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Abstract:

Forecasting of renewable energy generation is a mature R&D area, also with a lot of
operational experience and commercial o↵ering. As the share of renewable energy gen-
eration in the energy mix increases, in parallel to a liberalization of electricity markets,
new needs for forecasting have appeared. Throughout the last few decades, emphasis
was placed on deterministic and probabilistic forecasting, extremes, ramps, etc. As of
today, we argue that new developments and proposals for forecast products should hap-
pen within a problem-oriented approach: there, forecast products are at the interface
between forecasters and forecast users, and driven by the decision problem at hand. In
this report, we review the current evolution in market, operations, etc. that call for new
forecast products. We also look at new views coming from the R&D side, with the aim to
introduce new forecast products and show their interest for forecast users. Eventually, we
argue that, beyond forecast products only, there are also a number of new business models
of relevance being developed, e.g. related to collaborative analytics and data markets.
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1 Introduction

The state of the art in renewable energy forecasting has evolved tremendously over the
last few decades, with a very strong push for new developments driven by wind power
prediction mainly at the beginning (e.g. probabilistic forecasting, ramp forecasting, etc.),
though now also with a strong contribution from solar energy forecasting. The reader
is referred to [1–3] to give a representative coverage of recent state of the art overviews
in renewable energy forecasting. A lot of those developments have come from the R&D
side through various national and international (e.g., at European level) projects, with
the investigation of new methods for statistical and machine learning for instance, use
of meteorological forecasts including ensemble forecasts, accommodating of new types of
data as input, etc. In parallel, commercial and operational forecast providers have also
done their fair share in developing solutions and services in renewable energy forecasting,
based on the needs and requirements expressed by their forecast users.

At the core of those developments is the concept of forecast products, which are at the
interface between the forecasters and the forecast users, or in other words, between the
forecasting process and the use of forecasts in decision-making. Therefore, when thinking
of future needs and potential development in renewable energy forecasting, we believe that
a strong emphasis ought to be placed on potential new forecast products. The importance
of forecast products has long been realized by the meteorological forecasting community –
for instance, the European Centre for Medium-range Weather Forecasts (ECMWF) reg-
ularly looking into new forecast products, while updating their user guide to ECMWF
forecast products1. It should be noted that while the term of ”forecast product” is popular
within the meteorological forecasting community and for various meteorological applica-
tions e.g. energy, di↵erent terminology may be used by other forecasting communities.
We will stick here to that terminology.

Thinking of forecast products, their origination may relate to new needs expressed by
forecast users, new needs as imposed by changes in markets and in regulation (e.g. change
in the granularity of market from hourly to 15-mins), new needs imposed by technology
(e.g. if having storage to operate jointly with wind farms, the temporal resolution of
forecasts should be higher), etc. However, some of these new forecast products may
also come from novel ideas and development from the R&D side, since profiting of novel
data sources, new computational capabilities, etc. Clear examples relate to the use of
sky imagers in solar power forecasting, see e.g. [4], allowing to produce high-resolution
forecasts, as well as the implementation and solving of LES-type models on GPUs [5],
also allowing for very high resolution weather forecasting. In the present report, the main
emphasis is placed on short-term forecasts with lead times ranging between a few minutes
ahead and several days ahead, in line with the majority of developments over the last
few decades. It is to be noted, however, that increasingly focus is also given to longer
term forecasts at the monthly and seasonal scales [6], which may be useful for hedging,
adequacy studies, etc. Obviously this should eventually have an impact of potential
new forecast products. Finally, it should be noted that, further than forecast product
mainly, the discussion in this report is to extend to novel business models in relation
with renewable energy forecasting, e.g., in connection with collaborative and distributed
learning, privacy-preserving learning and data markets.

1
See the ECMWF page on the user guide to ECMWF forecast products at:

https://www.ecmwf.int/en/about/media-centre/focus/user-guide-ecmwf-forecast-products
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Driven by those trends and new opportunities, the aim of this document is to uncover

what kind of technological and regulatory developments may drive the need for new
forecasting products,

the need for new forecast products as expressed by forecast users, and

the possibilities on the R&D side to bring new forecast products (and novel business
models) to forecast users.

The document is structured as following. Section 2 gives a clear introduction to the
concept of forecast product and its role in renewable energy forecasting. Section 3 con-
centrates on recent regulatory developments that may motivate new forecast products.
Similarly, Section 4 discuses recent technological evolution that may motive new forecast
products while Section 5 covers the evolution in operation practice. Section 6 looks at
the user side, and how they may request themselves new forecast products. Sections 7
takes the point of view of recent R&D developments in forecasting that may lead to new
forecast products and novel business models in renewable energy forecasting. Finally, Sec-
tion 8 gathers a set of conclusions and perspectives for future developments. This report
also relies on an extensive set of references, for the readers for further dig into the topics
covered. In that sense, it may also be seen as a survey paper on the topic of forecast
products for renewable energy forecasting.

2 What is a forecast product?

The fundamental aim of forecasting is to express and communicate information about
future events: forecasts ought to be informative (most likely, based on the decision prob-
lem at hand) and concern specific events. Some of the basic concepts in forecasting have
been theorized over the period 1960-2010, when for instance looking at the nature of
goodness of weather forecasting [7] and various ways to verify forecasts, or when aiming
to find the best forecasting techniques based on available data, decision problem at hand,
etc. [8]. Forecasts are rarely used without a specific purpose in mind, i.e., they are inputs
to specific decision-problems. The nature and presentation of the forecasts is then to be
a function of what the forecaster has to o↵er (based on data, models, etc.) and what the
forecast user needs for decision-making. In the case where forecasts are to be used for a
broad range of decision problems, they are made as generic as possible, as for the example
of broad-audience weather forecasts. However, they could be made even more suitable
and informative after dedicated interaction between the forecaster and the forecast user.
Such interaction is to result in the definition of a forecast product.

