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Modern compression algorithms are the result of years of research; industry stan-

dards such as MP3, JPEG, and G.722.1 required complex hand-engineered compres-

sion pipelines, often with much manual tuning involved on the part of the engineers

who created them. Recently, deep neural networks have shown a sophisticated abil-

ity to learn directly from data, achieving incredible success over traditional hand-

engineered features in many areas. Our aim is to extend these ”deep learning”

methods into the domain of compression.

We present a novel deep neural network model and train it to optimize all

the steps of a wideband speech-coding pipeline (compression, quantization, entropy

coding, and decompression) end-to-end directly from raw speech data, no manual

feature engineering necessary. In testing, our learned speech coder performs on

par with or better than current standards at a variety of bitrates (∼9kbps up to

∼24kbps). It also runs in realtime on an Intel i7-4790K CPU.
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Chapter 1: Introduction

1.1 Context and Motivation

The everyday applications of data compression are ubiquitous: streaming live videos

and music in realtime across the planet, storing thousands of images and songs

on a single small thumb drive, transferring large amounts of data across satellite

channels, and more. In a way, improved compression algorithms were what made

these innovations even possible in the first place, and designing better and more

efficient compression could help expand them even further (to developing nations

with slower Internet speeds, for example, or for much larger transmission distances).

All of the current state-of-the-art standards in data compression are, essen-

tially, hand-designed by researchers. Modern compression algorithms usually require

months or years of development, testing, and standardization, involving much effort

and manual tuning on the part of the engineers who create them. For example, eight

years passed between the release of the original JPEG standard and the finalization

of its successor, JPEG2000; similarly, the MP3 standard was a joint effort supported

by researchers around the world, which took four years to fully develop (from the

MUSICAM project in 1989 to the first MPEG specifications in 1993).

Recently, deep neural networks have shown an incredible ability to learn di-
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rectly from data, circumventing traditional feature engineering. This has led to

state-of-the-art results in a variety of areas, from speech recognition to computer

vision to image generation [1]. These ”deep learning” models are not designed to

directly perform a task, but rather to learn how to perform a task, given a large

enough set of data. This naturally leads us to ask: can we use deep networks to learn

a compression algorithm on par with modern standards automatically from data,

obviating the need for hand-designed features and the labor of human engineers?

The specific domain we choose to explore in this thesis is speech coding, the

compression of speech. Important applications of speech coding include mobile tele-

phony, videoconferencing, and voice over IP (VoIP); all of these mostly rely on lossy

compression of speech (where the speech signal doesn’t need to be transmitted ex-

actly, and some distortion is allowed). Our specific research question then becomes:

how can we learn a general, reliable speech coder end-to-end purely from raw speech

data, with as little human ”intervention” or manual feature engineering as possible?

This end-to-end approach is surprisingly rare in the literature. To the best

of our knowledge, this is only the second ever work to learn an audio compression

pipeline end-to-end (the previous being an obscure early attempt by Morishima et al.

in 1990 [2]), and the first to produce state-of-the-art results. The closest work to ours

is that of Cernak et al. in 2016 [3], who created an almost-end-to-end design for a

very-low-bitrate low-quality speech coder; however, their pipeline still required hand-

designed extraction of acoustic features and pitch at the beginning (and additionally

was quite complex, combining many deep and spiking neural networks together). All

other related designs we know of employ neural networks as a component of a larger
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hand-designed system (e.g. as the predictor in a linear predictive coding system, or

as a vector quantizer).

In the domain of image compression, there has been a bit more interest in

training end-to-end ANN-based systems since the early 1990s [4], but this paradigm

has not yielded state-of-the-art results until fairly recently either (starting August

2016, when Toderici et al. proposed a neural network architecture outperforming

JPEG [5]). Thus, we are happy to report that our work seems to be on the cutting

edge of both deep learning research and compression research.

We now describe the structure of this thesis.

1.2 Structure of This Thesis

Chapter 2 provides an overview of artificial neural networks and their foundations,

including some recent advances which made this research possible. Chapter 3 goes

over previous work (in the areas of both machine learning and speech coding) as

well as its limitations. Chapter 4 describes the neural network model we built in

depth, details how we tested and evaluated it, and gives objective and subjective

measures of our speech coder’s quality at various bitrates (comparing our approach

to current standards). Finally, Chapter 5 gives our concluding remarks.
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Chapter 2: Artificial Neural Networks

2.1 Overview

Artificial neural networks (ANNs) are mathematical models consisting of simple

”artificial neurons” arranged in interconnected layers. Their structure relies on

compositionality : individual neurons are simple, but the way they combine is com-

plex. In this way, artificial neural networks take inspiration from human and animal

brains, and bear a loose relation to them – hence their name.

Modern deep neural networks (DNNs) have many layers of artifical neurons,

and can learn high-level hierarchical concepts from data (without an engineer hav-

ing to explicitly lay out what specific aspects of the data are ”important” for a

given task). In this vein, DNNs have achieved incredible success over manual hand-

engineered features in a variety of areas. As of this writing, deep neural networks

have set the state of the art in speech recognition, language translation, natural

language understanding, object recognition, automatic image captioning, DNA mu-

tation analysis, handwriting and font recognition, smart image upscaling, text-to-

speech synthesis, automatic image and music generation, and a variety of other

applications, often beating previous methods by an order of magnitude. [1]

Figure 2.1 shows an example ANN, taken from the Google Brain project [6].
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Figure 2.1: An example neural network. Taken from [6].

The gray circles represent artificial neurons, and the black lines represent connections

between them; each vertical column of neurons is one layer in the neural network’s

feed-forward structure.1

This network was initialized with random parameters and exposed to 10 mil-

lion still images from unlabeled YouTube videos, with the goal of learning how to

represent them as accurately as possible. As the highlighted orange nodes show,

after the ANN finished training, it had learnt to capture important concepts about

images without any direct human guidance. Neurons in lower-level layers learnt

to activate on basic image features such as diagonal lines or edges, and higher-level

1This image is not fully representative of the trained Google Brain network; it only shows a few

neurons, connections and layers, whereas the real neural net had about a billion parameters.
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neurons learnt to compose these simple features into complex concepts that occurred

across many images (like human and cat faces: the two things YouTube users love

the most).

To better understand the differences between traditional feature engineering

and the ”deep learning” approach, consider an illustrative example. Say an engineer

wants to write a program to recognize faces. How might they go about this? Tra-

ditionally, they might have had to first write code to detect edges inside an image,

then write a module on top of that specifying which particular types of edges (or

combinations of edges) were most likely to correspond to facial features such as eyes,

noses, mouths, and so on. Once their program extracted these hand-designed ”facial

feature” representations from each image, the engineer could finally train some sort

of simple classifier that relates these features to a person’s identity. This can be a

very brittle process, involving a lot of manual work and hand-crafted feature design

at each step!

