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Abstract

In a seminal work, Micali (FOCS 1994) gave the first succinct non-interactive argument
(SNARG) in the random oracle model (ROM). The construction combines a PCP and a crypto-
graphic commitment, and has several attractive features: it is plausibly post-quantum; it can be
heuristically instantiated via lightweight cryptography; and it has a transparent (public-coin)
parameter setup. However, it also has a significant drawback: a large argument size.

In this work, we provide a new construction that achieves a smaller argument size. This is
the first progress on the Micali construction since it was introduced over 25 years ago.

A SNARG in the ROM is (t,€)-secure if every t-query malicious prover can convince the
verifier of a false statement with probability at most e. For (¢, €)-security, the argument size
of all known SNARGs in the ROM (including Micali’s) is O((log(t/€))?) bits, even if one were
to rely on conjectured probabilistic proofs well beyond current techniques. In practice, these
costs lead to SNARGs that are much larger than constructions based on other (pre-quantum and
costly) tools. This has led many to believe that SNARGs in the ROM are inherently quadratic.

We show that this is not the case. We present a SNARG in the ROM with a sub-quadratic
argument size: O(log(t/€) - logt). Our construction relies on a strong soundness notion for
PCPs and a weak binding notion for commitments. We hope that our work paves the way for
understanding if a linear argument size, that is O(log(t/€)), is achievable in the ROM.
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1 Introduction

A succinct non-interactive argument (SNARG) is a cryptographic proof system for non-deterministic
languages whose communication complexity is “succinct” in the sense that it is sublinear in the
witness size (or even in the size of the computation that checks the witness). In the last decade,
SNARGS have drawn the attention of researchers from multiple communities, being a fundamental
cryptographic primitive that has found applications in the real world.

A central goal in the study of SNARGs is improving their efficiency, which may include improving
prover time, argument size, or verifier time. For example, achieving small argument size is crucial in
real-world applications where SNARGs are broadcast in a peer-to-peer network and redundantly
stored at every network node (as in privacy-preserving digital currencies [Ben+14; Zc14|).

SNARGs in the ROM. The goal of this paper is to improve the argument size of SNARGs in
the random oracle model (ROM). A SNARG in the ROM is (¢, €)-secure if every malicious prover
that makes at most ¢ queries to the random oracle can convince the verifier of a false statement
with probability at most € (over the choice of random oracle). There are two known approaches
to construct SNARGs in the ROM: the Micali transformation [Mic00| (building on [Kil92; FS86|),
which uses probabilistically checkable proofs (PCPs); and the BCS transformation |[BCS16|, which
uses public-coin interactive oracle proofs (IOPs). Both approaches adopt the same paradigm:

it ionth . hi .
mformation-theoretic ] [ cryptographic commitment —. SNARG .

proof with local opening

Informally, they compile an information-theoretic proof system (PCP or IOP) into a SNARG by
relying on a cryptographic commitment scheme that supports local openings. The commitment
scheme is a Merkle tree, and each local opening is a path from the desired leaf to the root.

Quadratic argument size. In both approaches, the argument size is quadratic in the desired
security. If the random oracle has output length A, then compiling a PCP/IOP with proof length |
over alphabet ¥ and query complexity q leads to an argument of size that is (up to constants):

q - log|X] + q-A-logl
~— —

information-theoretic proof  cryptographic commitment

The term q - log |X| is the cost of the information-theoretic proof, and the term q - X -log!l is the cost
of the cryptographic commitment (q authentication paths each consisting of log| digests of size A).
To achieve (t, €) security, the oracle output size is set to A = O(log(t/€)), and the soundness error of
the PCP/IOP must be O(e/t). For example, a PCP with this soundness error can be obtained by
repeating O(log(t/€)) times the verifier of any constant-query constant-soundness base PCP. This
leads to a PCP with query complexity g = O(log(t/€)), and in turn to a quadratic argument size:
O((log(t/€))?). The quadratic complexity is due to the cost of the cryptographic commitment (while,
for a small enough alphabet, the cost of the information-theoretic proof is linear).

One might hope to reduce the number of queries of the PCP/IOP to overcome this “quadratic
barrier”, at the expense of a larger alphabet (even an alphabet of size 20N would have a negligible
effect on the argument size). However, using state-of-the-art PCPs (e.g., [DHK15|) or even conjectured
PCPs (e.g., fulfilling the sliding scale conjecture |[BGLR93|) would only shave off a log| factor in the
number of queries. Any PCP/IOP that has fewer queries would violate standard complexity-theoretic
assumptions, e.g., the exponential-time hypothesis |GH98; CY20)|.



If one relies on cryptography with “more structure” then better argument sizes are possible.
Known SNARGs based on bilinear groups (e.g., |[Grol0; GGPR13; BCIOP13|) have optimal size:
O(log(t/€)), which translates to a few hundred bytes in practice. Similarly, known SNARGs based
on cyclic groups or unknown-order groups (e.g., [BCCGP16; BBBPWM18; BFS20]) are almost as
short: O(log(t/€) - logm) (here n is the size of the computation being proved), which translates to
just a few kilobytes in practice. This has led to the belief that SNARGs that solely rely on a random
function (the random oracle) are fundamentally long.

While the inferior asymptotics of argument sizes of SNARGs in the ROM have not prevented
useful applications,’ they do lead to relatively large concrete sizes (tens to hundreds of kilobytes in
practice), which makes them undesirable for many other applications.

This state of affairs is unfortunate because SNARGs in the ROM have several attractive features.
First, SNARGs in the ROM are to date the most efficient approach for post-quantum security, and
so achieving post-quantum SNARGs with (public verification and) optimal argument size remains
an open problem.? Moreover, by heuristically instantiating the random oracle with a suitable
cryptographic hash function, one obtains SNARGs that are lightweight (no public-key cryptography
is used) and easy to deploy (users only need to agree on which hash function to use without having
to rely on a trusted party to sample a structured reference string).

1.1 Breaking the quadratic barrier

Since it seems implausible to improve the query complexity of the PCP/IOP, how could we reduce
the argument size? One way would be to reduce the overhead of the commitment scheme. This
would be an amazing achievement on its own but currently seems out of reach (and, in fact, many
believe that improving the commitment scheme is impossible). Another way would be to completely
deviate from the paradigm of constructing SNARGs from PCPs/IOPs. However, [CY20] tells us
that any SNARG in the ROM inherently contains an IOP with closely related parameters. In light
of this, the motivating question of our work is: is the quadratic barrier of SNARGs in the ROM
inherent or, instead, one can do better by achieving subquadratic, or even linear, argument size?

A new paradigm. In this work, we show how to go beyond the quadratic barrier by changing the
interplay between the information-theoretic proof and the cryptographic compiler. Instead of asking
for better soundness with fewer queries, we rely on a stronger soundness notion of the PCP with the
same number of queries: we compile these strong PCPs into SNARGs without using a commitment.
The commitment is relaxed with a weak notion of binding that is coupled with our strong soundness
notion for the PCP. In particular, the SNARG prover might not be committed to any location of a
proof string. Informally, our approach can be summarized as follows:

strong information weak cryptographic subquadratic
theoretic proof commitment SNARG

Results. We use this paradigm to construct the first SNARGs in the ROM of subquadratic size.

Theorem 1. There exists a SNARG for NP in the random oracle model that achieves argument
size O(log(t/e) - logt) with soundness error € against t-query adversaries.

'E.g., to increase throughput in peer-to-peer systems such as Ethereum via “roll-up” architectures [zkr]|.
“Known approaches based on lattices achieve privately-verifiable SNARGs with optimal size |BISW17; BISW18| or
publicly-verifiable SNARGs with square-root communication complexity |[BBCPGL18].



Our construction is the first progress on the Micali construction since it was introduced over
25 years ago. Our construction relies solely on a random oracle and so is plausibly post-quantum
secure. Previous SNARGs in the ROM have been proven to be secure in the quantum random oracle
model |CMS19|, and we leave it for future work to adapt these technique to our construction.

The argument size that we achieve, while better than quadratic, is still far from the lower bound
of Q(log(t/€)). In particular, our work leaves open the intriguing question:

Are there SNARGSs in the ROM that have argument size O(log(t/e€))?

We hope that our work will lead to a better understanding of this fundamental question, where a
positive answer is likely to have significant practical benefits.

1.2 Concrete efficiency

Our new construction achieves argument sizes that are not only asymptotically smaller but also
concretely smaller: we obtain up to 2x improvement in argument size over Micali’s construction for
an illustrative instantiation across different values of ¢ and e. Moreover, the running times of the
verifier and the prover of our construction are essentially the same as in Micali’s construction.

In more detail, Micali’s construction is typically instantiated with a PCP whose verifier is repeated
many times to reduce soundness error to O(e/t). Looking ahead, our construction requires PCPs
that satisfy a stronger notion of soundness that (as we will prove) is satisfied by repeated PCPs.
Thus, conveniently, we can instantiate both the Micali construction and our construction via the
same class (repeated PCPs), and in particular we can directly compare their argument sizes.

For example, in Table 1 we demonstrate the arguments sizes for various values of ¢ and €. We
instantiate both constructions with the same repetition of a “base” PCP with soundness error 1/2,
query complexity 3, and proof length 23° over a binary alphabet. By repeating the PCP verifier
log %é times, the amplified PCP has soundness error epcp < €/t and 3 log %E queries.

logt‘l"ge 64 96 128 160
64 12(1) EE ~ 1.37x iZIEE ~ 1.57x ?gg EE ~ 1.84x% ;ﬁ% ~ 2.05x%
P I T S (TR
S YO [T TN TN TN
160 gigﬁg ~ 1.16x g:gEE ~ 1.25x% ZZSEE ~ 1.33x % ~ 1.41x

Table 1: Comparison of argument sizes between the Micali construction (in red) and our construction
(in blue), for different settings of (¢, ¢€). Both constructions are based on the same illustrative PCP.




2 Techniques

We summarize the main ideas behind our main result (Theorem 1).

2.1 The Micali construction is inherently quadratic

We review the SNARG construction of Micali [Mic00| and explain why its argument size is quadratic.