Let us consider a set of very simple examples:

The operator of a storage unit is performing basic arbitrage in an electricity market,
i.e., based on the idea that, when the price is higher than average energy is released
(and sold), while when the price is lower than average, energy is stored (and hence
bought). The event of interest is then ”whether the price is above, or below, average”

A retailer is to buy the necessary amount of energy from the wholesale electricity
market for his pool of consumers. Consequently, the event of interest is ”how much is
the electricity demand for that the pool of consumers”
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Already here, one notices that those two simple problems relate to di↵erent types of events.
In the storage arbitrage case, the forecasts are for a binary variable (above/below), while
for the retailer case, the forecasts are for a continuous variable (energy consumption
value).

Considering a decision-problem-oriented approach, forecast products are to be seen as an
interface between the forecaster and the forecast user. Indeed, the forecaster uses relevant
data streams, models and forecasting approaches, own expertise, as well as visualization
tools, to eventually produce the right information that can be used by the forecast used
as input to decision-making. This is illustrated in Figure 1. The forecast product should
then somewhat encapsulate all the work and expertise of the forecaster in a format that
makes it useful to the decision-maker. In additional to usefulness, other attributes may
be sought after, e.g. simplicity, user-friendliness, etc.

Figure 1: Forecast products are to be seen as the interface between forecaster and forecast
user, within a decision-problem-oriented approach.

Back to the storage arbitrage problem, a forecast product is to acknowledge the charac-
teristics of the decision problem at hand, as well as the way the problems is to be solved
by the forecast user. For instance, if the forecast user employs deterministic optimization
approach as basis to decision-making, forecasts for above/below should certainly also be
deterministic. In contrast, if the forecast user employs stochastic optimization instead,
forecasts should take a probabilistic format.

Today, when thinking of forecast products within renewable energy forecasting, it is of
utmost importance to describe the type of event of interest, which will be summarized by
the variable(s) of interest, lead times, spatial information (given location, grid, portfolio
aggregation), etc. Similarly, the informativeness of the forecasts is to be defined: should
it be probabilistic or deterministic, inform of dependencies between variables or not, etc.?
Those aspects should be kept in mind when browsing through the following sections.

3 Regulatory and market developments

Owing to the large-scale integration of renewable energy generation capacities, the de-
centralization of energy system, the liberalization of electricity markets and the more
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proactive role of energy consumers, the market and regulatory framework for energy sys-
tems is changing substantially. Many of those changes motivate the development of new
forecast products as discussed in the following. We mainly focus on the existing en-
ergy and ancillary service markets, as well as the recent push towards more decentralized
electricity markets, e.g. in a peer-to-peer and community-based framework.

3.1 Energy and ancillary services

The observed evolution of electricity markets in Europe shows three salient technical
characteristics: (1) a higher volatility due to the growing influence of actors with lim-
ited predictability such as variable renewable energy, demand response or interconnection
transfers [9]; (2) a shift towards exchanges closer to delivery, evidenced by the increase of
10 TWh in the intra-day volumes of EPEX between 2017 and 2018 [10], and by the closure
of balancing energy Ancillary Services (AS) foreseen in the last hour before delivery by
the Electricity Balancing Guideline of the European Commission [11]; (3) a wider range
of markets including tenders for balancing AS (Frequency Containment Reserve (FCR),
automatic Frequency Restoration Reserve (aFRR), Replacement Reserve (RR)).

Volatility impacts the price of imbalances on the energy market, which is an important
factor for the optimal o↵er of RES production. With the single price settlement being
adopted in Europe for pricing imbalances, renewable producers who bid on the energy
market should anticipate the system imbalance to decide whether to deviate from their
day-ahead schedule. If the deviation helps reduce the system imbalance they may earn
additional profit, otherwise they should minimize their expected deviations. Deterministic
forecasting of the imbalance price has been proposed [12], but probabilistic predictions
should be favoured given the uncertainty levels associated to high volatility. In some
market conditions volatility is so high that it may be hard to achieve a well-performing
price prediction. Additionally to the existing approach of a probabilistic forecast of the
imbalance signal or volume [13], an alternative forecasting product consists in issuing a
probabilistic classification of expected imbalance regimes.

The evolution of markets closer to delivery creates more interest on the prediction of intra-
day prices. Intra-day markets in Europe di↵er vastly in terms of procurement (continuous
or sessions) and liquidity. An interesting challenge for intra-day price forecasting is to
propose a probabilistic forecasting product of intra-day energy prices (see for example [14])
which is generic enough to be useful to intra-day decision-making in di↵erent market
configurations including continuous markets [9].

RES power plants have started to participate in the provision of AS in several European
countries [15]. This widens the range of markets where RES actors can bid. However given
the requests of high level of reliability and minimum bid size formulated by system oper-
ators for these services [16], aggregations of multiple RES plants (possibly mixing energy
sources) within Virtual Power Plants (VPP) may be necessary to reduce the variability
of production and secure enough reserve capacity [17]. In this context, the prediction of
extremely reliable levels of the VPP production is needed and should include coherent
forecasts over the hierarchy levels of the VPP (from a single plant to the total aggrega-
tion) in order to optimize bidding and dispatch. A last need of forecasting product to
guarantee the technical feasibility of AS provision is the prediction of the available active
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power (AAP), i.e. the estimated maximum production level under curtailment for reserve
provision. The prediction of the AAP is established for o↵shore wind farms [18], but still
o↵ers rooms for improvement [19] and should be developed for onshore wind farms with
complex terrains and large photovoltaic plants.

Regarding AS market conditions, the transition from regulated mechanisms to markets
based on short-term tenders is recent and still ongoing, so developments on AS price
forecasting are limited compared to energy markets. A specific challenge scarcely tackled
in the state of the art is the prediction of the acceptance probability of the AS bid [20],
in the case of renewable-based AS bids. Lastly, new forecasting products for intra-day
reserve prices are expected when intra-day markets for reserve activation (e.g. aFRR,
FRR, RR) will emerge in Europe before 2025. Given that reserve markets are being
standardized in Europe, a standard forecasting product for intra-day reserve prices may
be a realistic perspective.

Finally, it is an open question to consider the new forecasting price products identified
above as predictions of the price level, or of the spread price between the price of interest
and a reference price on a second market (for instance spread between day-ahead energy
price and day-ahead reserve price, or spread between intra-day reserve price and intra-day
energy price). The spread price has two advantages: it is a synthetic indicator for the
arbitrage between two markets, and can be directly integrated into bidding strategies,
therefore streamlining decisions when compared to forecasting products for each market
price.