In contrast, the ”deep learning” approach would involve designing a neural

network which takes in a face image as input and outputs a representation of a

person’s identity. After the engineer constructs an appropriate network structure

for the problem, he or she would then train the network by showing it many example

images of faces, each paired with a person’s identity, and letting it learn a function

mapping faces to identities by itself. The engineering effort is now ”transferred”

in a sense: the problem is no longer engineering features about faces directly, but

rather designing and training a neural network that can accurately learn features

of faces and relate them to a person’s identity. The details of this learning process
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Figure 2.2: A simple artificial neuron, with 3 inputs.

are what this thesis is concerned with.

We now review the specifics of how DNNs work, starting with their most basic

unit: the artificial neuron.

2.2 Basic Artificial Neurons

In its simplest original form by Rosenblatt [7], an artificial neuron takes a vector

of numeric features as input. Say we have k features. Then, in order to process

an input vector, the neuron computes a weighted sum of each feature (plus a bias

term) and feeds the output into some predetermined activation function, as follows:

P (f1,2,...,k) = σ([

k
∑

i=1

wifi] + b)

where fi is the input vector (of size k features), wi are the weights for each individual

feature, b is the perceptron’s bias, and σ is the activation function. This is illustrated

in Figure 2.2.

There are many choices for the activation function σ, but the simplest is the
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binary step function (which was the activation function used in Rosenblatt’s original

formulation). We formally denote the binary step function as Ω, and define it as

follows:

Ω(x) =



















1 if x > 0

0 if x ≤ 0

Then, our neuron will compute the following function:

P (f1,2,...,k) = Ω([
k

∑

i=1

wifi] + b)

We can see that the neuron will output 1 if the weighted sum (plus bias) is greater

than 0, and 0 if the weighted sum (plus bias) is less than or equal to 0. (Another

way of thinking about this: the neuron will output 1 if the weighted sum of features

is greater than the bias, and 0 if the weighted sum of features is less than or equal

to the bias.) Finally, notice that we can reformulate the above as:

P (f1,2,...,k) = Ω(
k+1
∑

i=1

wifi)

where fk+1 is always equal to 1, and wk+1 is the bias. So the neuron’s output is

just the activation function Ω applied to the dot product of the weights and inputs

(with an extra 1 input added on if we want a bias term): Ω(w · f).

To give a more concrete example of how this works, consider a simple binary

classification problem (basic enough to be solved with a single artificial neuron). Say

we have a database of patients, and we want to figure out whether each patient is

sick with the flu. We have access to 3 binary high-level features about each patient:

fever (does the patient have one?), vaccination status (has the patient been given
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the flu vaccine?), and time (did the patient visit the clinic at day or at night?). A

neuron taking those features in as input would then compute the following function:

P (flu) = Ω(wfeverffever + wvaccinefvaccine + wtimeftime + wbias)

Intuitively, it seems that fever should have a high positive weight, since it’s a classic

and well-known flu symptom. Vaccination should have a high negative weight, since

patients who have been vaccinated are unlikely to develop the flu. Finally, the time

of checkin is probably completely irrelevant to whether the patient is sick, so wtime

should be very close to 0 at the end of training.

Of course, there is still the issue of how to learn these weights from training

data in the first place, which we will now examine.

2.3 Training Neural Networks

To start, it turns out single artificial neurons have a glaring theoretical problem:

they can only learn very simple linearly separable functions. This limitation was

analyzed in depth by Minsky and Papert in their famous book Perceptrons [8], where

they showed that a basic artificial neuron is incapable of learning even a simple

XOR function. To solve problems like this and learn more complex functions, it is

necessary to ”stack” neurons together and connect them to each other, forming a

neural network.

Defining the structure of a neural network for a given problem can be quite

complex, but for many problems, the neurons in the network are organized in a feed-

forward fashion as in Figure 2.1. Each layer of neurons takes in the previous layer’s
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output, performs some operation, and forwards the result to the next layer. (The

image doesn’t show an input or an output layer, but to simplify we can assume that

the network takes in an image at the first layer, and it outputs some representation

of the image at the last layer.)

After the neural network’s structure has been defined, training the model

usually involves the following steps:

1. Initializing the weights. This is a bit more involved than it might seem at

first; for example, if the weights of every neuron are all initialized to the same

values, every neuron will end up learning the exact same function. In addi-

tion, different types of initializations can lead to faster or slower convergence.

Discussing the exact nature of this is not important for our purposes, but the

standard is to use a certain type of normal or uniform distribution, as specified

by Glorot et al. [9] or He et al. [10]. This is the strategy we adopt as well.

2. Defining an objective function. Training a neural network involves specifying

some sort of objective function (or weighted combination of objectives) to

minimize over the training data. For example, in classification problems, the

objective function is often the error between the network’s predictions and

the correct class labels; minimizing classification error amounts to the same

thing as maximizing classification accuracy. The objective function also has to

be differentiable almost everywhere (so an objective like ”minimize the total

number of misclassified training examples” is not usable). Some common

objective functions for neural networks include cross-entropy and ℓ2 distance
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(also known as mean-squared error).

3. Training via gradient descent. Once the network’s weights are initialized and

its objective function has been defined, we can train the network by showing

it pairs of inputs and corresponding outputs. We update its weights in an

iterative fashion after each example, based on the objective function. This

process repeats until we exhaust the entire training set, at which point we

start over. A complete cycle through the training set is known as an epoch,

and it is standard to train a network for a set number of epochs before stopping.

In practice, we don’t show the network input-output pairs one at a time,

but rather in small minibatches (common sizes range from 32 to 256). To

adjust the weights after each minibatch, we compute the average value of the

objective function over the batch. Then, we adjust each weight of every neuron

based on that value’s gradient, as follows:

w := w − α · ∂

∂w
O(W )

where w is the current weight to be adjusted, α is a parameter known as the

learning rate, and ∂
∂w

O(W ) is the partial derivative of the objective function

O(W ) with respect to the current weight w. The overall effect of this is to

take a step towards some minimum of the objective function at each iteration

(which may not necessarily be a global minimum). The size of this step de-

pends on α, the learning rate. If α is too low, the weights will only change

slightly on each iteration and training won’t converge; conversely, if α is too
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large, the weight updates will ”overshoot” the minimum and training will os-

cillate or diverge. Thus, the learning rate α is an important parameter to tune

when training a neural network.

A significant issue which arises in this process is exactly how to compute

the partial derivatives of the objective function with respect to each weight of

the network. The standard method is an algorithm known as backpropagation,

popularized by Rumelhart et al. in 1988 [11], which utilizes the chain rule to

compute partial derivatives throughout the network (so the derivatives of one

layer depend on those in all subsequent layers). Another significant issue is

how to avoid local minima and guarantee fast convergence; researchers have

developed several additions to gradient descent that try to address this, such

as momentum and more complex optimizers like Adam [12].

