
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3144084, IEEE Access

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

Differential Privacy in Social Networks
Using Multi-Armed Bandit
OLUSOLA T. ODEYOMI1, (Member, IEEE),
1Department of Electrical Engineering and Computer Science, Wichita State University, Wichita, KS, 67260-0083 USA (e-mails:
otodeyomi@shockers.wichita.edu

Corresponding author: Olusola T. Odeyomi (e-mail: otodeyomi@shockers.wichita.edu).

This work was supported in part by the Petroleum Technology Development Fund in Nigeria

ABSTRACT There has been an exponential growth over the years in the number of users connected to
social networks. This has spurred research interest in social networks to ensure the privacy of users. From
a theoretical standpoint, the social network is modeled as a directed graph network and interactions among
agents in the graph network can be analyzed with non-Bayesian learning and online learning strategies -
such as the multi-armed bandit. The goal of the agents is to learn the time-varying true state of the network
through repeated cooperation among themselves. Recent work includes differential privacy in social network
analysis to guarantee the privacy of shared information among the agents. However, the stochastic multi-
armed bandit approach is used in these existing works which assume that the loss distribution is independent
and identically distributed. This does not account for the arbitrariness of the time-varying true state in the
social network. Therefore, this paper proposes a tougher but realistic setting that removes the restriction on
the loss distribution. Two non-stochastic multi-armed bandit algorithms are proposed. The first algorithm
uses the Laplace mechanism to guarantee differential privacy against a third-party intruder. The second
algorithm uses the Laplace mechanism to guarantee differential privacy against both a third-party intruder
and any spying agent in the network. The simulation results show that the agents’ beliefs converge to the
most dominant true state among the sequence of arbitrarily time-varying true states over the time horizon.
The speed of convergence comes as a trade-off with privacy. Regret bounds are obtained for the proposed
algorithms and compared to the non-private algorithm in the literature.

INDEX TERMS Non-Bayesian learning, diffusion learning, differential privacy, Laplace mechanism,
multi-armed bandit, regret, online learning.

I. INTRODUCTION

THE social network has played an important role in our
daily lives by providing a platform for social interac-

tions. Social interactions are often among users having a
common interest, i.e., friendship, colleagues at work, peer
groups, etc. Social network users often collaborate to learn
the truth about an event over time, through social interactions
within their social connections. However, during such col-
laborations, it is important to protect shared vital information
from third-party intruders, who are not members of the social
connections. Also, it is pertinent for each user to share only
information that is needed for social cooperation within its
social connections, and protect sensitive information from
other members of its social connections. For instance, it is
common among young people to share insensitive photos on
Flickr or other popular social media applications, to attract

comments from friends and family members within their
social connections. However, sensitive photos are stored in
local photo applications on their mobile phones, with the
hope that nobody can access and view them. Unfortunately,
there are lots of privacy breaches in social networks [1].

A technique adopted in the past to provide privacy is to
anonymize the datasets. However, research has shown that
public information that is anonymized can be easily de-
anonymized leading to sensitive information being exposed.
For instance, in 2007, Netflix released anonymized datasets
to researchers in the field of information retrieval for research
purposes. After a year, the datasets were de-anonymized
using public information from the Internet Movie Database
(IMDb) which led to the re-identification of anonymized
Netflix subscribers. This became a legal case of privacy
breach with one of Netflix subscribers who claimed to have

VOLUME 4, 2016 1

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3144084, IEEE Access

been adversely affected by the breach of privacy [2], [3]. Sim-
ilarly, the medical records of the governor of Massachusetts
were exposed by matching anonymized medical data with
publicly available voter registration records [2]. The failure
of anonymizing the datasets and the pressing need for re-
searchers to provide a better technique to protect sensitive
information led to differential privacy.

To address the issue of privacy in data analysis, Dwork
et al. [2], [4], [5] proposed differential privacy which is a
rigorous theoretical guarantee for privacy regardless of an
intruder’s prior knowledge about the databases. In particular,
differential privacy guarantees that two databases that dif-
fer in only one record will output randomized results with
identical probability distributions. Thus, the intruder cannot
detect this difference in the databases whether it possesses
some auxiliary information about the databases or analyzes
the results. It is to be noted that the definition of privacy in
[4], [5] is sufficient to guarantee the privacy of each agent’s
information against a third-party intruder, but it is insufficient
to guarantee privacy when there is a curious spy within the
social circle. Thus, the notion of local differential privacy was
conceived and proposed by Duchi et. al [6]. Local differential
privacy guarantees the privacy of information in a distributed
system, where agents must cooperate, but do not trust each
other.

Theoretical analyses of the social network are done by
modeling the social network as a graph network [7], [8]. So-
cial network users, referred to as agents, collaborate among
themselves by a set of directed edges in the graph network.
The graph network is strongly connected when each agent
can communicate with every other agent. Non-Bayesian dif-
fusion learning approaches are commonly used to analyze
the interactions among these agents [9]. In these learning
approaches, the goal is to learn the unknown true state
of the graph network among a discrete set of states [10]–
[13]. There are situations where the unknown true state is
time-varying, such as the prediction of stock prices. Recent
studies show that incorporating non-stochastic multi-armed
bandit techniques into the non-Bayesian learning approaches
can track this time-varying true state [14]–[16]. The non-
stochastic multi-armed bandit is a variant of the online learn-
ing strategies that work well in sequential decision-making.
To account for full privacy, private information shared by the
agents during collaboration must be robust against third-party
intruders and curious spies.

Most existing work on differential privacy that incorpo-
rates online learning strategies in social network assume that
all agents receive full feedback over all possible actions [17]–
[19]. This means that when an agent chooses a state as the
true state from a set of states at a given round or time slot, the
agent incurs the loss of its action - the chosen state, and also
observes the losses of all unchosen states at the end of that
round. However, in this paper, we consider a tougher setting
where the agents can observe only the loss value of the state it
chooses at each round. Also, no agent knows the loss incurred
by other agents in each round. This setting is peculiar to

the multi-armed bandit. It is to be noted that although no
agent can observe the losses of other agents in a multi-
armed bandit setting, there is still the possibility of privacy
leakage to a spying agent during cooperation. Also, a third-
party intruder is not restricted from observing the loss values
of any agent if not protected. Few works incorporate multi-
armed bandit technique with differential privacy in the social
network [20], [21]. However, these works assume that the
loss distribution is independent and identically distributed.
Such assumption is impractical in the social network where
the true state varies arbitrarily. Hence, this paper does not
impose such an assumption on the loss distribution. We show
that after a series of iterations using the proposed algorithms,
the agents learn from the history of their past choices and
make better decisions in tracking the time-varying true state
with a privacy guarantee.

A. RESEARCH CONTRIBUTIONS
The contributions of this paper are as follows:

1) It models the social network as a graph network con-
sisting of a set of strongly connected agents and a set of
edges. The goal of the agents is to learn an arbitrarily
time-varying true state of the network, with a privacy
guarantee, against a third-party intruder and any spying
agent.

2) It applies non-Bayesian learning, differential privacy,
and non-stochastic multi-armed bandit seamlessly for
the first time to achieve this goal.

3) Two non-stochastic multi-armed bandit algorithms are
proposed. The first algorithm uses the Laplace mech-
anism to protect the incurred loss values of the agents
from a third-party intruder, regardless of the compu-
tational power of this intruder. The second algorithm
applies the Laplace mechanism to protect the incurred
loss values of each agent from a third-party intruder,
and also to protect the shared information of each agent
when there is a spying agent in the neighborhood.

4) Simulation results are obtained to show that through
cooperation over time, the agents’ beliefs converge to
the most dominant true state among the sequence of
arbitrarily time-varying true states over the time hori-
zon. The speed of convergence and the regret bounds
of the proposed algorithms are compared with that of
the non-private algorithm in the literature.

II. RELATED WORKS
There is some existing work in the literature that has ad-
dressed privacy concerns in graph networks. [22] introduced
the concept of node-differential privacy and edge-differential
privacy in graph networks. Node-differential privacy infers
the removal or addition of one node and its incident edges in a
graph network to generate another differentially private graph
network. Node-differential privacy is a strong privacy guar-
antee difficult to achieve. On the other hand, edge-differential
privacy infers the removal of an edge in the graph net-
work to generate another differentially private graph. Edge-

2 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3144084, IEEE Access

differential privacy is a weak differential privacy guarantee
that is easily achievable. A variant of the edge-differential
privacy is the k-edge differential privacy, where two nodes
can differ by at most k number of edges. There have been var-
ious attempts by researchers to enforce differential privacy in
graph networks through the intrinsic properties of the graph,
such as its degree distribution [22], clustering coefficients
[23], [24], eigenvalues and eigenvectors [25] and so on. Also,
there have been attempts to enforce edge-differential privacy
in graph generation, such as the Kronecker graph model [26],
the dK-graph model [27], and the 2K-graph model [28].

