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Hyperspectral imaging is used in a wide range of applications. When used in remote sensing, satellites and aircraft are employed to collect the 

images, which are used in agriculture, environmental monitoring, urban planning and defence. The exact classification of ground features in the 

images is a significant research issue and is currently receiving greater attention. Moreover, these images have a large spectral dimensionality, 

which adds computational complexity and affects classification precision. To handle these issues, dimensionality reduction is an essential step 

that improves the performance of classifiers. In the classification process, several strategies have produced good classification results. Of these, 

machine learning techniques are the most powerful approaches. As a result, this paper reviews three different types of hyperspectral image 

machine learning classification methods: cluster analysis, supervised and semi-supervised classification. Moreover, this paper shows the effective-

ness of all these techniques for hyperspectral image classification and dimensionality reduction. Furthermore, this review will assist as a reference 

for future research to improve the classification and dimensionality reduction approaches.
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Introduction
Remote sensing is the interpretation and collection of 
data about an object, event or place without coming into 
direct contact with it. For remote sensing of Earth and 
its natural resources, the most commonly used platforms 
are satellites and aircraft.1 In the visible region of the 
electromagnetic spectrum, aerial photography was the 
first form of remote sensing. However, the capture of 

data in other wavelengths such as microwave, infrared 
and thermal infrared are now possible due to technology 
advancements.

Hyperspectral remote sensing involves the collection of 
information over a large number of wavelength bands.2 
The analysis and interpretation of hyperspectral images 
are concerned with spectra captured from a specific scene 
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by a satellite or airborne sensor at a long, medium or short 
distance. Hyperspectral remote sensing images with high 
spectral and spatial resolution have gained popularity in 
recent years.3,4 These images have a wide range of appli-
cations in the medical, mining, military and environmental 
areas due to their high resolving power. The acquisition of 
hyperspectral images is dependent on imaging spectrom-
eters, which were developed in the 1980s. Hyperspectral 
Imaging (HSI) is utilised to capture electromagnetic radi-
ation in the mid-infrared, near infrared, visible and ultra-
violet ranges.5 In the chosen wavelength, each pixel can 
acquire a full spectrum in emission or reflection because 
the imaging spectrometer can record multiple very thin 
and continuous bands. As a result, hyperspectral images 
have a large number of bands, high spectral resolution and 
contain a lot of information.

Classification, dimensionality reduction, transforma-
tion, noise reduction and image correction are some of 
the more common approaches for processing hyper-
spectral remote sensing images. Unlike normal photos, 
hyperspectral images are rich in spectral information, 
which can reflect the chemical composition and physical 
structure of the item. This information is used to make 
the classification process easier.6–8 In the research field of 
HSI, classification is the most active part.

However, due to the similarity of the mixed and spectra 
pixels and the high-dimensional nature of hyperspec-
tral data, hyperspectral image classification faces several 
challenges. Some of the most significant issues are listed 
below.
	�Missing labelled samples: collecting hyperspectral 
image data is very easy in practical applications, but 
obtaining image-like label information is exceedingly 
challenging. As a result, the categorisation of 
hyperspectral images is sometimes complicated by a 
shortage of labelled samples.
	� Hyperspectral image data has high dimensionality: 
hyperspectral images are created by combining 
hundreds of bands of spectral reflectance values 
gathered by spaceborne or airborne imaging 
spectrometers.
	� Image quality: the interference of noise and background 
variables during the acquisition of hyperspectral images 
has a significant impact on the quality of the data. 
The classification accuracy of hyperspectral images is 
directly influenced by the image quality.
	� The spectral information from HSI is affected by 
various factors like the surrounding environment, 
distribution of ground features, composition, sensors 
and atmospheric conditions. Moreover, the spatial 

dimension of hyperspectral images is changed by 
spectral information. As a result, each pixel’s ground 
feature is not a single feature.
Earlier in the study of the classification of hyperspectral 

images, people frequently concentrated on spectral infor-
mation-based classification and created several classifica-
tion algorithms such as polynomial logistic regression, 
neural networks, Random Forest (RF) and Support Vector 
Machine (SVM).9,10 Moreover, feature selection and 
extraction, which are dimension reduction techniques, 
were also proposed. Linear Discriminant Analysis (LDA), 
Principal Component Analysis (PCA) and Independent 
Component Analysis (ICA) are examples of dimensionality 
reduction techniques. This article attempts to provide an 
overview of the frequently used machine learning-based 
HSI classification techniques. Also, it provides a review of 
dimensionality reduction approaches. Various extensive 
evaluations published in the previous five years have 
explained these strategies.

The main contribution of this work is as follows:
	�We provide the most comprehensive and the most 
up-to-date overview of machine learning methods in 
HSI classification.
	�We provide a complete review of dimensionality 
reduction techniques.
	�We analysed the performance of the classification and 
dimensionality reduction approaches based on their 
accuracy.