Gradient descent places an extremely important constraint on our network: every

operation has to implement a differentiable function of its inputs. This means

that, given our neuron formulation in Section 2.2, all neurons must implement a

differentiable activation function. Thus, our previous binary step function Ω can’t

be used in a neural network trained with gradient descent, since it has zero or

undefined derivative everywhere. Similarly, other non-differentiable operations such

as rounding and quantization can’t be used with gradient descent in their original

form either; as we’ll see later on, if we want to implement operations like these, we

must find a differentiable approximation.

Four popular choices for a differentiable activation function are the sigmoid,
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hyperbolic tangent, rectified linear unit (ReLU), and leaky rectified linear unit

(Leaky ReLU) functions, with the latter two finding massive success and popu-

larity in recent years. We show these four functions, alongside their derivatives, in

Figure 2.3.

One advantage that ReLU and Leaky ReLU activations provide over the his-

torically popular sigmoid and tanh functions is their immunity to the vanishing gra-

dient problem, which is a significant issue that arises in training deep networks. [13]

In classical sigmoid and tanh networks, earlier layers are much slower to train than

later ones. This is because both of these functions’ derivatives are contained in the

interval [0, 1]; since gradients in earlier layers depend on those in later layers (and

are calculated through multiplication), the gradients of earlier layers ”vanish” and

become almost zero when adjusting weights. Such behavior poses a massive prob-

lem, since the later layers in a neural network build off the earlier ones; if the early

layers are essentially learning nothing, the network as a whole will learn nothing as

well.

The ReLU and Leaky ReLU functions always have a derivative of 1 for x > 0,

which mitigates the vanishing gradient problem significantly. In addition, their

derivatives are simple to compute; since the functions are both piecewise linear, the

derivatives are piecewise constant. The Leaky ReLU also shows better convergence

properties than the original ReLU, due to having a nonzero gradient in the x ≤ 0

region.
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(a) sigmoid (b) tanh

(c) ReLU (d) Leaky ReLU

Figure 2.3: Four common activation functions, along with their derivatives.

2.4 Fully-Connected Neural Networks

Now that we’ve established the basic training process for neural networks, a logical

next question to ask is: how can we apply ANNs to signals like images and speech?

For the purposes of demonstration, we consider MNIST, a simple and classic machine

learning benchmark. The MNIST dataset consists of 70,000 28x28 grayscale images

of handwritten digits (60,000 for training, and 10,000 for testing and validation).

Each image contains one of ten digits, 0 through 9. The goal is to create a classifier

that can correctly identify digits with high accuracy.

Using the techniques we’ve discussed so far, we might try constructing a net-

work like the one in Figure 2.4. We ”flatten” the 28x28 image into a 1D vector of

length 784, forming our input layer. Then, we connect the input layer to the first

14



Figure 2.4: A small fully-connected neural network for MNIST.

hidden layer, with 5 neurons. We insert a second hidden layer, also with 5 neurons.

Finally, the second hidden layer connects to our output layer of 10 neurons, which

each output a probability for one of our 10 digit classes. Each of the neurons im-

plements a Leaky ReLU activation function except for the final layer, which uses

a softmax function to generate class probabilities. (All Leaky ReLU activations in

this paper use a standard ”negative slope” of 0.3.)

The specific form of the softmax function is important to note, since it will

come up again later in a different context. From a vector v of N arbitrary real

numbers, the softmax function generates a vector P ofN probabilities (each between

0 and 1, and all summing up to 1) as follows:

P (i) =
evi

∑N

n=1 e
vn
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We can see that the higher a given value in v, the higher the probability that

the softmax function will assign it. This property holds over the entire set of real

numbers.

The neural network model in Figure 2.4 is called a fully-connected neural net-

work, since every neuron in a layer has a weighted connection to every neuron in the

next layer. It is also a very small model even for this problem, with only about 4,000

parameters; still, the network achieves 89.83% test accuracy on MNIST (much bet-

ter than the 10% guaranteed by chance). To put these numbers in context, LeCun

et al.’s seminal paper introducing MNIST [14] discusses a similar fully-connected

network with about 270,000 parameters, which achieves 96.95% test accuracy. (The

main differences are that their first hidden layer has 300 neurons, and the second

100; also, we train using the modern Adam optimizer [12], rather than vanilla gradi-

ent descent.) And even the network of LeCun et al. would be considered fairly small

by today’s standards; recent neural networks trained for general object recognition

problems have reached tens of millions of parameters [15] [16].

Fully-connected networks work decently well for small, simple problems such

as digit recognition. However, at larger image sizes, or for more complex problems

requiring larger networks with more neurons, they suffer from a parameter explosion.

For example, if we want to process a modestly sized 128x128x3 RGB image with a

hidden layer of 100 neurons, that one layer alone would require almost five million

parameters! In addition, fully-connected layers are highly redundant, failing to

exploit any of the inherent spatial structure of images or audio. They also have no

real spatial invariance, since every part of the entire signal gets a different weight.
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2.5 Convolutional Neural Networks

Convolutional neural networks (CNNs) were invented to address these shortcomings.

They incorporate spatial structure, are spatially invariant by design, and are gener-

ally able to make much more efficient use of their parameters than fully-connected

networks can. In addition, CNNs can handle large signals (speech, images, etc.)

without succumbing to parameter explosion.

Instead of giving each input a unique weight, a convolutional layer slides filters

across the signal, recording each filter’s response at every position. More formally,

the layer computes the convolution of each filter with the input signal (hence the

model’s name). The output of each filter becomes one channel of the layer’s output.

Each channel of a layer’s input is filtered simultaneously; for example, a 7x7 filter

over an RGB image would really be implemented as a 7x7x3 filter, with a separate

sub-filter for each color channel. The convolution filterbanks of each layer are the

learnable parameters of the network. Finally, each convolutional layer also has an

activation function, as before.

We illustrate the convolution operation in Figure 2.5. The 7x7 filter shown is

a basic horizontal edge detector, which essentially looks for the pattern ”dark area

over light area”. When it finds a matching region of the image, it outputs a high

response, as in the top rectangle. When it finds a very dissimilar region, it outputs

a low response, as in the bottom rectangle (which is ”light area over dark area”,

and thus the exact opposite of what the filter is looking for).

Since the same filters are used over all points of the signal, convolutional lay-
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Figure 2.5: Illustration of a convolution operation.

ers have a degree of spatial invariance that fully-connected ones don’t. In addition,

convolutional layers directly incorporate the spatial structure of the signal, by con-

sidering small, local parts of it at any given time. Finally, since the filter size is

independent of the signal size (a 7x7 filter remains a 7x7 filter no matter how large

the signal it is processing), CNNs do not suffer from parameter explosion on large

inputs to the same extent that fully-connected layers do.