3.2 Towards community-based and peer-to-peer electricity mar-
kets

The concept of prosumers, i.e. those in the power system that both can produce and
consume (typically, a household with solar PV production units), has been around for
quite some time. It appeared and gained interest with the increased deployment of solar
PV production units on rooftops, hence mainly relating to PV. This is while, actually, the
concept of renewable energy communities has been there quite longer: it can be traced
back to the deployment of wind turbines in Denmark in the 1960s and 1970s, for which
locals had stakes in the project. Conceptually, those energy communities both consumed
and produced electric energy. Today, there is a strong push towards adapting electricity
markets to better accommodate those prosumers and energy communities, since allowing
to unleash some need flexibility for renewable energy integration while also sharing and
spreading the investment burden and risk. In practice, this may translate to accelerating
the decentralization of energy systems, while also democratizing electricity (and more
generally energy) markets based on novel business models [21]. This trend is there in re-
cent works performed within academia, R&D developments, new o↵ering and operational
practice in industry, as well as initiatives at the political and regulatory levels (e.g., with
the EU Clean Energy Package). This development was also helped by the recent focus on
blockchain (and distributed ledger technologies more generally) as potential backbone of
future smart grids and electricity markets [22]. A recent review of approaches to peer-to-
peer markets can be found in [23] while an alternative approach involving online matching
is described in [24].
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Necessarily, the design of electricity markets with more focus on peer-to-peer and community-
based setup will generate new needs for forecasting products. Such markets will most
likely require higher-resolution forecasts (say, with 5-minute resolution) since they will be
closer to real-time while involving more local and volatile generation and consumption.
They also require to look at more localized forecasts, for single households or groups of
households. The forecasts are to involve net load, i.e., the di↵erence between consumption
and local generation. In practice it means that it combines several underlying variables
to be predicted, as for the case of hybrid power plants for instance.

4 Evolution in technology and impact on forecasting
needs

On the technology evolution side, some of the most important developments that may
impact the need for forecast products include storage and hybrid power systems. Typically
one expects that this calls for forecasts with higher temporal resolution (to obtain storage
operation policies), combines wind and solar power generation forecasts for hybrid power
plants, etc. Considering the special case of wind farms (especially, o↵shore), it is also clear
that as the turbines get bigger and go higher, having wind forecasts at a single level may
not be optimal, and one should look at forecasting full profiles. Some of those aspects are
reviewed in the following.

4.1 Storage

The use of energy storage technologies in combination with RES power plants introduce
two main requirements for forecasting systems: (a) modelling of the temporal and spatial
dependency structure of forecast uncertainty; (b) high temporal resolution forecasts (i.e.,
<5-min) for model predictive control. For instance, focusing on the temporal structure
of uncertainty, it is intuitive that the need for storage, was well as its optimal operation,
will be di↵erent if one systematically over- (resp. under-) predict renewable energy gen-
eration, or if forecast errors alternate between being positive and negative. In the first
case, one would have to continuously charge (resp. discharge) the storage for a sustained
period of time – hence requiring large storage to cope. In the second case instead, one
would alternatively charge and discharge the storage at each and every time step, making
that the eventual storage capacity required is much smaller. This information about the
temporal dependency within forecast uncertainty can be summarized within the error
auto-correlation function for instance.

The study presented in [25] showed that the storage capacity rating grows non-linearly
with the forecast errors auto-correlation and the expected lifetime is influenced linearly
and ranges from 2 to 17 years for low and high values of error auto-correlation. The
charge/discharge power rating is only marginally influenced by the error auto-correlation
and is mainly a↵ected by the error standard deviation. These results have two major
implications:

Operational domain: The forecast uncertainty should include the temporal dependency
of forecast errors since it impacts the state-of-charge equation and the degradation
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function of the battery (usually included as a term in the objective function). Small-
scale geographically distributed DER (storage and RES technologies) can be combined
to compose a federated virtual power plant (see [26] for more details) and, in this
case, the spatial-temporal dependency structure is a fundamental requirement in the
uncertainty forecast.

Investment planning : Auto-correlation and standard deviation of forecast errors should
be considered when sizing energy storage, e.g., discarding auto-correlation can under-
estimate the storage capacity by a factor of about seven [27]. The forecast skill maps
proposed in the FP7 EU project SafeWind (2008-2012) can be adapted to provide
useful information for storage investment planning, such as spatial and/or temporal
dependency of forecast errors and sharpness (linked to standard deviation) of forecast
uncertainty, considering topographical e↵ects or weather phenomena [28].

The simultaneous provision of multiple services (peak shaving, frequency containment re-
serve, etc.) by storage units is economically attractive and requires two temporal layers,
day-ahead operational planning and real-time control [29]. The real-time control operates
in a second-to-second basis but, for some services and when combined with RES power
plants, it can be used to either compensate the deviation between market o↵er and mea-
sured electrical energy in a fixed time window or ensure a net energy around zero after a
short period (e.g., 5-min). In this case, a high temporal resolution forecast, considering
also a high frequency of forecast updates, is a valuable input to improve the tracking
performance and minimize deviations.

4.2 Hybrid power plants

Hybrid power plants considered here combine di↵erent energy sources (e.g. Wind, Pho-
tovoltaics, Run-of-River Hydro) in a single physical location. A forecasting product of
the combined power generation can take the form of probability density functions or en-
sembles (see next paragraph). Forecasts should reflect the correlations between energy
sources which are expected to vary largely with hour of day and seasons [30]. Concern-
ing their probabilistic performance, forecasts should display a level of uncertainty that
is coherent with the uncertainty resulting from the combination of multiple sources. In-
novative forecasting products for hybrid power plants may include other combinations of
energy sources than the widespread wind-solar combination and consider a wider range
of horizons, e.g. seasonal, day-ahead and intra-day horizons [31].