In Bayesian inference, noise is added directly to the
Bayesian updates to keep it differentially private. This means
that noise is either added to the posterior parameters or their
Fourier transform coefficients. This is based on the posterior
sampling mechanism proposed in [29], [30]. The authors in
[29] achieved differential privacy in non-parametric poste-
rior without additional noise. There are other refinements
of this mechanism such as in [31]. Also, the authors in
[32] explored Monte-Carlo approaches to Bayesian inference
based on posterior sampling mechanism. The authors in [33]
applied probabilistic inference, by computing the posteriors
in a noisy measurement model, to improve the utility of
differentially private releases. Although differential privacy
has been applied in Bayesian learning, it is yet to be extended
to non-Bayesian learning.

In the online learning setting where data arrives sequen-
tially, differentially private algorithms have been proposed
with provable privacy guarantee as well as good regret
bounds [34]. Recent work can be found in [19], [35]. In
the multi-armed bandit, which is an online learning strategy,
extensive work has been done to formulate ϵ-differentially
private stochastic bandit algorithms from the classic non-
private UCB algorithm [36]–[39]. These differentially private
algorithms have nearly optimal regret bounds with prov-
able privacy guarantees. In the non-stochastic multi-armed
bandit, the authors in [40] and [41] have both proposed ϵ-
differentially private algorithms with good regret bounds for
non-private EXP3 and EXP2 algorithms respectively. The
authors in [42] and [43] introduced the notion of local dif-
ferential privacy both in stochastic and non-stochastic multi-
armed bandit.

III. PRELIMINARIES
A. NETWORK MODEL
A graph network is denoted as G = (V, E), where V =
{1, · · · , N} represents a set of agents in the network with
|V| = N and E represents the set of edges. A pair of non-
negative scalar weights {ajk, akj} ∈ E can be assigned to
the edge joining agents k ∈ V and j ∈ V . The network is
defined as strongly connected if there exists a directed path
in both ways connecting any two agents and at least a self-
loop is present, i.e., akk > 0. There is the possibility of
having ajk > 0 and akj = 0. The neighborhood Nk of
the agent k is the set of agents connected to k. Agent k is
a member of its neighborhood. Also, the adjacency matrix of

the graph can be defined as a square matrix whose elements
represent the weights of the edges linking any two agents.
The adjacency matrix is denoted as A. The adjacency matrix
is left-stochastic when the sum of elements in each column is
one i.e.,

ajk ≥ 0,
∑
j

ajk = 1. (1)

Strongly connected networks are left-stochastic and they
have a spectral radius of one, i.e., their eigenvalues are always
positive and bounded by one. They also obey the Perron-
Frobenius theorem, and have a single eigenvalue at one,
while other eigenvalues are strictly inside a unit disc [44].

B. DIFFUSION LEARNING
Diffusion learning starts by assigning a uniform prior belief
to all agents in the network over each state. To illustrate
mathematically, assume Θ = {θ1, ..., θM} represents the
set of all possible states that is detectable by a network,
and assume θ∗t ∈ Θ represents the time-varying true state
of the network that is unknown at time t. The prior belief
of any agent k is given as µk,0(θ) = 1

M at time t = 0
over the state θ, where M is the cardinality of Θ. Each
of the agents will update its belief at each time t ≥ 1
by first observing a random observable signal. For agent k,
its random observable signal can be denoted as Sk,t, and
drawn from some known likelihood function Lk(·|θ∗t) that is
dependent on the true state θ∗t . The set of random observable
signals {Sk,t}t=T

t=1 belongs to a finite state space {Zk,t}t=T
t=1 ,

and it is independent over time and agents. These signals are
not fully informed about the time-varying true state, thus,
necessitating cooperation among the agents, i.e.,

Sk,t = θ∗t + n, ∀k ∈ V, t ≤ T (2)

where n ∼ N (0, 1). The random observable signal is a noisy
version of the underlying time-varying true state. Agent k
computes the likelihood Lk(Sk,t|θ) over each state θ ∈ Θ
using this random observable signal as shown below:

Lk(Sk,t|θ) =
1√

2πσ2
k,t

exp {−(Sk,t − θ)2/2σ2
k,t} (3)

where σ2
k,t represents the variance of agent k at time t. Then,

the agent generates an intermediate belief using the Bayesian
rule as follows:

ψk,t(θ) =
µk,t−1(θ)Lk (Sk,t|θ)∑

θ′∈Θ µk,t−1 (θ′)Lk (Sk,t|θ′)
(4)

where ψk,t(θ) is the intermediate belief of the agent k at time
t. Each agents can combine the weighted version of its inter-
mediate belief with the weighted version of the intermediate
beliefs of its neighbors over each state at each time t in a
non-Bayesian fashion as shown below:

µk,t(θ) =
∑
j∈Nk

ajkψj,t(θ) (5)

VOLUME 4, 2016 3

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3144084, IEEE Access

TABLE 1. List of Notations

Notations Meaning
G Graph network
V set of agents
E set of edges
N neighborhood
A adjacency matrix
Θ set of all possible states
θ∗t time-varying true state
θ state
µk,t belief of agent k at time t
L(·|θ) a known Likelihood function dependent on θ
Sk,t a random observable signal for the agent k at time t
Zk,t a finite-state space for the agent k at time t
n Gaussian noise

N (0, σ) Gaussian distribution with mean of 0 and variance of σ
ψk,t(θ) intermediate belief of agent k at time t over state θ

l loss
E expectation
θ• best possible state
A randomized algorithm
P probability
δ, ϵ privacy parameters
t time
T time horizon
Reg regret
∆l sensitivity
|| · || Manhattan norm
M private mechanism

Lap(1/ϵ) Laplace distribution
η learning rate
γ exploration parameter
NL Laplace noise

pk,t(θ) probability of agent k at time t over state θ
Pk,t(θ) consensus probability of agent k at time t over state θ

R real numbers
exp exponential
M cadinality of Θ

C. MULTI-ARMED BANDIT PROBLEM

The multi-armed bandit is a game set between an agent and
an adversary. The game setting is as follows: There is a
set of states denoted by Θ = {θ1, · · · , θM}. An oblivious
adversary fixes the loss lt(θ) ∈ [0, 1] for all states before the
start of the game. At the start of the game, an agent selects a
state θt at each time t, and incur the loss lt(θt) ∈ [0, 1]. The
agent only observes its incurred loss lt(θt) at every time t,
but the agent is unaware of the losses of states not chosen at
such time. For instance, for a binary loss game setting, when
the chosen state of the agent at time t is the same as the true
state at that time i.e., θt = θ∗t , then the loss lt(θt) = 0, and if
θt ̸= θ∗t , then lt(θt) = 1. The goal of the agent is to minimize
its total incurred losses from time t = 1 to time t = T given
as
∑T

t=1 lt(θt). The performance of the agent is compared
against an oracle that sticks to the best state θ• over the entire
duration of the game. This performance metric is known as
regret, which is defined as the difference between the total
loss incurred by the agent and the total loss incurred by the
oracle over the time horizon T .

RegT :=
T∑

t=1

lt(θt)−
T∑

t=1

lt(θ
•) (6)

The above regret definition is deterministic. It is sometimes
difficult to obtain deterministic regret. Thus, it is important to
consider the expected regret. Expected regret necessitates the
use of a randomized bandit algorithm. The expected regret is
defined as

E[RegT] := E
[T∑

t=1

lt(θt)−
T∑

t=1

lt(θ
•)

]
(7)

where the expectation is taken over the randomness of the
choice of the agent’s actions and its incurred losses.

D. DIFFERENTIAL PRIVACY
In differential privacy, the goal is to ensure that no third
party intruder can extract sensitive information from the
output of a private mechanism (i.e., a randomized private
bandit algorithm), even if there is a distortion of a loss value
among the sequence of loss values incurred by an agent. It
is formally defined in the non-stochastic multi-armed bandit
setting as follows [40]–[42]:

Definition 1: A randomized bandit algorithm A is (ϵ, δ)
differentially private at around t, if for all loss sequence l1:t−1

and l′1:t−1 that differs in at most one round for any subset
ζ ⊆ Θ

P (θt ∈ ζ|l1:t−1) ≤ δ + P (θt ∈ ζ|l′1:t−1)exp(ϵ) (8)

4 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3144084, IEEE Access

where l1:t−1 = l1(θ1), · · · , li(θi), · · · lt−1(θt−1); l′1:t−1 =
l1(θ1), · · · , li(θ′i), · · · , lt−1(θt−1), θ′, θ ∈ Θ, and i < t− 1;
P is the probability distribution specified by the randomized
private algorithm; ϵ and δ are parameters that define the
privacy loss. When δ = 0, then, the randomized algorithm
is said to be ϵ-differentially private. Generally lower (ϵ, δ)
indicates higher privacy and vice-versa. The intuition in
Definition 1 is that even if there is a change in an incurred
loss in just one round among the loss sequence from round
1 to round t − 1, the agent will still choose the same state at
round t. This means that no third-party intruder can infer any
information about the loss value either by simply observing
the chosen state incurred or by distorting a loss value, no
matter the computational power of this third-party intruder.
Hence, the agent’s loss value at time t is kept private.