The Micali construction. Micali [Mic00| combined ideas from Fiat and Shamir [FS86] and Kilian
|Kil92| in order to compile any probabilistically checkable proof (PCP) into a corresponding SNARG.
Informally, the SNARG prover uses the random oracle to Merkle hash the PCP to a short root
that acts as a short commitment to the PCP string; then, the SNARG prover uses the random
oracle to derive randomness for the PCP verifier’s queries; finally, the SNARG prover outputs an
argument that includes the Merkle root, answers to the PCP verifier’s queries, and authentication
paths for each of those answers (which act as local openings to the commitment). The SNARG
verifier re-derives the PCP verifier’s queries from the Merkle root and then runs the PCP verifier
with the provided answers, ensuring that those answers are indeed authenticated.

On the output length of the random oracle. As mentioned in the introduction, the argument
size in the Micali construction is O(q - A), ignoring low-order terms; moreover, under standard
complexity assumptions, the number of queries must be q = Q(log(¢/€)) (up to low-order terms)
even if using conjectured “best possible” PCPs. What about the oracle output size A7 If we were to
set A = O(logt) then we would obtain the argument size O(log(t/€) - logt) claimed in Theorem 1.
However, the Micali construction is not secure in this regime, as we now explain.

Consider the following attack. A cheating prover selects an arbitrary Merkle root; uses the
random oracle to derive PCP randomness from this Merkle root; finds a PCP string that satisfies the
PCP verifier for this choice of PCP randomness; computes the Merkle tree on this PCP string; and
hopes that the resulting Merkle root equals the Merkle root that was previously chosen. A success
would constitute an “inversion”. If this did not work, the cheating prover re-tries until he succeeds
(or runs out of queries). If we want the construction to be (t, €)-secure, then any t-query attack can
succeed with probability at most €. However, the described attack would succeed with probability
roughly ¢ - 27 which gives us the lower bound A = Q(log(t/¢)) (for the Micali scheme to be secure
we actually need to set A = Q(log(t?/¢))).

Looking beyond the Micali construction. Our goal is to change the construction such that we
can set the output length of the random oracle to A = O(log t). This means that a cheating prover
in this regime may find inversions or collisions in the random oracle. In particular, a Merkle tree
with this choice of A is not a commitment scheme (e.g., a collision will allow him to open in different
ways). Therefore, we will need to find ways to handle this new class of attacks and, in particular,
prevent the inversion attack described above.

2.2  Our construction

Our construction shares features with the Micali construction: the argument prover constructs a
PCP string; commits to this PCP string using the random oracle; derives PCP randomness (and
thus PCP queries) from the resulting commitment again using the random oracle; and outputs the
commitment and certified answers to each PCP query.

At the same time, our construction differs from the Micali construction in several crucial ways.
In the sequel, we describe the differences and provide intuition for why these differences are useful



towards reducing argument size. In subsequent subsections, we will provide more information about
how we establish the security of our construction.

(1) Chopped tree. The argument prover commits to the PCP string via a chopped Merkle tree:
the Merkle tree is computed layer by layer from the leaves but stops at a specific stop layer i*. In
the Micali construction, the stop layer is i* = 0 (a single vertex called the Merkle root); in our
construction, the stop layer is (roughly) i* = logq (where q is the query complexity of the PCP),
which consists of 2¢" vertices that we collectively call a Merkle cap.® The argument prover then uses
the Merkle cap similarly to a Merkle root in the Micali construction: it derives PCP randomness
from the Merkle cap by using the random oracle (in a single query); and subsequently authenticates
answers to PCP queries via paths that are truncated at layer *.

As the stop layer i* increases, argument size increases as well. In the extreme, if i* = log| (the
stop layer is the leaf layer), then the argument contains the entire PCP string. In our construction,
we set (roughly) i* = logq, in which case the argument size is (almost) the same as when i* = 0
(for the same output size of the random oracle). Intuitively, if the argument prover supplies q
authentications paths then, with high probability, most of the vertices in layer log q would have been
already included, so that truncating the paths to layer log q and including in the argument all the
digests in layer log q does not affect argument size by much. (This is not just asymptotically: our
experiments show that this has a negligible effect on the argument size in practice as well.)

Our main observation is that as the stop layer increases, security increases as well. In the
Micali construction, a single inversion of the Merkle root breaks the scheme: the attacker selects an
arbitrary Merkle root, derives corresponding PCP randomness (and thus PCP queries), finds a PCP
string that makes the PCP verifier accept with that PCP randomness, computes a (full) Merkle tree
on this PCP string, and hopes that the resulting root equals the previously selected root. If the
root has output size )\, this takes about 2* attempts (which is roughly 22 queries). In contrast, in
our construction, an inversion of a single vertex in the Merkle cap affects only a 1/q fraction of the
PCP string, which (in general) is not a winning strategy for a cheating prover. To emulate the prior
strategy, the attacker would need to invert all q vertices in the Merkle cap, which is much harder.

(2) Domain separation. The Micali construction involves two random oracles: an oracle for
computing the Merkle tree, and another oracle for deriving PCP randomness. (See [Mic00].) In our
construction, we use domain separation to “split up” the oracle for the Merkle tree into a separate
oracle for each vertex in the (in our case, chopped) Merkle tree. To compute the digest located in
position j of layer i in the tree, the argument prover uses the prefix (i,j) in the query to the tree
oracle. This does not increase argument size (the indices ¢ and j are known so are not included in
the argument) and has essentially no effect on the prover time and verifier time.

This domain separation is crucial for security because, without it, a cheating prover could recycle
a single inversion or collision many times. For example, the cheating prover could find a collision in
a leaf vertex between the values 0 and 1 and then re-use the same collision for all leaves to compute
a Merkle tree for which any location can be opened to 0 or 1. This is insecure, e.g., for any PCP
over the binary alphabet.

(3) Permuting the proof. In our construction, the argument prover randomly permutes the PCP
string before applying the (chopped) Merkle tree. This requires a random permutation Perm: [l] — [I]
that is also known to the argument verifier, and can be derived via the Luby—Rackoff construction
from the random oracle (see Section 4.1). Thus, if the PCP verifier wishes to read the i-th symbol of

3Equivalently, the Merkle cap is an ordered list of Merkle roots for smaller sub-trees.



the PCP string, the Perm(i)-th leaf should be accessed. This modification also does not increase
argument size and has a negligible effect on the time complexity of the argument prover and argument
verifier (each permutation call translates to a few calls to the random oracle).

Permuting the PCP string creates the effect of a PCP with uniform random queries. This
property ensures that there is no “weak” block of symbols in the PCP. Indeed, recall that we chopped
the Merkle tree in order to have a Merkle cap instead of a Merkle root, so that if a cheating prover
makes a single inversion then this will affect only a small block of the PCP string. However, if all the
PCP queries were to this block, then the cheating prover could still win with this single inversion.
In contrast, since queries are random (after applying the permutation), we are guaranteed that, with
high probability, the queries are (roughly) spread evenly across different blocks.

(4) Robust PCPs. Our construction is designed to work with PCPs that satisfy a stronger
soundness notion, which we call permuted robust soundness. This notion is similar to the standard
property of (strong) robust soundness of PCPs,; which captures the probability of being within a
particular (block-wise) distance from a satisfying proof. To fit our proof, we augment the standard
notion to additionally consider a permutation that randomizes the proof locations so that queries
are spread across blocks.

While we rely on strong soundness notions of PCPs, we show that repeated PCPs satisfy this
stronger notion. That is, one can take a base PCP, and repeat it to amplify the soundness. What
we show is that not only the soundness is amplified, but the PCP also satisfies the stronger notion
of permuted robust soundness (with corresponding parameters). Intuitively, this notion lets us argue
the construction’s security even when the prover finds a small number of collisions or inversions. The
next subsections are dedicated to the precise notion of permuted robust soundness, how to achieve it
in repeated PCPs, and how we use it in our proof of security.

2.3 Permuted robust soundness

We describe permuted robust soundness, the PCP soundness notion that we use for our construction.
Given a block size parameter b € N, we view a PCP string II € X! as divided into blocks of

size b, that is, as IT € (X!/®)P. We denote by Ap(TI, IT') the block-wise distance between two PCP

strings IT and IT’ (i.e., the number of blocks of symbols on which they differ); more generally, given a

permutation Perm: [I] — [I], we denote by Ape™(II, II) this block-wise distance when the two PCP

strings are permuted according to Perm (and after are divided into blocks for measuring distance).
The soundness is defined by the following game.

Game 2.1. The game G, receives as input a PCP verifier V, an instance x, a block size parameter

b € N, an allowed distance parameter d € N, and a cheating prover P. The game G,..(V,x,b, d, f’)
works as follows:

Sample a random permutation Perm: [I] — [I], and give it to P.

P outputs a PCP string IT € X'

Sample PCP randomness p € {0,1}", and give it to P.

P outputs another PCP string I’ € .

The game outputs 1 if and only if AP*™(IL, II') < d and v (x;p) = 1.

Al e

Definition 2.2. A PCP (P, V) for a relation R has permuted robust soundness error ¢, (x, b, d)
if for every instance x ¢ L(R), block size b € N, distance bound d € N, and malicious prover P,

Pr|G,.(V,x,b,d,P) =1| <e,.(x,b,d) .



Why we need permuted robust soundness. Before we continue with the security analysis of
our construction, we give intuition for how permuted robust soundness is helpful towards security.

Consider the following strategy for a cheating prover, which captures the main ideas in our proof.
The prover: selects a PCP string; permutes it according to the random permutation; commits to
it via a chopped Merkle tree; and then derives PCP randomness, and thus PCP queries, from the
resulting Merkle cap. Each vertex in the Merkle cap is itself a Merkle root for a subtree whose
leaves are a block of the PCP string. By inverting a root in the Merkle cap, the cheating prover has
complete control on the corresponding block. In particular, the cheating prover can find the minimal
set of blocks to modify so to make the PCP verifier accept, and inverts the roots for these blocks.
The success probability is (roughly) his probability of successfully inverting all these roots. Thus, it
is important that no block has many queries, which is why we use the permutation.

In other words, the cheating prover’s success probability depends on the distance of the PCP
string to an accepting PCP string, where the distance is defined by the block-wise Hamming distance
(after the permutation). This is why we need the PCP to have a robust notion of soundness where
the probability that a PCP string is close to being accepting is smaller as this distance is smaller.
For any constant k, we will bound the probability that the cheating prover can invert k roots, and
then compare this with the probability that a proof will be of distance k from an accepting proof.