Figure 2.6 shows a very small convolutional neural network trained for the

MNIST problem. This CNN is even smaller than the fully-connected network in

Figure 2.4 (at about 3,000 trainable parameters), yet achieves a much higher 98.66%

accuracy on the MNIST test set! The network is constructed by alternating convolu-

tion operations with pooling operations that reduce each channel’s spatial dimension

by a half. Each convolutional layer has 4 filters (channels), of size 7x7 per input

channel, and implements a Leaky ReLU activation function. After two sets of con-

volution/pooling layers, the resulting 7x7x4 vector is flattened into a 1D vector of

length 196. This 196-length vector is finally linked to a fully-connected layer of 10
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Figure 2.6: A small convolutional neural network for MNIST.

neurons, which outputs class probabilities (using the softmax function as before).

(We also show a simplified version of the network in Figure 2.7.)

Because of their alternating convolution and pooling operations, CNNs can

examine their input signal at several scales as they get deeper. It has been shown

that convolutional layers exhibit compositionality [17]; for example, when trained

on images, earlier layers of CNNs will often learn simple problem-agnostic edge and

blob detectors, while later layers will learn progressively more specific and complex

features (texture, shape, object class) by building off and combining the features of

the earlier layers. This is an incredibly appealing property, and also implies that

constructing deep networks is of paramount importance if we want to learn the rich-

est features and concepts possible. Empirical findings corroborate this hypothesis,

with deeper CNN architectures performing much better than shallow ones [18] [19].
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Figure 2.7: A simplified version of Figure 2.6.

2.6 Residual Neural Networks

Deep CNNs are generally quite hard to train past a dozen or so layers, requiring

careful architecture engineering such as that seen in the VGG [18] or Inception [19]

networks. He et al. [20] found that deep 56-layer CNNs had worse training and

test error than shallower 20-layer ones, a degradation which could not be explained

by either vanishing gradients or overfitting. This is strange, since it’s theoretically

easy for a deeper network to perform just as well as a shallower one. For example,

we could just take the 20-layer network and add 36 more layers that all perform

an identity mapping, resulting in a 56-layer one that computes the same exact

function. From this observation, He et al. concluded that identity mappings are

hard for neural networks to learn and optimize, which led them to propose a new

CNN variation known as a residual neural network. These models can be trained

with hundreds or even thousands of layers, and achieve state-of-the-art performance

on image and audio tasks.

20



Figure 2.8: A basic residual block, with the shortcut connection in green.

Residual networks reframe the learning process as follows: instead of layers

learning a direct transformation x → F (x), the network consists of residual blocks,

each of which learn a residual transformation x → x + R(x). In other words,

residual blocks refine their input, rather than transforming it to a new level of

representation [21]. A residual neural network consists of several stages of residual

blocks, each stage refining a different level of representation.

We show an example residual block in Figure 2.8, with the shortcut connection

in green. Note that this is our own slight variation of the original residual block;

He et al. used the original ReLU activation instead of Leaky ReLU in [20], and also

added a batch normalization operation [22] between the convolution and activation.

We found that batch normalization degraded training in our architecture, so we

omit it from all residual blocks in this work. In addition, He et al. had the second

ReLU activation after the addition; we move it directly before, in the interest of

preserving the identity mapping (which is a good property to have, as elaborated in

the authors’ later further examination of residual networks [23]).

Figure 2.9 shows a very small residual network for MNIST, also around 3,000

parameters (similar to the network in Figures 2.6 and 2.7). We show both a simpli-
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(a) simplified

(b) ”unrolled”

Figure 2.9: A small residual network for MNIST.

fied version (where the residual blocks are ”abstracted away”) and, for completeness,

an ”unrolled” version where all convolutions and additions are visible. (Future fig-

ures will show only simplified networks, to save space.) This model is about 4

times deeper than the one shown in Figure 2.7, with 8 convolutional layers, and

achieves a slightly higher 98.83% test accuracy on MNIST. We can also confirm He

et al.’s observations about depth by removing the shortcut connections from the

network (turning into just a regular convolutional network); we observe that both

train and test accuracy degrade by about 2%, performing worse overall than the
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earlier shallower model.

The encoder/decoder model we later formulate is just a variation of a residual

neural network, with some further properties that make it appealing as an end-

to-end compression system. Thus, all of the background on ANNs necessary to

understand our approach is finally in place.
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Chapter 3: Related Work

3.1 Current Speech Coding Standards

While the typical human ear can hear frequencies up to 20,000 Hz, transmitted

speech has historically only captured frequencies from 300 to 3400 Hz (at a sam-

pling rate of 8000 Hz, with each sample taking up 16 bits) [24]. This is known as

narrowband speech, because of the narrow range of frequencies it captures. Narrow-

band speech is adequate for many purposes, but because of the loss of high-frequency

information, it suffers from a characteristic ”muffled” sound and lack of intelligibility

(especially during fricative consonants) [25].

As a result, researchers have put much effort into the development of wideband

speech, which can capture frequencies from 50 to 7000-8000 Hz (at a sampling rate

of 16,000 Hz). Major mobile providers have started to deploy wideband speech to

their end users (marketed as ”HD voice”) in the last few years. Even though most

consumers are still served narrowband speech, this trend is expected to continue [26].

This thesis will deal solely with 16-bit wideband speech sampled at 16,000 Hz.

The two most prominent standards for wideband speech are G.722.1 [27] and

AMR-WB [28] (also known as G.722.2). These algorithms both take different un-

derlying approaches to the speech coding problem.
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1. G.722.1. [27] Provides speech at two moderate bitrates (24 and 32 kbps), and

is based on transform coding. The idea behind transform coding is to take

a small speech window (say, 20ms long), apply some mathematical transform

such that most of the signal’s energy is concentrated in a few coefficients

(rather than spread across the entire time domain like before), and only encode

and transmit the most significant ones. G.722.1 uses a process based on the

discrete cosine transform (DCT), similar to JPEG.

2. AMR-WB. [28] Provides speech at several low to moderate birates (6.6 up

to 23.85 kbps), and is based on linear prediction. The idea behind linear

prediction is to model the speech signal at a particular point in time as a

weighted sum of the last few samples before it, plus some excitation term:

Sn = [

K
∑

i=1

WiSn−i] + En (3.1)

A sufficiently short speech window can be accurately reproduced just through

the parameters of this linear model, without needing to transmit any direct

information about the original signal. However, determining what specific

weights and excitation patterns best fit a speech signal at a given time is a

complex open-ended problem. The exact details of how AMR-WB does this

are beyond the scope of this brief review.

Both of these standards were the product of months or years of specialized research,

conducted between several different organizations. G.722.1 was created by Picture-

Tel (now Polycom, Inc.) and approved by ITU-T after a four-year selection process;
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Figure 3.1: A block diagram of the AMR-WB encoder. Taken from [28].

AMR-WB was created by eight speech coding researchers working at VoiceAge Cor-

poration (in Montreal) and the Nokia Research Center (in Tampere, Finland) over

a period of two years. The codecs themselves are very elaborate, involving several

interconnected layers of processing steps. To give a representative example of what

a modern speech coder looks like, we show the AMR-WB encoder in Figure 3.1.