The privacy guarantee in Definition 1 is for one round,
hence, it is said that the algorithm has instantaneous privacy
parameters. To ensure privacy for all rounds, such that the
algorithm has a cumulative privacy parameter, Definition 1
will be redefined as follows:

Definition 2: A randomized bandit algorithm A is (ϵ, δ)
differentially private up to round t, if for the loss sequences
l1:t−1 and l′1:t−1 that differ in at most one round, and for a
subset ζ ⊆ Θ, we have

P (θ1:t ∈ ζ|l1:t−1) ≤ δ + P (θ1:t ∈ ζ|l′1:t−1) exp(ϵ) (9)

where θ1:t = θ1, ..., θt. The goal of the private bandit
algorithm is to ensure that the cumulative privacy loss is
low as possible, while still maintaining a low regret or high
utility. This causes a trade-off challenge between privacy and
utility. We refer readers to [42] for elaborate discussion on
cumulative privacy parameter.

IV. DIFFERENTIALLY PRIVATE MULTI-ARMED BANDIT
The expected regret definition in equation (7) is for a single
agent. In a social network, there are many agents. Thus,
the game setting is reformulated as follows: An oblivious
adversary fixes the loss lk,t(θ) ∈ [0, 1] for each agent k at
each time t and overall states θ ∈ Θ before the start of the
game. At each time t, each agent k chooses a state θt and
observes the loss lk,t(θt) ∈ [0, 1]. Each agent does not know
the loss value of the states it does not choose at each time, and
also, it does not know the loss value of the states chosen by
other agents. The goal of each agent is to minimize its regret
over the time horizon of the game by incurring the possible
minimum number of losses. The expected weighted regret for
each agent is defined as the difference between the expected
cumulative loss of the agent and the expected cumulative loss
incurred by the oracle. The expected weighted regret for the
agent k is given as:

E[RegT] := EFT

[
T∑

t=1

∑
θ∈Θ

µk,t(θ)lk,t(θ)−
T∑

t=1

lk,t (θ
•)

]
,

(10)

where µk,t(θ) is the belief of the agent k over the state
θ ∈ Θ; FT = σ(Sk,1, ..., Sk,T , lk,1, ..., lk,T , θ1, .., θT) is
the filtration that represents the history of the agent over all
observed random signals, states chosen, and incurred losses.

Although, each agent cannot observe the incurred loss
values of other agents in the network; a third-party intruder
will observe the exact incurred loss values of any agent if the
loss values are not private. Hence, each agent uses a private
randomized bandit algorithm to secure its loss values. Thus,
Definition 2 is restated as follows:

Definition 3: A randomized bandit algorithm Ak for the
agent k is (ϵ, δ)-differentially private up to round t, if for the
loss sequences lk,1:t−1 and l′k,1:t−1 that differs in at most one
round, and for a subset ζ ⊆ Θ, we have

P (θ1:t ∈ ζ|lk,1:t−1) ≤ δ+P (θ1:t ∈ ζ|l′k,1:t−1) exp(ϵ) (11)

If δ = 0, the private bandit algorithm is said to be ϵ-
differentially private for the agent k.

To learn the time-varying true state, the agents are ex-
pected to cooperate. Such cooperation may leak vital in-
formation about each agent. For instance, from equation
(5), each agent observes the intermediate beliefs of other
agents in its neighborhood. Such observation may breach the
privacy of the neighbors. Thus, the notion of local differential
privacy, where each agent protects its vital information before
sharing it with its neighbors is important. Local differential
privacy is defined in Definition 4.

Definition 4 [42]: A randomized bandit algorithm Ak for
the agent k is locally differentially private, if its input are
generated through an (ϵ, δ)-differentially private mechanism
M.

Definition 4 infers that the input to the algorithm Ak

undergoes pre-processing by a private mechanism M. Using
equation (5) for illustration only, the intermediate belief from
each neighbor j ∈ Nk will first be pre-processed by a private
mechanism, where it will undergo (ϵ, δ)-differential privacy
before it is sent as input to the randomized private bandit
algorithm Ak of the agent k for consensus, i.e.,

PM(ψj,1:t ∈ β|lk,1:t−1) ≤ δ+PM(ψj,1:t ∈ β|l′k,1:t−1) exp(ϵ)
(12)

where β ⊆ R and PM is the probability distribution specified
by the private mechanism M. Then, the algorithm Ak is
differentially private with respect to lk,1:t−1 through post-
processing as shown below:

P (θ1:t ∈ ζ|ψj,1:t) ≤ δ + P (θ1:t ∈ ζ|ψ′
j,1:t) exp(ϵ). (13)

A variant of equation (5) discussed in detail in Section V
involves the transfer of intermediate probabilities, instead of
intermediate beliefs. Definition 3 protects the information
of each agent from a third-party intruder, while Definition
4 protects the information of each agent from other spying
agents, to avoid privacy breaches.

VOLUME 4, 2016 5

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3144084, IEEE Access

Definition 5: For any lk,1:t and l′k,1:t that differs in only
one round, the L1 sensitivity at the t− th round is given as

∆l = max||lk,1:t − l′k,1:t||1 = 1 (14)

where || · ||1 is the Manhattan norm. The maximum change
that can occur in the loss sequence in any round is bounded
by 1, because the loss values themselves are bounded by 1.

V. PROPOSED ALGORITHMS
The proposed algorithms are non-stochastic multi-armed
bandit algorithms that involve a trade-off between explo-
ration and exploitation. Algorithm 1 is proposed to secure
the loss values of the agents against a third-party intruder
outside the network. However, the agents in the network can
share information among themselves with trust and do not
need to protect shared information. This means that algorithm
1 is useful when all agents are cooperative, and there is no
spy among the agents. Algorithm 2 is proposed to secure all
information of an agent against both a third-party intruder
and any spying neighboring agents seeking to know more
information about the agent than what is necessary. The non-
private algorithm of these proposed algorithms is found in
[16]. The non-private version leaks information to a third-
party intruder and a spying agent. For convenience, the non-
private algorithm is shown in the Appendix as Algorithm 3.
The input parameters of the proposed algorithms are the feed-
back graph, the exploration parameter γ, and the learning rate
η. Each agent runs the proposed algorithms independently. At
time t = 0, the belief µk,t(θ) of the agent k is initialized over
the states θ ∈ Θ. Let us focus on how the algorithms work
starting with Algorithm 1. At each round t ∈ {1, · · · , T}, the
following steps are executed:

In Step 1, an intermediate probability pk,t(θ) is computed.
The intermediate probability is necessary to provide a trade-
off between exploitation and exploration as commonly done
in multi-armed bandits. The algorithm finds a balance for the
agent k to either stick to its previous belief about the time-
varying true state or explores its generated intermediate belief
at time t. This balance is controlled by γ. In algorithm 1,
pk,t(θ) does not undergo differential privacy.

Step 2 involves the computation of the consensus proba-
bility Pk,t(θ). The consensus probability sums the weighted
intermediate probabilities of the agent k and that of the other
agents in the neighborhood of k. The consensus probability is
computed because the agent k cannot accurately learn about
the true state on its own and needs to cooperate with other
agents in its neighborhood. This can be understood from the
fact that the consensus probability Pk,t(θ) depends on the in-
termediate probability pk,t(θ) according to Step 2. Similarly,
to compute pk,t(θ) in Step 1, the intermediate belief ψk,t(θ)
of the agent k must have been computed using equation
(4). Also, this intermediate belief depends on the likelihood
Lk(Sk,t|θ). However, the signal Sk,t in Lk(Sk,t|θ) is not
fully informative about the true state as shown in equation
(2), which necessitates cooperation among the agents.

In step 3, a state θt is drawn according to the consensus
probability distribution Pk,t and the loss lk,t(θt) ∈ [0, 1]
is incurred. Step 3 is common to all multi-armed bandit
algorithms. If the chosen state θt matches the exact true state
θ∗t , then the incurred loss at that round is 0, but if otherwise,
the incurred loss is 1.