The ending of feed-in tari↵ support schemes for RES is opening the opportunity for
hybrid power plants with wind and solar technologies, which can deliver a high number
of equivalent full load hours (i.e. annual energy supply divided total number of hours
in a year), hence yielding an attractive levelized cost of energy (LCOE) when compared
to individual generation from wind or solar. This concept requires a forecasting product
that takes the form of a unique (i.e., wind plus solar energy) power generation ensemble
that considers the spatial-temporal dependency structure of wind speed and irradiance
forecasts [32].

Di↵erent renewable energy sources can also be aggregated within a VPP operating distinct
production sites. The correlation level between energy sources is expected to be low
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as a function of energy sources employed [33] and of the distance between sites. In
this context, probabilistic forecasts of VPP production, which can be density forecasts,
trajectories [34] or uncertainty sets constitute a new forecasting product. A hierarchical
forecast of production from the plant level up to the total aggregated portfolio of the VPP
is valuable for many applications, for instance to optimize the dispatch of a flexibility bid
o↵ered by the VPP.

4.3 Specifics of renewable energy technologies

Presently, each wind and solar power plant transmits large volumes of field-data (from
SCADA systems, additional sensors and inverters) that are very valuable for O&M system
and need to be combined with weather data (measurements and forecasts). In comparison
to wind turbines, research for PV power plants is still in an early stage and some faults
are not covered [35]. In this context, RES forecasting can be used to assess performance
loss in both wind turbines and PV panels and is particularly relevant to detect soiling
e↵ects or, in the opposite direction, can benefit from information collected by sensors that
detect soiling [36].

On the other hand, maintenance of o↵shore wind turbines is also becoming a high priority
[37]. New forecasting products are proposed in [38] for assessing safety conditions during
crew transfers to and from o↵shore installations. The final product is a probabilistic
forecast of vessel motion up to five days ahead that can take the shape of temporal
trajectories or an “access score” (i.e., categorical variable: good, fair, poor, no-go) that
facilitates communication to decision-makers.

A tendency towards larger sizes of renewable plants is observed, especially for PV plants
and o↵shore wind farms. In this context, the O&M challenges mentioned above must
be addressed by forecasting tools that are scalable to large-size plants, for which the
volume of data increases but also possibly the diversity of problems to be treated. In
such large plants, heterogeneity in weather conditions can be observed across the panels
or turbines composing the plant. New forecasting tools are expected to estimate the
production of such large PV plants and in particular estimate at very short-term their
available power [39]. Turbine-level wind forecasts have also been found to be valuable
on large wind farms [40]. Finally, wind turbine technology developments have led to
higher power extraction thanks e.g. to higher hub heights and rotor dimensions. In
the context of new wind farms and re-powering of existing farms, a change in the wind
power curve is expected, which drives the need for forecasting products adapted to new
farm configurations (e.g. prediction of production at di↵erent profiles and higher hub
heights) in order to predict correctly the expected future production levels and associated
uncertainty [33].

As available land for RES production tends to reduce, new locations of RES power plants
are actively considered, such as floating PV on hydro-power reservoirs or floating o↵shore
wind turbines. These particular geographical locations have not been considered in past
forecasting activities, therefore new forecasting products could consist in probabilistic
forecasts adapted to such floating plants, which experience specific weather conditions.
Finally, small to medium run-of-river hydro receives increasing attention from the fore-
casting community because of its possible provision of flexibility and variability levels
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which can be seasonally high (e.g. close to mountains). A probabilistic forecast for such
small/medium run-of-river hydro power plants is a novel forecasting product.

5 Evolution of approaches to power system operation

During the last years, the use of uncertainty forecasts for setting reserve requirements
has been the most successful use case and, in one way or another, transmission system
operators (TSOs) are already using information from predictive distributions for this
problem [41]. This section describes some recent challenges in system operation for power
systems with near-100% RES, as well as new processes and needs from industry that, in
most cases, can motivate the development of innovative forecasting products.

5.1 Operational management of the grid constraints

Transmission and distribution system operators (TSOs and DSOs), with the help of load
and RES forecasts, are implementing operational management practices, which means
moving from reactive to proactive management, in order to handle grid technical con-
straints and solve/mitigate congestion and voltage issues, e.g. to avoid line disconnection
and further cascading failures. The set of possible decisions are generators re-dispatching,
load shedding, demand response, phase-shifter transformer tap positions and grid topol-
ogy reconfiguration [42]. The activation of this flexibility can be planned ahead in order to
guarantee su�cient capacity to handle the predicted technical issues. The main goal is to
operate the grid close to its limits in order to postpone grid reinforcements and maximize
RES integration.

In this context, it is important to underline the following quote from [43] “. . . TSOs are
reluctant to move to shorter time periods. They are concerned that the risk of failing
to contract the required level of reserves increases with a shorter window to source these
reserves. TSOs can have some reservations about a dynamic, daily adjusted procurement
volume since this requires an additional probabilistic assessment of the forecast errors and
ramps of the next day.” This means that days-ahead RES power forecasts will remain a
core product for TSOs in the operational planning of the power system. It is important
to note that short notification times for demand response might mean a high price for
using this resource, thus a trade-o↵ between “level of uncertainty” and flexibility price
must be considered in the decision-making processes [44].

Some examples are the Apogée framework where RTE (the French TSO) integrated in
the Energy Management Systems (EMS) two days-ahead predictive tools for grid state
and remedial actions (preventive and corrective) [45] and the Distribution Management
System (DMS) of Enedis (the French DSO) that was enhanced with functions to forecast
the grid operation constraints and solve problems with di↵erent actions (i.e., voltage
regulation, generation curtailment, flexibility o↵ers) [46]. The following requirements are
present in both use cases: (a) provide fast decision-aid to human operators (see for an
example of interpretability requirements by human operators [47]); (b) reduce the volume
of information (including the number of uncertainties) that is displayed in the dispatch
center. For new forecasting products, this means that they should contribute to reduce the
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computational time associated to decisions and visualization of information is a key factor
to reduce human operator stress. In other words, forecasting products should generate
high-level and integrated (e.g. with decision-aid tools) information. The inclusion of the
spatial dependency structure in the forecasting product is mandatory in grid power flow
analysis and the temporal dependency can be a requirement if inter-temporal constraints
are considered, such as the number of tap position changes in on-load tap changer (OLTC),
the maximum number of hours with line overload and storage state-of-charge (although
the operation of this resource by TSOs and DSOs remains a “grey area” in the regulatory
framework).