This is a high-level approach of how to handle this specific attack. However, a cheating prover
has a wide range of strategies: find collisions and inversions in arbitrary locations in the chopped
Merkle tree; create multiple trees from which to choose from, and derive many different PCP query
sets; and try to combine all of the above. The permuted robust soundness is the notion that our
proof is built on, however, we will need to somehow address all possible prover strategies.

2.4 Repeated PCPs satisfy permuted robust soundness

Our main technical lemma regarding permuted robust soundness states that any repeated PCP
satisfies the (strong notion of) permuted robust soundness. Note that for constructing SNARGs, the
underlying PCP must have an exponentially small soundness error. We know how to build such
PCPs only by repeating some base PCP multiple times. Here, we show that in addition to improving
the standard soundness, repetition improves the permuted robust soundness of the PCP. Intuitively,
for a repeated PCP the distance of a PCP string to an accepting PCP string is proportional to the
number of repetitions that reject it, and different repetitions are likely to query different blocks
(due to the permutation). This is a simple generic way to construct PCPs suitable for our SNARG
construction, which suffices for our asymptotic result and also is useful for concrete efficiency.

In more detail, the k-wise repetition of a PCP system (P, V), denoted (P, V), is the PCP
system obtained by setting P, := P (the PCP string does not change) and setting V,; to run V on
% independent choices of randomness. We prove the following lemma.

Lemma 2.3. Let (P, V) be a PCP with soundness error €y..., proof length | (over any alphabet),
and query complexity q; moreover, suppose that each location in the PCP string is queried with
probability at most p. For every k € N such that b > k-q - eyl and p < (8b- k)", (Pk, V,) has
strong permuted robust soundness error

el.2~d

d!

The formal statement of the lemma and its proof are in Section 5. Below we provide an overview
of (a simplified version of) this lemma.

8per(}xa bv d) S : bd : gbause(}x))fv .



Recall that if the base PCP has soundness error ¢,,., then its x-wise repetition has soundness
error ey, .. This soundness error is for a PCP string that is fixed before the x samples of PCP
randomness are drawn. Here we are instead interested in the probability that the PCP string is d
blocks away from convincing the PCP verifier. That is, the cheating prover can arbitrarily change
any d blocks after learning the PCP randomness (and, in particular, derive the queried locations).

How much power does this give to the cheating prover? To understand this, we first need to see
how the queries are distributed among the blocks. Since we assume that no proof location is queried
with too high probability, a typical query set will have all queries distinct (or at least have only a
few colliding queries). Then the random permutation will randomize query locations, as if they had
been uniform random queries. In sum, queries will be mostly spread out evenly across blocks.

For even further simplicity here, let us assume that no two queries land in the same block. (This
is possible as the total number of queries x - q is less than b.) In this case, the prover can change at
most d blocks after seeing the queries and can affect the output of at most d out of the x repetitions.
Without assuming any additional property about the underlying PCP, changing a single query within
a repetition might suffice to convince the PCP verifier. Thus we cannot expect soundness better
than aﬁ;g . Moreover, the cheating prover chooses which d blocks to change adaptively after seeing
all query locations, which grants the cheating prover additional power.

To bound the soundness error we fix in advance a choice of d repetitions among the x repetitions
that the prover controls; the remaining x — d iterations each contribute a multiplicative factor of
soundness error €,,... By a union bound over all choices of the d iterations, we get the expression:

d d d
K K 1 K b
(d) : ggz;ed S d' : Eg;g = E : <E ) : Egase S d‘ ’ sgase ‘
. . base .

This expression is better than what we set out to prove. The additional term e'?? in Lemma 2.3
comes from removing the simplifying assumptions used above. Without those assumptions, the
cheating prover may gain an advantage when a block contains queries from more than one repetition:
(i) queries might collide before the permutation is applied, and these queries will be mapped to
the same (random) location by the permutation; (ii) even distinct queries might be mapped to the
same block after the permutation (and this is likely to happen). The full proof must take these into
account, which complicates the expressions above and introduces the additional term e,

1.2

Remark 2.4 (repetition of a robust PCP). Lemma 2.3 shows that the repetition of any PCP
satisfies permuted robust soundness. This will let us instantiate our SNARG construction based
on the repetition of any PCP, retaining maximal freedom in choosing parameters of the PCP,
without worrying about additional properties of the PCP. Nevertheless, we could also consider the
repetition of a PCP that is already somewhat robust (in the standard sense), which would improve
the soundness expression in the lemma. For example, suppose that in every local view of the PCP
string we need to change at least two answers to make the PCP verifier accept. For this case we
expect the soundness of the repeated PCP to be close to eggﬁl/ 2, instead of 535155 . We leave it for
future work to derive the analogue of Lemma 2.3 for robust PCPs.

2.5 The cap soundness game

In order to obtain a security analysis of our construction, we introduce an intermediate information-
theoretic game, called cap soundness game, that enables us to model the effects of attacks against
our construction. The intermediate game then leaves us with two tasks: reduce the security of our

10



construction to winning the cap soundness game (see Section 2.7); and reduce winning the cap
soundness game to breaking the permuted robust soundness of the PCP (see further below).

The game. The cap soundness game has several inputs: a PCP verifier V; an instance x (which
we will usually omit from the description); an integer A (modeling the random oracle’s output size);
a stop layer i*; a malicious prover P to play the game; a query budget ¢ € N; a collision budget
t.o € N; and a inversion budget t,, € N. We denote this game by G..,(V, x, A, i, P.t,t., tiny)-
The graph G. The game is played on a graph G = (V, E') that represents the chopped Merkle trees
constructed by the adversary so far. Letting d be the height of a full Merkle tree, vertices in G are the
union V := V;=UV U- - .UV where V; are the vertices of level i of the tree: for every i € {i*,..., d—1},
Vi :={(i,j,h) : j € [2],h € {0,1}*} is level i; and Vy := {(d, j,h) : j € [2%],h € £} is the leaf level.
The indices 7 and j represent the location in the tree (vertex j in level 7) and the string h represents
either a symbol of the PCP (if in the leaf level) or an output of the random oracle (if in any other
level). Edges in G are hyperedges that keep track of which inputs are “hashed” together to create
a given output. That is, elements in the edge set E of GG are chosen from the collection £ below,
which represents an edge between two vertices in level ¢ 4+ 1 and their common parent in level i:

u=(i,j,h) €V
&= (u7v0)vl): UOZ(i+172j_17h0)€‘/;+1
U1 = (Z + 1,25, hl) € Viq

The set of valid caps consists of all possible lists of vertices in V;+ that consist a full layer of vertices:
C = {((i*,l,hl),...,(i*,Qi*,hQi*)) Shiy. . hye € {0,1}A} .

Playing the game. The game starts with the graph G empty (F = (), and proceeds in rounds;
moreover, the game samples a random permutation Perm: [I] — [I] and gives it to the adversary. After
that, in each round, provided there is enough query budget t left, the adversary chooses between
two actions: (i) add an edge to E from the set £, provided the edge is allowed; (ii) obtain the PCP
randomness for a given Merkle cap. We discuss each in more detail.

e Adding edges. When the prover adds to E an edge (u,vg,v1) € £ the query budget is reduced
t < t — 1. Moreover, the collision and inversion budgets may also be reduced if the edge creates a
collision or inversion, as described below.

— Collisions. If the edge (u,vg,v1) collides with an edge (u, v(, v]) that is already in E, the game
charges a unit of collision budget by setting t.,, < t.,, — 1. Note that the game charges a single
unit for each collision edge, and multi-collisions are allowed. Thus, a k-wise collision costs k — 1
units of t.,;. This makes the collision budget versatile in that, for example, a budget of 2 can be
used to create two 2-wise collisions or one 3-wise collision.

— Inversions. If the edge (u,vp,v1) is added when u is not free (defined next), the game charges
a unit of inversion budget by setting ¢;,, < ti,, — 1. The vertex w is free if it is not already
connected to a vertex in a level closer to the cap, i.e., if w € V; then for every w € V;_1 and
u’ € V; it holds that (w,u,u’) ¢ E. (Note that the game would not charge an inversion if these
edge where added in reverse order, though, as that would not have been an inversion.)

e Deriving randomness. The prover submits a cap (v1,...,v9+) € C, and the game samples new
PCP randomness p. The pair ((vl, ey Ugix ), p) is added to a mapping Rand. (The prover is not
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allowed to submit a cap that already appears in the mapping Rand.) This costs a unit of the
query budget, so when this happens the query budget is reduced ¢ <t — 1.

Winning the game. When it decides to stop playing, the prover outputs a cap (vi,...,vy+) € C
and a PCP string I € 3. The prover wins the game if the following two conditions hold.

e The PCP verifier accepts the PCP string I when using the randomness associated to (v1, ..., vy ).
That is, VII(x; p) = 1 for p := Rand|(v1, ..., vy~ )]. (If Rand has no randomness for this cap then
the prover loses.)

e The PCP string II is consistent with the cap (vi,...,vy+) in the graph G. That is, if the PCP
verifier queries location j of II, then the leaf u = (d, j, II[Perm(j)]) € V; is connected to a vertex in
the cap (v1,...,v9+) in G. (The collection £ of possible edges ensures that the j-th leaf can be
connected to at most one vertex in a cap, the one corresponding to the first ¢* bits of the index j.)

We denote by €., (1%, t, teor, tiny) the maximum winning probability in the cap soundness game, with
stop layer ¢*, by any adversary with query budget ¢, collision budget t.,,, and inversion budget ;..

From permuted robust soundness to cap soundness. We reduce the soundness of a cheating
prover in the cap soundness game to the soundness in the permuted robust soundness game.

Lemma 2.5. Let (P, V) be a PCP for a relation R with permuted robust soundness error €,..(b, d).
Then, (P, V) has cap soundness error

sk

8cap(i*7 ta tcob tinv) S t- 2tC01 . Eper(b = 22 7d = ZL’inv) .

The proof of the lemma is somewhat technical and is provided in Section 6. Here we provide
some intuition on the above expression. The term ¢,..(b = 2i*,d = ;) comes from the fact that
if the attacker can make t;,, inversions then it suffices for the attacker to commit to a PCP string
that is within a block-size distance of t;,, from an accepting PCP string (and the blocks have size
2" since that is the number of leaves under a vertex in the cap). The multiplicative factor 2!
comes from the fact that if the attacker can find t., collisions then the attacker can open up to
2teol PCP strings for the same cap (as each collision doubles the number of PCP strings that could
be consistent with the same cap). The further multiplicative factor ¢t comes from the fact that the
attacker can re-try its strategy roughly ¢ times.

