
Research Article
A Lightweight AES Coprocessor Based on RISC-V
Custom Instructions

Lihang Pan,1,2 Guoqing Tu ,1,2 Shubo Liu,3 Zhaohui Cai ,3 and Xingxing Xiong 4

1Key Laboratory of Aerospace Information Security and Trusted Computing, Ministry of Education, Wuhan 430 072, China
2School of Cyber Science and Engineering, Wuhan University, Wuhan 430 072, China
3School of Computer Science, Wuhan University, Wuhan 430 072, China
4School of Information Technology, Jiangxi University of Finance and Economics, Nanchang 330 013, China

Correspondence should be addressed to Guoqing Tu; tugq@whu.edu.cn

Received 17 September 2021; Accepted 7 December 2021; Published 30 December 2021

Academic Editor: Mian Ahmad Jan

Copyright © 2021 Lihang Pan et al. +is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

With the increasing popularity of the Internet of +ings (IoT), the issue of its information security has drawn more and more
attention. To overcome the resource constraint barrier for secure and reliable data transmission on the widely used IoT devices
such as wireless sensor network (WSN) nodes, many researcher studies consider hardware acceleration of traditional crypto-
graphic algorithms as one of the effective methods. Meanwhile, as one of the current research topics in the reduced instruction set
computer (RISC), RISC-V provides a solid foundation for implementing domain-specific architecture (DSA). To this end, we
propose an extended instruction scheme for the advanced encryption standard (AES) based on RISC-V custom instructions and
present a coprocessor designed on the open-source core Hummingbird E203. +e AES coprocessor uses direct memory access
channels to achieve parallel data access and processing, which provides flexibility in memory space allocation and improves the
efficiency of cryptographic components. Applications with embedded AES custom instructions running on an experimental
prototype of the field-programmable gate array (FPGA) platform demonstrated a 25.3% to 37.9% improvement in running time
over previous similar works when processing no less than 80 bytes of data. In addition, the application-specific integrated circuit
(ASIC) experiments show that in most cases, the coprocessor only consumes up to 20% more power than the necessary
AES operations.

1. Introduction

With the growing level of automation and intelligence in
various industries, numerous IoT devices are getting more
and more involved in production and life. +e ensuing
increase in data security risks is gaining ground. Architec-
turally, IoT systems can be divided into four layers: smart
objects, edge computing, fog computing, and cloud com-
puting [1]. +e smart objects (e.g., WSN nodes) give up
abundant resources such as computing power, memory, and
energy by embracing low-cost deployments. Optimizing
communication and security mechanisms for such con-
strained sensing platforms has been an influential trend in
the field in recent years [2]. On the one hand, optimizations
for resource-intensive algorithms are being introduced to
improve the performance and security of constrained

devices. However, simplified algorithms, such as cryptog-
raphy [3], may be limited in their scope of application as they
do not conform to common standards. On the other hand, to
improve the efficiency of the central processing unit (CPU)
in solving specific problems, John Hennessy [4] introduced
the concept of domain-specific architecture (DSA), which
can be seen as a class of processors tailored to a specific
group of applications. Likewise, the developers of the RISC-
V instruction set architecture (ISA) have reserved space for
the implementation of DSA, which is significant for light-
weight platforms to break through the limitations. For ex-
ample, in the information security field, DSAs based on the
RISC-V standard will provide a new and flexible security
option for IoT devices.

In terms of security, IoT systems can be divided into
three layers: perception layer, transportation layer, and

Hindawi
Security and Communication Networks
Volume 2021, Article ID 9355123, 13 pages
https://doi.org/10.1155/2021/9355123

mailto:tugq@whu.edu.cn
https://orcid.org/0000-0003-4748-4367
https://orcid.org/0000-0002-3263-1822
https://orcid.org/0000-0002-6347-7805
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/9355123


application layer. +e perception layer faces many security
threats such as eavesdropping, malicious routing, and
message tampering [5]. In general, cryptographic technology
is still the primary solution to ensure data confidentiality,
authenticity, integrity, and address other IoT security
challenges [6]. According to the survey of [7], the percentage
of cryptographic algorithms used in IoTpapers has increased
significantly after 2016. +e study in [7] also showed that the
most frequently used symmetric key algorithm is AES.

Block ciphers such as AES usually have several different
modes of operation to cope with various scenarios. With an
abundance of sensors connected, IoT devices can collect
large amounts of data at high speed, whose value decays over
time [8]. Additionally, some multimedia sensors can capture
more sensitive data with greater relevance, such as image
sensors. To avoid block ciphers exposing associations be-
tween data units, we have adopted the cipher block chaining
(CBC) mode [9] for handling data in IoT scenarios. Fur-
thermore, we use it for two other reasons:

(i) It allows easy integration of cipher-based message
authentication code (CMAC)

(ii) Its decryption process can be parallelized on the
server side

While CBC has the disadvantage of serial-only en-
cryption, in a single-board environment with limited re-
sources and low-performance requirements, parallel
computing is not worth the cost. Similarly, [10] also sug-
gested using CBC mode in WSN nodes to seek low-power
operation, and [11] also chose CBC mode in lightweight
encryption systems.

Overall, this article presents a lightweight RISC-V co-
processor that supports AES-CBC and AES-CMAC func-
tions. +e detailed contributions are summarized as follows:

(1) We have formulated a RISC-V instruction extension
scheme for AES at the application level. Receiving
the starting address and length via instruction op-
erands, the coprocessor can perform burst encryp-
tion (or authentication) of contiguous memory data.
+e intermediate results of this process are not
visible to the CPU. Besides, the addressing range of
the entire memory space and the user-specified
workload size enhance the flexibility of memory
allocation.

(2) Using the direct memory access channel provided by
Hummingbird E203, the proposed coprocessor can
access the system memory in parallel while
encrypting data, which reduces significantly the
running times.

(3) We have built an experimental prototype on an
FPGA platform based on the SoC provided by
Hummingbird E203. Furthermore, we run applica-
tions embedded with RISC-V custom instructions
and conducted ASIC evaluation experiments to
prove that the proposed coprocessor scheme can
achieve high operating speed and low additional
power consumption.