Background of HSI classification
In the classification process, individual items (patterns/
images, regions/pixels, objects) are classified based on 
their closeness to the group’s description. The classifi-
cation of image pixels inside a hyperspectral image into 
numerous categories is known as HSI classification.11–13 
The main aim of image classification is to determine the 
spectrum for each pixel in a hyperspectral image to iden-
tify materials, detect processes or locate objects. The 
technique of classifying pixels into different classes based 
on pixel values is known as image classification. The iden-
tification of distinct pixels in the hyperspectral image 
sequence is required for HSI classification. The spec-
tral information is contained in this image series. Each 
spectral sequence of HSIs has a distinct electromagnetic 
spectrum, which allows each image to be recognised 
from other hyperspectral images. The classification of 
hyperspectral images is not an easy process because 
there are many things to consider.
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	� There are many spectral bands, but there are not a lot 
of training samples. This situation is called the curse of 
dimensionality or Hughes’s Phenomenon.
	� Differentiating a particular land cover such as wetlands, 
urban land-use, agriculture, forest and other vegetation 
mappings is difficult due to the large number of land 
cover classes.
	� The data classes have a non-linear distribution.
To solve these issues, the right classifier should be 

chosen. Multi-class data, non-linear data and large 
amounts of data must be supported by the classifier. 
To get high accuracy, significant characteristics from 
the collected features must be picked and given to 
the classifiers; this procedure is called feature selec-
tion.14 Spectral and spatial classification are the two 
major categories of hyperspectral classification. In 
spectral classification, the pixels’ reflectance values 
at different wavelengths are considered. Required 
spectral properties, such as variance, standard devi-
ation, lowest reflectance, maximum reflectance and 
mean reflectance can be calculated and used for clas-
sification using these reflectances and wavelengths. 
The spatial arrangement of pixels and their contex-
tual values, as well as textural characteristics and 
qualities, are detected in spatial classification. HSI 
classification is important in a variety of applications, 
including forest applications, urban planning, environ-
mental damage assessment, agriculture monitoring, 
land-use/land-cover mapping and growth regulation 
etc. Determining an appropriate classification system, 
selecting training samples, image pre-processing 
and feature extraction, selecting adequate classifi-
cation methodologies, post-classification processing 
and accuracy assessment are some of the important 
phases in image classification.

Images can be classified as multiple classifiers, contex-
tual, knowledge-based, per-field, sub-pixel and per-pixel 
based on pixel information. Classification of images can 
be categorised as supervised, semi-supervised and cluster 
analysis based on the use of training samples. The identi-
fication of natural structures or groups is known as cluster 
analysis or unsupervised classification. The process of 
classifying (i.e. assigning unclassified pixels to one of the 
multiple informative classes) using samples of known 
identity is known as supervised classification. During the 
training process, semi-supervised methods blend a small 
number of labelled data with a large number of unlabelled 
data. Several authors have proposed various methodolo-
gies for the classification of hyperspectral images, which 
are briefly outlined in the following sections.

Supervised machine learning 
methods for classification
The model is trained via supervised learning using labelled 
training data, which is made up of a set of inputs and their 
matching outputs of class labels. The model iteratively 
updates its parameters throughout the training phase 
to accurately predict the intended outputs. The model 
is tested against the new input/test data in the testing 
step to ensure that it can correctly predict the labels. To 
ensure that the model can correctly predict the label, it 
is tested against the new test/input data in the testing 
stage. The model can predict the labels of new input data 
if it has been appropriately trained. Feature extraction, 
training and labelling processes are followed in the super-
vised technique.

Convolutional neural network
Paoletti et al.15 showed that using Deep Learning (DL) 
to train a conventional Artificial Neural Network (ANN) 
considerably improved the ANN’s HSI classification effi-
ciency. A new Bayesian approach based on integrated 
Deep Convolutional Neural Network (D-CNN) was 
implemented by Haut et al.16 who found that this hybrid-
isation improved the effectiveness of the classifier. In 
addition, the deep recurrent neural network (DRNN) has 
been demonstrated to be more effective for HSI classifi-
cation than the traditional ANN classifier, which is based 
on a single guided filter.17 A Grey Level Co-occurrence 
Matrix (GLCM) textural features and integrated CNN 
have recently been proposed by Zhao et al.18 with a 
limited training sample. For HSI classification, other ANN 
DL techniques, like deep belief network, have recently 
been employed with considerable benefits over tradi-
tional approaches (e.g., Reference 19).

Fast computing, optimisation, regularisation, loss func-
tion and activation function are all examples of recent 
breakthroughs in CNNs. Gu et al.,20 who detailed these 
developments, also pointed out CNN’s flaws, stating 
that the selection of appropriate hyper-parameters (e.g., 
kernel sizes of convolutional filters, learning rate) and 
computational efficiency are still difficult issues, particu-
larly for large data sets. The deployment of a new CNN 
for HSI classification was premised on the computational 
restrictions of CNN algorithms to high-dimensional data 
stored in multidimensional data cubes. DL models are 
employed in a variety of fields, including medical diag-
nostics and detection of image-based cancer, which is a 
well-known CNN topic. More progress necessitates large 
and multi-data cubes.21 DL approaches try to acquire 
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discriminative and representative features from data 
in a hierarchical manner. For HSI classification, due to 
their ability to extract deep features from hyperspectral 
images, DL-based algorithms have shown promise for 
HSI classification. DL is the favoured tool for addressing 
the problem for classification currently, which can also be 
used discriminatively.22

Support vector machine
Compared with other classification approaches like 
logistic regression-based techniques, neural networks 
and RFs, SVM is a strong classifier. Since its introduc-
tion, it has proved to be extremely effective in predicting 
urban land-use change, remote sensing image categorisa-
tion and tidal analysis.