This encoder consists of a preprocessing step followed by five different pro-

cessing steps; each of these steps can be further broken down into substeps, the

outputs of which connect and feed into each other in various complex ways. De-

signing the AMR-WB encoding pipeline involved the tuning of many parameters,
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including the exact forms of the digital filters involved (high-pass, pre-emphasis,

perceptual weighting, excitation, etc.), the number of bits allocated at each bitrate

for the encoder’s different outputs (eight parameters in total for each bitrate), the

specific ranges in the pitch search portion of the algorithm, the structure and design

of the algebraic codebook, and more – not to mention creating the overall structure

and flow of the algorithm, independent of the specific parameters of each step! [28]

We believe this representative example helps put our work in context by clar-

ifying just how much work is involved in creating a modern compression algorithm,

and further motivates our research into automated data-driven approaches.

3.2 A Brief History of ANN-Based Compression

Artificial neural networks have seen significant interest from compression researchers,

most often as an intermediate pipeline step or as a way to optimize the parameters

of an intermediate step [29]. A few select examples of this, from oldest to most

recent:

• 1990 : Krishnamurthy et al. [30] extracted traditional features from speech

and images, then performed vector quantization using a neural network (to

compress said features). They achieved 8x compression on grayscale images

with decent quality (and did not provide compression ratios for speech).

• 1994 : Wu et al. [31] used a neural network as one of the steps of a non-linear

predictive speech coder. They created a series of narrow-band speech coders

ranging from 3kbps to 13kbps, with reasonable quality (from their figures,
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seeming to perform significantly worse in subjective tests than the narrowband

AMR standard [32]).

• 2001 : Park et al. [33] again combined neural networks and vector quantization

for image compression, this time using a competitive neural network to allevi-

ate degradation of edges. They achieved about 11x compression on grayscale

images.

• 2008 : Khashman et al. [34] used a neural network to determine the optimal

ratio for a Haar wavelet-based compression algorithm.

• 2015 : Cernak et al. [35] used a deep neural network as a phonological vocoder,

for low-quality and very-low-bitrate (1kbps) wideband speech. This approach

achieved a very low rate of transmission, but significantly degraded quality

since many speaker- and environment-specific qualities were lost.

Our proposal is different in nature from all of the above. Rather than using a neural

network as a tool in a hand-designed compression pipeline, we want a neural network

to constitute the entire compression pipeline itself, from start to finish, and we want

to optimize it end-to-end for the type of signal we are compressing. In our case, this

means optimizing the network to compress speech, but we can extend the general

idea to other types of signals (such as images, video, text, etc.) More specifically, we

want to create ”encoder”/”decoder” neural networks and optimize them in tandem,

so that at the end of training we have a full speech coder operating as follows:

1. Receive a raw speech window, and feed it through the encoder network to
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obtain a compressed representation.

2. Transmit the compressed representation to the decoder network, over some

channel.

3. Feed the compressed representation through the decoder network, obtaining a

perceptually accurate reconstruction of the original speech signal.

This end-to-end approach is a much rarer idea in the literature; however, it is not

entirely absent either. In fact, it dates all the way back to 1987 with the work of

Cottrell et al. [36], just a year after the ”backpropagation” algorithm was popular-

ized and it became possible to train complex multi-layer neural network models in

the first place. This is the first paper we know of which attempted to apply neural

networks to data compression; the authors achieved 8× compression of grayscale

images at decent quality, by training a simple neural network with one hidden layer

(for a total of three layers, including the input and output layer) on 16× 16 image

patches.

Morishima et al. [2] extended this idea to speech coding in 1990, again using

a three-layer neural network; as far as we know, this was the only speech coder

learned truly end-to-end before this work. Namphol et al. [37] extended the image

compression network of Cottrell et al. to five layers (three hidden layers) in 1991.

Iterative advances on these works continued through the late ’90s, with much in-

terest from researchers and many different ideas being proposed [4]. Many of these

proposed neural networks, it is important to note, implemented strictly linear trans-

formations (i.e. they did not incorporate any nonlinear activation functions such as
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the sigmoid, hyperbolic tangent, or rectified linear unit).

3.2.1 Limitations of Prior Work

From the late ’90s up until very recently, end-to-end compression systems using

ANNs seem to have almost vanished from the literature. At most, researchers have

utilized ANNs as secondary or tertiary tools to optimize parts of a hand-designed

system (as the papers mentioned at the beginning of the previous section did, among

others). This is somewhat surprising, since all of the papers mentioned in the last

few paragraphs achieved promising results, especially for their time.

In the end, it turns out that the neural network models that researchers were

using had several key limitations, and this was becoming clear even by the end of

the ’90s (not only in compression, but in other areas as well).1 To wit:

• The vanishing gradient problem. As discussed in Chapter 2, the classical sig-

moid and tanh activation functions suffer from the vanishing gradient problem,

which limits the capacity and depth of neural networks trained with these types

of activations. By alleviating this, the ReLU and its variations [38] [39] [40]

were responsible for much of the success of modern neural networks.

• Limited depth and structure. All of the models covered by Jiang et al.’s re-

view [4] were shallow, encompassing only three to five layers total. This is

related to the vanishing gradient problem, which made it hard to train deeper

1 For a more mathematical analysis of why classical nonlinear neural networks were so hard to

train in comparison to modern ones, the reader is encouraged to consult Glorot et al. [9]
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networks. Sophisticated network structures like residual networks had also

not been created yet; these structural innovations are essential to our pro-

posed model.

• Linear designs. Many of these proposed neural networks up through the late

’90s were actually fully linear in nature [4], rendering them inherently less

capable than a neural network containing nonlinearities. However, deep non-

linear neural networks have historically been hard to train effectively. [9]

• No perceptual loss. Traditionally, models were trained to minimize the ℓ1 or

ℓ2 distance between the original and reconstructed signal. As is now well-

known [41] [42], this leads to blurry reconstructions that lose a lot of high-

frequency information. Both these losses assume that the data is drawn from a

Gaussian or Laplacian distribution; therefore, they are ill-suited to capturing

multimodal distributions such as speech or images. Thus, the ℓ1 or ℓ2 loss

must be further augmented with an additional perceptual loss.

• Unclear how to control bitrate. If our end goal is an ANN-based compression

system that can target multiple bitrates, then it’s unclear how to control the

bitrate of the compressed representations (generated by the encoder network),

short of hand-designing an entirely different neural network for each bitrate.

These problems effectively killed the community’s interest in learning end-to-end

compression systems using ANNs, until very recently.
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3.2.2 Recent Developments

Recently, there has been a small resurgence of interest in learning compression al-

gorithms directly from data; however, this has been almost entirely limited to the

domain of images. In 2015, Toderici et al. reported promising preliminary re-

sults applying deep recurrent neural networks to compress 32x32 thumbnails [43],

and in 2016, they published an end-to-end recurrent system for full images which

outperformed JPEG [5]. In late 2016, Theis et al. [44] and Balle et al. [45] both in-

dependently proposed (non-recurrent) ANN systems that outperformed JPEG2000.