+e remainder of this article is organized as follows:
Section 2 introduces prior knowledge of the RISC-V ISA and
AES; Section 3 presents current research on RISC-V co-
processors and instruction extensions and a survey of
hardware implementation paths for AES; Section 4 presents
the design method of the coprocessor; Section 5 shows the
experimental results and evaluates; and Section 6 introduces
the future work and concludes.

2. Preliminary

2.1. RISC-V ISA. RISC-V is a reduced instruction set created
at the University of California, Berkeley (UCB) in 2010 [12].
It is not as redundant and complex as x86 nor requires high
royalty fees like ARM. Compared to other open-source
reduced instruction sets, such as OpenRISC and SPARC,
RISC-V is highly simplified, refined, and modular. Devel-
opers have the flexibility to add or remove instruction set
modules to implement custom processors based on different
application scenarios. For example, Western Digital uses it
for storage applications, NVidia uses it for graphic pro-
cessors, and Xiaomi uses it in wearables [13], which means
that RISC-V is highly scalable and will be of great use even in
the IoT space.

+e coprocessor interface is another actual proof of the
high scalability of RISC-V. Unlike general-purpose pro-
cessors, the purpose of a coprocessor or accelerator is not to
execute all general-purpose instructions but to specialize in
processing a specific type of instruction or custom in-
structions. A coprocessor design can optimize a particular
algorithm as much as possible while maintaining a necessary
range of generality. In particular, coprocessors excel at
computation-intensive tasks, such as artificial intelligence
[14] and information security.

+e RISC-V instruction set reserves the coding space for
custom instructions. As shown in Table 1 [12], there are four
sets of predefined custom instruction operation codes, and
all the custom instructions in this article are defined under
the custom-0 opcodes.

2.2.Hummingbird E203. Various implementations of RISC-
V processors are now appearing worldwide, many of which
are open-source processor IPs.+e design introduced in this
article is based on the Hummingbird E203, an open-source
RISC-V processor IP designed for low-power IoT devices.

+e Hummingbird E203 processor (hereafter referred to
as E203) is a 32-bit RISC-V architecture IP developed by
Nuclei Systems Technology for low-power, small-area sce-
narios and is open-sourced on GitHub1. As shown in
Figure 1, E203 has a two-stage variable-length pipeline ar-
chitecture, with the first stage completing instruction
fetching and the second stage responsible for decoding,
execution, and write-back. Memory access instructions and
other multicycle instructions (including most custom in-
structions) are dispatched to different execution subunits.

Similar to the Rocket Custom Coprocessor (RoCC) interface
[15], E203 also provides an interface called Nuclei Instruction
Co-unit Extension (NICE) for coprocessor extension. As in

2 Security and Communication Networks



Figure 1, custom instructions will be dispatched from the
execution unit (EXU) to the coprocessor through the NICE
request channel. +en, the coprocessor writes the execution
result back to EXU through the NICE feedback channel.
Moreover, the separate memory access channels provide the
coprocessor with direct access to system memory.

2.3. AES Algorithm. AES algorithm is a block cipher algo-
rithm released by the National Institute of Standards and
Technology (NIST) [16] in 2001 to replace the DES algo-
rithm. +ere are three key lengths of AES, 128 bits, 192 bits,
and 256 bits, with increasing complexity and security.
However, the security of AES-128 is sufficient for low-power
IoT, so this article only deals with the study about AES-128
(the following AES specifically refers to AES-128).

AES encryption is divided into two processes: the en-
cryption process of the plaintext P and the expansion
process of the key K, as shown in Figure 2. +e plaintext P

needs to go through ten rounds of calculations to obtain the
ciphertext C. Except for the last round, each round (called
round function) consists of 4 steps, including SubBytes,
ShiftRows, MixColumns, and Add-Roundkey. +e key ex-
pansion (or key schedule) also has ten rounds of operations,
and each round generates a round key for adding to the
plaintext in the Add-Roundkey step. +e key expansion
operation requires g-function processing on the last 4 bytes
of the input (vector 3 in Figure 2), which includes 3 steps

similar to the round function components (shift, SubBytes,
and constant vector addition, but no MixColumns).

+e following will briefly introduce the specific princi-
ples of the above steps.

+e 128-bit plaintext is organized into a 4-by-4-byte matrix,
which is called the state matrix after bit-by-bit addition (XOR)
with the seed key.+e SubByte (or S-Box) operation nonlinearly
substitutes each byte of the original state matrix into a new byte.
It consists of the affine transformation and the modular
multiplicative inverse calculation in the Galois field GF(28) and
can usually be expressed as

Y � A · X
− 1

+ V, (1)

where A is a constant matrix of 8 by 8 bits, and V is an 8-bit
constant vector, collectively called the affine transformation.
ShiftRows requires the row i of the input state matrix tomove
i bytes to the left. Next, supposing that s·,j is the column j of
the state matrix output by MixColumns, and s·,j

′ is the
column j of the input one, the MixColumns can be given by

s·,j � M · s·,j
′ (0≤ j≤ 3), (2)

where M is a constant matrix of 4 by 4 bytes.
All the above mathematical operations are implemented

in the GF(28), among which the calculation of the modular
multiplicative inverse is the most complicated, and the
circuit optimization of S-Box andMixColumns is the focus of
this article.

Table 1: RISC-V base opcode map, inst[1 : 0]� 11.

inst[4 : 2] 000 001 010 011 100 101 110 111 (> 32b)inst[6 : 5]
00 LOAD LOAD-FP custom-0 MISC-MEM OP-IMM AUIPC OP-IMM-32 48b
01 STORE STORE-FP custom-1 AMO OP LUI OP-32 64b
10 MADD MSUB NMSUB NMADD OP-FP reserved custom-2/rv128 48b
11 BRANCH JALR reserved JAL SYSTEM reserved custom-3/rv128 ≥ 80b

Instruction
Fetch
Unit

IR
Decode

&
Dispatch

Long-
pipes

ALU

Dec
& Disp LSU

NICE
Request
Channel

Memory
Request
Channel

Coprocessor

Memory
Feedback
Channel

NICE
Feedback
Channel

Write-
back unit

Coprocessor

Load and
Store Unit System

Memory

Execution Unit

Write-
back
Unit

Figure 1: E203 pipeline stages and coprocessor location.