In step 4, Laplace noise is drawn from a Laplace distribu-
tion Lap(1/ϵ) (See Definition 6 and Corollary 1) is added to
the incurred loss lk,t(θt), to randomize it and make it noisy.
The essence of adding random Laplace noise to the incurred
loss is to prevent a third-party spy from knowing the exact
loss value of the agent k. For the sake of analogy only, let
us assume that the loss value is not randomized with Laplace
noise, then a third-party spy will know if agent k predicts the
true state correctly or not, by simply observing the loss value
whether it is 0 or 1. However, after the addition of Laplace
noise to the loss value, it becomes difficult for the third-party
spy to know if agent k correctly predicted the true state or not.
Practically, using stock predictions as an example, a third-
party spy can accurately tell if an agent correctly predicts the
stock price or not, if it sees the exact loss (or profit) of the
agent. By randomizing this loss, it becomes difficult for the
third-party spy to infer correct information about the stock
trading of the agent. Thus, privacy is not breached. We can
bound the amount of Laplace noise added to the incurred loss.
The bounding is important to ensure that we do not lose the
information we are trying to protect due to added unbounded
noise. This will be explained further in step 5.

In step 5, the noisy incurred loss lNk,t(θt) is computed. This
is the sum of the incurred loss over the chosen state lk,t(θt)
and the Laplace noise Nk,t for the agent k at the time t. The
added Laplace noise is bounded between [−b, b] where b ∈ R
as shown in Step 4. This bounding is necessary to regulate the
amount of noise added to the loss value. Adding unbounded
noise will slow down convergence to the most dominant
true state. For instance, adding a Laplace noise value of 100
will be considered too large since the loss value is bounded
between 0 and 1. Recall that there is a trade-off between
privacy and utility. For rounds where the Laplace noise drawn
from the Laplace distribution is outside the range [−b, b], the
algorithm uses Nk,t = b

2 . Still, the third-party spy does not
know the exact value of the true loss incurred even when the
Laplace noise is deterministic (i.e., when we use Nk,t =

b
2).

This is because the number of rounds where Laplace noise is
drawn from the Laplace distribution would exceed the range
[−b, b] is random and likely few for a carefully chosen value
of b. This means that the third-party spy cannot accurately
predict the rounds where a deterministic Laplace noise is
used. Bounding the Laplace noise is common in algorithms
that apply differential privacy [40], [43], [45].

In step 6, the noisy incurred loss is bounded to keep it
within [0, 1]. This is necessary because we want the algo-
rithm to behave like traditional multi-armed bandit algo-
rithms where the loss value is within [0, 1]. For the sake of
analogy, assume that lk,t(θt) at round t is 1 and Nk,t = 0.2,
then lNk,t(θt) = 1.2. If we assume that the added Laplace

6 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3144084, IEEE Access

noise is within the range [−b, b], the noisy loss value still
exceeds 1. Bounding at this stage is used specifically in multi-
armed bandit algorithms where we desire that the loss is
kept within [0, 1] (refer to Algorithm 1 and Theorem 3.1 in
[40]). Since 2b + 1 ≥ lNk,t(θt) + b, the noisy loss value is
kept within [0, 1]. Despite this bounding, the expected value
of the noisy incurred loss gives the true incurred loss (i.e.,
E[lNk,t(θ)] = lk,t(θ)). A third-party intruder cannot infer any
vital information from the noisy incurred loss because it is
differentially private as shown in Lemma 1.

In Step 7, an estimated noisy loss l̂Nk,t(θ) is computed over
all the states θ ∈ Θ in order to update the belief µk,t(θ) in
Step 8. This computation is necessary because the agent k
knows the true loss value of the state it chooses at a given
round (i.e., lk,t(θt)) but it does not know the true loss value
of the other unchosen states at that round. For instance, if
at time t, the agent k chooses θ1 as its true state from the
set Θ = {θ1, · · · , θM} based on its computed consensus
probability, then it observes the loss value of θ1 as explained
in Step 3. However, it does not know the true loss values
of other unchosen states. This is a well-known characteristic
of adversarial multi-armed bandit algorithms [40], [46]. This
becomes a challenge because the algorithm needs to update
the belief µk,t(θ) over all the states using the loss values. A
common technique used to overcome this challenge in multi-
armed bandit will be to compute an unbiased estimate of
the noisy loss l̂Nk,t(θ) over all the states. It is to be noted
that computing such an estimated noisy loss still preserves
privacy since the value of the true loss for each of the
unchosen states remains unknown. This means that no third-
party spy can know the true loss values of the unchosen
states. The expectation over this estimated noisy loss gives
the true noisy loss as shown below:

EFt|Ft−1
[l̂Nk,t(θ)|Ft−1] =

∑
Θ

lNk,t(θ)

Pk,t(θ)
Pk,t(θt)I{θt = θ}.

=
lNk,t(θ)

Pk,t(θ)
Pk,t(θ) = lNk,t(θ). (15)

In Step 8, the updated belief is computed using exponential
weighting. The normalization in Step 8 is to ensure that the
sum of the beliefs over all states θ ∈ Θ is equal to 1. A round
of iteration is complete and the algorithm starts all over from
step 1 until it reaches the time horizon.

Algorithm 2 is slightly different from Algorithm 1 due to
the addition of Laplace noise to the intermediate probability
pk,t(θ) before computing the consensus probability as shown
from Steps 2 to 5. The explanation for bounding the Laplace
noise is the same as discussed in Algorithm 1. Step 5 shows
that agent k receives noisy intermediate probabilities from its
neighbors (i.e., pNj,t(θ) ∀j ∈ Nk), which it uses to compute
its consensus probability. Each neighboring agent privatizes
its intermediate probability over all the states before it is sent
to the agent k for consensus. The essence of adding Laplace

noise to the intermediate probability is to ensure that agent
k does not infer any information from the noisy intermediate
probabilities it receives from its neighbors. This mitigates the
risk of agent k breaching the privacy of its neighbors. Laplace
noise added to the intermediate probability is independent of
all the states and overall the agents. Thus, the consensus prob-
ability computes the sum of the weighted noisy intermediate
probabilities of all agents in the neighborhood at time t over
all the states. Since the algorithm is run independently by
each agent in the network, it means that no spying agent can
access the information of its neighbors.

VI. THEORETICAL RESULTS
This section gives the theoretical results.

Definition 6: The Laplace distribution centered at zero
with scale c has the probability distribution

Lap(x|c) = 1

2c
exp

(
−|x− 0|

c

)
(16)

where x is a random variable. This is the standard definition
of Laplace distribution. Laplace distribution centered at zero
is known to be the symmetric version of an exponential
function.

Corollary 1: For the Laplace mechanism used to generate
the noisy loss lNk,t(θ) in Algorithms 1 and 2, the scale c is
given as ∆l/ϵ. Hence,

Lap(lNk,1:t−1|∆l/ϵ) =
1

2∆l/ϵ
exp

(−||lNk,1:t−1 − 0||1
∆l/ϵ

)
(17)

For ease of notation, Lap(lNk,1:t−1|∆l/ϵ) will be simply
represented as Lap(∆l/ϵ). By applying Definition 5, the
Laplace distribution for Algorithms 1 and 2 from which
Laplace noise is drawn and added to the true loss is given
as Lap(1/ϵ).

Lemma 1: The noisy loss sequence lNk,t−1 in Algorithm 1
and 2 preserves (ϵ, 0)-differential privacy.

Proof: Let lNk,1:t =

(
lNk,1(θ) · · · lNk,τ (θ) · · · lNk,t(θ)

)
and

lN
′

k,1:t =

(
lNk,1(θ) · · · lNk,τ (β) · · · lNk,t(θ)

)
differ in one round

with θ and β ∈ Θ. Let the Laplace distribution be centered
around an arbitrary loss sequence lN

′′

k,1:t−1, then

P (θ1:t ∈ ζ|lNk,1:t−1)

P (θ1:t ∈ ζ|lN ′
k,1:t−1)

=(a)
exp(−ϵ||lNk,1:t−1 − lN

′′

k,1:t−1||1)
exp(−ϵ||lN ′

k,1:t−1 − lN
′′

k,1:t−1||1)

= exp(ϵ||lN
′

k,1:t−1− lN
′′

k,1:t−1||1−ϵ||lNk,1:t−1− lN
′′

k,1:t−1||1)

≤(b) exp(ϵ||lNk,1:t−1 − lN
′

k,1:t−1||1)

≤(c) exp(ϵ)

where in (a), we use the Laplace mechanism in Corollary
1, with ∆l = 1 and || · ||1 is the Manhattan norm; in (b),
we use triangle inequality; and in (c), we use the fact that
||lNk,1:t−1 − lN

′

k,1:t−1||1 ≤ 1.