2.6 Scoring oracle queries

The cap soundness game lets us bound the success probability of an adversary given specific budgets.
But what budgets should we use when analyzing a cheating argument prover? For this, we rely on
an analysis tool introduced in |[CY21]: a scoring function for the query trace of an algorithm in the
random oracle model. For convenience and completeness, we review this notion below.

Intuitively, the score of a query trace “counts” the number of collisions and inversions in a way
that reflects the probability of that event occurring. The lower the probability, the higher the score.
This enables us to translate our claims about cheating argument provers into claims about cheating
cap soundness provers, where a high score is translated to a high budget. A strategy that uses a large
budget has a higher chance of winning the cap soundness game, but the probability of achieving a
corresponding high score is low, and our goal is to balance these two.

The scoring function is separately defined for collisions and for inversions, as motivated below.
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e Scoring collisions. The score of a k-wise collision is set to be k — 1 (assuming k is maximal within
the query trace); in particular, a 2-wise collision gets a score of 1. Note that two pairwise collisions
and one 3-wise collision both get the same score of 2, even though the latter is less likely to occur.
This aligns with our proof since two pairwise collisions yield four possible proof strings, while a
3-wise collision yields only three possible proof strings.

e Scoring inversions. Scoring inversions is done by simply counting the number of inversions in the
query trace. We now elaborate on what is considered an inversion in the query trace. Recall that
queries to the random oracle designated for the (chopped) Merkle tree are compressing: a query is
of the form x = (w1, 22) € {0,1}* x {0,1}* and an answer is y € {0, 1}*. Instead, queries to the
random oracle designated for deriving PCP randomness are of the form z € {0, 1}21*')‘ and an
answer is p € {0,1}". For inversions we only consider tree queries, and note that a given tree query
may invert one of the two components in a previous tree query or may invert (the one component
of) a previous randomness query. Hence, a tree query performed at time j with answer y is an
inversion if there exist a previous tree query (at time j' < j) of the form x = (x1, z2) with 1 =y
or xo =y, or a previous randomness query x with = = y.

The precise definitions of scores and the proof of the following lemma are provided in Appendix A:

Lemma 2.6. For any t-query algorithm that queries the random oracle and every k € N:

k
1. Pr[collision score > k] < (%) ;

2. Pr[inversion score > k] < 7 - (%)k

2.7 Concluding the proof of Theorem 1

We are left with putting pieces together to derive the argument size. To this end, we first establish
the soundness error of our construction, and then the argument size will follow.

Soundness of our construction. We show that our construction is sound given any PCP with
permuted robust soundness. Recall that permuted robustness soundness depends on the distance d
(Section 2.3). In our construction the quantity that matters is an associated worst-case ratio: we say
that the PCP has permuted robustness ratio 3(b) if

Eper (X, b, d + 1)

T D 2 < B(b) .
de{0.1onsb}  Eper (35, b, ) < A)

Then, we show the following lemma.

Lemma 2.7. Suppose our construction is instantiated with a PCP with a random oracle output size
A, and a PCP with soundness error epcp and permuted robustness ratio S(b) with stop layer i*. If
A > 2logt +log (b = 27) + 3 then our construction has soundness error €(t) < t-epcp against
t-query adversaries.

In our soundness analysis we consider every possible query trace score and also the probability
that the cheating argument prover achieves that score (see Section 2.6). For any integer k € N we
consider the event of the cheating argument prover produces a query trace that has either collision
score or inversion score exactly k. We show that, conditioned on the cheating prover producing a
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query trace of score k, there is a related adversary that wins the cap soundness game with the same
probability and budget k& (the precise statement is given in Claim 7.3). Informally,

verifier
r
accepts

score k} < Eeap (i, 8, kLK)

We consider an infinite sum over k, and for each value of k we bound the probability of the
adversary getting a score of £k multiplied by the maximum winning probability in the cap soundness
game given budgets t.,, = k and t;,, = k. This infinite sum converges to the soundness expression
stated in Lemma 2.7, provided that A > 2logt + log 5 + 3.

In more detail, this approach could be over-simplified via the following equations (for simplicity
here we are not careful with constants). First, using Lemma 2.6 we obtain that the probability that
the collision or inversion score equals k is bounded by the sum of the two probabilities:

2%\ *
Prlscore of k] <2 - <2/\>

This lets us express the success probability of the cheating prover as an infinite sum conditioned on
getting a score of k, for any k € N:

verifier > verifier
Pr < E Pr
accepts Pt accepts

oo - i
< Z Ecap (1,1, k, k) - Pr[score of k] < ZO <t e (k) - (2;)\) )

k=0 —
.- 2t2 K © 4 t2
Z (t Qk ﬁk Epcp - (2/\> > t €pCP Z ( B > =0 (t . 5Pcp)

k=0 =0

score of k ] - Pr[score of k]

The last equality follows from the fact that "7, <4gf2> = O(1) since X\ > 2logt + log B + 3.

Argument size of our construction. We choose an appropriate PCP and obtain the argument
size claimed in Theorem 1. Recall that Lemma 2.7 tells us that the soundness error of our construction
is t - epcp provided that the random oracle output size satisfies A > 2logt 4 log 8 + 3; in particular,
to achieve (¢, €) security, we need the PCP soundness error to be epcp = €/t.

Towards this end, we apply Lemma 2.3 to any constant-query constant-soundness PCP (over a
small alphabet), where the probability of querying each proof location is not too high, as required by
the lemma (most PCP constructions satisfy this requirement). We get that its k-wise repetition has

permuted robustness ratio 5(b) = O(%) = O(b) for a block size b. The block size depends on

bd.ck

the number of repetitions, the query comglexity, and the soundness of the base PCP (where the last
two are constant), and thus we have that b = O(k). To achieve the desired PCP soundness error, we
set the number of repetitions to be k = O(log(t/€)); hence the number of queries is g = O(log(t/¢)).
Finally, we set stop layer according to Lemma 2.7 to be i* = O(logb).

The argument contains the Merkle cap (which has size 2¢" - \), PCP query answers (which have
total size q - log|%|), and the authentication paths (which have total size q - A - log(I/2")). The
argument size thus is

largument| = 2" - X+ q-log |Z| 4+ q - A-log(1/2") = O(q - X - log(l/q))
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| -
=0 logé' log7§+10glogE -log =0 logé-logt
€ € log(t/e€) €

Achieving concrete efficiency. In order to achieve concrete efficiency (e.g., the numbers reported
in Table 1), our security analysis improves on the above expression by showing that the hidden
constant (in the big-O notation) in the soundness expression can be replaced with the constant 1.

To achieve this, it does not suffice simply to pay attention to the constants in the computations,
but we need to separately count the queries performed to a tree oracle and to a PCP randomness
oracle. The PCP randomness oracle has a long input length (it maps 2¢ - X bits to X bits). Therefore,
we count each query to it as 2° queries. This is aligned with how one would implement such an
oracle using domain extension (|Mer89; Dam89]|). Thus, in the full proof, we introduce two new
parameters t.. and t,.q such that it always holds that ¢ = t,.. + 2° - t,.a. Hence the full proof
contains similar expressions as above, where in some cases, t is replaced with either t,,.., tinq, O
their (weighted) sum.
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3 Definitions

Relations. A relation R is a set of tuples (x, w) where x is the instance and w the witness. The
corresponding language L = L(R) is the set of x for which there exists w such that (x,w) € R.

Random oracles. We denote by () the uniform distribution over functions ¢: {0,1}* — {0, 1}*
(implicitly defined by the probabilistic algorithm that assigns, uniformly and independently at
random, a A-bit string to each new input). If ¢ is sampled from U()\), we call ¢ a random oracle.

Oracle algorithms. We restrict our attention to oracle algorithms that are deterministic since,
in the random oracle model, an oracle algorithm can obtain randomness from the random oracle.
Given an oracle algorithm A and an oracle ¢ € U()\), queries(A, () is the set of oracle queries that
AS makes. We say that A is t-query if |queries(A, ¢)| <t for every ¢ € U(N).

3.1 Probabilistically checkable proofs

We provide standard notations and definitions for probabilistically checkable proofs (PCPs) |BFLS91;
FGLSS91; AS98; ALMSS98|. Let PCP = (P, V) be a pair where P, known as the prover, is an
algorithm, and V, known as the verifier, is an oracle algorithm. We say that PCP is a PCP for a
relation R with soundness error epcp if the following holds.

o Completeness. For every (x,w) € R, letting II := P(x,w) € X!, Prjc(o13:[V(x;p) = 1] = 1.

e Soundness. For every x ¢ L(R) and malicious proof II € %', Prpe{ojl}r[VH(x; p) =1] < epep(x).

Above, X is a finite set that denotes the proof’s alphabet, and | is an integer that denotes the proof’s
length. We additionally denote by q the number of queries to the proof made by the verifier. All of
these complexity measures are implicitly functions of the instance x.

Definition 3.1. Let A be an absolute distance measure. We say that PCP has (strong) robustness
soundness error epcp with respect to A if for every instance x ¢ L(R), proof string I1 € X!, and
(absolute) distance parameter d € [b],

Pr |3 s.t. VIV(x;p) =1 and A(ILTY) < d| < epep(x,d) .
pe{0,1}r

Standard soundness corresponds to the case where A is the Hamming distance and epcp(x,0) =
epcp(x) for some error function epcp(x) and epep(x,d) = 1 for any d > 0. The standard notion of
robust soundness is a special case of Definition 3.1, corresponding to the case where epcp(x,d) =
epcp(x) for d in some interval [0, d*] and epcp(x,d) = 1 for d > d*.

3.2 Non-interactive arguments in the random oracle model

We consider non-interactive arguments in the random oracle model (ROM), where security holds
against query-bounded, yet possibly computationally-unbounded, adversaries. Recall that a non-
interactive argument typically consists of a prover algorithm and a verifier algorithm that prove and
validate statements for a binary relation, which represents the valid instance-witness pairs.