5.2 Inertia and frequency control in isolated power systems

Typically, isolated power systems are more vulnerable to disturbances comparatively to
interconnected systems, since extreme frequency excursions are observed after the occur-
rence of network major power imbalances, which is due to their limited control and to
their low amount of synchronous inertia. The growing integration of converter-interfaced
RES (CI-RES), such as wind and solar, in isolated power systems is introducing challenges
in power system management due to RES variability and uncertainty [48]. Moreover, the
CI-RES generation units are connected to the grid through power electronic interfaces
and, without additional control features, they lack the inherent ability of synchronous
machines to provide voltage and frequency control [48]. Thus, the large-scale integra-
tion of non-dispatchable CI-RES raises major challenges to system operators, since it
leads to the reduction of conventional thermal-based synchronous machines, decreasing
the frequency regulation capabilities and online operational reserves, jeopardizing system
stability. This might force system operators to curtail RES-based generation units to
ensure adequate spinning reserve capability [49]. In order to cope with this problem,
the establishment of new connection requirements has been developed for island power
systems, requiring CI-RES to actively participate in the provision of regulation services,
similarly to conventional power plants [50]. Another solution that has been identified
and exploited is the installation of fast power-frequency regulation solutions (e.g., battery
energy storage), acting as a complementary resource in the provision of power-frequency
regulation [51].

The Australian energy market operator (AEMO) studied the impact of a N-1 contingency
event over the system dynamic stability of two distinct cases: network operation without
and with a large amount of wind and PV generation. For the first case, conventional
unit commitment (UC)/economic dispatch (ED) algorithms scheduled a large amount of
synchronous machines, and thus a large amount of synchronous inertia available in the
system, given that the maximum post-contingency frequency deviation was well contained
between the acceptable frequency operational band (49.5–50.5Hz) [52]. On the other
hand, for the second case, fewer synchronous machines were scheduled by conventional
UC/EC algorithms. Hence, for the same contingency event, the corresponding maximum
frequency deviation rapidly breaches its constraint (49.5 Hz). This leads to the conclusion
that the synchronous inertia inadequacy should be considered in the UC/ED problem with
a large amount of non-dispatchable CI-RES generation.

RES variability is also critical in isolated power systems, e.g. PV power fluctuations can
reach up to ±30% of the rated capacity per 10 seconds, ±70% per minute, increasing to
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±80% per 10 minutes [53]. These large fluctuations may lead to major power imbalances
that can compromise the network frequency stability [48] and, thus, some network oper-
ators of isolated systems impose ramp-rate limits to the PV power output [54]. Imposing
such limits prevents RES from being exploited in an e�cient way and may largely limit
the revenue of the owners.

So, beyond local control strategies, innovative centralized control approaches are also re-
quired, for both preventive operational planning and real-time operation support. In this
sense, load and RES generation forecasts play a key role in ensuring the network fre-
quency transient stability. They are providential for the network operator to preventively
determine an adequate UC/ED solution in operating scenarios with large share of RES
generation. Regarding the preventive operational planning, one-day-ahead load and RES
forecasts are required (with a 15-min temporal resolution), serving as an input for the
UC/ED problem to find a generation dispatch solution for the next day. In such fore-
casts, beyond the mean value, additional statistics are important, such as the standard
deviation, minimum and maximum value.

Moreover, load and RES intra-day forecasts (i.e., 15-min resolution, time horizon up
to 24 hours and updated every 6-hour) are required to provide the opportunity for the
system operator to apply corrective measures if necessary. For these requirements, the
combination of large-eddy simulations (LES) and the computational power o↵ered by
graphics processing units (GPUs) enable operational NWP with high temporal (e.g. 30-
sec) and spatial resolution [55]. From these high-resolution forecasts, it is possible to
derive new forecasting products, such as variability indices for weather variables. Finally,
in order to support the network real-time operation, power forecasts with a very-short-
time resolution (i.e., 10 seconds to 1 minute) are required, with a lead time of 1-2 hours
or, in other words, the system operator should be informed 1 or 2 hours in advance about
the amplitude of power variability.

5.3 System operation under extreme/emergency scenarios

As mentioned in [56], a possible evolution for the future control and dispatch centers is to
increase the level of automation, while human operators will intervene solely in abnormal
grid operating states. This means that data science based algorithms will provide auto-
mated decision-making in scenarios covered by a high volume of historical data, while hu-
man operators handle scenarios with scarce data. This division of tasks imposes di↵erent
requirements in terms of data sources for uncertainty forecasting products. As discussed
in the International Energy Agency (IEA) Task 36 (Forecasting for Wind Power) [18],
statistically-based uncertainty forecasts (i.e., without the use of meteorological ensem-
bles) are unable to accurately forecast extreme weather events and are highly dependent
on available historical data. Therefore, to better plan system operation under extreme
scenarios the forecasting products should be based on meteorological ensembles, where
data science has an important role to play in the post-processing of ensemble members
and the conversion to power forecasts.

It is important to underline the fact that weather-dependent events are one of the major
causes for disturbances and contingencies in electric power systems [57] and, with the sup-
port of forecasts, system operators can plan hours-ahead short-term resilience measures,
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e.g. ensure islanding operation capabilities [58]. In terms of forecasting products, this
requires an accurate (location and severity) and event-driven representation of the infor-
mation. Ideas already studied for public communication of weather uncertainty [59] can
be borrowed by the energy sector (but tailored-made for specific events) and event-based
evaluation framework adopted to evaluate the quality of the products [60].

Presently, outage forecasting tools (e.g. Elenia Oy, EDP, Enedis) are already using NWP
data to predict the number and location (e.g. region, substation, feeder) of grid faults
for a time horizon ranging between three hours and three days, supporting a better man-
agement and position of repair crews [61–63]. However, state-of-the-art methodologies
are mainly based on deterministic NWP with a numerical representation of variables
and data are handled by traditional machine learning methods with known di�culties in
dealing with rare events and performing causality discovery. Future forecasting products
should use weather ensembles as an input, with an event or categorical representation of
weather variables, and be able to find causal relations to allow for fast decision-making
and interpretability.