VOLUME 4, 2016 7

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3144084, IEEE Access

Algorithm 1: Private Multi-Armed Bandit Algorithm With Non-Spying Agents
Parameters: Feedback graph, learning rate η > 0.
V is the set of strongly connected agents and E is the set of edges.
Exploration parameter γ ∈ (0, 1

2
]

Initialize µk,0(θ) =
1
M

Output: µk,t(θ) ∀θ ∈ Θ
For each round t ∈ {1, · · · , T}
Step 1:Compute pk,t(θ) = (1− γ)µk,t−1(θ) + γψk,t(θ) ∀ θ ∈ Θ
Step 2: Compute Pk,t(θ) =

∑
j∈Nk

ajkpj,t(θ), Pk,t = (Pk,t(θ1), ..., Pk,t(θM))
Step 3: Draw state θt ∼ Pk,t and incur loss lk,t (θt) ∈ [0, 1]
Step 4: Draw Laplace noise Nk,t ∼ Lap(1/ϵ)

If Nk,t ∈ [−b, b] for some fixed number b ∈ R then
Use the exact value of Nk,t

Else Use Nk,t =
b
2

Step 5: Compute lNk,t(θt) = lk,t(θt) +Nk,t; lNk,t(θt) ∈ [−b, b+ 1]

Step 6: Scale lNk,t(θt) to [0, 1] using lNk,t(θt) =
lNk,t(θt)+b

2b+1

Step 7: Compute l̂Nk,t(θ) =
lNk,t(θ)

Pk,t(θ)
I {θ = θt} ∀θ ∈ Θ

Step 8: Update

µk,t(θ) =
µk,t−1(θ) exp(−ηl̂Nk,t(θ))∑

θ′∈Θ µk,t−1(θ
′) exp

(
−ηl̂N

k,t
(θ′)

) ∀θ ∈ Θ

End

Remark 1: The goal of Lemma 1 is to show that adding
Laplace noise to the loss values preserves differential pri-
vacy. The proof of the Lemma is similar to the proof for
(ϵ, 0)-differential privacy in Theorem 3.1 [2]. However, both
proofs differ in the sense that Lemma 1 applies to online
learning algorithms where the parameter of interest is time-
varying, while the proof in [2] is for offline learning where
the parameter of interest does not vary with time. Since
the noisy loss sequence is (ϵ, 0)-differentially private up to
round t as shown in Lemma 1, Algorithms 1 and 2 preserve
differential privacy for the incurred losses. By similar analog,
we can show that the noisy intermediate probabilities are
(ϵ, 0)-differentially private up to round t for Algorithm 2.
Thus, Algorithm 2 preserves differential privacy both for the
incurred losses and the intermediate probabilities.

Theorem 1 [Theorem 3.1 in [40]]: The expected regret
bound for any (ϵ, δ)-differentially private algorithm wrapping
a non-private base algorithm with scaled loss lNk,t(θ) =
lNk,t(θ)+b

2b+1 is given as

E[RegT] ≤
2b

max akk
E[RegbaseT]+2TM exp(−ϵb)+

√
32T

ϵ
(18)

where E[RegbaseT] is the expected regret of the non-private
algorithm and max akk is the largest self-loop weight in the
adjacent matrix.

Remark 2: Corollary 1 implies that if the non-private
version of any private algorithm is known, then the expected
regret for the private algorithm is bounded by (18).

Corollary 2: Given that E[RegbaseT] ≤ O(
√
αT lnM)

with α as the graph independence number, and b = lnT
ϵ ,

the regret bound for Algorithm 1 is given as

E[RegT] ≤
2 lnT

√
αT lnM

ϵmax akk
+ 2M +

√
32T

ϵ
(19)

Remark 3: Substituting the values of the expected re-
gret for the non-private algorithm and the parameter b into
Corollary 1 gives Corollary 2. The proof of the expected
regret for the non-private base algorithm is shown in the
Appendix. The proof is similar to the proof in [16] but with a
slightly different regret definition. Refer to the Appendix for
more explanation. The upper bound on the expected regret
in Corollary 2 is given as O(

√
αT lnM/ϵ) with T >> M .

This upper bound determines the rate at which the regret for
algorithm 1 grows.

Theorem 2: Given that E[RegbaseT] ≤ O(
√
αT lnM), b =

lnT
ϵ and b′ = 1, the expected regret for Algorithm 2 is given

as

E[RegT] ≤
2 lnT

√
αT lnM

ϵ
+ 4M +

2
√
32T

ϵ
(20)

Remark 4: Since more Laplace noise is used in algorithm
2, it can be seen that the expected regret is worse than for al-
gorithm 1. However, this comes with increased privacy, thus
obeying the privacy-utility trade-off. The regret of Algorithm
2 grows at a rate of O(α1/2T 3/2 lnM/ϵ) with T >> M .

VII. SIMULATION RESULTS
For the simulation, we use the strongly connected network
in Fig. 1 consisting of three agents with column-stochastic
adjacency matrix as shown below:

A =

0.2 0.2 0.8
0.5 0.4 0.1
0.3 0.4 0.1

The goal of the agents is to track the arbitrarily time-

varying true state θ∗t of the network from the set Θ =
{θ1, · · · , θ5} at each time t. To achieve this, the agents must
cooperate in a non-Bayesian fashion while still maintaining
privacy. Algorithms 1 and 2 are used to help the agents track
this time-varying true state. The parameters for algorithm

8 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3144084, IEEE Access

Algorithm 2: Private Multi-Armed Bandit Algorithm With Spying Agents
Parameters: Feedback graph, learning rate η > 0.
V is the set of strongly connected agents and E is the set of edges.
Exploration parameter γ ∈ (0, 1

2
]

Output: µk,t(θ) ∀θ ∈ Θ
Initialize µk,0(θ) =

1
M

For each round t ∈ {1, · · · , T}
Step 1: Compute pk,t(θ) = (1− γ)µk,t−1(θ) + γψk,t(θ) ∀ θ ∈ Θ
Step 2: Draw Laplace Nk,t ∼ Lap(1/ϵ) and add to pk,t(θ) ∀θ ∈ Θ

If Nk,t ∈ [−b′, b′] for some fixed number b′ ∈ R then
Use the exact value of Nk,t

Else Nk,t =
b′

2
.

Step 3: Scale pk,t(θ) to [0, 1] using pk,t(θ) =
pk,t(θ)+b′

2b′+1
.

Step 4: Compute pNk,t(θ) = pk,t(θ) +Nk,t; pNk,t(θ) ∈ [−b′, b′ + 1]
Step 5: Compute Pk,t(θ) =

∑
j∈Nk

ajkp
N
j,t(θ), Pk,t = (Pk,t(θ1), ..., Pk,t(θM))

Step 6: Draw state θt ∼ Pk,t and incur loss lk,t (θt) ∈ [0, 1]
Step 7: Draw Laplace noise Nk,t ∼ Lap(1

ϵ
)

If Nk,t ∈ [−b, b] for some fixed number b ∈ R then
Use the exact value of Nk,t

Else Nk,t =
b
2

Step 8: Compute lNk,t(θt) = lk,t(θt) +Nk,t; lNk,t(θt) ∈ [−b, b+ 1]

Step 9: Scale lNk,t(θt) to [0, 1] using lNk,t(θt) =
lNk,t(θt)+b

2b+1

Step 10: Compute l̂Nk,t(θ) =
lNk,t(θ)

Pk,t(θ)
I {θ = θt} ∀θ ∈ Θ

Step 11: Update

µk,t(θ) =
µk,t−1(θ) exp(−ηl̂Nk,t(θ))∑

θ′∈Θ µk,t−1(θ
′) exp

(
−ηl̂N

k,t
(θ′)

) ∀θ ∈ Θ

End

FIGURE 1. A strongly connected network consisting of three agents.