Let ARG = (P,V) be a tuple of (oracle) algorithms. We say that ARG is a non-interactive
argument in the ROM for a relation R with (¢, €)-security if, for a function A\: N x (0,1) — N, the
following holds for every query bound ¢ € N and soundness error € € (0,1).
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e Completeness. For every (x,w) € R,

Pr {VC(X,W) —1 ‘ iibg{\(ggg ] =1.

e Soundness. For every x ¢ L(R) with |x| < ¢ and t-query P,

C(—U)\t,e))]<€

¢ —
Pr[V (X,W)—l‘ o P

The argument size s := || is a function of the desired query bound ¢ and soundness error €. So are
the running time pt of the prover P and the running time vt of the verifier V.

17



4 QOwur construction

We describe our construction of a (succinct) non-interactive argument from a PCP. Let (P, V) be a
PCP system for the desired relation, with proof length | over an alphabet ¥ and query complexity q;
for notational convenience, we set d := [log|]|. The construction is additionally parametrized by a
stop layer i* € {0,1,...,d — 1}, which we will set in the analysis (looking ahead, 2" will be roughly
the number of queries in the PCP).

The oracles in our construction. The algorithms below are granted access to three oracles:

1. a tree oracle Cyee: {0,1}2* — {0,1}*, which hashes two elements to one;

2. a PCP randomness oracle (q: {0, 1}21*“ — {0,1}", which hashes 27" elements to r bits, where r
is the randomness complexity of the PCP verifier V;

3. a random permutation Perm: [I] — [l], over the locations of a PCP string.

In our analysis, we assume that these oracle are available; all of them can be derived from a single
random oracle ¢: {0,1}* — {0,1}*. First, using domain separation one can create multiple random
oracles from a single one. The second oracle has a larger domain, which is derived via domain
extension (for example, using the Merkle-Damgard iterated construction [Mer89; Dam89]|). The
third is derived via Feistel networks, as discussed in Section 4.1.

Since the oracles have different input lengths, the cost for querying each oracle differs. We
consider a query to the tree oracle as a single query to the random oracle (i.e., reducing a single unit
from the cheating prover’s query budget). The PCP randomness oracle hashes 2" elements and thus
its cost will be 27" accordingly. We consider queries to the random permutation to be “free”. That is,
a cheating prover can completely query the permutation oracle with no change to its query budget
(this makes our result stronger).

We describe the argument prover P and then the argument verifier V' of the tuple ARG = (P, V).

Argument prover. The argument prover P takes as input an instance x and a witness w, and
computes an argument 7 as follows.

1. Run the PCP prover P on (x,w) to obtain a PCP string II' € 3.
2. Use the permutation Perm to permute this PCP string and obtain IT such that II[i| = II'[Perm(4)].
3. Use the random oracle (... to Merkle commit to II, as follows:

e For every j € [l], set the j-th leaf hq; :=1I; € ¥.
e Fori=d—1,d—2,...,i*: for j € [2!], compute h; j := Ciree(i||j||Pit1.2j-1]Rit12;) € {0, 1} .
e Set the Merkle cap h := {h;-; € {0, 1})\}j€[2i*].

4. Derive randomness p := (,,qa(h) € {0,1}" and simulate the PCP verifier V on input (x;p) and

PCP string II; this execution induces q query-answer pairs (ji,a1), ..., (Jq, aq) € [I] X 2.
5. Output
™= <h7 (j17a17p1)7"‘7(jd7ad7pd)) (1>
where pq,...,pq are the authentication paths for the query-answer pairs (ji,a1),..., (jq,aq),

truncated at level 7* of the tree.

Argument verifier. The argument verifier V' takes as input an instance x and a proof 7 (of the
form as in Equation (1)), and computes a decision bit as follows.
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1. derive randomness p := (,,qa(h) for the PCP verifier from the Merkle cap h;
2. check that the PCP verifier V, on input (x;p) and by answering a query to j, with a,, accepts;
3. check that py,...,pg are authentication paths of (j1,a1),..., (ja, aq) relative to the Merkle cap h.

Argument size. The argument 7 contains the Merkle cap h € {0, 1}2i*"\, a (log|X|)-bit answer
for each of q queries, and q authentication paths. This totals to an argument size that is

2" A 4q-log|X| +q-\-log(l/27) . (2)

Each of the q queries in [I] comes with an authentication path containing the log(l/2?") siblings of
vertices on the path from the query to the Merkle cap, which amounts to A - log(l/ 2") bits. (More
precisely, log |S| 4+ X - (log(1/2"") — 1) bits since the first sibling is a symbol in ¥ rather than an
output of the random oracle.)

As noted in earlier works (e.g., [BBHR19; BCRSVW19|) parts of the information across the q
authentication paths is redundant, and the argument size can be reduced by pruning: the prover
includes in 7 the minimal set of siblings to authenticate the q queries as a set. All concrete argument
sizes that we report in Table 1 already account for this straightforward optimization.

Remark 4.1 (salts for zero knowledge and more). The security analysis that we present in this
paper (see Section 7) works even if all the vertices in the tree are “salted”; which means that an
attacker may include an arbitrary string o; ; € {0,1}* in the query that obtains the digest h; ,
for any i € {0,1,...,d — 1} and j € [2{]. That is, our results hold against strong attacks (the
attacker can obtain multiple random digests h; ; for any given indices ¢ and j). Salts are useful for
showing additional properties of SNARGs in the random oracle model, and in particular, to achieve
zero-knowledge| BCS16; IMSX15].

4.1 Implementing the random permutation

We discuss how to implement the random permutation given the random oracle. We need a
pseudorandom permutation over the domain [l], where | is the length of the PCP. There are multiple
ways to do this, and here we use Feistel networks, also known as also known as Luby—Rackoff
permutations [HR10; LR88; NR99|. These constructions are parameterized by a number of Feistel
rounds r; each round calls the random oracle once, and the more rounds, the better the security. In
particular, for any algorithm performing ¢ queries, the advantage in distinguishing it from a truly
random permutation is exponentially small. In our case, the “adversary” performing the queries is
the PCP verifier, which performs non-adaptive queries. We do not need to fool the cheating prover
of the argument scheme. The only goal of the permutation is to spread the PCP queries into evenly
divided blocks. We use the following theorem.

Theorem 4.2 (|JHR10, Theorem 3|). The Feistel permutation over [I| with r rounds has distinguishing
T

4 (ﬂ) , for any non-adaptive q-query algorithm.

advantage at most 5 ( 5

In particular, setting  to be large enough (and recalling that ¢ is merely the number of queries
in the PCP), we can set the distinguishing probability to be extremely small with negligible effect
on our proof, and thus we omit these terms and perm our analysis under the assumption of a truly
random permutation. For our theoretical needs, the theorem above suffices. Even setting concrete
parameters, the number of rounds needed is relatively small. However, there are several other
alternatives with different concrete performance. One example is to use DES (recall that we do not
need to hide the key from the cheating prover) or to use other standards such as FFX [BRS10].
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5 Permuted robust soundness

Definition 5.1 (Block distance). Let ILII' € X' be two strings, and consider them divided to b
blocks. That is, we view them as ILTI' € (X/2)P. Define Ap(I1,II') to be the block-wise distance
between 11 and 11 (i.e., the number of blocks of symbols on which they differ).

Moreover, for any permutation Perm, we define AL*™ similarly where we first permute the order
according to Perm and then divide to blocks.

Game 5.2. The permuted robust soundness game is parametrized by a PCP verifier V, an instance
X, a positive integer b, and a non-negative integer d. We denote by G,..(V,x, b, d, P) the boolean
random variable denoting whether a malicious prover P wins in this game, according to the description
below.

1. Perm is sampled as a random permutation over [I].

P outputs a proof string I € X

P receives a random string p € {0, 1}", which represents randomness for the PCP verifier.
P outputs a proof string I’ € X'.

The game outputs 1 if and only if V' (x; p) = 1, and AP*™(IL, IT') < d.

GU N

Definition 5.3. A PCP (P, V) for a relation R has permuted robust soundness error ¢,.,(x, b, d)
if for every instance x ¢ L(R), integers b,d, and malicious prover P,

Pr|Gpu(V,x,b,d,P) = 1| < £,..(x,b,d) .

The PCP has permuted robustness ratio 8 (with respect to b) if for any d € {0,1,...,b} it holds
that:

Eper (X, b, d+1) < B ep0(x,b,d) .

Lemma 5.4. Let (P, V) be a PCP with soundness error ey, length |, and query complezity q,
and assume each location is queried with probability at most p. Let k € N and let (P, V),; be the
k-repeated version of (P, V). Ifb>k-q-ept, and p < (8b-x)~! then (P, V), has strong permuted

robust soundness error Lo

(&
6per(}x7 b’ d) S : bd : 6gase °

d!

Moreover, the robustness ratio is 8 < 2.33 - b.

Using the above lemma, we can plug in a PCP with soundness error 1/2 that uses 3 queries, with
proof length | and get the following corollary.

Corollary 5.5. For any k € N, there is a PCP (P, V) that has query complexity q = 3k and has
permuted robust ratio
0<233-k-3-2=14kK .

Proof of Lemma 5.4. Fix any d < k (if d > k then the lemma is trivial). We begin the proof with
a definition of a “balanced” permutation, with respect to the given PCP system. We say that a
permutation Perm is a-“balanced” if for any ¢ € [k — d] it holds that

b\ [1.2-q-d\"°
Pr  [p1,...,pd+c share d blocks] < « - N (i .
Pls--5Pd+c d b

We this definition in mind, we show that a random permutation is balanced with high probability.
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Claim 5.6. Ifp < (8b: k)™t then Prpepm|Perm is not a-balanced] < e/a.