To perform HSI classification, the combined technique 
of deep neural network with SVM has been performed 
by Okwuashi and Ndehedehe.23 Wang et al.24 used a 
combination strategy of genetic algorithm and modi-
fied ant colony algorithm to optimise the parameters of 
SVM. In the same way, Sukawattanavijit et al.25 employed 
a genetic algorithm to optimise parameters and select 
features.

Because of the low data needs and excellent preci-
sion of classification, SVM is a widely applied technique 
in health assessment.26,27 It is especially effective in 
binary classification situations.28 Zhang et al.,29 for layer 
Alzheimer’s disease (AD), employ coefficients of discrete 
wavelet-like test provision vector machine as well as 
functions of neural network classifications. Schizophrenia 
(SCZ) was detected with related learning algorithms for 
data analysis in regression and classification. This algo-
rithm clearly shows promising results when used with 
fMRI in creating an information and set of features from 
multiple brain regions, providing for the classification of 
SCZ patients and healthy controls, with a large potential 
for translational influence.30

SVM classifiers have the potential to make a significant 
contribution to medicine by allowing for accurate and 
speedy medical diagnostics. Because the detection of 
illness is the most important duty in health care, multiple 
lives could be saved if a disease is diagnosed early.31 
Asuntha et al. were able to recognise cancer cells by 
assessing the features of the cancer cells.31 Vadali et al.32 
classified cancer as malignant or benign. The invention 
was put to the test on real CT liver imaging. An SVM 
was created and evaluated to identify the tumour using 
both known and unknown data. To use a multi-class SVM 
classifier for the detection and prediction of lung cancer, 
Alam et al.33 proposed an optimal method. In addition, 

Qiao et al.34 offer an SVM classifier based on a genetic 
approach for cataract diagnosis and feature weighting. 
For the automated detection of both coronary artery and 
regular disease issues, on the other hand, Dolatabadi et 
al.35 proposed a method for the automatic identification 
of normal and Coronary Artery Disease states using the 
binary classifier (SVM).

Recurrent neural network (RNN)
In multi-temporal satellite pictures, land-cover categori-
sation was performed by Ienco et al.36 using Long Short-
Term Memory (LSTM) and Recurrent Neural Network 
(RNN). Landsat 8 images were classified by the RNN 
framework, which is based on a patch that was proposed 
by Sharma et al.37 incorporating both spectral and spatial 
data in a local window. Moreover, single image-based 
RNN techniques are also implemented in HSI. Mou et al.38 
introduced an HSI classification technique based on the 
parametric rectified hyperbolic tangent function. In this 
approach, for the RNN input layer, each pixel in the image 
is assumed to be one sequential feature. Wu and Prasad39 
utilised the Convolutional RNN (CRNN) technique and 
examined the integration of RNN and CNN layers in the 
spectral feature domain. Moreover, in spectral bands, the 
patch-level local invariant data are extracted by CNN. It 
offers RNN layers with spatial–contextual characteris-
tics. Instead of using the spectral vector as one piece of 
sequential data from all bands, Shi and Pun40 suggested 
the spatial neighbours create the sequential data in the 
RNN model. In this approach, initially, the 3DCNN on 
the local image patch was employed to obtain the local 
spatial–spectral characteristics. Afterward, based on 
the eight-directional construction, the sequences were 
created. Even though RNN-based DL models have made 
a substantial contribution to HSI processing efforts, there 
are still certain crucial issues that must be solved. If only 
a small training set is available, the result is likely to be 
overfitted. It is generally difficult and time-consuming to 
get enough labelled training data for HSI classification.

Semi-supervised approaches for 
classification
In traditional classification systems, a classifier is gener-
ated with ground-truth data (labelled) at the learning/
training stage. As is well known, there are limited labelled 
samples available in remote sensing applications, because 
obtaining labelled data from sites being observed is 
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costly and time consuming. Furthermore, the quantity 
of labelled samples has a strong influence on the perfor-
mance of the classifier model. To overcome these limited 
training samples, Semi-Supervised Learning (SSL) is a new 
strategy that combines both unlabelled and labelled data 
at the same time. In SSL the unlabelled data is used for 
spectral signature perception.