Security and Communication Networks 3



Just like other block ciphers, AES also has several modes
of operation. We chose CBC mode from the five modes
(ECB, CBC, OFB, CFB, and CTR) recommended by NIST.
An additional initial vector (IV) is required for encryption
(see Figure 3) in CBCmode.+e encryption of each plaintext
block depends on the previous ciphertext block, which
makes CBC more secure for pattern-free encryption [17],
while the server side can still perform CBC decryption in a
high-speed parallel.

+e CMAC algorithm released by NIST in 2006 is a
message authentication algorithm based on the CBC mode.
More specifically, CMAC is based on the CBC-MAC mes-
sage authentication code to overcome the security concerns
of the latter in the case of variable-length messages [18].
CBC-MAC directly uses the last block in the CBC mode
cipher as the authentication tag. Suppose a message M
consisting of n blocks (M � m1, m2, . . . , mn􏼈 􏼉) with a CBC-
MAC authentication tag t � Fk(M). At this point, after
obtaining M and t, the attacker can still construct M′ �
M, m1⊕t, m2, . . . , mn􏼈 􏼉 without knowing the key k, so that
the CBC-MAC authentication tag is still equal to t

(Fk(M′) � t), which is called an extension attack. CMAC
differs in that two subkeys (k1 and k2 in Figure 4) are
generated using the initial key, and the final message block is

XORed with different subkeys depending on the message
length, which avoids extension attacks in this case.

In this design, we have integrated support for CMAC
based on AES-CBC.

3. Related Work

+is section will discuss various AES coprocessor design
schemes based on the RISC-V ISA and different approaches
to AES hardware implementation. As the RISC-V has grown
in popularity, more and more domain-specific coprocessor
units have been implemented. Most of them [14, 19–21] are
based on custom instructions defined by RISC-V. Not only
that, as one of the most famous RISC-V coprocessor in-
terfaces, the RoCC interface provides the coprocessor with
access to the system memory (or cache), which is more
efficient than general-purpose registers and also provides a
larger application space for the coprocessor. +e NICE
interface derived from RoCC also inherits a similar memory
access mechanism.

Ben Marshall [22] et al. explored and proposed six re-
quirements that a standard AES extension scheme should

IV

K

C1 C2 CN

P1 P2 PN

AES-
Enc

AES-
Enc

AES-
Enc

+++

Figure 3: AES block encryption in CBC mode.

C (128bit)

N

Y

round 10?

Add-Round-
Key

Round-
keys

MixColumns

Y
N

round 10?

Shi�Rows

Round
Function

SubBytes

Add-Round-
Key

P (128bit) K (128bit)

Key
Expansion

g0 1 2 3

+

+

+
+

0 1 2 3

Figure 2: AES encryption process diagram. K T

AES-EncAES-EncAES-Enc

AES-Enc

m2 mnm1

0(128)

padded?

×2×2

k1

k2
0

1

+ +

…

Figure 4: AES-CMAC algorithm diagram.

4 Security and Communication Networks



follow, including supporting all the parameter sets of AES,
which has good universality for any design under the RISC-
V architecture. However, the cost of being all-inclusive is the
sacrifice of some efficiency and safety. +e extensions they
proposed are implemented separately with the various
components of AES to reduce hardware complexity. Still, the
CPU and system memory are highly involved in this,
resulting in a significant loss of speed and risk on untrusted
platforms. In other words, when faced with a white box
environment, it will be as fragile as unwhitened software
implementations.

+e encryption engine proposed by Utsav Banerjee [23]
includes an AES black box (or grey box) based on a RISC-V
processor, which transmits data through a memorymapping
interface. It can perform standalone computations through a
dedicated 2-KB RAM and writes back the results via in-
terrupts. However, this solution also has various limitations
such as (i) excessive dependence on the processor micro-
architecture, (ii) the need for additional memory space, and
(iii) the fact that the functionality of the cryptographic
engine is fixed in hardware and cannot flexibly respond to
the diverse requests from the CPU. On the contrary, the
coprocessor proposed is based on custom instructions and
system memory access channels. It can implement the same
function based on any RISC-V processor IP (such as Rocket)
that opens a similar coprocessor interface.

Below we will discuss the existing state of the art on
implementation details of the AES circuit. In the current
research, there are two main implementation routes: one is
to aim at small circuit area and low energy consumption, and
the other is to pursue a high operating frequency with a
slight circuit delay. No matter which implementation, it is
inseparable from the structure design of round function and
key expansion. +e round function structure is a typical
iterative structure, while there are two different structures in
hardware implementation: unrolling structure and rolling
structure [24]. +e former can implement the pipeline
mechanism, whereas the latter takes up much fewer re-
sources. As for the key expansion, one of the implementation
schemes is to compute all round keys at once and store them
[25]. However, sacrificing such storage space is only con-
ducive to long-lived keys. In case that the IoTdevices cannot
afford the extra storage overhead or use short-term keys, it is
more sensible to generate the round keys in real time. Be-
sides, most WSN nodes use dynamic session keys as one of
the security measures, which makes the real-time key ex-
pansion more advantageous.

Research on the internal structure of the round function
has focused on the number of S-Box units, and there are
three mainstream implementation options, which differ
primarily in terms of time and space trade-offs. +ere are 16
and 4 S-Box transformations in the round function and key
expansion, respectively. +e AES structure proposed in [26]
is composed of 4 shared S-Boxes, which are used alternately
by key expansion and round function for 1 and 4 clock
cycles, respectively (see Figure 5(a)). To implement an ul-
timate small-area circuit, a team from Southeast University
[27] proposed a single S-Box structure, which requires 20
cycles to complete a SubBytes step (see Figure 5(b)).