Finally, early in 2017, Johnston et al. built on the work of [5] to create a system out-

performing all state-of-the-art image codecs [46], and Agustsson et al. [47] published

an independent (non-recurrent) approach with similar results.

The most similar prior work to ours was published by Cernak et al. [3] in 2016.

They propose an almost-end-to-end neural network design for a very-low-bitrate

low-quality speech coder, which combines many deep and spiking neural networks

together. However, in addition to being quite complex, their design requires ex-

traction of traditional features at the very start of the pipeline; thus, they fall just

short of achieving end-to-end training. Our work targets higher bitrates than theirs,

so in a sense, our two approaches are orthogonal; still, our model architecture and

training process are simplified in comparison to theirs.

The model we propose in the following chapter addresses all of the issues

discussed in the previous section, in one form or another.
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Chapter 4: Compressive Residual Autoencoders

4.1 Architecture and Design

We now introduce our end-to-end neural network architecture for speech coding,

which we call a compressive residual autoencoder : compressive because it performs

the task of compression, and a residual autoencoder because its structure is derived

from residual neural networks [20] and autoencoders [48].

The simplified network architecture is shown in Figure 4.1. The model takes

in a vector of 512 speech samples (a 32ms speech window) and outputs another

vector of 512 speech samples (the reconstructed speech window after compression

and decompression). Its structure consists of 4 different types of blocks (channel

change, residual, downsample, upsample), each a variation on the basic residual

Figure 4.1: Simplified network architecture.
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block, as well as a quantizer and ”dequantizer”.

The encoder is the subnetwork up to and including the quantizer. It takes in a

window of 512 speech samples, transforms it into a vector of 256 real numbers, and

finally applies quantization, resulting in a vector of shape 256xN (where N is the

number of quantization bins). The quantization process will be discussed in depth

later, but essentially, each of the 256 real numbers are ”softly assigned” among the

N quantization bins during training (with a hard one-bin assignment being used at

test time).

The decoder is the subnetwork following the quantizer. It takes in the quan-

tized encoder output of shape 256xN , ”dequantizes” it back to a vector of 256

real numbers, and transforms this back into a reconstructed window of 512 speech

samples. At training time, we train this entire model end-to-end (as in a classical

autoencoder), but once the model is trained, we can use the encoder and decoder

portions separately.

At this point, our encoded output takes 256 ∗ log2N bits to represent. For

example, with N = 32 (32 quantization bins), the encoded output would take 1280

bits, or 160 bytes. 512 raw 16-bit speech samples take up 1024 bytes; thus, this

encoder would achieve 6.4x compression. Since raw wideband speech has a bitrate

of 256kbps, 6.4x compression results in a bitrate of 40kbps.

We can achieve a better compression ratio by applying entropy coding to the

output of the encoder, such that our complete compression pipeline looks like Figure

4.2. Entropy coding is a form of lossless coding which uses fewer bits to code common

bitstrings of a message, and more bits to code rare bitstrings. The entropy refers
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Figure 4.2: Our full compression pipeline.

to the average number of bits required to represent one symbol of a message; with

entropy coding, our encoded output takes 256 ∗ entropy bits to represent.

Entropy coding also provides a simple way to train networks at different de-

sired bitrates, without having to engineer different network architectures for each.

Depending on our desired bitrate, we can simply constrain the entropy of the en-

coded speech windows to be lower or higher.

4.1.1 Residual Block Types

Figure 4.3 shows the four types of residual blocks used in our network architecture,

which are all variations of the one shown in Figure 2.8. They are as follows:

1. Residual block. Takes an input of K channels with N length each, and outputs

K channels withN length each. This is the same as the residual block in Figure

2.8, except that it allows support for dilated convolutions [49].

2. Channel change block. Takes an input of K channels with N length each, and

35



(a) residual

(b) channel change

(c) downsample

(d) upsample

Figure 4.3: The four block types used in our network architecture.
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outputs C channels with N length each. This necessitates adding a convolu-

tion operation along the shortcut connection. This allows going from 1 input

channel to multiple intermediate processing channels, and back down.

3. Downsample block. Takes an input of K channels with N length each, and

outputs K channels with N
2
length each. In other words, it halves the length

of each channel, via strided convolution. This allows the network to learn its

own downsampling operation, instead of e.g. a hardcoded linear downsampling

step.

4. Upsample block. Takes an input ofK channels withN length each, and outputs

K channels with 2N length each. In other words, it doubles the length of each

channel, via ”subpixel convolution” (as introduced by Shi et al. [50]). This

allows the network to learn its own upsampling operation, instead of e.g. a

hardcoded linear upsampling step.

The activation functions are omitted in the figures, but all convolutions inside these

blocks utilize Parametric ReLU activations [51] (a variant of Leaky ReLU where

the slope in the x ≤ 0 region is a learnable parameter of the network). There is

unobstructed gradient flow from the beginning of the network to the very end, since

every single block has a shortcut connection.
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4.1.2 Softmax Quantization

Quantization is the process of mapping real values into discrete ”bins”. In our

network design, we use a quantizer to map the real-valued1 output of our encoder

into discrete values taking up less space. This quantization process is the second

aspect of our architecture which must be discussed in depth.

Quantization is inherently non-differentiable. Figure 4.4 shows a (uniform)

quantizer with 5 bins, as well as its derivative. The derivative is zero everywhere

except for the bin transitions, where it becomes infinity. (This is similar to the

binary step function discussed in Section 2.2.) Thus, quantization is fundamentally

incompatible with gradient descent; in order to incorporate a quantizer into our

encoder, we need to find a good differentiable approximation.

1Technically, these are not real values, but rather 32-bit floating point numbers.

Figure 4.4: 5-step uniform quantizer and its derivative.

38



The approximation we use is a variation of the one first discussed by Agustsson

et al. [47] in 2017. We reframe scalar quantization as nearest-neighbor assignment:

given a list B of N bins, we quantize a scalar x by assigning it to the nearest

quantization bin. Nearest-neighbor assignment still isn’t differentiable, but it can

be approximated as follows:

1. Compute the distance from x to each of the bins in B, and call this list of

distances D.

2. Compute the softmax (first discussed in Section 2.4) over −D with tempera-

ture σ, and call the resulting probability distribution S. More specifically:

S = softmax(−σD)

As σ → ∞, S will have a probability of 1 at the bin nearest to x, and a proba-

bility of 0 everywhere else. This type of distribution is also known as a one-hot

vector : a vector with 1 at exactly one index and 0 at every other, identifying a

particular value associated with that index. (Recall that the softmax function

turns arbitrary vectors into probability distributions, where higher values are

assigned higher probabiltiies. Here, we want the lowest distance to have the

highest probability, which is why we negate D when applying the softmax.)