SSL approaches are designed to operate with small 
numbers of labelled samples since labelled data in 
hyperspectral images are often not available or only in 
small quantities. Therefore, SSL is gaining researchers’ 
interest.41 Self-training,42 Active Learning (AL),43 graph-
based learning44 and transductive learning45 are some of 
the semi-supervised learning methodologies which are 
used to increase learning performance. The primary goal 
of all investigations is to increase the training sample 
size. For the volumetric input of the image cube, He et 
al.46 use a 3D bilateral filter with Generative Adversarial 
Networks (GANs). To extract the spatial and spectral 
features, the 3D bilateral filter was used by the authors, 
and then the extracted features were fed into a GAN. To 
produce a realistic sample, both unlabelled and labelled 
samples were used to train the GAN. To train the classi-
fier, these realistic samples were used. During testing, it 
was discovered that while the 3D bilateral filter had an 
effect, it was not significant. Currently, the GAN classi-
fier has received a lot of attention, but it is a complicated 
structure with a lot of network parameters that can be 
difficult to configure. To train spectral and spatial feature 
extractors based on stacked multi-loss auto-encoders, 
unlabelled datasets were used by Kemker and Kanan.47 
Furthermore, labelled data are also used to train the 
classifier. For classification, Kemker et al.48 enhanced 
the approach by substituting the SVM classifier with 
a Semi-Supervised MultiLayer Perceptron (SS-MLP). 
Even though the datasets differ in spatial resolution, the 
number of wavelengths captured and spectral bands 
they found that using datasets from different sensors 
increased performance.

Recently, a few works that examined the combination of 
AL and DL for HSI classification have been published.49–51 
Particularly, Ahamad et al.49 proposed an AL-based tech-
nique named Generalised Fuzziness Extreme Learning 
Machine Auto-Encoder (GFELM-AE). An approach to 
integrate a weighted incremental dictionary learning 
criterion with RBM was presented by Liu et al.50 Haut et 
al.51 proposed a method to combine BCNN with six AL 
criteria (mutual information, breaking ties, maximum EP, 
random acquisition etc.). Moreover, the combination of 
these methods attained superior performance.

To create a semi-supervised HSI classification approach, 
Cui et al.52 analysed Rolling Guidance Filter (RGF) and 
Extended Label Propagation (ELP) for graph-based 
learning. To forecast pixel labels, this approach used a 
graph-based label propagation algorithm. Moreover, it 
used superpixels to correct some mislabelled pixels.

The transductive methodology necessitates fewer 
resources because it is primarily concerned with 
lowering inference error for a given set of unlabelled 
data, rather than attempting to enhance the overall 
quality of the acquired hypothesis. Hence, Huang et 
al.45 proposed a strategy named transductive learning 
to overcome the limited labelling training sample 
and high dimensionality difficulties by extending 
non-local graph theory to the classification label space. 
Furthermore, Appice et al.53 used the S2CoTraC algo-
rithm to implement a transductive learning technique 
based on a co-training schema.

Cluster analysis for classification
Unlike supervised techniques, there has been limited 
study of HSI cluster analysis (i.e., clustering), which still 
has serious issues because of the high-dimensional and 
complex data observation. For cluster analysis HSI clas-
sification, a robust manifold matrix factorisation was 
presented by Zhang et al.54 They used unified low-rank 
matrix factorisation to address the high feature dimen-
sionality of the hyperspectral image. It performs data 
clustering and dimensionality reduction. In matrix 
factorisation, the reconstruction loss is measured using 
the 2,1-norm. It helps to decrease the mistakes caused 
by potential noisy observations. Moreover, to find the 
local optimum solution, the Augmented Lagrangian 
Method (ALM) was implemented as well as a new 
out-of-sample extension trick to enable the technique 
to handle large-scale hyperspectral remote sensing 
data. To classify hyperspectral images, the divide and 
conquer technique was presented. Also, they used 
the k-means clustering approach to separate the data 
produced after PCA into multiple clusters. Afterward, 
multi-class SVM is used to train these clusters sepa-
rately. A Bayesian labelling method was suggested by 
Ghanbari et al.55 that combined the findings of the 
Gaussian Mixture Model (GMM) with spatial-contex-
tual data collected using Markov Random Fields (MRF). 
In addition, to increase MRF performance, a fuzzy 
segmentation-based technique is designed and imple-
mented into the spatial energy.
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Bo et al.56 extend the classic KNN approach in a 
spectral–spatial collaborative manner. The set-to-point 
distance and weighted KNN framework are effectively 
integrated into this approach. According to Wang et al.,57 
cluster analysis algorithms are generally classified into 
four groups:
1)	Centroid-based clustering approaches like fuzzy 

c-means and k-mean are used to decrease the distance 
within the cluster sample. These techniques are very 
sensitive to initialisation and noise, so they cannot 
produce a reliable result.

2)	Density-based approaches using the fast search tech-
nique to create the clustering and obtain the density 
peak algorithm. Density-based methods are not suit-
able for HSI because finding the density peak in the 
sparse feature space is difficult.

3)	Biological clustering techniques: for clustering HSI 
classification, these include an adaptive multi-objective 
differential evolution-based automatic fuzzy clustering 
approach and artificial immune networks. The biolog-
ical techniques may not always completely match the 
properties of hyperspectral images. Therefore, their 
outcomes are not always good enough.

4)	Graph-based approaches, like spectral clustering, 
perform well in HSI cluster analysis, but the affinity 
matrix and eigenvalue decomposition take too long 
for most of them. Because of the uniform data distri-
bution induced by the substantial spectrum diversity, 
the existing HSI cluster analysis algorithm’s accuracy is 
not satisfactory when compared to supervised proce-
dures. Therefore, Xie et al.58 and Zhao et al.59 proposed 
techniques called adaptive density and fast spectral 
clustering for unsupervised hyperspectral remote 
sensing image clustering.