Despite this, we adopt the same efficient structure as in
[23], as shown in Figure 5(c), using 20 S-Boxes to complete
SubBytes within one cycle. Such a structure can spend only
11 clock cycles to complete the encryption of one plaintext
block, making full use of the time required for the copro-
cessor to access the memory.

+e S-Box transformation is the most complex step in
AES and the most effective entry point to reduce the circuit
area. Current S-Box implementation schemes mainly in-
clude look-up table method (LUT) and combinatorial logic
implementations, which include composite field mapping
(CFM) and DSE S-Box [28] techniques. In addition, some
scholars have proposed a rotating binary decision diagram
(TBDD) [29]. +e LUT and TBDD schemes feature short
critical paths. Still, they occupy considerable hardware re-
sources. +e DSE method is not suitable for low-area
implementation despite the merit of the low flip rate. In this
article, CFM is used to implement the S-Box.

CFM maps the input bytes to the composite field for
inversion and then maps it back to the original field,
avoiding the difficulty of computing the multiplicative in-
verse directly on the GF (28). Although the critical path of
the CFM implementation is relatively long, it is tolerable
considering that the low-power processors of IoT devices
will not run at very high frequencies (< 100MHz). Gaded
and Deshpande [30] proposed a new composite field
structure that optimizes the path delay to some extent, but it
is not the optimal area solution.

4. AES Coprocessor

In this section, we describe the design of AES custom in-
structions and the architecture of the coprocessor. Unlike
[22], our AES extended instructions can process tens of bytes
of data at a time (there may be hundreds of bytes when
processing multimedia data such as images) and will not
expose the intermediate value in the encryption to the ap-
plication. Driven by instructions, our coprocessor can
continuously read or write memory from the starting ad-
dress while performing AES encryption operations to
shorten the running time.

4.1.CustomInstructionsDesign. +e coprocessor instruction
format defined by E203 is shown in Figure 6, where the
opcode field is determined by the instruction opcode of
custom0-4 defined by RISC-V ISA. Each coprocessor in-
struction can encode two source register operands (rs1, rs2),
a destination register operand (rd), and their enable bits (xs1,
xs2, and xd). +e funct7 field allows re-encoding of co-
processor instructions.

Since the E203 is a 32-bit wide design, we cannot pass
AES data directly in the form of register addressing or
immediate addressing. So we chose the more efficient way of
giving the memory address to the coprocessor via registers.
+e coprocessor can access the system memory directly
through the memory access channel provided by E203. For
the coprocessor to work continuously, the coprocessor needs
the length of the plaintext and the starting address.

Security and Communication Networks 5



+erefore, AES encryption requires at least two coprocessor
instructions.

As shown in Table 2, we define three types of custom
instructions, KEY-UPDATE for updating the key cache of
the coprocessor and INIT and LOOP instruction pairs for
completing encryption or authentication. +e INIT in-
struction initializes the control unit of the coprocessor and
passes the plaintext read address and the write-back address
of the result. LOOP is used to start the coprocessor running
and tell it the length of the workload.

4.2. Coprocessors Architecture. +e AES coprocessor is
mainly composed of four parts (see Figure 7): the decoding
unit (DEC), the address generation unit (AGU), the load and
store unit (LSU), and the AES computation core. When a
custom instruction is dispatched to the coprocessor, the
DEC and AGU receive instruction information from the
NICE request channel (Figure 1). +e former redecodes the
32-bit instruction, and the latter holds the values of the two
source registers.+eDEC outputs different control signals in
different functional modes to drive the AES core to do its

corresponding work. +e AGU maintains a counter to
generate the addresses required for all memory accesses. At
the same time, it ends the execution of LOOP instructions
when appropriate. +e LSU then accesses the memory based
on the address information provided by the AGU. Due to the
32-bit width of the memory, accessing a 16-byte block of
data takes at least four clock cycles (a total of 5 cycles if the
response delay of the memory is included).

+e AES core is the primary execution unit of the co-
processor and consists of the control unit (CU), the key
expansion unit, and the round function unit. In addition, the
AES core has a key cache, which, once the KEY-UPDATE
instruction has been executed, provides the AES key for all
subsequent encryption or authentication until the next KEY-
UPDATE instruction arrives. +e central processor does not
need to store keys in risk memory but updates the key cache
after each key agreement, which malicious applications
cannot read again in any way.

Correspondingly, our AES core has a PLT cache, which
matches the speed of accessing memory and AES compu-
tation. It takes five clock cycles for the coprocessor to access
a 128-bit block of data and 11 clock cycles to encrypt or

Round
Function

Key
Expansion

Cycle 1-4 Cycle 5

128
32

32
32

S-Box
×4

+

(a)

Round
Function

Key
Expansion

S-Box…

+

Cycle 5-20 Cycle 1-4

128 32
8

(b)

Round
Function

Key
Expansion+

128 32

S-Box
×16

S-Box
×4

(c)

Figure 5: +ree AES circuit structures with different S-Box numbers: (a) four S-Boxes, (b) single S-Box, and (c) twenty S-Boxes.

funct7

31 25 24 20 19 15 14

7 5 5 1 1 1 5 7

rs2 rs1 xd xs1 xs2 rd

13 12 11 7 6 0

opcode

Figure 6: Coprocessor instruction encoding format.

6 Security and Communication Networks



authenticate a block of data. To maintain the uninterrupted
operation of the AES core, we designed a finite-state ma-
chine to control memory access and AES calculations.

As shown in Figure 8, the coprocessor enters the Load-
key state from IDLE when the KEY-UPDATE instruction
arrives, and it returns to IDLE after instruction committing.
+en, the coprocessor will enter different states according to
the decoded information of the INIT instruction: prereading
the first plaintext block (Load-block-no.1, LB1) in CBCmode
or skipping LB1 in CMAC mode. +e latter is because the
AES core first needs to encrypt an all-0 block to obtain the
CMAC subkeys. Finally, the Wait4Loop state will remain
after committing INIT.

+e coprocessor will enter the read/write memory loop
when the LOOP instruction arrives and resume IDLE when
it is finished. If the LOOP instruction does not come after the
first block of data has completed its AES computation, the
coprocessor will advance to the Store state and return to
Wait4Loop again when the write memory has finished, as
shown in Figure 9.