Thus, during the quantization process, a scalar will get turned into a

vector of length N , a vector of length L will get turned into a matrix of size

LxN , a matrix of size AxB will get turned into one of size AxBxN , and so

on. Each sample is replaced by a probability distribution (soft assignment)

over quantization bins, and these distributions are what the encoder outputs.
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3. On the decoder side, we can ”dequantize” the probability distribution S back

into a real value Ŝ by taking the dot product of S and B:

Ŝ =

N
∑

i=0

SiBi

We refer to this approximation as softmax quantization, for the softmax function

which we use to approximate nearest-neighbor assignment.2 Figure 4.5 shows the

entire process visually, for both a low and a high softmax temperature. The fig-

ure also shows that, at lower temperatures, softmax quantization can fail and not

properly quantize the input value.

2Agustsson et al. did not give their approximation a specific name.

(a) low temperature (σ = 20)

(b) high temperature (σ = 500)

Figure 4.5: Softmax quantization, for both a low and high temperature.
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(a) σ = 16

(b) σ = 64

(c) σ = 512

Figure 4.6: The effect of temperature on our softmax quantizer.
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We also show the effect of temperature on softmax quantization (and its deriva-

tive) in Figure 4.6, for a quantizer with the same bins as Figure 4.4. As σ gets

higher, our approximation does indeed approach the original quantizer; however,

the derivative also becomes more sparse.

In theory, a function like Figure 4.6(c) with a very sparse derivative should

cause optimization difficulties when used with gradient descent; this is ostensibly

why Agustsson et al. annealed σ from low to high values during the course of their

training process. However, in practice we noticed no problems training with very

high temperature values from the start. For all experiments described henceforth,

we initialize with σ = 500 and let σ be a trainable parameter of the network.

4.2 Training Methodology

We train the network on samples from the TIMIT speech corpus [52]. TIMIT

contains over 6,000 wideband recordings of 630 American English speakers from

8 major dialects, pre-split into train and test sets with non-overlapping speakers.

We create smaller training/validation/test sets from the already-existing train/test

split, as follows:

• Training: 1,000 files from the original train set

• Validation: 100 files from the original train set

• Test: 500 files from the original test set

where we make sure the sets contain an even distribution over the 8 dialects, and
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that the sets do not share any speakers.

We preprocess each speech file by maximizing its volume. Then, we extract

raw speech windows of length 32ms (512 speech samples), with an overlap of 2ms (32

samples) using a Hann window in the overlap region. (This means that each speech

window covers a total of 480 unique samples, or 30ms of speech.) For reference,

the 1,000 speech files in our training set yield a little over 100,000 individual speech

windows.

4.2.1 Objective Function

The network’s objective function is multifaceted, incorporating both a perceptual

loss over the reconstructed signal and entropy/quantization losses over the encoder’s

output. Its general form is as follows:

O(x, y, c) = λmseℓ2(x, y) + λperceptualP (x, y) + λquantizationQ(c) + λentropyE(c)

where x is the original signal, y is the reconstructed signal, c is the encoder’s output

(the soft assignments to quantization bins), ℓ2(x, y) is ℓ2 distance (also known as

mean-squared error), P (y, x) is a perceptual loss, Q(c) is a quantization loss over

the encoder’s output, E(c) is an entropy loss over the encoder’s output,and λ cor-

responds to weights for each loss. We now discuss each of the supplemental losses

P (y, x), Q(c), and E(c) in more depth:

• Perceptual loss. It is well-known that training a neural network solely to

minimize ℓ2 leads to blurry reconstructions lacking in high-frequency informa-

tion [41] [42]. Therefore, it is helpful to augment training with an additional
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Figure 4.7: Triangular Mel filterbank with 8 filters.

perceptual loss.

Our proposed perceptual loss is based on Mel-Frequency Cepstral Coeffi-

cients (MFCCs), which are simple and classic features used in speech process-

ing [53] [54]. MFCCs model the human ear’s non-linear frequency response

by applying a triangular filterbank (similar to the one seen in Figure 4.7) to

the signal’s power spectrum. Once we have MFCCs for both the original and

reconstructed signals, we can use the ℓ2 distance between the MFCCs as an

effective proxy for perceptual distance.

We use 4 MFCC filterbanks of sizes 8, 16, 32, and 128, to allow for both

coarse and fine-grained frequency differentiation. Our final perceptual loss is
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the average of the 4 MFCC distances:

P (x, y) =
1

4

4
∑

i=1

ℓ2(MFCCi(x), MFCCi(y))

• Quantization loss. Because softmax quantization is a continuous approxima-

tion to quantization, it is possible for a neural network to learn how to ”get

around” its constraints. In fact, the network will almost always learn how to

generate values outside the intended quantization bins, as long as there is no

additional penalty for such behavior. Thus, we define a loss function favoring

soft assignments which are very close to one-hot vectors:

Q(c) =
1

256

255
∑

i= 0

[ (

N−1
∑

j = 0

√
ci,j) − 1.0 ]

Q(c) is zero when all 256 encoded symbols are one-hot vectors, and nonzero

otherwise.

• Entropy loss. The entropy of a probability distribution is the average number

of bits required to represent a symbol from that distribution. It is computed

as follows:

entropy(P ) =
∑

P

−pi log2(pi)

where P is a probability distribution and pi are its elements. At the extremes,

a uniform probability distribution with N equally probable outcomes has an

entropy of log2N bits, and a sparse probability distribution with only one

possible outcome has an entropy of 0 bits (since it is entirely predictable). A

probability distribution between these two extremes has an entropy between

these two bounds; for example, a rigged coin with probabilities 75% heads and
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25% tails has an entropy of 0.81 bits (in contrast to a regular coin, which has

an entropy of 1 bit).

We can directly compute a histogram h over the quantized symbols by

averaging all of the soft assignments the encoder generates. This histogram

can be thought of as a probability distribution, specifying how often each

quantized value appears. The estimated entropy of the encoder is the entropy

of this histogram:

E(c) =
∑

h= histogram(c)

−hi log2(hi)

4.2.2 Training Process

Our training process takes place in two stages:

1. Quantization off. The network is trained without quantization. (Because the

quantizer is turned off, only the ℓ2 and perceptual losses are enabled.) After 10

epochs, the quantization bins are initialized using K-means clustering, λentropy

is set to some initial value τinitial, and quantization is enabled. We found that

this small ”pre-training” of the network gave much better and more stable

results than turning quantization on from the start.

2. Quantization on. The network is trained for a number of epochs, targeting a

certain bitrate. At the end of each epoch, the average bitrate of the encoder

is estimated (taking into account entropy coding and quantization), using the
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following formula:

bitrate = (windows/sec) ∗ (symbols/window) ∗ (bits/symbol) bps

=
16000

512− 32
∗ 256 ∗ E(c) bps

If the encoder’s bitrate is higher than the target, then λentropy is increased by

a small value τchange; if the encoder’s bitrate is lower than the target, then

λentropy is decreased by τchange. This removes the need to manually find the

optimal λentropy for each target bitrate.