5.4 Dynamic line rating (DLR)

DLR is a technology aiming at exploiting measurements of conductors’ thermal state in
order to modify dynamically the thermal rating of an overhead line. Due to variable
environmental conditions (e.g. high wind, cold temperature) it is possible to increase the
real-time allowable current, which enables high integration levels of RES and peak load
management and leads to investment deferral [64]. By combining NWP with machine
learning it is possible to produce probabilistic forecasts of overhead line ampacity for the
next hours and days [65], which is a forecasting product itself. State-of-the-art results and
discussions with end-users suggest that the use of low quantiles (below 5%) is necessary,
e.g., according to [66], an accurate estimation and use of quantiles below 1% can lead
to overall lower reserve costs and frequency of incidents. As there is no direct measure-
ment of line rating (it is estimated instead), in addition to the forecasting product itself,
the evaluation of the accuracy and the use of ampacity “measurements” in statistical
trainings is an important issue to be further considered in research and forecast product
development.

The work in [66] suggests the following requirements for DLR forecasting products: (a)
use of conditional parametric functions for tail’s modelling, where the full probability dis-
tribution is not needed; (b) forecasting value (and not just accuracy) should be considered
to select di↵erent DRL forecasts since small di↵erences the quantile scoring rule values
can be translated to big di↵erences in system operation cost.

5.5 Inertia forecasting

In power systems with a high penetration of RES generators connected via power convert-
ers, the inertia provided by synchronous generators is reduced. System operators need to
estimate the expected level of inertia in order to avoid instabilities and prepare mitigation
actions such as an increase of inertia or decrease of maximum possible loss. Uncertainties
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in the estimation of inertia have recently increased, leading to the need of accurate point
forecasts or probabilistic forecasts of inertia in a low-inertia power system [67].

Inertia originally consisted in two main contributors: transmission-system-connected syn-
chronous generators and generation and demand units with synchronous rotating masses
embedded in distribution systems. The inertia contribution of transmission-system-
connected synchronous generator units has so far been predicted using a physical model
[68,69]. This physical model relies upon forecasts of the online statuses of the individual
generators. However, in systems operated by independent system operators, forecasts
of generators’ statuses have appeared to be inaccurate during periods with low energy
prices [68]. Moreover, (accurate) forecasts of the generators’ statuses are not always
available to system operators if energy markets are operated by independent market op-
erators. This asks for models to accurately forecast which generators are expected to
be online as a result of energy market trading. To forecast the embedded units’ inertia
contribution, existing forecast models only have a simple linear structure [69]. This is
driven by the small data set of estimates of embedded units’ inertia contribution that is
available, as these contributions can only be accurately estimated during infrequent, large
disturbances in demand or supply. Moreover, existing forecast models provide only point
forecasts of expected inertia to the system operator [67].

The characteristics of inertial response are quickly evolving over time. First of all, the
amount of synchronous generator units is decreasing. This changes the generation mix
that is online and increases the relative importance of the contribution of embedded
units, which is more variable and uncertain. Second, although not widely deployed in
practice yet, power-electronic-interfaced wind generators and storage units can provide
emulated inertial response, so called virtual inertia, if they are adequately controlled.
Although the objective of this emulated inertial response is to mimic the inertial response
of synchronous generators, its characteristics di↵er as it is typically provided by more
variable and uncertain energy bu↵ers. These evolutions in inertial response call for inertia
forecast models that are able to deal with non-stationarities and are probabilistic in nature
to give system operators insight into the uncertainty of the system inertia that will be
available [67].

6 What do forecast users think about new forecast
products?

End-users will be very di↵erent, from TSOs, DSOs, plant operators to smart cities, smart
buildings even ’smart households’. Some of them will need explainability (interpretable
models, physics-inspired models) but others will ’just’ need robustness (no knowledge
nor understanding of forecasts, no ’corrective’ action).

A di↵erence can also be found in the literature between distributed algorithms and
decentralized algorithms depending on who are the end-users:

• distributed algorithms: one central server (’master’) and ’contractual’ agents = need
for privacy?
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• decentralized algorithms: no central server but collaborations between di↵erent agents
= need for incentives?

The International Energy Agency Wind Task 36 on Forecasting has recently conducted
a questionnaire asking power system stakeholders about their current use of forecasting
solutions [70]. It appeared that the majority of respondents (around 70% of 24 persons
representing system operators, traders, R&D, power producers) are aware of probabilistic
forecasts but only about 20% of them do use probabilistic forecasts while operating. This
is not explained by a lack of sta↵ or IT solutions, but 54% agreed to state that they ’fear
that speculative planning may result in a loss’. Therefore the applicability of probabilistic
forecasting in the industry seems to be due in parts to a lack of knowledge of the utility
of such forecasting solutions for energy trading or grid management.

The respondents of the questionnaire developed by Smart4RES [71] have indicated the
properties of the new forecasting products they are the most interested in. The back-
ground of the 12 respondents is as follows, reusing some of the categories proposed in [70]:
3 Energy Service Organizations, 1 weather forecasting provider, 1 Power Management
Company, 7 R&D organizations. Results are shown in Table 1. Explainability and ro-
bustness are the most voted properties, however the small number of answers limits the
interpretation of these results. In the IEA survey, respondents indicated that they did not
use directly numerical weather predictions [70]. Interestingly, in the Smart4RES question-
naire, a weather service provider spontaneously responded and showed interest in power
system applications, showing that the existing gap between weather predictions and RES
applications can be filled. Furthermore, a DSO indicated that they use weather predic-
tions for the mitigation of extreme phenomena. In this context, they identified that the
predictions they use were limited in their ability to predict localized and sudden storm
events. Lastly, respondents mentioned specific needs on the topic of RES forecasting:

• R&D respondents mentioned needs that are in line with their subjects of interests,
for instance multi-time scale forecasting, scenarios modelling the dependence between
wind and hydro power plants, or the access to data on RES plants and power systems.