+e AES encryption process can be divided into three
steps as shown in Figure 9, namely, PREPARATION, SET-
UP, and LOOP-COMPUTATION. PREPARATION is the
process of updating the key before encryption or authen-
tication, and it is not required when the key is unchanged.
SET-UP and LOOP-COMPUTATION are always executed

Table 2: +e proposed definition of coprocessor instructions.

KEY-UPDATE
INIT

Loop
CBC-INIT CMAC-INIT

funct7[2 : 0] 000 001 101 011
rs1 Read address for key Read address for plaintext Length of plaintext
rs2 (Disable) Write address for result (Disable)
rd (Disable) (Disable) (Disable)

Data Path

Control Path

Memory Channel

Instrucion Channel

ROUND-FUNCTION
PLT

Cache
Plt

KEY
Cache

Key

KEY-EXPASION

M
U

X KEY
EXP

CU

LSU

Load

AES Co-processor

NICE INTERFACE

Store
Addr

RS
Value

AGU DEC
Commit

Instr

Cip

Key

Plt
AES Core

M
U

X

Round-
Key
Reg A

R
K

S-
Box

S
R

M
C

Cip

Figure 7: Structure of the proposed AES coprocessor.

Security and Communication Networks 7



sequentially in pairs, and the timing of the arrival of the
LOOP instruction determines the exact execution flow. In
any case, however, the coprocessor reads the plaintext block
in advance to maintain the continuous operation of the AES
core.

+e authentication process is similar to encryption,
except that the coprocessor does not read the plaintext block
in the SET-UP step, but instead generates two CMAC
subkeys. Another difference is that only the last cipher block
will be written back as an authentication tag.

4.3. Hardware and Software Co-Design. +is part will de-
scribe the software and hardware codesign scheme when the
coprocessor runs in CBC mode. +is solution entrusts part

of the calculations to the CPU to maintain the simplicity of
the coprocessor structure and the compatibility of different
modes of operation.

+e AES algorithm in CBC mode requires an additional
initial vector (IV), which is only used for XOR with the first
plaintext block. However, the involvement of the IV into the
coprocessor will inevitably increase the complexity of the
RTL design and instruction system to the detriment of
timing convergence and application. +erefore, we can
complete the XOR step in software (i.e., using general in-
structions) after obtaining the IV, thus avoiding the co-
processor from directly processing it. +e RISC-V general
instructions Load and XOR are executed in the LSU and
ALU of E203, respectively. Together with the custom in-
structions, they complete the entire AES-CBC encryption.

Load
Key

KEY-
UPDATE

000

001
Commit

CMAC-INIT

IDLE

CBC-INIT

011

Load
Block

111

Store

LOOP

LOOP

Load
Block
No.1

101

100

Wait4
Loop

Figure 8: Finite-state machine for memory access control.

LOOP-COMPUTATION

AES2 AES3 AES4
Block3 Block4 Block5

Cipher2 Cipher3

LB3 S2 LB4 S3 LB5

PREPARATION

LSU

AES

KEY-
UPDATE COMMIT

Advance
Store

Late
LOOP

IDLE IDLE

IDLE

LK

Key

INIT

LB1 LB2

COMMIT

COMMIT

W4L W4L W4L

Block1 Cipher1 Block2

AES1

SET-UP

ID
LE

IDLEIDLE

IDLE

S1

S N-2 S N-1LB N S N

Block N
Cipher

N-1
Cipher N

AES N-1 AES N

LOOP-COMPUTATION

Figure 9: AES coprocessor instruction execution flowchart (CBC mode).

8 Security and Communication Networks



Under the software and hardware codesign, we can easily
program to achieve AES encryption and authentication
functions. In Algorithm 1, we show how to use custom
instructions to implement CBC encryption and CMAC
authentication. +e CBC encryption is outlined as follows:

(i) After completing the key agreement with the server,
update the coprocessor’s key (line 17)

(ii) In the CBC encryption function, the first thing to do
is to preprocess the plaintext, that is, XOR with IV
(line 3–5)

(iii) After executing the INIT and LOOP instructions, if
we need to save the plaintext, we can perform XOR
again to restore it (lines 8–10)

Since IV is not required, we only need to execute custom
instructions in the CMAC function.

5. Implementation and Evaluation

+is section presents our approach to AES circuit area
optimization and the validation and evaluation of the ex-
perimental prototype. Our experimental results demonstrate
the speed advantage of the direct memory access-based
coprocessor when processing larger data volume and the
small additional power consumption it brings.

5.1. Circuit Area Optimization. +e following will briefly
introduce the area optimization method we implemented in
this work, mainly embodied in S-Box and MixColumns
parts.

+e S-Box expression (1) based on composite field
mapping can be rewritten as

Y � A · δ− 1
(δX)

− 1
+ V, (3)

where δ is the composite field mapping matrix, and δX is
the mapping of X on the composite field GF ((24)2). At
this time, the multiplicative inverse (δX)− 1 is also de-
fined on the composite domain. δ− 1 is the inverse
mapping matrix, which can map the multiplicative in-
verse back to the GF (28). Here, the choice of composite
field and the δ determines the complexity of hardware
implementation.

+e MixColumns operation expression is in the form of
equation (2). Fujii et al. [31] proposed a compact multi-
plexing form to reduce the circuit area, which is given as

s0,j � 2A01 + s1,j
′ + A23,

s1,j � 2A02 + s0,j + A01,

s2,j � 2A23 + s3,j
′ + A01,

s3,j � 2A02 + s2,j + A23,

(0≤ j≤ 3).

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(4)

where Axy � sx,j
′ + sy,j
′ , 0≤x, y≤ 3. +is formula converts

matrix multiplication into vector addition and reduces the
circuit area from 108 XOR gates in the traditional method to
97 by multiplexing logic gates at the expense of lengthening
the critical path.

5.2. Experimental Results and Analysis. Based on the E203
SoC, we have completed a prototype that can execute custom
instructions on the Atrix-7 FPGA platform (Experimental
Development Board from Nuclei DDR200T 2) to verify the
functionality of the AES coprocessor IP.