1 are γ = 0.1, η = 0.1, ϵ = 0.1, T = 400 and b =
ln(400)/0.1. The parameters for algorithm 2 are γ = 0.1,
η = 0.1, ϵ = 0.1, T = 500, b = ln(400)/0.1 and b′ = 1.
The prior belief µk,0(θ) of each agent k over each state is
1
5 . To compute the intermediate belief ψk,t(θ) in step 1 of
both algorithms, the random observable signal of each agent
Sk,t(θ) (which is a noisy version of the underlying time-
varying true state), is first drawn from N (θ∗t , 1) and used
to compute the likelihood Lk(Sk,t|θ) according to equation
(3). Then, the intermediate probability can be computed as
a trade-off between the previous belief µk,t−1(θ) and the
current intermediate belief ψk,t(θ). Laplace noise is not
added to the intermediate probability in Algorithm 1, but
Laplace noise is added to the intermediate probability in
Algorithm 2. Also, Laplace noise is added to the incurred loss

0 100 200 300 400

time

0

0.5

1

k
,t
(

1
) agent1

agent2

agent3

0 100 200 300 400

time

0

0.5

1

k
,t
(

2
) agent1

agent2

agent3

0 100 200 300 400

time

0

0.5

1

k
,t
(

3
) agent1

agent2

agent3

0 100 200 300 400

time

0

0.5

1

k
,t
(

4
) agent1

agent2

agent3

0 100 200 300 400

time

0

0.5

1

k
,t
(

5
) agent1

agent2

agent3

FIGURE 2. Convergence of agents’ beliefs in the strongly connected network
to θ4 at η = 0.1 at the 1st iteration using Algorithm 1.

of each agent at each time in both algorithms. The simulation
is repeated over 50 iterations. The simulation results for the
graph network in Fig. 1 are shown from Figs. 2 - 5. The regret
bounds comparison is shown in Fig. 6.

Fig. 2 shows the convergence of the agents’ beliefs to the
most dominant true state at the 1st iteration, when Algorithm
1 is used. The most dominant true state appears to be the most
stable state among the sequence of arbitrarily time-varying
true states, i.e., the most frequently occurring state from
θ∗1 , · · · , θ∗T . Illustrating fluctuating stock prices, stockbrokers

VOLUME 4, 2016 9

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3144084, IEEE Access

0 100 200 300 400

time

0

0.5

1

k
,t
(

1
) agent1

agent2

agent3

0 100 200 300 400

time

0

0.5

1

k
,t
(

2
) agent1

agent2

agent3

0 100 200 300 400

time

0

0.5

1

k
,t
(

3
) agent1

agent2

agent3

0 100 200 300 400

time

0

0.5

1

k
,t
(

4
) agent1

agent2

agent3

0 100 200 300 400

time

0

0.5

1

k
,t
(

5
) agent1

agent2

agent3

FIGURE 3. Convergence of agents’ beliefs in the strongly connected network
to θ2 at η = 0.1 at the 50th iteration using Algorithm 1.

0 100 200 300 400 500

time

0

0.5

1

k
,t
(

1
) agent1

agent2

agent3

0 100 200 300 400 500

time

0

0.5

1

k
,t
(

2
) agent1

agent2

agent3

0 100 200 300 400 500

time

0

0.5

1

k
,t
(

3
) agent1

agent2

agent3

0 100 200 300 400 500

time

0

0.5

1

k
,t
(

4
) agent1

agent2

agent3

0 100 200 300 400 500

time

0

0.5

1

k
,t
(

5
) agent1

agent2

agent3

FIGURE 4. Convergence of agents’ beliefs in the strongly connected network
to θ4 at η = 0.1 at the 1st iteration using Algorithm 2.

are more likely to make predictions with a stock price that is
the most frequently occurring. The beliefs of the agents are
one at the most dominant true state and zero at every other
state. Hence, from Fig. 2, the most dominant true state is θ4,
and the convergence time is t = 127.

Fig. 3 shows the convergence of the agents’ beliefs to
the most dominant true state at the 50th iteration when
Algorithm 1 is used. The most dominant true state is θ2, and
the convergence time is t = 132. The most dominant true
state in Fig. 3 is different from the most dominant true state
in Fig. 2, due to the randomness of the sequence θ∗1 , · · · , θ∗T
over the number of iterations.

Fig. 4 shows the convergence of the agents’ beliefs to θ4 at
time t = 251 at the 1st iteration. Here, Algorithm 2 is used.
θ4 is the most dominant true state for this iteration. Also, in
Fig. 5, the agents beliefs’ converge to θ2 at time t = 306
at the 50th iteration, when Algorithm 2 is used. θ2 is the
most dominant true state for this iteration. Again, the most
dominant true state varies with the number of iterations due

0 100 200 300 400 500

time

0

0.5

1

k
,t
(

1
) agent1

agent2

agent3

0 100 200 300 400 500

time

0

0.5

1

k
,t
(

2
) agent1

agent2

agent3

0 100 200 300 400 500

time

0

0.5

1

k
,t
(

3
) agent1

agent2

agent3

0 100 200 300 400 500

time

0

0.5

1

k
,t
(

4
) agent1

agent2

agent3

0 100 200 300 400 500

time

0

0.5

1

k
,t
(

5
) agent1

agent2

agent3

FIGURE 5. Convergence of agents’ beliefs in the strongly connected network
to θ2 at η = 0.1 at the 50th iteration using Algorithm 2.

to the randomness of the sequence of time-varying true states.
The speed of convergence for the agents in Fig. 2 and

Fig. 3 tends to be faster than in Fig. 4 and Fig. 5. This
is due to the privacy-utility trade-off discussed in Section
III. Increasing privacy in Algorithm 2 led to much slower
convergence compared to Algorithm 1. Careful analysis of
the convergence of Algorithm 2 shows that it is much slower
because much Laplace noise is added to the algorithm. In-
tuitively, Laplace noise is added independently to each of
pk,t(θ1), · · · , pk,t(θ5) for the agent k. Then, Laplace noise
from the intermediate probabilities of its two neighbors is
added to the agent k, when computing the consensus prob-
ability. Again, another Laplace noise is added to the incurred
loss. All these happen in a single round.

The speed of convergence for Algorithm 1 is nearly 23%
slower on average when compared to the speed of con-
vergence of the non-private algorithm in [16]. However,
algorithm 2 is over 56% slower on average, than the non-
private algorithm. The speed of convergence can be improved
by increasing the learning rate η, or increasing the value of
privacy parameter ϵ.

The regret bound for the non-private algorithm in [16]
grows at a sublinear rate of O(

√
t/t) with sublinearity de-

fined as limt→∞
E[Regt]

t ; similarly, the regret bounds for
Algorithms 1 and 2 grow at the rate of O(

√
t/tϵ) and

O(t3/2/tϵ) respectively. Fig. 6 shows the regret bounds for
the non-private algorithm, Algorithm 1 and Algorithm 2. It
should be noted that by letting ϵ = 1, which means privacy
is lost completely, Algorithm 1 grows at the same rate as the
non-private algorithm. From Fig. 6, the non-private algorithm
has the least regret, while Algorithm 2 has the highest regret.
However, the cost of additional regret incurred by using both
Algorithm 1 and Algorithm 2 is a worthy trade-off to the
privacy gains, especially in social networks where privacy is
a challenge.

10 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3144084, IEEE Access

FIGURE 6. Regret bounds of the non-private algorithm, algorithm 1 and
algorithm 2 with ϵ = 0.1.

VIII. CONCLUSION

This paper addressed privacy concerns in the social network
from a theoretical standpoint. The social network is modeled
as a graph network consisting of a set of agents representing
the social network users, and a set of edges representing the
interactions among the agents. The goal of the agents is to
learn an arbitrarily time-varying true state of the network
with a privacy guarantee. To achieve this, this paper com-
bined non-Bayesian learning, differential privacy, and multi-
armed bandit seamlessly for the first time. Two algorithms
were proposed. The first algorithm guaranteed differential
privacy using the Laplace mechanism against a third-party
intruder when there is no spy among the agents. The second
algorithm also applied the Laplace mechanism to guarantee
differential privacy against both a third-party intruder and a
spying agent. The simulation results showed that continuous
interactions among the agents using the proposed algorithms
help the agents converge to this most dominant true state. The
most dominant true state appears to be the most stable state
from the sequence of arbitrarily time-varying true states over
the time horizon. The speed of convergence for Algorithms
1 and 2 are compared with the speed of convergence for
the non-private algorithm in the literature. The speed of
convergence for Algorithm 2 is much slower than the speed
of convergence for Algorithm 1, due to more Laplace noise
added to Algorithm 2. However, increasing the learning rate
or increasing the value of the privacy parameter will improve
its speed of convergence. The regret bounds of the proposed
algorithms are compared to the regret bound of the non-
private algorithm in the literature.

This work can be extended to a graph network with weakly
connected agents. The simulation results in this paper are
prototypes of a large massive graph network. Thus, the sim-
ulation can be repeated for large graph networks, with more
number agents, to represent a practical social network. Also,
the simulation can be done with real datasets.

ACKNOWLEDGMENT
The author thanks Dr. Gergely Zaruba for his support of this
manuscript. Also, the author thanks the anonymous reviewers
of this manuscript.