• Energy Service Organizations look forward to forecasts which are useful to tackle the
challenges they face such as high deviations in RES and load forecasts, EV load fore-
casts or flexibility potential.

• The need for forecasts that operate in real-time and/or are issued at very-short-term,
in a nowcasting approach.

Properties of new forecasting products Number of respondents interested
Improve the explainability of forecasting 7
Ensure robustness of forecasting 7
Provide incentives to collaborate 5
Address high dimensionality or high resolution 5
Preserve Privacy 3

Table 1: Interest to properties of new forecasting products from respondents to
Smart4RES questionnaire
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A very good overview of the link between forecasting and the use of forecasts in practice
was recently published in [18]. The interested reader is then referred to that publication
for an extensive coverage of the topic.

7 Prospects from the R&D side2

Considering the needs expressed by forecast users, since the beginning of the development
of forecasting methodologies for renewable energy applications, many on the R&D sides
(in academia, research institutes as well as small and large companies) have brought in
novel ideas and concepts that were readily answering the needs of forecast users. They
have additionally proposed some novel forecasting concepts and products, which were
eventually adopted by forecast users. In this section, we review some of the latest direc-
tions within R&D related to renewable energy forecasting, also underlying their prospects
in terms of forecast improvement and impact on business models. Those topics include hi-
erarchical forecasting, missing data, novel probabilistic forecasting products, collaborative
analytics, as well as data markets.

7.1 Hierarchical forecasting

With the expansion of renewable energy generation sources, there will be many more
production sites, scattered all over territories, from household solar panels to large wind
farms. This shall have a huge impact on the way electric power networks are exploited
and on the forecasting products needed to do so. In particular, such an evolution calls
for an increasing development of what is usually known in the literature as hierarchical
forecasting.

Hierarchical forecasting involves multiple time series that are hierarchically organized
and can be aggregated at several levels. It requires not only good prediction accuracy at
each level of the hierarchy but also coherency between levels. In the case of an electric
power network, di↵erent agents may need forecasts at di↵erent aggregation levels of the
grid, all those forecasts having to be coherent. While ensuring consistency, hierarchical
forecasting can also be a way of improving the forecasts involved in the hierarchy, by
taking into account the possible dependencies between the series.

Common original methods in hierarchical forecasting were split between bottom-up versus
top-down approaches, or compromised on a middle-out approach. In the past few years
a third class of methods has thrived: the reconciliation approach, which can come along
with a combination step or not. In [72] the authors propose a new approach which
provides optimal forecasts that are better than forecasts produced by either a top-down or
a bottom-up approach. They independently forecast all series at all levels of the hierarchy,
then use a regression model to optimally combine and reconcile these forecasts.They show
that the resulting revised forecasts add up appropriately across the hierarchy, are unbiased
and have minimum variance under some simple assumptions. However, their method

2
Note that, since this part is focused on recent research focus within forecasting for renewable energy

applications, the text may be more technical and more di�cult to digest by a broad audience.
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require the initial forecasts to be unbiased, which precludes regularized estimators like
LASSO or ridge regression ones for initial forecasts. The reconciliation of load forecasts
in distribution grids proposed in [73] showed that the error on the aggregated forecast
is lowered significantly by the reconciliation (10% relative improvement in this case),
but not base forecasts (at most 0.1% relative improvement). Authors note though that
higher improvements for base forecasts may be obtained with a reconciliation approach
formulated conditionally on the error of base forecasters. In [74] the authors introduce
a game-theoretically optimal reconciliation method, which is guaranteed to only improve
any given set of forecasts. This opens up new possibilities in constructing the initial
forecasts, which no longer have to be unbiased. Unlike [72], this new approach does not
address the goal of sharing information between hierarchical levels but only reconciliation.
A separate procedure is required to share information.

Those reconciliation methods initiate a new path in hierarchical forecasting but only deal
with forecasting the mean of each time series of the hierarchy. This contrasts with the
shift in the literature towards probabilistic forecasting. To the best of our knowledge, the
first method which aimed at providing probabilistic forecasts for hierarchical time series
was proposed in the 34th International Conference on Machine Learning (in 2017), see [75].
Generating probabilistic forecasts for hierarchical time series is challenging: in addition to
computing entire distributions, which might be very di↵erent throughout the hierarchy,
because of the hierarchical structure, it requires catching the dependencies between the
distributions, marginal predictive distributions being not enough. The authors propose an
algorithm to compute the conditional predictive cumulative distribution function for all
series in the hierarchy. In particular they compute the joint distributions using copulas.
An updated version of this work can also be found in [76].

Since then, works on hierarchical forecasting have still focused mainly on forecasting the
mean. We can cite [77] which proposes a new reconciliation approach that incorporates
the information from a full co-variance matrix of forecast errors in obtaining a set of
coherent forecasts. This can be used to construct prediction intervals but assuming the
forecast errors are normally distributed and conditionally on the base forecasts to be
unbiased. In [78] this approach is updated by adding non-negativity constraints to ensure
that the coherent forecasts are strictly non-negative. In [79] the authors use machine
learning techniques to allow for non-linear combination of the base forecasts. In [80], [81]
and [82] the issue of online hierarchical forecasting is tackled.

7.2 Missing data

As much as data collection, transmission and storage has improved tremendously over
the last few decades, there are still situations and periods for which data may be missing.
While the issue of missing data may not be apparent at first, actually in practice it may
significantly a↵ect the learning (for model parameter tuning) and forecasting processes.
In addition, the way the data is missing, e.g. at random or not, for sparse short periods
or long ones, etc. may require di↵erent approaches to be accommodated. This is why we
discuss these aspects in detail in the following.

A widely-used nomenclature for missing data mechanisms is that from [83]. It divides
them into three types, depending on the relationship between the missingness and the

21



value of the observations:

• MCAR – Missing Completely At Random: when the probability of a data point being
missing is completely independent of any variables in the dataset.

• MAR – Missing At Random: when the missingness in one variable is independent of
its own value but does depend on the value of another.

• MNAR – Missing Non At Random: when the missingness in one variable depends on
its own value.