During training, we also slowly lower the network’s learning rate from an initial

value αinitial to a final value αfinal, using cosine annealing [55] [56]. We repeat this

training process for each different bitrate we want to target; for example, if we want

to target 4 different bitrates, we train 4 total networks.

4.2.3 Hyperparameters

For all experiments, we used the following hyperparameters. We bold the ones which

required any significant manual tuning:

Hyperparameter Value

K (number of channels in network blocks) 64

F (convolution filter size) 9
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σinitial (initial softmax temperature) 500

N (number of quantization bins) 32

αinitial (initial learning rate) 0.025

αfinal (final learning rate) 0.01

λmse (ℓ2 loss weight) 30.0

λperceptual (perceptual loss weight) 5.0

λquantization (quantization loss weight) 10.0

τinitial (initial entropy loss weight) 0.5

τchange (entropy loss adjust amount) 0.025

Optimizer Adam

Batch size 128

# epochs before quantization is turned on 10

# epochs of training total 300

Training a single network takes a little over 13 hours on one GeForce GTX Titan 1080

Ti, using Keras with the TensorFlow backend (which we found to be significantly

faster for 1D convolution than the Theano backend).

4.3 Results

We evaluated our ANN-based wideband speech coder against the current AMR-WB

standard at several different bitrates, using both objective metrics and subjective

listening tests.
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4.3.1 Objective Quality Evaluation

Subjective human listening tests are the preferred way to evaluate audio quality, but

comprehensive tests are often very expensive and time-consuming to set up in detail.

Thus, researchers have developed objective quality measures which determine audio

quality computationally. The goal of an objective quality measure is to provide as

high a correlation to human listening tests as possible.

The most popular objective speech quality measure is PESQ (Perceptual Eval-

uation of Speech Quality) [57], developed by ITU-T. PESQ takes in the original

speech signal as well as a processed version, and returns an estimated Mean Opin-

ion Score (MOS). An MOS score ranges from 1 to 5, with higher values indicating

higher quality:

Score Meaning

5 Excellent

4 Good

3 Fair

2 Poor

1 Bad

In our case, the processed version of the signal is simply the speech signal after

compression and decompression.

We evaluate the average PESQ of our speech coder versus the AMR-WB stan-

dard around 4 different target bitrates, on the full training, validation, and test sets

we constructed. The results are shown in Figure 4.8. At higher bitrates, our speech
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(a) Training set (b) Validation set

(c) Test set

Figure 4.8: Mean PESQ of our speech coder, compared with AMR-WB.

coder outperforms AMR-WB by a bit, and at lower bitrates, the two perform essen-

tially on par with each other. We note that the gap is much bigger on the training

set than on the validation or test sets, indicating some possible overfitting (note that

we did not use any form of dropout or weight regularization). For completeness, we

list the specific bitrates and PESQ scores in a table on the following page:
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Dataset AMR-WB Our approach

Bitrate Mean PESQ Bitrate Mean PESQ

Training set 8.85 3.444 8.53 3.574

15.85 3.991 15.56 4.074

19.85 4.077 19.70 4.176

23.85 4.111 23.71 4.223

Validation set 8.85 3.657 8.53 3.626

15.85 4.167 15.56 4.175

19.85 4.233 19.70 4.284

23.85 4.291 23.71 4.339

Test set 8.85 3.521 8.53 3.523

15.85 4.063 15.56 4.049

19.85 4.145 19.70 4.172

23.85 4.178 23.71 4.23

In summary, as far as these objective quality tests go, our learned speech coder is

on par with or better than the AMR-WB standard.

4.3.2 Complexity Evaluation

We evaluate the average time taken by our speech coder to encode and decode a

single window, on both CPU and GPU, and show the results in the table below.

(The computational complexity of our speech coder is independent of bitrate, since

the same network architecture is used for every bitrate.)
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Processor Encoder Decoder Total

CPU (Intel i7-4790K @ 3.8Ghz) 10.52ms 10.90ms 21.42ms

GPU (GeForce GTX 1080 Ti) 2.43ms 2.35ms 4.78ms

Our speech coder runs in realtime (under 30ms for combined encode and decode) on

both the CPU and the GPU that we tested on. This is without any optimizations

beyond those already provided by TensorFlow and Keras, and without any form

of model compression or knowledge distillation. Despite this promising result, it’s

important to note that real speech coders will run on processors much slower than

the 3.8GhZ Intel CPU we used; thus, future work in our direction should focus on

speeding up computation while preserving the same level of speech quality.

We also give the number of trainable parameters in our model below:

Module # of parameters

Encoder 742,448

Decoder 816,399

Total 1,558,847

4.3.3 Subjective Quality Evaluation

We were not able to conduct subjective quality tests in the time frame for this thesis.

However, we plan to for a future publication.

We will set up a series of small subjective quality tests using the Amazon

Mechanical Turk platform. The specific test we will use is a simple preference test.
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The listener will be presented with a clean speech signal, and two processed versions:

one compressed with AMR-WB, and the other compressed with our method. Then,

the listener will be asked to pick which method he or she prefers.

20 speech files will be selected from the test set and compressed with both

AMR-WB and our speech coder, at the same 4 bitrates as before. Each of these 80

variations will be shown to listeners on Mechanical Turk, and they will be asked to

give their subjective opinions.

4.3.4 Ablation Study

We also plan to perform a simple ablation study, evaluating the effect of our net-

work architecture’s individual components. Namely, we will fix the network’s target

bitrate to about 20kbps, and test the effect each of the following changes has on the

average PESQ:

• Removing all shortcut connections

• Removing the perceptual loss

• Replacing dilated convolutions with regular convolutions

• Replacing the downsample/upsample blocks with fixed linear downsampling/upsampling

• Removing intermediate residual blocks
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Chapter 5: Conclusion

This thesis has developed a proof-of-concept applying deep neural networks (DNNs)

to speech coding, with very promising results. Our wideband speech coder is learned

end-to-end from raw speech signals, with no hand-engineered features anywhere to

be seen; nevertheless, it manages to be highly competitive with current standards.

The main future direction is obvious: improving quality while decreasing com-

putational complexity. The gap between our approach and the current standards

can always be increased further, and while our DNN-based coder already runs in

realtime on a modern desktop CPU, this is still a far cry from running on embedded

systems or cellphones. Model compression, transfer learning, and clever architecture

designs are all valid areas to explore in the future, so we can achieve this.

An observation: except for our model’s perceptual loss, nothing at all about

our approach is specific to speech. Our training process and network architecture

are problem-agnostic; the data we feed them is everything. Thus, another future

direction arises: feed in different 1D data, such as music, and we can learn a new

music format. Change the 1D convolutions to 2D, and we can learn a new image

format. The real beauty of the approach is how easily it could extend to different

domains; so finally, we urge others to follow up on our work... and extend it.
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