+e RISC-V compiler can compile custom instructions
by embedding insn pseudo-instructions, which can be de-
scribed as

.insnropcode, func3, func7, rd, rs1, rs2, (5)

where the func3 is a 3-bit field consisting of x1, x2, x d (see
Figure 6).

Based on the hardware-software codesign, we wrote test
programs to verify the functionality of the coprocessor in
different modes. We built a RISC-V compiled environment
under Linux to complete the system verification at an op-
erating frequency of 60MHz. Also, we measured the co-
processor operation speed in the program by reading the
clock cycle counter, one of the control and status registers
(CSR), defined in the RISC-V architecture.

+e design takes direct memory access to get data from
system memory, reducing the risk of exposing the
encrypted intermediate results to untrusted platforms.
Also, the parallel access design has a significant speed
advantage in processing data structures stored continu-
ously, such as arrays. In the literature [23], the AES core
has the same processing speed of 11 cycles/block. Still, due
to the use of memory mapping, the 32-bit CPU needs to
spend at least eight additional clock cycles for memory
reads and writes for every 16-byte workload, thus re-
quiring at least 19 cycles per block on average. In contrast,
our proposed coprocessor already spends less than 19
cycles/block when encrypting more than two plaintext
blocks (32 bytes) and close to 11 cycles/block when
encrypting more than 20 plaintext blocks (320 bytes) (see
Figure 10). +e time savings relative to the memory
mapping method range from 25.3% to 37.9% for typical
workloads of 5–20 blocks of data.

Below, we consider a specific situation. Suppose that
there is a large amount of external data to be encrypted (data
volume of tens to hundreds of KB). Due to the large data
volume, overall encryption will be an unbearable memory
burden for resource-constrained devices. One of the solu-
tions here is to encrypt data by segments of different sizes
depending on the memory margin. Moreover, the last
16 bytes of the ciphertext can be used as the IV in the next
encryption to achieve continuous CBC mode. Since the
coprocessor can share all memory space and handle
workloads of different lengths, there is no need for memory
copy except for IV protection (if full CBC encryption is
required). In this scenario, the flexible allocation of memory
space for encryption provided by the coprocessor will reduce
the memory burden of the device. Not only that, such co-
processor IP is suitable for all RISC-V cores equipped with
similar interfaces, such as Rocket core and E203.

We have performed segmentation encryption on the
bitmap data of a 40 020-byte BMP image at a frequency of
60MHz, and Table 3 shows the results. In the case of

Security and Communication Networks 9



relatively abundant memory space, the encryption
throughput rate has reached around 600Mbps.

Furthermore, we also completed postsynthesis simula-
tions using instructions in CBC mode as test vectors at 1.2 V

and 25 °C process conditions in TSCM-65-nm technology
(typical case) and clock frequency up to 140MHz. In ad-
dition, we evaluated the area and power consumption of the
AES core and the entire AES coprocessor at a 100MHz

Input:+e address of all parameters, including the key, the plaintext (or message), the ciphertext (or tag) and the IV. Length of the
plaintext (or message).

(1) Function AES_CBC_ENCRY(addrp, addrc, lenp, addriv):
(2) if len≥ 0 then
(3) for i � 0→ 15 do
(4) addrp[i]←(addrp[i]⊕addriv[i])

(5) end
(6) CBC_INIT (addrp[i], addrc[i]) //+e embedded custom instruction
(7) LOOP (lenp) //+e embedded custom instruction

/∗ If the plaintext needs to be protected, then ∗/
(8) for i � 0→ 15 do
(9) addrp[i]←(addrp[i]⊕addriv[i])

(10) end
(11) end
(12) Function AES_CMAC_AUTHEN (addrm, addrt, lenm):
(13) if len≥ 0 then
(14) CMAC_INIT (addrm, addrt) //+e embedded custom instruction
(15) LOOP (lenm) //+e embedded custom instruction
(16) end

/∗ +e encryption procedure is as follows ∗/
/∗ Here is key agreement ∗/

(17) KEY_UPDATE (addr)k //+e embedded custom instruction
/∗ Here is IV synchronisation and plaintext padding ∗/

(18) AES_CBC_ENCRY((addrp, addrc, lenp, addriv)

/∗ Next is message authentication ∗/
/∗ Here is message padding ∗/

(19) AES_CMAC_AUTHEN (addrm, addrt, lenm)

ALGORITHM 1: Software and hardware codesign.

2
19

20
11.8

5
14.2

20 40 60 80 100 1200
Numbers of Blocks

10

15

20

25

30

35

Av
er

ag
e C

yc
le

s p
er

 B
lo

ck
 

CBC
CMAC

Figure 10: Changing trend of the average cycle as the workload increases.

10 Security and Communication Networks



clock. Table 4 shows the comparison with the existing state
of the art, from which we can see that when comparing the
single AES core, the implementation that goes the small-area
route [27, 32] has lower power consumption and signifi-
cantly insufficient throughput. However, in terms of energy
efficiency, the proposed design yields performance close to
[27]. Compared with [23], which has the same processing
speed, our proposal is almost the same in terms of area and
better in energy efficiency. Moreover, the experiment also
shows that the direct memory access-based coprocessor

proposed in this article does not lead to excessive additional
power consumption, which is only 1.184 times that of the
AES core when processing 16 blocks of data.

As shown in Figure 11, the power consumption of the
coprocessor tends to stabilize when processing more than
ten blocks of data. +e power consumption of the modules
other than the necessary AES core does not vary significantly
with the size of the workload. Figure 12 shows that the
additional power consumption caused by the coprocessor
when encrypting more than 10 data blocks in CBC mode is

Table 3: Onboard operation result of segmented image encryption.

Segment size/bytes Original Cipher Total cyclesa +roughput (Mbps)a

256 40 736 471.56
512 34 267 560.59
1024 30 988 619.90

40 020b 27 632 695.19

aData excluding the cycle cost of communicating with peripherals. bNo segmentation.