Proof. Consider the process of sampling Perm, p1, ..., pgic at random. Fix some subset J of size d,
and we bound the probability that all repetitions hit this subset J (and at the end take a union
bound over all such subsets). Fix some i € [d + ¢] and assume that the first ¢ — 1 repetitions already
hit J. We bound the probability that the i-th repetition hits J. Let Y; be a random variable
indicating that all the queries of the i-th repetition did not collide with any of the previous i — 1
repetitions. Then,

Pr[Y; = 0] S(i—l)-q-psn-q-péi :
Note that if ¥; = 1 then the query locations will be determined by new positions in the permutation
and thus will be random among the vacant locations. Let z = |/b be the block size. Then, there are
at least b- z — (i — 1) - q vacant locations. Then, for large enough z (z > 20), we get that:

Prperm,p; [pi hits J | p1,..., pi—1 hits J]
<Pr]y; =0]- 14 Pr[Y; = 1] -PPr [pi hits J | p1,...,pi—1 hits J,Y; = 1]

erm,p;

<i+ d-z
=gp b-z—(i—1)-q

q d-z
% Vb o1

q q-d
<1 41.05-—
<%t 05 =

q-d

<12.2— .
- b

Then, using a union bound we get that

Prpermpr,.... 44015 - - - » Pdte share d blocks]
< Z Pr [le--de—i—c hit J]
Jg[bL‘J‘:d Perm,p1,...,0d+c

d+c

= Z Hpefmr,pi[f’i hits J | p1,...,pi—1 hits J]
JC[b],|J|=d i=1

1.2-q-d\%*
< E _
JC[b],|J|=d

) (2"

Assume, towards contradiction, that the claim is false. Then, with probability at least 1/ we get a
permutation Perm that is not a-balanced. Then, by definition we have that

1'2 . . d+C
Pr  [p1,...,pd+c share d blocks] > « - b . 12-q-d .
P1;---3Pd+c d b
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Together, we conclude that

b\ [1.2-q-d\*™ /b 1.2-q-d\%**
Pr  [p1,...,pda+c share d blocks] > 1/a - « - <d> . <bq> — <d> . <bq> )

P1se5Pd+c

This contradicts the bound we have just proved. O

Fix some « and assume that Perm is a-balanced. We bound the probability of the game as a
function of a. Fix any proof II. If the prover wins then there must exist a proof II’ that is d close to

IT that makes the verifier accept. Thus, we get that
Pr [QPeT(V,x, b,d,P)=1 | Perm is a—balanced}

<Pr [HH’ VI (x) = 1 and Ay(IL IT) < d]
- K k—(d+c
< Z <d+ c> .Ebaseg . pr [p1, .-, pdte share d blocks]

o P1se-5Pd+c
c=0

00 d+c
K K—(d+c) b 1.2-q-d
< . co - .
<2 o) e (o) (5

c=0

e ] /id—l—c En—(d—i—c) . b7d . <12 .q- d)d-i-c

cQ

= L (d+c) | hase d! b
f: © eare b (12-q-d T
— d+c base d‘ ] ] —1
: q-K-Epcp

b? (1.2 - d)dte
_aﬁ gbase.go d+C

bd 1.2d
Sa.g.ggabe.<e' _1)

Finally, we conclude that

Pr [gper(v,x, b,d,P) = 1}
< ZPr [gper(v, x,b,d,P) =1 | Permis a-balanced] - Pr [Perm is a-balanced]

Perm
b? 1
<o e (e =1~
o
bd
= E : ggase : (61.2d - 1) *

We bound the robustness ratio, where we are careful with the case of of d = 1 compared to larger
values of d. In particular, for d = 1 the ratio, denoted by £(1) is

b
B(1) < —-ef -(eM?—1)-e.f <233-b .

— 1| base
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For any d > 2 we have that

_ -1
d < . K . 1.2-d _ . bd ! . K . 12(d—1) o 1 <
B( ) — d' 6baLse (6 ]‘) (d _ 1)' 8bas,e (6 ) —

Together, we get that it always holds that d < 2.33 - b.
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6 Cap soundness

We define a PCP soundness game that we call cap soundness game. The game is played on a graph
G = (V, E) that represents the Merkle tree in the Micali construction. The game starts out with the
graph being empty (E = (), and the PCP adversary can iteratively choose one of several actions,
with some budget limitations that constrain how many collisions and inversions the PCP adversary
can create in the Merkle tree. We stress that this game is information-theoretic, and can be viewed
as an abstract modeling of the effects of these attacks in the real world. The edges are in fact
hyperedges in order to keep track of which inputs are “hashed” together to create a specific output.
Below we introduce definitions for describing the game, and then relate winning this game to winning
the reverse soundness game.

Definition 6.1. Let d, i*, and A be positive integers, and X a finite alphabet. The vertex set V is
the union Vi U --- U Vy where Vg := {(d,j,h) : j € [2%],h € £} and, for every i € {i*,...,d — 1},
Vi:={(i,4,h) : j € [27],h € {0,1}*}. We consider graphs of the form G = (V, E) where E is a set
of (hyper)edges chosen from the following collection:

u=(i,j,h) €V,
&= (U,’UO,Ul)I voz(i+172j_17h0)€‘/’;+1
U1 = (2+ 172ja hl) € ‘/Z'Jrl

For an edge e = (u,vg,v1), we call u its base vertex and vy, vy its children vertices. We also define:
e the edges of a base vertex u = (i,j,h) are edges(u) := {(u,vo,v1) € E : vg,v1 € Viy1};
e the level of an edge e, denoted level(e), is i if its base vertex has the form u = (i,7,h).

Each leaf of the graph, namely, a vertex u = (d, j, h) at level d is associated to a symbol, h. A
collection of leaves thus determine a string whose location j is the symbol of the j-th leaf.

Definition 6.2. Let G = (V, E) be a graph over the vertex set V' as in Definition 6.1.

o A vertex ug € Vy is connected in G to a vertex uy € Vy if there exist vertices ug_1, - .., Upr1 sSuch
that, for alli € {d,d—1,...,0+ 1}, u; € V; and there is an edge e € E such that {u;,u;—1} € e.

o A vertex v € V; is free in G if for every u € V;_1 and v' € V; it holds that (u,v,v") ¢ E.

Notice that the connectivity concerns only paths that begin at any leaf (a vertex at level d) and
move directly towards the vertex uy. That is, at each step on the path, the level decreases by 1.
Moreover, a vertex at level i is free if there is no edge that connects it to a vertex at level i — 1.

Definition 6.3. Let G = (V, E) be a graph over the vertex set V as in Definition 6.1, and let Perm
be a permutation. A string s € (X U{L}) is consistent with G with respect to Perm if for every
J € [I] such that s[j] # L there exists a verter Vpeps(j) = (d, Perm(j),h) € Vg such that h = s[j] and
Uperm(j) 18 connected some u € V= in G. In such a case we write Consistent(G, Perm, s) = 1.

Game 6.4. The cap soundness game is parametrized by a PCP verifier V, an instance x, and
an integer A. The game receives as input a malicious prover P, a root budget t..4 € N, a tree
budget t,cc €N, a collision budget t.,, € N, and an inversion budget t;,, € N, which we denote

Geap(V, X, A, PLi* tina, tirees teols Liny)- The game works as follows:

e Initialization:

1. Set E :={) to be an empty edge set for the graph G = (V, E).
2. Set Rand to be an empty mapping from V to verifier randomness.
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3. Perm is a sampled as a uniformly random permutation over [I] and given to the prover P.

e Round: P chooses one of the following options until it decides to exit.
— Option ADD: P submits a vertex u = (i,j,h) € V with ¢ € {i*,...,d — 1} and strings hg, hy.
1. Set the (hyper)edge e := (u, v, v1) where vy := (i+1,2j—1,ho) € Vi1 and v1 := (i+1,24, hq) € Viyy.
If w is not free then ¢,,, < ¢,,, — 1.
If |e(u)| > 1 then ¢, < t., — 1.
Add e = (u,vp,v1) to E.
tiroe ¢ bireo — 1.

tree tree

— Option RND: P submits a cap vertex vp € Vi-.

CU

1. If Rand already contains an entry for vy, then set p < Rand[vy].
2. If Rand does not contain an entry for vp then sample p € {0,1}" at random and set Rand[vy] < p.
3. trnd — trnd -1
4. pis given to P.
e Output: P outputs a cap v, ..., vyi+ € Vi« and leaf vertices vq,...,v4 € Vy.

e Decision: P wins if all checks below pass.

1. Construct a PCP string II € (X U {L})": for every r € [q], parse the r-th leaf vertex as v, = (d,j, h)
and set II[Perm(j)] := h € 3; set II[j] := L for all other locations.

Retrieve PCP randomness for this root vertex: p* < Rand[vp].

Check that the PCP verifier accepts: V(x; p*) = 1.

Check that IT is consistent in G w.r.t. Perm: Consistent(G,Perm, IT) = 1.

Check that P is within budget: t.,, > 0, t;n, > 0, t,na > 0, and t,,.. > 0.

A

Definition 6.5. A PCP (P, V) for a relation R has cap soundness error € .., (X, A, 1*, tena, tirees teots tiny)
if for every x ¢ L(R), output size A € N, malicious prover P, stop layer i*, and budgets t 4, teor, tine €
N,

Pr [gcap (V7 X? )\7 P7 Z.*7 trnd’ ttrcc) tcola 7(;inv) - 1 S 6(:ap (X) )\7 i*7 2(:rnd7 ttrcc’ tcol? 7finv) .

Lemma 6.6. Let (P, V) be a PCP for a relation R with permuted robust soundness error epcp with
respect to distance Ay, for parameter b, and suppose it has uniformly random queries. Then, (P, V)
has cap soundness error

<k

Ecap (Xu >\7 i*a trnd7 ttree) tcoh tinv) S trnd : 2tC01 . 5per (X7 b = 21 7d = tinv) .

Proof. Let f’cap be a malicious prover that wins the cap soundness game with probability greater
than e.,,. Let us first focus on the case where ¢,,; = 1 and then we show it for an arbitrary ¢,,4.

We show that there is a prover P’ that wins the permuted robust soundness game with probability
at least 27 %ol . g (x,b = 2" d = tinv). The prover P’ participates in the permuted robust game
and gets a permutation Perm. Then, P’ uses Perm in the cap soundness game (in the initialization
phase) where the rest of the game is simulated normally, along with simulating f’cap participating
in the game. When f’cap submits a request for Option RND with root vy, then P’ chooses a proof
string II for the permuted robust game as follows.

Let Consistent(G, Perm, vy,) be the set of all proof strings that are consistent with vy, in the graph
G (with respect to Perm) and are also full proof strings (no entry equals L):

Consistent(G, Perm, vy,) := {IT € X' : Consistent(G, I, vy)} .

Then, P’ samples a proof II € Consistent(G, Perm, v,) at random and submit IT to the permuted
robust game, and the simulation ends.
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We now need to show two things: (i) that with probability at least epcp(x,ti), the set
Consistent(G, Perm, vy,) contains a proof string that wins the permuted robust game; and (ii) that the
size of Consistent(G,Perm,vy,) is at most 2f!. This will conclude the proof for the case of t,,4 = 1.

e To prove (i) we observe that after using Option RND with root vy, the only way to improve the
success probability of 15Cap is by adding new edges that are connected to vy, which will decrease
t.w by one. By the tree structure, and since ¢* = log b, each such edge can effect at most one of
the b blocks. Thus, if 13cap wins then there is a proof IT € Consistent(G, Perm, vy,) that is within
distance t;,, from an accepting proof and thus II' wins as well with robustness parameter d = t,,,,.
That is, (i) holds with probability €,..(x, b, t,,) as desired.

e To show (ii) we bound the number of collisions (and the size of each collision): using the budget
on collision t.,. Specifically, we have that

| Consistent(G, Perm, vy )| < [ ledges(u)| < 2%! .
ueV

Together, the success probability, for a single invocation of Option RND is bounded by

sk

Pr [gcap(v7 X? )\7 P? i*7 trnd7 ttree) tcola tinv) = 1:| S 2t001 . gper(x7 b - 22 7d = tinv) .

To finish the proof, we use Claim 6.7 (given below), and get that for any arbitrary ., invocations of
Option RND), the success probability is bounded by

5k

Pr |:gcap(v7 X? )\7 ﬁ? Z.*a trnd? ttree7tcol7 tinv) = 1] S trnd : 2tCOl : 6per(X§7 b = 2Z 7d - tinv) .

Claim 6.7. For any m and p let E(m, p) be an indicator for the event that the prover wins the cap
soundness game with ™ and single root query p. Assume that Prr ,[E(m,p)] <6, and let t,.s € N.
Then

Pr [Fi€ [t : E(mpi)] <toa 0 .

P15+ 5Pt g

Proof. Let A. = {m : Pr,[E(m, p)] = c¢}. Now, we have that
Pr  [3i € [twma] : E(7, pi)]
P15+ Pt g

< g Prir € A]- Pr  [Ji€ [ta : E(m,pi) | ™€ A
c ™ PlssPtng

<>» P ¢+ tina - Pri&(m, c

_EC Trr[TrEA] d pr[ (m,p) | me A

=t - P o) - Prl&(m, c
nd EC WI"[TI'E.A] pr[ (m,p) | ™€ A

Strnd'(s .
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7 Soundness based on permuted robust soundness

Theorem 7.1 (Theorem 1). Suppose that our construction (described in Section 4) is instantiated
with:

1. a PCP with soundness epcp, permuted robustness ratio 3(b), proof length | over alphabet 3, and
query complexity q;

2. a random oracle with output size \; and

3. stop layer i*.

Then, provided that X > 2logt + log 3(2"") + 3, the construction has a soundness error €(t) against
t-query adversaries that is bounded as follows:

€(t) S t- Epcp -
Using this soundness analysis along with concrete PCPs, we get the following corollary:

Corollary 7.2. Our construction achieves (t,€)-security with an argument size of

O (log(t/€) - (log ¢ + loglog(t/<)) - log(1/ log(t/€))) - (3)

We prove the theorem in Section 7.1 and the corollary in Section 7.2. Throughout this section
we denote by (P, V) the argument prover and argument verifier in the Micali construction, and by
(P, V) the PCP prover and PCP verifier of the PCP used in the Micali construction.

7.1 Proof of Theorem 7.1

Fix t € N. Let P be a t-query cheating argument prover. Note that P can make queries to the
randomness oracle (.4 and tree oracle (.. (or the permutation but we are giving these queries to
the cheating prover for free). Recall that the randomness oracle t,,4 has a larger domain size and
thus has cost 2¢". For any choice of positive integers t,,q and t,... such that 2" g + tiee < t, below
we condition on the event that P makes tma queries to (,q and t.. queries to (... For any such
choice, we obtain the same upper bound (independent of the choice of ¢,,4 and t..), and hence
conclude that the bound holds for the distribution of t,,4 and t,,.. implied by p.

We rely on the claim below, which states that a cheating argument prover can be transformed
into a cheating PCP prover for the cap soundness game with a small loss, when the budgets for

collisions and inversions correspond to the corresponding scores of the trace of the argument prover.

Claim 7.3. There is an efficient transformation T such that, for every cheating argument prover 15,
the cheating PCP prover P := T(P) satisfies the following condition for every k € N:

I C< UML) T
7+ PS¢

trong & queriesmd(ﬁ’7 ) ~

Pr |VS(x,7) =1 tr.. < queries,  (P,¢) | < Pr|Ge,(V,x,\\P,i" s, tivees ks ) = 1} . (4)

trrnd| = tina; |trtree

SCOre o (tre.) < k

SCOre,, (triee) < k|

= Tiree

Above queries,,,(P,¢) and queries,, (P, () respectively denote the queries by P to the oracles (g
and (oo obtained from  via domain separation.
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The proof of Claim 7.3 is given at the end of this proof.

We use Lemma A.4 to obtain a bound that will be useful in the analysis further below; we also
use the assumption that A > 2logt 4 log 5 + 3 and the fact that ¢t > t,.... The bound holds for any
choice of a parameter k£ € N.

o0
221‘3 A Pr(score;,, (triree) = k V scoreqq (trive.) = kJ

k=0
[ k 2 k
1 2t -t t
k tree ree
Sl—i-Z(zB) (/{:‘( oA ) +<2f2>\>>
k=1
J— ]_ = 1 4t ‘ ttree : 5 F = ttzree : /8 :
=14+ gl ) (e
k=1 k=1
N T LN A
< 1+ZH. <23“ie;> +Z<2§r?et> (since A > 2logt + log B + 3)
k=1 k=1
ttree > 1 4 F ttree - 1 ¥
<1 . —_ .= . —
<1t n () X (m
k=1 k=1
tree t ree
< 1+0'65'CT+0'15'tT
<1+ ttT .

Using the above bound, we conclude the following;:

Pr |:V<(X,7T) ~1 ‘ C?i’(gz }

oo
S Z Pr [gcap (V7 X, Av P) i*7 trnd7 ttree7 k? k) = 1 ' Pr[scoreinv (trtree7 trrnd) = k \ Scorecol(trtree) = k]

k=0

oo
S Z 8Cap (X7 )\7 7:*7 trnda ttree? k? k) : Pr[scoreinv (trtree7 trrnd) = k \/ scorecol (trtree) — k:l
k=0

oo

< Z tog - 28 epcp (X, k) - Priscorei,, (triee, thna) = k V sCOre o (trizee) = k|
k=0
o

< Z g - 28 ﬁk - €pcp * Pr[score;,, (triee, thna) = k V score o (trie.) = K]
k=0

o0
- trnd : EPCP . Z 2k - ﬁk ' Pr[scoreinv (trtree7 trrnd) = k \/ Scorecol (trtree) - k}
k=0

t ree
< tina - Epcp ° (1 + tt>

=1-¢Epcp -

This concludes the proof of the theorem, giving an upper bound on the soundness error.
We are left to prove the claim used in the proof above.
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Proof of Claim 7.5. For the sake of simplicity of the proof, we will assume the following two conditions
that are without loss of generality:

e (No duplicate queries): The cheating argument prover P does not make duplicate queries to the
random oracle. This can be achieved by having P store the answers to prior queries, and making
only new queries to the random oracle, and has no effect on the rest of the proof. Recall that
we are considering the Micali construction with salts (see Remark 4.1), which means that the
aforementioned “no duplicate query” condition implies that the prover does not make the same
query with the same salt but can make the same query with a different salt (as that results in a
different input to the random oracle).

e (Self-verifying): The cheating prover, before submitting his final proof, runs the verify to check that
it accepts, and otherwise submits a L symbol. This can be achieved by having P run the verifier
at the end of its execution. Admittingly, this is not completely without loss of generalization,
as this might cost a few additional queries. However, this has a negligible effect on the query
complexity and on our results and we omit it.

We use P to construct a PCP prover P that plays in the cap soundness game G, (Game 6.4).
The PCP prover P simulates the argument prover P and, whenever P performs a query x to the
random oracle, P performs one of the following actions depending on x.

e Root query: x is a query in {0,1}* to the PCP randomness oracle (4.

1. Construct the root vertex vy, := (0,1, z) € V.

2. Submit, via Option RND in G,,,, the root vertex vy.

3. Receive from G.,, a random string p € {0,1}" for the PCP verifier.
4. Send p to P.

e Tree query: x is a query (i, j, ho, h1,0) to the tree oracle (.. with indices i € {0,1,...,d— 1} and
j € [2], strings hg, h1 in {0,1}* or ¥ (depending on i) and salt o € {0, 1}*.

1. Sample a random & € {0,1}* and set u := (4,5, h) € Vj;
2. Submit u, ho, h1 via Option ADD in Ge,p;
3. Send h to P.

e Other query: x is a query that does not fit either case above.

1. Sample a random h € {0,1}* and send h to P.

At the end of its simulation, P outputs a proof 7 that is parsed as in Equation (1). The cheating
prover P outputs the root vertex vy := (0,1, h) where h is the root contained in 7 and also outputs
the leaf vertices {v, },¢|q) Where v, := (d, jr, ar) specifies the location j, € [I] and answer a, € ¥ in
for the 7-th query. We now argue that the constructed PCP prover P satisfies Equation (4).

Perfect simulation. We claim that the PCP prover P performs a perfect simulation of the
argument prover P, in that P gives values to P that are identically distributed as the answers from
a random oracle (. We argue this for (well-formed) queries to (..q and queries to (,..; any other
types of queries are trivially uniformly random because that is how P answers in the third bullet.

First, if P issues a query z to the randomness oracle (,.q, then P replies with the randomness P
received from the cap soundness game G,,,, which is uniformly distributed.

29



Second, suppose that P issues a query z to the tree oracle (... Since P’s queries are distinct,
either of 4, j, hg, h1 are new elements, in which case no value h has been assigned; or the salt o is
new (the salt allows P to get new randomness for the same choice of i, j, ho, h1).

When P wins then P wins. We claim that the PCP prover P wins the cap soundness game
whenever the argument prover P convinces the argument verifier V.

Suppose that V¢(x,7) = 1 for the proof m output by P and the (partial) random oracle ¢ implied
by the randomness of the simulation and cap soundness game. Let p* < Rand[vy] where vy is the
root vertex output by P and Rand is the table maintained by the cap soundness game.

We can deduce the following two items, which mean that P wins up to budget constraints.

e Vll(x;p*) = 1 where II is the PCP proof with value a, € ¥ at location j, € [I] for every r € [q],
and the value L at all other locations. This is because if the argument verifier V' accepts then the
underlying PCP verifier V also accepts: V on instance x and randomness p* accepts when, for
every 1 € [q], the answer to query j, is the value a,.

e For every r € [q], the leaf vertex v, is connected in G to the root vertex vy, (G is the graph main-
tained by the cap soundness game), provided that P has queried all vertices in the authentication
paths in the final proof 7 (which we assumed is the case). This is because p1, ..., pq in 7 are valid
authentication paths for the query-answer pairs (ji1,a1), ..., (Jq, @q) With respect to the root h in
7 (and the oracle ¢), and thus all the edges between the leaf vertices {v; },¢[q and the root vertex
vp are in the graph.

The budget of P suffices. We left to argue that the budgets given to P suffices for the cap
soundness game to accept. Let e, be the success probability of the argument prover P conditioned on
SCore o (true.) < k and scorey,, (trye.) < k where tr,,q is P’s trace of queries to the randomness oracle
Cona and try,.. is P’s trace of queries to the tree oracle e (with [trag| = tma and [triee] = tiree)-

Consider any fixed oracle ¢ that contributes to €y, i.e., P wins and the scores are at most k.
There is a one-to-one mapping of the values of the oracle ¢ to the random values in the simulation
that make P win within the required budget of k. The mapping is done in a natural way because P
does a perfect simulation of P: the randomness used by the simulation for query (either tree of
root query) corresponds to the value of the random oracle on query x.

Hence, we only need to show that when the scores are bounded by k then the budgets for the
cap soundness game suffice to win the game.

o If score ., (trie.) < k then we know that P has found at most k collisions in tre.. In this case, P
submits the same number of collisions as P because it imitates its queries. Thus, the collision
budget will suffice for the simulation.

o If score;,, (trie.) < k then we kngw that P has performed at most k “almost inversions” in tr,..
and tr,,q together. In this case, P simulates the same queries and will use Option INV at most k
times. Thus, the inversion budget will suffice for the simulation.

e Since P performs at most ¢,nq queries to the randomness oracle (,,q and at most .., queries to the
tree oracle (..., then IT will perform the same amount of queries to Option RND and Option ADD
respectively.

O
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7.2 The argument size

We prove Corollary 7.2. Fix t and €. As a base PCP, we take any constant query, constant soundness
PCP over a binary (or small) alphabet of polynomial length I. We amplify the soundness by repeating
k = O(log(t/€)) times, and get soundness epcp = O(€/t), and query complexity q = O(log(t/€)). By
Corollary 5.5, we get that the repeated PCP has permuted robustness ratio 8 = O(x) = O(log(t/¢)),
with b = O(k), and 2" = O(q) . Thus, we need to set

A =2logt+log B+ 3= 0O(logt+log(t/e)) .
Plugging this in the argument size formula given in Equation (2), we get that the argument size is:

27 N 4q-log |8+ q - A-log(1/27) = O (log(t/e) - (logt + log(t/e)) - log(l/ log(t/€))) .
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A Scoring oracle queries

For completeness, we repeat almost verbatim several definitions and a technical lemma from [CY21].
A minor difference for this paper is that we weigh queries to the randomness oracle (,,q more than
queries to the tree oracle (.

Consider an algorithm A that has query access to a random oracle ¢: {0,1}* — {0,1}*. In
this section we are interested in studying the probability that A makes “notable” queries to ¢ as
a function of the number of queries performed. Here, “notable” means one of two cases: multiple
queries that map to the same answer (i.e., a collision); or a query whose answer already appeared as
part of a prior query (i.e., an inversion). Below we assign scores to each of these cases, and bound
the probability that A can succeed in making queries that in aggregate result in a high score.

We define the notion of a query trace, then how we score a query trace, and then state and prove
our results about algorithms achieving query traces with high scores. (Note that in all cases we only
care about A’s query trace, and ignore its output.)

Definition A.1. A query trace with respect to ¢: {0,1}* — {0,1}* is a listtr = ((z1, 1), .., (e, %)),
with no duplicate pairs, such that {(x;) = y; for every j € [t].

In our construction, the oracle ( is divided via domain separation into multiple oracles, one for
each vertex in the tree, and it would make sense to have separate scores for each oracle. However,
here we give a simpler, and more generous, scoring definition that ignores the oracle separation for the
tree queries, and only distinguishes between the tree oracle (.. and the PCP randomness oracle (.q.
The benefit is a more general definition that may be of interest in other contexts. This relaxation
does not hurt our analysis because the cap soundness game does enforce domain separation, which
prevents the adversary, e.g., from using the same collision on multiple locations.

While the collision score is well-defined for any query trace, we are interested only in collisions in
the query trace of (..., and so use the notation tr. = ((l‘j, yj))je[ttm] to denote this trace.

Definition A.2. The collision score of a query trace try.. = ((xj’yj))je[tt- ] with respect to

Coreo: 10,1} — {0, 1} is defined as score.(tryee) = Zje[ttree] SCOre.o (trivee, (,Y;)) where

m—1

scoreqo (tree, (T,9)) = where m = |{j € [tuee) | Cree(®5) =y} -

The definition of inversion score is with respect entire trance tr. Recall that the oracle (.. hashes
two elements to one, and the oracle (,,q hashes 27" elements to one (and thus costs 2" units instead
of one). An inversion is a tree query that results in the value y where y already appeared one of the
hashes elements. Each query to (... adds up to two addition such “target” elements for y and each
query to C..q adds up to 27" target elements.

Let t,,.. be the length of the query trace try.. for (... and t,,q the length of the query trace
trng for Cug, and let ¢ := t,.. + 2° - t,q. For any point in time with a tree query (x,7) we set
Tinw (tr trees trimas (2, 7)) to be the set of all possible targets at that time, i.e., all hashes elements that
appear in tr.. or tr,q (before the query (z,y) was performed). This lets us define the inversion
score.
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Definition A.3. Let try,.. = ((xj’yj))je[ttree
The inversion score score,, (tri.e., trma) s defined as

] be a query trace for (i ee, and tr.,q a query trace for (.nq-
j€ltiree] SCOT€imy (trirees thmas (5,Y;)) where
1 ny € 7i’nv(trtree7trrnd’ ('1“7 y))

SCOre;,,, (trtreea trrnd7 (.Z’, y)) = {0 otherwise

Lemma A.4 (trace score lemma). Let A € N be the oracle’s output size, and tiee,tma € N query
bounds such that te.. + 2" -t,.q =t. Then for every parameter k € N and algorithm A it holds that:

CeUN T,
1. Pr |score.,(triee) > k| trye < queries, (A,¢) | < (;295) ;
|

ttree - |trtree

2. Pr |score;,, (trivee, trma) > k .
(EFirce; tina) tr,g < queries, (4,

ttree — ’trtree |7 trnd ’trrnd

)
triee < queries, (A, ; <1 (g.t‘tiree)k
|

Proof of Item 1 of Lemma A.4. In order to get a score of k, the trace must contain a collection of
at most k subsets (Ji,...,Ji) that collide (namely, ((z;) = ((zj) for all j,j' € J). Let C; be the
random variable indicating that all queries in J collide. Now, we define a set A of all such subsets
that get a score of k. The score for each J is |J| — 1. Thus, we define

J1ye ooy Jo C [tiee) are distinct
A= (Jl,...,Jg) : |Ji|22foralli€[£]
S (il = 1) =k

k
Claim A.5. For any t... > 5 we have that |A| < ( tf‘*) )

Proof. For any ¢ we count the size of A with exactly ¢ subsets. We have that Zle |Ji| = k4 ¢ and
thus there are k + £ elements and t*7 ways to choose them. For each choice of these k 4 £ elements,
there are (lz:i) ways to divide the total score of k into ¢ groups. Finally, we observe that we counted
each element in A multiple times. First, we order of the subsets does not matter and thus we divide
by a factor of £!. Next, within each subset, the order does not matter. Each subset is of size at least
2, and there are ¢ subsets and thus we divide by 2¢.

Together we get that

k_ gkt kl) k

t . (k—1)1 toe \© 2 \F
tree k tree k tree _ tree
A=) Fr St 2 e <t (5) =%
(=1

where the last inequality can be easily shown using an inductive argument (and using t,.. > 5). 0

Using this bound, we get that:

Pr[score o (trye.) > k) < Pr[3(J1,...,Jy) € A:Cy, =1,...,Cy, =1]

S S S ISP AR
(Jl,...,Jk)e.A
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2.\
_ tree
“(25) -

Proof of Item 2 of Lemma A.4. Recall that a query trace tr,.. is an ordered list containing all query-
answer pairs to the oracle, and let tr...[j] = (2;,¥;) be the j-th query pair in the list tr,... We
define random variables {I;} c(s,..] for which it holds that scorei,, (triee; trma) = > € tiree] I;. The
variables encode the contributions to the score of individual inversions:

O

I] = Scoreinv (trtree7 trrnd7 trtree [j]) .

Next, we define random variables {I;} ;i based on {I;} ;i that will help us in the analysis.
Observe that the random variable I; is not independent of the other random variables. In particular,

o |7:nv (trtreea trrnd? (m]7 y]))|
= 2)\ R

where (z;,y;) is the j-th query to the tree oracle. The random variable I ; below “rounds up” the
probability that I; = 1 to 2(j — 1)/2* regardless of other events:

PI‘[Ij = 1]

1 if=1
(jfl)*lﬂnv(trtreeytrrndv(mjvyj)ﬂ

2
Ij:=41 w.p. A

0 otherwise

Observe that it always holds that I; < I j, that I,...,I; are independent and that

- 2(7—-1) 2t
If score;, (triree ,_trmd) > k then there must exist distinct ji, . . ., ji in [tiee) such that I; = 1,..., I =1
and thus also I,...,I; = 1. Then, we get that:

Y

t ree T T
Pr[scoreinv(trtr007trrnd) 2 k] S Pr |:E| (]17 A 7]k’) E <[ tk ]> : I]l = 17 i ’I]k = 1
t ree
< Pr [3(j17~~-,jk) € ([t ]>

. :I’jl:l,...,fjkzl]

< Y Pl=1,...0=1]
(1 eriie) € (Heree])

2t 2t
-y rx
(jl:'--vjk)e([tti:ee])

2Ptk e 2R i 1 (20t b k
TookA T\ k)T 2R R TR 2 '
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