Moreover, Lin et al.60 suggested an unsupervised model 
termed Multiple-Layer Feature-Matching Generative 
Adversarial Networks (MARTA GANs) to learn from unla-
belled input. It has a discriminative model D as well as a 
generative model G. They considered D to be a feature 
extractor and employed a fusion layer to combine global 
and mid-level features to match the complicated aspects 
of remote sensing data. A Wasserstein GAN with Gradient 
Penalty (WGAN-GP) based unsupervised approach was 
presented by Wei et al.61 To produce more expanded 
high-resolution remote sensing images, a multi-feature 
layer is introduced by them. To cluster hybrid polarimetric 
data into seven clusters, unsupervised CNN is used by 
Chatterjee et al.62 They used an entropy-based loss func-
tion and an adaptive learning rate optimisation algorithm 
(Adam) for training.

Dimensionality reduction 
techniques
To decrease the dimensionality of the feature space, 
dimensionality reduction algorithms have been 
suggested. They aim to reduce computational complexity 
and alleviate statistical complexity by discarding redun-
dant features, which can potentially increase the perfor-
mance of the classifier. Hence, the purpose of dimen-
sionality reduction is to minimise the complexity of 
incoming data while preserving part of the data’s essen-
tial information. Traditional band selection methods or a 
feature extraction (projection) techniques can be used 
to reduce dimensionality in the HSI framework. Band 
selection methods choose the original spectral band’s 
subset that should contain the image’s most essential 
features. Band selection approaches can be classified as 
unsupervised and supervised depending on the avail-
ability of labelled samples. Unsupervised band selection 
is employed when no labelled samples are available. The 
goal of unsupervised band selection approaches is to 
select the most informative and distinct bands possible. 
Projection methods use the original band’s non-linear 
or linear combinations to convert the data into a low-
dimensional environment.

The most prominent dimensionality reduction approach 
is PCA. To attain the covariance matrix, it subtracts the 
population means from each sample. From these, it 
derives a transformation matrix by maximising sample 
scatter. To prevent overfitting and reduce noise, PCA is 
used in the pre-processing of other advanced dimen-
sionality reduction algorithms.63 LDA64 and discriminant 
common vectors65 are advanced versions of PCA. When 
samples are spread in a manifold structure, the PCA tech-
nique is unsuccessful in exposing the local structure of 
data because it is dependent on linear measurement.

For HSI classification, Ramamurthy et al.66 employed a 
CNN-based classifier with an auto-encoder-based dimen-
sionality reduction technique. Singular Value Decomposition 
(SVD) followed by the combination of QR decomposi-
tion and Inter-Band Block Correlation Coefficient (IBBC) 
was presented by Reshma et al.67 to improve the spatial 
features. For dimensionality reduction, Li et al.68 devel-
oped another spatial–spectral-based neighbour graph. For 
classification, the author used a Composite Kernel-based 
Support Vector Machine (SVM-CK). Charmisha et al.69 
and Hang and Liu70 suggested dynamic mode decompo-
sition and a Local Graph Discriminant Embedding (LGDE) 
based approach for dimensionality reduction. They extend 
the linear LGDE model into its kernel counterpart to 
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a SuperKPCA approach for dimensionality reduction and 
achieved better results.

Wavelet transforms for image 
and spectra compression
A modified dictionary learning process, a novel ordering 
system and the use of Differential Pulse Code Modulation 
(DPCM) have been proposed by Ertem et al.85 The coef-
ficients of sparse can be expressed more effectively 
than typical SSASR due to improvements in dictionary 
learning. To reconstruct the hyperspectral image, the 
superpixel map is kept or stored for a long time (side 
information). When utilising the new ordering method, 
it is no longer necessary to store the superpixel map as 
side information. Furthermore, using DPCM reduces the 
sparse coefficients’ magnitudes.

Discrete Wavelet Transform (DWT)-based compression 
algorithms have been shown to provide greater compres-
sion performance than DCT-based approaches, despite 
DCT’s low computational complexity.86

A lossy HSI compression scheme depending on the 
regression of wavelet coefficients of 3D was described by 
Zikiou et al.87 The hyperspectral images are weakly repre-
sented using the 3D wavelet transform. The wavelet 
details are then subjected to an SVR (SVM regression), 
which generates weights and vector supports that repre-
sent texture features for the wavelet. 3D-bicubic inter-
polation with factor 2 increases the size of DWT’s high-
frequency components even further.

Nagendran and Vasuki88 proposed employing hybrid 
transform to compress hyperspectral images. The image 
is first broken into 1D, then clustered and tiled. In order to 
obtain Integer Karhunen–Loeve Transform (IKLT) bands 
in the spectral dimension, every cluster is subjected to 
the IKLT, which is then applied to the entire image. To 
decorrelate the spatial data in spatial dimension applying 
IKLT bands, the integer wavelet transform (IDWT) is then 
used. Hybrid transform is the result of combining IDWT 
with IKLT. Then the coefficients of decorrelated wavelet 
are used to the Spatial-orientation Tree Wavelet (STW), 
Wavelet Difference Reduction (WDR) and Adaptively 
Scanned Wavelet Difference Reduction (ASWDR) algo-
rithms.