Table 4: Comparison of AES circuits with different implementation routes.

[27] [32] [23]
Proposed

AES core Coprocessor
Technology 28 nm 65 nm 65 nm 65 nm
Voltage (V) 0.5 1.1 0.8 1.2
Frequency (MHz) 50 100 16 100
Cycles (block) 213 527 11 12c 11 27
Area (mm2) 0.002 8 0.005 4 0.015 0.014 7 0.031 6(2.150 ×)
Power (mW) 0.045 0.246 — 6.07c 7.19c (1.184 ×)
Energy efficiency (pJ · bit−1) 1.5a 10.13 4.08b

(norm to 1.2 V) (4.31) (12.05) (9.18) 5.69 —
aData at TSMC-28-nm technology. bMeasured energy. cData obtained by encrypting 16 blocks of plaintext in CBC mode.

2 3 4 5 6 7 8 9 10 11 121 13
Numbers of Blocks

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

Av
er

ag
e P

ow
er

 (m
W

)

CBC
CMAC

(a)

2 3 4 5 6 7 8 9 10 11 12 131
Numbers of Blocks

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Av
er

ag
e P

ow
er

 (m
W

)

CBC
CMAC

(b)

Figure 11: Average power consumption of AES core (a) and other modules (b) at different encryption workloads.

Security and Communication Networks 11



less than 20% of the power consumption of the AES core.
Besides, this value is even lower in CMAC mode, where the
coprocessor does not need to write to memory frequently.

6. Conclusion and Future Work

+is article presents an implementation of an AES copro-
cessor that takes advantage of the direct memory access
channels of RISC-V processors (including E203 and Rocket
cores) to achieve independent access to memory data for
high utilization of AES cores. We also designed a set of AES
custom instructions within the RISC-V framework, with the
specified data length as the processing unit, providing a
developer-friendly programming interface. Our solution is
more specialized and efficient than the existing RISC-V AES
standard extension solutions.

Our experimental prototype on an FPGA platform
shows that the coprocessor scheme proposed in this article
has a speed advantage in large workload scenarios. Our ASIC
postsynthesis simulation experiments show that the co-
processor extension scheme does not introduce significant
additional power consumption.

In future work, we will add a true random number
generator, asymmetric encryption, and hash operation unit
to the existing AES coprocessor to achieve the goal of
building a complete data transmission security architecture
similar to [23]. +e difference is that we are targeting an
instruction-driven cryptographic coprocessor. It will im-
plement functions including session key generation, cer-
tificate verification, session key encryption, and data
encryption through custom RISC-V instructions. It does not
need to obtain the symmetric key from the outside, nor does
it provide any interface to access the original key, which will
dramatically reduce the risk of session key leakage.

Data Availability

+e data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

+e authors declare that they have no conflicts of interest.

Acknowledgments

+is work was supported by the National Natural Science
Foundation of China (Grant no. 41971407) and the Wuhan
Frontier Project on Applied Foundations (Grant no.
2020020601012266).

References

[1] M. N. Khan, A. Rao, and S. Camtepe, “Lightweight crypto-
graphic protocols for iot-constrained devices: a survey,” IEEE
Internet of <ings Journal, vol. 8, no. 6, pp. 4132–4156, 2020.

[2] J. Granjal, E. Monteiro, and J. Sa Silva, “Security for the
internet of things: a survey of existing protocols and open
research issues,” IEEE Communications Surveys & Tutorials,
vol. 17, no. 3, pp. 1294–1312, 2015.

[3] A. Hafsa, A. Sghaier, J. Malek, and M. Machhout, “Image
encryption method based on improved ECC and modified aes
algorithm,”Multimedia Tools and Applications, vol. 80, no. 13,
pp. 19769–19801, 2021.

[4] J. L. Hennessy and D. A. Patterson, “A new golden age for
computer architecture,” Communications of the ACM, vol. 62,
no. 2, pp. 48–60, Jan. 2019.

[5] Q. Jing, A. V. Vasilakos, J. Wan, J. Lu, and D. Qiu, “Security of
the internet of things: perspectives and challenges,” Wireless
Networks, vol. 20, no. 8, pp. 2481–2501, 2014.

10
0.195262

50 100 150 200 250 300 350 4000
Numbers of Blocks

0.15

0.2

0.25

0.3

0.35

0.4

Av
er

ag
e P

ow
er

 R
at

io

CBC
CMAC

Figure 12: +e power ratio of other parts to the AES core.

12 Security and Communication Networks



[6] A. B. Pawar and S. Ghumbre, “A survey on iot applications,
security challenges and counter measures,” in Proceedings of
the n2016 International Conference on Computing, Analytics
and Security Trends (CAST), pp. 294–299, IEEE, Pune, India,
December 2016.

[7] S. K. Mousavi, A. Ghaffari, S. Besharat, and H. Afshari,
“Security of internet of things based on cryptographic algo-
rithms: a survey,” Wireless Networks, vol. 27, no. 2,
pp. 1515–1555, 2021.

[8] S. Qi, Y. Lu, W. Wei, and X. Chen, “Efficient data access
control with fine-grained data protection in cloud-assisted
IIOT,” IEEE Internet of <ings Journal, vol. 8, no. 4,
pp. 2886–2899, 2020.

[9] P. Panagiotou, N. Sklavos, E. Darra, and I. D. Zaharakis,
“Cryptographic system for data applications, in the context of
internet of things,”Microprocessors and Microsystems, vol. 72,
Article ID 102921, 2020.

[10] F. Alsyayid, H. Armoush, and K. A. Darabkh, “An experi-
mental evaluation of the advanced encryption standard al-
gorithm and its impact on wireless sensor energy
consumption,” in Proceedings of the 2020 International
Conference on Innovation and Intelligence for Informatics,
Computing and Technologies (3ICT), pp. 1–6, IEEE, Sakheer,
Bahrain, December 2020.

[11] M. E. Hameed, M. M. Ibrahim, N. A. Manap, and
A. A. Mohammed, “A lossless compression and encryption
mechanism for remote monitoring of ECG data using
Huffman coding and CBC-AES,” Future Generation Com-
puter Systems, vol. 111, pp. 829–840, 2020.