.

APPENDIX A PROOF OF THE NON-PRIVATE BASE
ALGORITHM
The non-private algorithm in [16] is repeated here for conve-
nience as Algorithm 3.

The definition of regret in (10) is slightly different from
the definition of regret in [16]. The pk,t(θ) in the definition
of the regret in [16] is replaced with µk,t(θ) in (10). Hence,
we will compute the regret bound. However, the proof shows
that the upper bound on the regret remains unchanged. We
start as follows:

Let µk,t(θ) =
wk,t(θ)
Wk,t

and

Wk,t =
∑

θ∈Θ wk,t−1(θ) exp
(
−ηl̂k,t(θ)

)
.

Wk,t

Wk,t−1
=

∑
θ∈Θ wk,t−1(θ) exp

(
−ηl̂k,t(θ)

)
Wk,t−1

=
∑
θ∈Θ

µk,t−1(θ) exp
(
−ηl̂k,t (θ)

)

≤
∑
θ∈Θ

µk,t−1(θ)
(
1− ηl̂k,t(θ) + η2 l̂2k,t

)
but ex ≤ 1 + x+ x2 for all x ≤ 1. Therefore,

≤ 1− η
∑
θ∈Θ

µk,t−1(θ)l̂k,t(θ) + η2
∑
θ∈Θ

µk,t−1(θ)l̂
2
k,t(θ)

(21)
using

∑
θ∈Θ µk,t−1(θ) ≤ 1 in (21).

Using ln (1− x) ≤ −x,

ln
Wk,t

Wk,t−1
= ln

(
1− η

∑
θ∈Θ

µk,t−1(θ)l̂k,t(θ)

+η2
∑
θ∈Θ

µk,t−1(θ)l̂
2
k,t(θ)

)

≤ −η
∑
θ∈Θ

µk,t−1(θ)l̂k,t(θ)

+η2
∑
θ∈Θ

µk,t−1(θ)l̂
2
k,t(θ).

Sum over t = 1, · · · , T

ln
Wk,T

W0
≤

T∑
t=1

∑
θ∈Θ

(
− ηµk,t−1(θ)l̂k,t(θ)+

η2µk,t−1(θ)l̂
2
k,t(θ)

)
.

(22)

Also, for any fixed θf ∈ Θ,

VOLUME 4, 2016 11

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3144084, IEEE Access

Algorithm 3: Non-Private Multi-Armed Algorithm for Strongly Connected Network
Parameters: Feedback graph, learning rate η > 0.
V is the set of strongly connected agents and E is the set of edges.
Exploration parameter γ ∈ (0, 1

2
]

Initialize µk,0(θ) =
1
M

For each round t ∈ {1, · · · , T}
Compute pk,t(θ) = (1− γ)µk,t−1(θ) + γψk,t(θ) ∀ θ ∈ Θ
Compute Pk,t(θ) =

∑
j∈Nk

ajkpj,t(θ), Pk,t = (Pk,t(θ1), ..., Pk,t(θM))
Draw state θt ∼ Pk,t and incur loss lk,t (θt) ∈ [0, 1]
Compute

l̂k,t(θ) =
lk,t(θ)

Pk,t(θ)
I {θ = θt} ∀θ ∈ Θ

Update

µk,t(θ) =
µk,t−1(θ) exp(−ηl̂k,t(θ))∑

θ′∈Θ µk,t−1(θ
′) exp(−ηl̂k,t(θ

′))
∀θ ∈ Θ

end

ln
Wk,T

Wk,0
≥ ln

wk,T (θf)

Wk,0
= −η

T∑
t=1

l̂k,t(θf)− lnWk,0.

(23)

with Wk,0 =M , and equating (22) and (23),

T∑
t=1

∑
θ∈Θ

(
− ηµk,t−1(θ)l̂k,t(θ) + η2µk,t−1(θ)l̂

2
k,t(θ)

)

≥ −η
T∑

t=1

l̂k,t(θf)− lnM.

Hence,
T∑

t=1

∑
θ∈Θ

(
− ηµk,t−1(θ)l̂k,t(θ) + η2µk,t−1(θ)l̂

2
k,t(θ)

)

≥ −η min
θf∈Θ

T∑
t=1

l̂k,t(θf)− lnM.

Therefore,

T∑
t=1

∑
θ∈Θ

ηµk,t−1(θ)l̂k,t(θ)− η min
θf∈Θ

T∑
t=1

l̂k,t (θf) ≤

T∑
t=1

∑
θ∈Θ

η2µk,t−1(θ)l̂
2
k,t(θ) + lnM.

Take conditional expectation,

EFt/Ft−1

[T∑
t=1

∑
θ∈Θ

µk,t−1(θ)l̂k,t(θ)−

min
θf∈Θ

T∑
t=1

l̂k,t (θf)

∣∣∣∣Ft−1

]

≤ EFt/Ft−1

[
T∑

t=1

∑
θ∈Θ

ηµk,t−1(θ)l̂
2
k,t(θ)

∣∣∣∣Ft−1

]
+

lnM

η
.

Therefore,
T∑

t=1

∑
θ∈Θ

µk,t−1(θ)EFt/Ft−1

[
l̂k,t(θ)

∣∣∣∣Ft−1

]
−

min
θf∈Θ

T∑
t=1

EFt/Ft−1

[
l̂k,t (θf |Ft−1)

]
≤

T∑
t=1

∑
θ∈Θ

ηµk,t−1(θ)EFt/Ft−1

[
l̂2k,t(θ)

∣∣∣∣Ft−1

]
+

lnM

η
.

Using the fact that the expectation of the estimated loss yields
the true loss similar to (15),

T∑
t=1

∑
θ∈Θ

µk,t−1(θ)lk,t(θ)−
T∑

t=1

lk,t (θ
•) ≤

η
T∑

t=1

∑
θ∈Θ

µk,t−1(θ)
l2k,t(θ)

Pk,t(θ)
+

lnM

η
.

Hence,
T∑

t=1

∑
θ∈Θ

µk,t−1(θ)lk,t(θ)−
T∑

t=1

lk,t (θ
•) ≤

η
T∑

t=1

∑
θ∈Θ

µk,t−1(θ)
1

Pk,t(θ)
+

lnM

η

(24)

using lk,t(θ) ≤ 1 in (24). From algorithm 3

pk,t(θ) ≥ (1− γ)µk,t−1(θ) ≥
1

2
µk,t−1(θ).

Hence,

T∑
t=1

∑
θ∈Θ

µk,t−1(θ)lk,t(θ)−
T∑

t=1

lk,t (θ
•) ≤

η
T∑

t=1

∑
θ∈Θ

pk,t(θ)
2

Pk,t(θ)
+

lnM

η
.

(25)

Applying Lemma 2 in [16] with ε = γ
M

12 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3144084, IEEE Access

T∑
t=1

∑
θ∈Θ

µk,t−1(θ)lk,t(θ)−
T∑

t=1

lk,t (θ
•)

≤ 8αηT ln
4M2

αγ
+

lnM

η
.

(26)

Then,

EFt

[
T∑

t=1

∑
θ∈Θ

µk,t(θ)lk,t(θ)−
T∑

t=1

lk,t (θ
•)

]
≤

8αηT ln
4M2

αγ
+

lnM

η
.

Choose

γ = min

{
8αη,

1

2

}
, η =

(
lnM

αT

)1/2

.

Then, the upper bound is obtained as

O
(√

αT lnM
)
.

The effect of the self-loop weight will reduce the regret as
each agent will assign more weight to its probability in the
computation of its consensus probability.

REFERENCES
[1] C. Zhang, J. Sun, X. Zhu, and Y. Fang, “Privacy and security for online

social networks: challenges and opportunities,” IEEE network, vol. 24,
no. 4, pp. 13–18, 2010.

[2] C. Dwork, A. Roth et al., “The algorithmic foundations of differential
privacy.” Foundations and Trends in Theoretical Computer Science, vol. 9,
no. 3-4, pp. 211–407, 2014.

[3] C. Task and C. Clifton, “A guide to differential privacy theory in social net-
work analysis,” in 2012 IEEE/ACM International Conference on Advances
in Social Networks Analysis and Mining. IEEE, 2012, pp. 411–417.

[4] C. Dwork, “Differential privacy: A survey of results,” in International con-
ference on theory and applications of models of computation. Springer,
2008, pp. 1–19.

[5] C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrating noise to
sensitivity in private data analysis,” in Theory of cryptography conference.
Springer, 2006, pp. 265–284.

[6] J. C. Duchi, M. I. Jordan, and M. J. Wainwright, “Local privacy and
statistical minimax rates,” in 2013 IEEE 54th Annual Symposium on
Foundations of Computer Science. IEEE, 2013, pp. 429–438.

[7] U. Brandes, L. C. Freeman, and D. Wagner, Social networks, 2013.
[8] A. Anagnostopoulos, R. Kumar, and M. Mahdian, “Influence and cor-

relation in social networks,” in Proceedings of the 14th ACM SIGKDD
international conference on Knowledge discovery and data mining, 2008,
pp. 7–15.

[9] A. Jadbabaie, P. Molavi, A. Sandroni, and A. Tahbaz-Salehi, “Non-
bayesian social learning,” Games and Economic Behavior, vol. 76, no. 1,
pp. 210–225, 2012.

[10] S. Shahrampour, S. Rakhlin, and A. Jadbabaie, “Online learning of dy-
namic parameters in social networks,” in Advances in Neural Information
Processing Systems, 2013.

[11] R. M. Frongillo, G. Schoenebeck, and O. Tamuz, “Social learning in
a changing world,” in International Workshop on Internet and Network
Economics. Springer, 2011, pp. 146–157.

[12] G. Moscarini, M. Ottaviani, and L. Smith, “Social learning in a changing
world,” Economic Theory, vol. 11, no. 3, pp. 657–665, 1998.

[13] K. Dasaratha, B. Golub, and N. Hak, “Social learning in a dynamic
environment,” arXiv preprint arXiv:1801.02042, 2018.

[14] O. T. Odeyomi, “Learning the truth by weakly connected agents in social
networks using multi-armed bandit,” IEEE Access, vol. 8, pp. 202 090–
202 099, 2020.

[15] O. T. Odeyomi, H. M. Kwon, and D. A. Murrell, “Time-varying truth
prediction in social networks using online learning,” in 2020 International
Conference on Computing, Networking and Communications (ICNC).
IEEE, 2020, pp. 171–175.

[16] O. T. Odeyomi, “Learning the truth in social networks using multi-armed
bandit,” IEEE Access, vol. 8, pp. 137 692–137 701, 2020.

[17] P. Zhou, K. Wang, J. Xu, and D. Wu, “Differentially-private and trustwor-
thy online social multimedia big data retrieval in edge computing,” IEEE
Transactions on Multimedia, vol. 21, no. 3, pp. 539–554, 2018.

[18] P. Zhou, K. Wang, L. Guo, S. Gong, and B. Zheng, “A privacy-preserving
distributed contextual federated online learning framework with big data
support in social recommender systems,” IEEE Transactions on Knowl-
edge and Data Engineering, 2019.

[19] O. T. Odeyomi and G. Zaruba, “Differentially-private federated learning
with long-term budget constraints using online lagrangian descent,” in
2021 IEEE World AI IoT Congress (AIIoT). IEEE, 2021, pp. 0001–0006.

[20] H. Wang, Q. Zhao, Q. Wu, S. Chopra, A. Khaitan, and H. Wang, “Global
and local differential privacy for collaborative bandits,” in Fourteenth
ACM Conference on Recommender Systems, 2020, pp. 150–159.

[21] S. Chen, Y. Tao, D. Yu, F. Li, B. Gong, and X. Cheng, “Privacy-preserving
collaborative learning for multiarmed bandits in iot,” IEEE Internet of
Things Journal, vol. 8, no. 5, pp. 3276–3286, 2020.

[22] M. Hay, C. Li, G. Miklau, and D. Jensen, “Accurate estimation of the
degree distribution of private networks,” in 2009 Ninth IEEE International
Conference on Data Mining. IEEE, 2009, pp. 169–178.

[23] V. Rastogi, M. Hay, G. Miklau, and D. Suciu, “Relationship privacy: output
perturbation for queries with joins,” in Proceedings of the twenty-eighth
ACM SIGMOD-SIGACT-SIGART symposium on Principles of database
systems, 2009, pp. 107–116.

[24] Y. Wang, X. Wu, J. Zhu, and Y. Xiang, “On learning cluster coefficient of
private networks,” Social network analysis and mining, vol. 3, no. 4, pp.
925–938, 2013.

[25] Y. Wang, X. Wu, and L. Wu, “Differential privacy preserving spectral
graph analysis,” in Pacific-Asia Conference on Knowledge Discovery and
Data Mining. Springer, 2013, pp. 329–340.

[26] D. J. Mir and R. N. Wright, “A differentially private graph estimator,” in
2009 IEEE International Conference on Data Mining Workshops. IEEE,
2009, pp. 122–129.

[27] P. Mahadevan, D. Krioukov, K. Fall, and A. Vahdat, “Systematic topology
analysis and generation using degree correlations,” ACM SIGCOMM
Computer Communication Review, vol. 36, no. 4, pp. 135–146, 2006.

[28] A. Sala, X. Zhao, C. Wilson, H. Zheng, and B. Y. Zhao, “Sharing graphs
using differentially private graph models,” in Proceedings of the 2011
ACM SIGCOMM conference on Internet measurement conference, 2011,
pp. 81–98.

[29] C. Dimitrakakis, B. Nelson, A. Mitrokotsa, and B. I. Rubinstein, “Robust
and private bayesian inference,” in International Conference on Algorith-
mic Learning Theory. Springer, 2014, pp. 291–305.

[30] C. Dimitrakakis, B. Nelson, Z. Zhang, A. Mitrokotsa, and B. Rubinstein,
“Differential privacy in a bayesian setting through posterior sampling,”
arXiv preprint ArXiv:1306.1066, pp. 1–27, 2015.

[31] S. Zheng, “The differential privacy of bayesian inference,” Ph.D. disserta-
tion, 2015.

[32] Y.-X. Wang, S. Fienberg, and A. Smola, “Privacy for free: Posterior
sampling and stochastic gradient monte carlo,” in International Conference
on Machine Learning, 2015, pp. 2493–2502.

[33] O. Williams and F. McSherry, “Probabilistic inference and differential
privacy,” Advances in Neural Information Processing Systems, vol. 23, pp.
2451–2459, 2010.

[34] P. Jain, P. Kothari, and A. Thakurta, “Differentially private online learn-
ing,” in Conference on Learning Theory, 2012, pp. 24–1.

[35] J. D. Abernethy, Y. H. Jung, C. Lee, A. McMillan, and A. Tewari,
“Online learning via the differential privacy lens,” in Advances in Neural
Information Processing Systems, 2019, pp. 8894–8904.

[36] N. Mishra and A. Thakurta, “(nearly) optimal differentially private
stochastic multi-arm bandits,” in Proceedings of the Thirty-First Confer-
ence on Uncertainty in Artificial Intelligence, 2015, pp. 592–601.

[37] A. Tossou and C. Dimitrakakis, “Algorithms for differentially private
multi-armed bandits,” arXiv preprint arXiv:1511.08681, 2015.

[38] T. Sajed and O. Sheffet, “An optimal private stochastic-mab algo-
rithm based on an optimal private stopping rule,” arXiv preprint
arXiv:1905.09383, 2019.

VOLUME 4, 2016 13

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3144084, IEEE Access

[39] X. Chen, K. Zheng, Z. Zhou, Y. Yang, W. Chen, and L. Wang, “(lo-
cally) differentially private combinatorial semi-bandits,” arXiv preprint
arXiv:2006.00706, 2020.

[40] A. C. Tossou and C. Dimitrakakis, “Achieving privacy in the adversarial
multi-armed bandit,” arXiv preprint arXiv:1701.04222, 2017.

[41] N. Agarwal and K. Singh, “The price of differential privacy for online
learning,” arXiv preprint arXiv:1701.07953, 2017.

[42] D. Basu, C. Dimitrakakis, and A. Tossou, “Differential privacy for
multi-armed bandits: What is it and what is its cost?” arXiv preprint
arXiv:1905.12298, 2019.

[43] W. Ren, X. Zhou, J. Liu, and N. B. Shroff, “Multi-armed bandits with local
differential privacy,” arXiv preprint arXiv:2007.03121, 2020.

[44] A. H. Sayed, “Adaptation, learning, and optimization over networks,”
Foundations and Trends in Machine Learning, vol. 7, no. article, pp. 311–
801, 2014.

[45] D. van der Hoeven, “User-specified local differential privacy in uncon-
strained adaptive online learning.” in NeurIPS, 2019, pp. 14 080–14 089.

[46] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire, “Gambling in a
rigged casino: The adversarial multi-armed bandit problem,” in Proceed-
ings of IEEE 36th Annual Foundations of Computer Science. IEEE, 1995,
pp. 322–331.

14 VOLUME 4, 2016