Hernández-Cabronero et al.89 aimed to determine the 
most beneficial trade-off of compression–complexity 
inside the state-of-the-art in HSI compression. For 
performance assessment, the authors combined the 

adequately reflect the non-linear feature of a hyperspec-
tral image. Paul and Chaki71 proposed a method based on 
pooling. For efficient classification, Hidalgo et al.72 present 
the Self-Organising Map (SOM) which is an unsupervised 
dimensionality reduction technique. Within the group of 
input patterns, it identifies self-organising correlations 
automatically.

For the supervised technique, Gowtham73 suggested 
a PCA-based approach. Sawant and Manoharan74 and 
Prabukumar et al.75 recommended a discrete cosine 
transform and weighted entropy-based algorithm. For 
hyperspectral images, an Expectation-Maximisation (EM) 
algorithm-based clustering with band fusion is offered 
by Prabukumar and Shrutika,76 and a Band Correlation 
Clustering (BCC)-based feature extraction methodology 
is described by Ghorbanian and Mohammadzadeh.77

By mapping high-dimensional data into lower-dimen-
sional data, graph learning approaches have gained 
increasing interest from researchers as a useful tool for 
dimensionality reduction.78 Many graph learning algo-
rithms and variants have been presented to discover the 
fundamental geometric structure of high-dimensional data 
based on this concept.79 For example, Spatial–Spectral 
Multiple Manifold Discriminant Analysis (SSMMDA)80 
and Isometric Feature Mapping (ISOMAP).81 For deliv-
ering extremely non-linear manifolds, ISOMAP strives to 
preserve geodesic distances of all similarity pairs, and it 
approximates the geodesic distance between two points 
by measuring the shortest path between these points.82 
The multi-scale segmentation-based method of fusing 
classification findings has recently been extended to the 
field of dimensionality reduction, with promising results.83

Multiple homogenous zones are common on a real 
surface. The differences between distinct homogenous 
regions are often overlooked when reducing dimen-
sionality based on the optimal global projection direc-
tion. Because these multiple homogeneous zones are 
often of varying sizes, it might be difficult to accurately 
represent these differences for a single segmentation 
scale. To tackle these issues, Jiang et al.83 segmented the 
hyperspectral image into superpixels of several scales. At 
different scales, the low-dimensional illustrations of HSI 
are created by applying PCA on each superpixel. By the 
use of the Majority Voting (MV) decision fusion approach, 
the final classification output is generated by fusing each 
scale’s classification outcomes. This technique is known 
as Multi-scale segmentation-based superpixel-wise PCA 
(MSuperPCA). Moreover, the technique that depends on 
single-scale segmentation is known as Superpixel-wise 
PCA (SuperPCA). Based on this, Zhang et al.84 developed 
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most competitive spectrum decorrelation techniques 
with the low-complexity compressors.

Evaluation of results
Following the classification of hyperspectral images, 
we must assess the quality of the classification find-
ings before evaluating the classifier’s performance. The 
accuracy of classification is measured to graphically indi-
cate the capability of the suggested approach, which is 
followed by a relative examination of existing methods 
and further enhancements depending on their weak-
nesses. Moreover, the performance of the techniques 
is evaluated on some hyperspectral datasets. The most 
commonly used datasets are Salinas, Pavia University, 
Kennedy Space Center and Indian Pines, which are 
described below.

The Salinas dataset: the Airborne Visible/Infrared 
Imaging Spectrometer (AVIRIS) sensor was used to collect 
these data with 3.7 m spatial resolution. The dataset was 
captured over the area of Salinas Valley, USA. After 20 
water absorption bands have been eliminated, the image 
has 512 × 217 pixels and 204 bands. This dataset mainly 
includes wine fields, barren soils and vegetable fields. 
There are 16 other classes as well.

The Pavia University dataset: the Reflective Optics 
System Imaging Spectrometer (ROSIS-03) optical sensor 
was used to collect these data. The dataset contains 

103 spectral bands with a 0.43–0.86 μm spectral range 
and the size of the image is 610 × 340 pixels. It has 1.3 m 
spatial resolution.

Indian Pines dataset: this dataset was obtained by 
AVIRIS. Indian Pines covers 220 spectral bands and 
is 145 × 145 pixels in size. It covers the 0.4–2.45 µm 
wavelength range. Moreover, each pixel has a spatial 
resolution of 20 m.

Kennedy Space Center dataset: it includes 512 × 614-pixel 
sizes and was obtained from Florida in 1996 by AVIRIS. It 
has 13 ground-truth classes and 18 m px–1 spatial resolu-
tion. There are 176 bands left once the noise bands are 
removed.

Comparison of the approaches
The comparison of supervised, unsupervised and 
semi-supervised approaches is given in Table 1. From this, 
it can be observed that most of the recent hyperspectral 
image classification algorithms are based on supervised 
and semi-supervised approaches. Unsupervised machine 
learning-based classification techniques are utilised rarely. 
Moreover, compared with unsupervised approaches, the 
accuracy of semi-supervised and supervised machine 
learning algorithms is higher. However, the computation 
time of unsupervised algorithms is much less. Compared 
with supervised approaches, they provide the results in a 
very short time.

Year Reference
Types of 

classification Techniques Dataset Accuracy

2018 Paoletti et al.15 Supervised
Improved 3-D deep 
CNN model

Indian Pines, University 
of Pavia

98.6 %

2018 Haut et al.16 Supervised D-CNN
Indian Pines, Salinas 
Valley, Kennedy Space 
Center

99 %

2018 Guo et al.17 Supervised RNN
Indian Pines and 
Kennedy Space Center

93.80 %

2019 Zhao et al.18 Supervised CNN
University of Pavia, 
Houston, Zhangye

98.4 %

2019 Li et al.19 Supervised
Deep belief network 
(DBN)

Indian Pines and Pavia 
University

97.26 %

2018 Li et al.21 Supervised

AdaBoost-weighted 
composite kernel 
extreme learning 
machines (WCKELM)

Indian Pines and Pavia 
University

96.46 %

Table 1. Comparison of supervised, semi-supervised and unsupervised approaches based on accuracy.
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2020
Okwuashi and 
Ndehedehe23 Supervised Deep SVM

Indian Pines and Pavia 
University

98.86 %

2019 Wang et al.24 Supervised
SVM-modified 
binary-coded Ant 
colony algorithm

Heart, Credit, Forest, 
Ionosphere and Spectf

91.24 %

2020
Sukawattanavijit 
et al.25 Supervised

SVM-genetic 
algorithm (GA)

Thaichote (THEOS), 
RADARSAT-2 (RS2), 
LANDSAT-8, RS2 data

95 %

2017 Ienco et al.36 Supervised LSTM THAU, Reunion Island 75.15 %

2018 Sharma et al.37 Supervised Patch-based RNN
Indian Pines, Pavia 
University, Houston

97.21 %

2017 Mou et al.38 Supervised RNN
Indian Pines, Pavia 
University, Houston

88.63 %

2017 Wu and Prasad39 Supervised CRNN
University of Houston, 
Indian Pines

89 %

2018 Shi and Pun40 Supervised
Multi-scale 
hierarchical RNN

Pavia University, Pavia 
Center scene and Salinas

96.32 %

2020 Zhang41 Semi-
supervised

Locally linear 
embedding

Indian Pines, Botswana 
(BOT), Kennedy Space 
Centre (KSC)

99.65 %

2018 Li et al.42 Semi-
supervised

Self-training with iter-
ative region merging 
using semantics 
(ST-IRGS)

University of Pavia, 
Salinas, Kennedy Space 
Center

91.7 %

2020 Cao et al.43 Semi-
supervised

Active learning-based 
CNN 

Indian Pines, Pavia 
University, Pavia Center

97.45 %

2021 He et al.44 Semi-
supervised

Constrained label 
propagation with par-
ticle competition and 
cooperation (CLPPCC)

Indian Pines, Pavia 
University, Salinas

98.57 %

2021 Huang et al.45 Semi-
supervised

Transductive learning 
method

The University of 
Houston, Urban, JasperR, 
PaviaU Indian P and 
Salinas-A

99.13 %

2017 He et al.46 Semi-
supervised

3DBF-GAN
Indian Pines, University 
of Pavia and Salinas

92.30 %

2017
Kemker and 
Kanan47

Semi-
supervised

MICA and SCAE
Indian Pines, Salinas 
Valley and Pavia 
University

99.2 %

2018 Kemeker et al.48 Semi-
supervised

SS-MLP
Indian Pines and Pavia 
University

91.32 %

2020 Ahmad et al.49 Semi-
supervised

GFELM-AE Salinas 99.89%

2017 Liu et al.50 Semi-
supervised

Active deep learning
PaviaC, PaviaU and 
Botswana

96.25 %

2018 Haut et al.51 Semi-
supervised

AL-based B-CNN
Indian Pines, Salinas 
Valley and Kennedy 
Space Center

99 %
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2018 Cui et al.52 Semi-
supervised

ELP-RGF
Kennedy Space Center, 
University of Pavia and 
Indian Pines

85.21 %

2017 Appice et al.53 Semi-
supervised

S2CoTraC
Indian Pines, Pavia 
University and Salinas 
Valley

95 %

2019 Zhang et al.54 Cluster 
analysis

Robust manifold 
matrix factorisation

Washington DC dataset, 
Salinas-A

91.86 %

2018 Ghanbari et al.55 Cluster 
analysis

GMMMRF
Indian Pines, Pavia 
University and Salinas

94.5 %

2018 Bo et al.56 Cluster 
analysis

Spectral–Spatial KNN
AVIRIS Indian Pines and 
University of Pavia

93.8 %

2017 Wang et al.57 Cluster 
analysis

Fast spectral cluster-
ing with anchor graph 
(FSCAG)

Indian Pines, Salinas, 
Pavia Center

81.55 %

2018 Xie et al.58 Cluster 
analysis

K-means fast density 
peak-based clustering 
(K-FDPC)

UCI Iris, Jasper Ridge HSI 
data set and Salinas-A

83.5 %

2019 Zhao et al.59 Cluster 
analysis

FSC

Salinas and Salinas-A, 
Indian Pines, Urban, 
Japser Ridge, Samson, 
Kennedy Space Center 
and Pavia University