[12] A. Waterman and K. Asanović, “+e risc-v instruction set
manual, volume i: user-level isa, document version 2.2,” 2017,
https://riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.
2.pdf.

[13] H. Legenvre, P. Kauttu, M. Bos, and R. Khawand, “Is open
hardware worthwhile? Learning from thales’ experience with
RISC-V,” Research-Technology Management, vol. 63, no. 4,
pp. 44–53, 2020.

[14] N. Wu, T. Jiang, L. Zhang, F. Zhou, and F. Ge, “A recon-
figurable convolutional neural network-accelerated copro-
cessor based on risc-v instruction set,” Electronics, vol. 9,
no. 6, p. 1005, 2020.

[15] K. Asanovic, R. Avizienis, J. Bachrach et al. “+e rocket chip
generator,” Tech. Rep. UCB/EECS, EECS Department, Uni-
versity of California, Berkeley, CA, USA, 2016.

[16] J. Daemen and V. Rijmen, “Reijndael: +e advanced en-
cryption standard,” Dr. Dobb’s Journal of Software Tools for
the Professional Programmer, vol. 26, no. 3, pp. 137–139, 2001.

[17] C.-W. Huang, C.-L. Yen, C.-H. Chiang, K.-H. Chang, and
C.-J. Chang, “+e five modes aes applications in sounds and
images,” in Proceedings of the 2010 Sixth International Con-
ference on Information Assurance and Security, pp. 28–31,
IEEE, Atlanta, GA, USA, August 2010.

[18] M. Bellare, J. Kilian, and P. Rogaway, “+e security of the
cipher block chaining message authentication code,” Journal
of Computer and System Sciences, vol. 61, no. 3, pp. 362–399,
2000.

[19] A. De, A. Basu, S. Ghosh, and T. Jaeger, “Hardware assisted
buffer protection mechanisms for embedded risc-v,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 39, no. 12, pp. 4453–4465, 2020.

[20] A. De, A. Basu, S. Ghosh, and T. Jaeger, “Fixer: Flow integrity
extensions for embedded risc-v,” in Proceedings of the 2019
Design, Automation & Test in Europe Conference & Exhibition
(DATE), pp. 348–353, IEEE, Florence, Italy, March 2019.

[21] X. Xue, C. Wang, W. Liu, H. Lv, M. Wang, and X. Zeng, “An
RISC-V processor with area-efficient memristor-based in-
memory computing for hash algorithm in blockchain ap-
plications,” Micromachines, vol. 10, no. 8, p. 541, 2019.

[22] B. Marshall, G. R. Newell, D. Page, M.-J. O. Saarinen, and
C. Wolf, “+e design of scalar aes instruction set extensions
for risc-v,” Cryptology ePrint Archive, vol. 2021, 2021.

[23] U. Banerjee, A. Wright, C. Juvekar, M. Waller, A. P. Arvind,
and A. P. Chandrakasan, “An energy-efficient reconfigurable
DTLS cryptographic engine for securing internet-of-things
applications,” IEEE Journal of Solid-State Circuits, vol. 54,
no. 8, pp. 2339–2352, 2019.

[24] H. Qin, T. Sasao, and Y. Iguchi, “A design of AES encryption
circuit with 128-bit keys using look-up table ring on FPGA,”
IEICE - Transactions on Info and Systems, vol. E89-D, no. 3,
pp. 1139–1147, 2006.

[25] T. Abdelmoghni, O. Z. Mohamed, B. Billel, M. Mohamed, and
L. Sidahmed, “Implementation of aes coprocessor for wireless
sensor networks,” in Proceedings of the 2018 International
Conference on Applied Smart Systems (ICASS), pp. 1–5, IEEE,
Medea, Algeria, November 2018.

[26] M.-H. Dao, V.-P. Hoang, V.-L. Dao, and X.-T. Tran, “An
energy efficient aes encryption core for hardware security
implementation in iot systems,” in Proceedings of the 2018
International Conference on Advanced Technologies for
Communications (ATC), pp. 301–304, IEEE, Ho Chi Minh
City, Vietnam, October 2018.

[27] M. Lu, A. Fan, J. Xu, and W. Shan, “A compact, lightweight
and low-cost 8-bit datapath aes circuit for iot applications in
28 nm CMOS,” in Proceedings of the 2018 17th IEEE Inter-
national Conference On Trust, Security And Privacy In
Computing And Communications/12th IEEE International
Conference On Big Data Science And Engineering (TrustCom/
BigDataSE), pp. 1464–1469, IEEE, New York, NY, USA,
August 2018.

[28] G. Bertoni, M. Macchetti, L. Negri, and P. Fragneto, “Power-
efficient asic synthesis of cryptographic Sboxes,” in Pro-
ceedings of the 14th ACM Great Lakes symposium on VLSI,
pp. 277–281, New York, NY, USA, April 2004.

[29] S. Morioka and A. Satoh, “A 10-Gbps full-aes crypto design
with a twisted BDD s-box architecture,” IEEE Transactions on
Very Large Scale Integration Systems, vol. 12, no. 7, pp. 686–
691, 2004.

[30] S. V. Gaded and A. Deshpande, “Composite field arithematic
based s-box for aes algorithm,” in Proceedings of the 2019 3rd
International conference on Electronics, Communication and
Aerospace Technology (ICECA), pp. 1209–1213, IEEE,
Coimbatore, India, June 2019.

[31] H. Fujii, F. C. Rodrigues, and J. López, “Fast aes imple-
mentation using armv8 ASIMD without cryptography ex-
tension,” in Proceedings of the 2019International Conference
on Information Security and Cryptology, pp. 84–101, Springer,
Seoul, South Korea, Febuary 2019.

[32] K. Shahbazi and S.-B. Ko, “Area-efficient nano-aes imple-
mentation for internet-of-things devices,” IEEE Transactions
on Very Large Scale Integration Systems, vol. 29, no. 1,
pp. 136–148, 2020.

Security and Communication Networks 13

https://riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf
https://riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf

