are the ground truths, while those at the
bottom right are the predicted text.

than the standard model, increasing the number of layers
in the network reduced the recognition accuracy as shown
in the second row of Table 5. Moreover, all the network
models have been trained on the augmented data. We only
compare the results of proposed model I and II as shown in
Table 5 with and without data augmentation. The WRR and
WRR1F obtained without data augmentation using proposed
model I were 74.24% and 84.36%, respectively, while with
data augmentation, WRR and WRR1F were 87.13% and
94.21%, respectively. Similary, the WRR and WRR1F with-
out data augmentation using proposed model II were 72.88%
and 84.22%, respectively, while with data augmentation, the
WRR and WRR1F were 84.42% and 92.30%, respectively.

A qualitative analysis of the correctly and incorrectly
recognised words using the proposed models are illustrated
in Fig. 13 and Fig. 14 respectively. In Fig. 13, the annota-
tions in the bottom-left corner of each word image are the
ground truths, while those at the bottom-right corners are the
predicted text. The first rows in Fig. 13(a) and Fig. 13(b)
show correctly recognised machine-printed cropped Urdu
scene text word images with the proposed I and proposed
II methods, respectively. The second rows in Fig. 13(a)
and Fig. 13(b) show correctly recognised handwritten Urdu
text in natural images (e.g., on walls or signboards) using

the proposed I and proposed II models, respectively. As
shown in the first rows in Fig. 13(a) and Fig. 13(b),
the images contain Urdu text with variations in font size,
colour, alignment, writing style and background, which is
difficult to recognise correctly. The handwritten text in the
second rows in Fig. 13(a) and Fig. 13(b) includes additional
complexities introduced by different handwritten styles.

The first rows in Fig. 14(a) and Fig. 14(b) show qualitative
results of incorrectly recognised cropped Urdu scene text
word images using the proposed I and proposed II methods,
respectively. The green text at the bottom-left corners of
images shows the characters that are not recognised by
the proposed methods, while the red text at the bottom-
right corners shows incorrectly recognised text. Fig. 14
demonstrates that Urdu word images contain high contrast,
blurred and noisy text, and complex backgrounds. Some
images contain stretched and very small text, which also
makes Urdu scene text recognition more complex.

G. TEXT RECOGNITION PERFORMANCE COMPARISON
The following sections compare the performance of the
proposed model I and model II with Arabic text in natural
and video images, and the commercial multilingual OCR
systems.

14 VOLUME 7, 2019



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3144844, IEEE Access

Asghar et al.: Cursive Character Recognition in Natural Scene Images

(a)

(b)

سامنے تےسا مارکیٹ یٹچلال علی یلابع

گرابر  ابر یہو ر اب ابوی 

شنکسٹرینک کسٹریشن نرکار  کار ڈپو رڈپو  ںگیدی دیں رزبچیم یمرزج

انشا وناا ابڑا اصغراپز  رظصا ہوگا اکو س نمھرا ھراھ  سید سیدال

الڈکو  ہکو  چوک رنگچو 

آغاز زفاآغ نیا ہیق آرڈر غزآ 

فرحان انخر خح ایم پیرا گیدزن نگیر 

علی لیتس ایم وای شنکیکمیونی کمیونیشن ابنا ایٹ

ٹوفو  فو ری اج ری س عبد یںع

نااکستپ اکستن

FIGURE 14: Qualitative results of incorrectly recognised cropped Urdu scene text using the (a) proposed I model and
(b) proposed II model. Green text at the bottom left of a word image indicates the missing characters in the predicted text,
while red text at the bottom right indicates the incorrectly recognised characters.

TABLE 6: Text recognition accuracy comparison of the proposed models with state-of-the-art methods developed for the
Arabic text recognition in natural scenes and video images.

Model Method RNN Structure Dataset CRR (%) WRR (%) WRR1F (%)

Yousfi et al. [54] ConvNets BLSTM ALIF_Test 94.36 71.26 86.77
Yousfi et al. [55] ConvNets BLSTM ALIF_Test2 90.71 65.67 –
Jain et al. [14] ConvNets BLSTM Synthetic 75.05 39.43 –

Proposed I ConvNets BLSTM Urdu-Text 95.75 87.13 94.21
Proposed II ConvNets BLSTM Urdu-Text 94.03 84.42 92.30

1) Accuracy Compare with State-of-the-Art Methods

Since there is no existing work examining word-level Urdu
text recognition in natural scene images, the performance
of the proposed methods was compared with recently pro-
posed state-of-the-art methods proposed for the Arabic text
recognition in the natural scene and video images. Several
samples in the ALIF train and test datasets [55] contain two
or more text words or a sentence in a single image. These
datasets have not been developed with isolated cropped word
images. However, the authors have reported text recognition
accuracy in terms of CRR, WRR and line recognition rate
(LRR). Similarly, the synthetic Arabic text image dataset as
reported in [14] contains full images with bounding box
annotations and does not provide separate cropped word
images. We, therefore, have compared the CRR and WRR

of the proposed methods with the CRR and WRR of Arabic
scene and video images as reported in [14], [54], [55].
Table 6 shows the comparison of text recognition accuracy
of the proposed methods and Arabic text recognition in the
natural scene and video images.

Yousfi et al. [54] proposed a CNN and BLSTM network to
recognise Arabic video text. They evaluated their model on
two test datasets: the ALIF_Test1 and the ALIF_Test2 [55].
A word recognition rate of 71.26% was reported for the
ALIF_Test1, whereas the word recognition rate for the
ALIF_Test2 was 65.67%. The performance of the model
on the ALIF_Test2 was low because this dataset contains
Arabic video images with more variety in terms of font
size, text style, background complexity and colour. Next,
Jain et al. [14] proposed a CNN and BLSTM network
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TABLE 7: Text recognition accuracy comparison of the
proposed models with off-the-shelf Tesseract OCR engine.

Method CRR (%) WRR (%)

Model 5 93.83 86.05
Model 6 93.37 85.73
Model 7 92.32 80.04
Model 8 91.27 83.00

Proposed I 95.75 87.13
Proposed II 94.03 84.42

Tesseract OCR 15.48 6.81

for synthetic Arabic text recognition in natural images.
They created a synthetic dataset of four million Arabic
scene text word images, using a list of commonly used
Arabic words available over the internet. They evaluated the
performance of the model by calculating CRR (75.05%) and
WRR (39.43%). The model performed poorly in terms of
WRR, due to the cursive nature and complexities of Arabic
language. The proposed I and II models yield a WRR of
87.13% and 84.42% respectively for cropped Urdu scene
text recognition, which is state-of-the-art than the method
proposed for the Arabic text recognition in natural scenes
and video images. Further, the CRR of the proposed I model
is 95.75%, which is higher than all the methods, while the
CRR of the proposed II model is slightly less than the model
evaluated on ALIF_Test dataset as reported in [54].

2) Accuracy Compare with Commercial OCR System
A comparative study of the performance of the proposed
methods against an off-the-shelf OCR system was also
performed. A well-known OCR engine—the Google Tesser-
act [22] was tested on the cropped Urdu word image test
dataset. The Tesseract OCR supports UTF-8 encoding and
can recognise text in more than 100 languages, including
Arabic and Urdu scripts. The results of the Tesseract OCR
were evaluated according to CRR and WRR. The perfor-
mance of the proposed methods and the VGG-16, VGG-19
and ResNets was much higher than that of the Tesseract
OCR. Table 7 illustrates the performance of the proposed
methods and the Tesseract OCR on the cropped Urdu natural
scene text recognition dataset.

VI. CONCLUSIONS
This paper presented cropped Urdu word image text recog-
nition solutions. A segmentation-free method was proposed
that eliminated the problem of individually segmenting each
character in a word image. The proposed framework was
based on three components: feature extraction, sequence
labelling and text transcription. For sequence extraction,
two methods based on VGG-16 and ResNet networks were
proposed. Further, a new VGG-16 architecture using short-
cut connections was proposed that extracts more robust
text features. Two RNN-based structures—a BLSTM and
a BiGRU—were applied to decode the feature sequences
into probability distributions. Finally, a CTC cost function
was applied on top of the BLSTM or BiGRU sequences to

transform per-frame predictions into the target sequence of
labels. A BLSTM and CTC–based network learned temporal
classification sequences without requiring pre-segmented
data and the length of the ground truth text to train the
network. It did not need a post-processing operation to
merge the individual recognised characters into complete
strings. The proposed methods were extensively evaluated
on the new cropped Urdu scene text dataset and yielded high
character and word recognition results. Since no research
has been conducted regarding Urdu scene text recognition,
the performance of the proposed methods was compared
with that of existing Arabic natural scene and video text
recognition methods. The method proposed with shortcut
connections outperformed all other models in terms of CRR,
WRR and WRR1F. The proposed methods still produce
some incorrect results due to the language complexities
present in cursive scripts. These recognition errors can
be improved by using a language model with linguistic
information.
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