The 
accuracy 
of the 
approach 
was not 
com-
puted

2017 Lin et al.60 Cluster 
analysis

MARTA GAN
UC Merced Land Use 
and Brazilian coffee 
scenes

94.86 %

2020 Wei et al.61 Cluster 
analysis

WGAN-GP
NWPU-RESISC45, AID 
and UC Merced Land 
Use

92.45 %

2020 Chatterjee et al.62 Cluster 
analysis

Deep CNN RISAT-I 86.08 %

From the analysis of supervised and semi-supervised 
approaches, it is observed that the classification results 
of semi-supervised approaches are superior to the super-
vised approaches. From the semi-supervised approaches, 
the auto-encoder and GAN-based techniques achieve 
high classification accuracy. Therefore, semi-supervised 
approaches are better than supervised and unsupervised 
approaches.

We analysed different dimensionality reduction 
approaches based on the evaluation metric accuracy and 
this is given in Table 2.

From Table 2 it can be seen that the minimum noise frac-
tion, auto-encoder, SSNG and PCA techniques provide 
the best results, helping to provide better classification 

accuracy. Moreover, they preserve the relevant informa-
tion to enhance the semantic interpretation of hyper-
spectral images.

Conclusion
Hyperspectral image recognition and classification are 
crucial functions of hyperspectral image processing. 
This study reviews current advances in hyperspectral 
image classification utilising various supervised, unsu-
pervised and semi-supervised machine learning algo-
rithms. Moreover, a brief review of various dimension-
ality reduction techniques is also discussed. In addition, 
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Table 2. Comparison of dimensionality reduction techniques.

Year Author Approach Dataset Accuracy

2020 Uddin et al.63

Comparison of non-linear and linear 
variants of PCA (kernel entropy 
component analysis, minimum noise 
fraction, spectrally segmented PCA, 
folded-PCA, segmented-PCA and 
kernel-PCA)

Indian Pines and 
Washington DC Mall

Minimum 
noise frac-
tion = 98.93 %

2020 Jayaprakash et al.64

Randomised independent component 
analysis (RFICA) and randomised 
linear discriminant analysis (RFLDA)

Salinas Scene and 
Pavia University

RFLDA = 
95.39 %

2018 Fordellone et al.65 Partial least squares discriminant 
analysis (PLS-DA)

Real dataset
Accuracy not 
computed

2020
Ramamurthy et 
al.66 Autoencoder

Pavia University 
dataset

98 %

2018 Reshma et al.67 Singular value decomposition (SVD)
Salinas-A and Pavia 
University

97.3 %

2019 Li et al.68 Spatial–spectral neighbour graph 
(SSNG)

Indian Pines, Pavia 
University and 
Salinas

98.90 %

2018 Charmisha et al.69 Dynamic mode decomposition (DMD)
Salinas-A and Indian 
Pines

90.56 %

2018 Hang and Liu70 LGDE

Pavia University 
Scene, Indian Pines 
and Kennedy Space 
Center

92.06 %

2019 Paul and Chaki71 Pooling
Kennedy Space 
Centre and Botswana

95 %

2020 Hidalgo et al.72 SOM
Pavia University, 
Salinas Valley, Indian 
Pines

81.9 %

2021 Gowtham73 PCA
Pavia University and 
Indian Pines

98.2 %

2020
Sawant and 
Manoharan74 3D DCT

Salinas, Pavia 
University and Indian 
Pines

92.83 %

2018 Prabukumar et al.75 3-D DCT
Salinas, Pavia 
University and Indian 
Pines

94.62 %

2018
Prabukumar and 
Shrutika76 EM

Botswana, Salinas, 
Pavia University and 
Indian Pines

84.92 %

2018
Ghorbanian and 
Mohammadzadeh77 Band correlation clustering (BCC)

Washington DC, 
Houston, and Pavia 
University

88.16 %

2017 Xia et al.78 KPCA
Indian Pines AVIRIS, 
University of Pavia 
ROSIS

74 %
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2017 Feng et al.79

Graph-based discriminant analysis 
with spectral similarity (denoted as 
GDA-SS)

Salinas, University of 
Pavia

93 %

2019 Shi et al.80 SSMMDA
PaviaU, Heihe, 
Washington DC Mall

95.65 %

2019 Orts Gómez et al.81 ISOMAP
Indian Pines, 
Salinas-A, Pavia

95.76 %

2017 Li et al.82 ISOMAP
Indian Pines, 
Salinas-A, Pavia

91 %

2018 Jiang et al.83 SuperPCA
Indian Pines, 
University of Pavia, 
Salinas Scene

94.96 %

2019 Zhang et al.84 SuperKPCA
Indian Pines, Pavia 
University, Salinas

89.90 %

the performance of these approaches (accuracy) is also 
analysed. From the analysis, it can be seen that the 
semi-supervised approaches, such as auto-encoder and 
GAN-based techniques, provide better classification 
results and non-linear variants of PCA (minimum noise 
fraction) based dimensionality reduction technique help 
to improve the classification accuracy.
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