A subsequent part of the literature only considers the first two ”simple” mechanisms and
struggles for the harder, yet prevalent, MNAR case. Indeed when data is missing for
renewable energy generation, we are in a case of MNAR, with missing patterns related to
the forecast output. For instance, in [84] the authors studied a dataset of 30 European
wind farms, with two years of 10-minute resolution data. Three main sources of missing
data were brought out, which are

• Data missing in the raw time series due to sensor measurements;

• Missing periods due to site-wide maintenance works;

• Curtailments.

While the first source of missing data may be considered at random, the other two may
not, since planned maintenance activities are often scheduled for times with lower wind
speed, and wind farm sites are more likely to be curtailed close to rated power from grid
restraints limiting power flows. Nevertheless, the rates of missing values computed by the
authors for this dataset show that the main source of missing values is the first one.

The simplest method to deal with missing data is the complete case analysis, where any
data points with partial information are discarded. The first inconvenience of this method
is that it will produce biased results if data is not MCAR, because the remaining data is
no longer a random sample from the underlying distribution. This may be counteracted
by weighting the remaining data using missing probabilities but this does not prevent
reduction in size of the dataset. This is not an alternative in high dimension, as “One of
the ironies of working with Big Data is that missing data play an ever more significant
role” [85]. For example, considering a data set of 5 variables where a single value is
missing with probability 0.01, 95% of the observations are complete, i.e., we have values
for all of the 5 variables; with 300 variables, only 5% of the observations are now complete.
For a wind farm of 100 wind turbines, this would mean that about 63% of the recorded
observations would be complete. But as we use lagged observations for forecasting, one
missing value shall lead to the cancellation of several observations instead of one, and to
an even worse proportion of data being kept.

Another popular method to deal with missing data is imputation. It consists in providing
a value to replace the missing one. The simplest way of doing it is taking the mean
of the variable, referred to as (single) mean imputation. More sophisticated imputation
methods include regression imputation, stochastic regression imputation, linear and spline
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interpolation, Last Observation Carried Forward, Next Observation Carried Backward in
the case of time series, among others. The popular practice of imputing with the mean
of the variable on the observed entries is known to have serious drawbacks, as it distorts
the joint and marginal distributions of the data, see [86]. But mean imputation has never
really been studied when the aim is to predict an output. Abundant literature addresses
the missing data issue in an inferential framework, but very few studies are dedicated to
supervised learning settings. For instance, in the scenario 1 of [84], the authors studied
the case of data missing in the training set, when the task is forecasting the wind power
generation of 10 sites, on a 2.5-hour ahead horizon, with VAR models. They observed
that for a 11.65% rate of missing data, the complete case analysis leads to a worsening of
forecasts of 19%, while a simple single mean imputation allows them to keep a worsening
of only 1.27%. This kind of unexpected result might be brought together with a striking
theoretical result obtained in [87]: while single mean imputation is bad for estimation, it
is not bad for prediction. This is, to the best of our knowledge, the first result justifying
this convenient practice of handling missing values.

The third way of dealing with missing data is likelihood-based methods. They rely on the
well-known Expectation-Maximization algorithm which was first proposed in [88]. The
EM algorithm iteratively finds the maximum likelihood estimator of the data distribution
alternating between missing data imputation given the observed data, and complete data
maximum likelihood estimation. In this case, the imputation of missing data is not the
goal of the procedure but a side e↵ect of each iteration. An online version of the EM
algorithm was first derived in [89], where the parameters are updated at each observation
by using the gradient of the incomplete data likelihood, weighted by the complete data
Fisher information matrix. In [90] the authors proposed a new approach more directly
connected to the usual EM algorithm, which did not rely on integration with respect
to the complete-data distribution. The resulting algorithm is thus simpler and suitable
for conditional (regression) models. With this kind of algorithms, not only the issue of
missing data is tackled while forecasting, but their online version also makes it possible
to forecast in high-dimensional settings.

Finally, a sound link has to be made with the hierarchical forecasting topic, when obviously
information coming from other levels of a hierarchy might be of help while filling or
handling missing values to the purpose of forecasting.

7.3 New probabilistic forecasting products

Looking at it from the R&D side, forecasts are to be thought of in a probabilistic frame-
work, even if, eventually, those will be communicated in a simplified manner to the practi-
tioner and forecast user, e.g. as single-value forecasts (given the loss function and decision
problem at hand), intervals, ramp forecasts, etc. [18]. As hinted by [91], for the case of
renewable energy generation, the complete forecasting problem may consist in predicting
the joint density for all lead times and locations considered (possibly also the di↵erent
variables e.g. wind, solar and load). However, in practice, one may need to revert to
simpler versions of that problem – for instance forecasting of the marginal densities for
each lead time and locations, individually, or focusing on certain pre-defined events like
ramps [92]. Very few works have focused on informing about the complete joint densities.
Joint densities would in that case give the complete information about what will happen
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for each location, time and renewable energy type involved, as well as dependencies. For
instance, it may summarize the uncertainty in future generation from two wind farms
individually, while also telling about the potential correlation in generation increasing or
decreasing simultaneously at those locations. To describe those joint densities in a prac-
tical and pragmatic manner, di↵erent forecast products can be considered, like scenarios
(also referred to as ensemble forecasts in meteorological forecasting) which are a con-
ventional input to a wide range of decision problems under uncertainty, or simultaneous
prediction intervals [93].

The research on how to optimally accommodate probabilistic forecast information in de-
cision problems has advanced tremendously over the last decade, with a wealth of op-
timization approaches being considered, and with emphasis placed on a broad range on
application areas (e.g., active distribution grid management [94], chance-constrained opti-
mal power flow [95]). This has eventually triggered the need to think of novel probabilistic
forecast products, which would be specifically tailored to certain decision problems and
approaches to solve them. For instance in [96], the authors aim at obtaining uncertainty
sets in a data-driven manner, as input to robust optimization problem in electricity mar-
kets. This idea of readily obtaining uncertainty sets in a data-driven manner was pre-
viously proposed by [97] and [98] for the case of ellipsoidal and polyhedral multivariate
uncertainty regions, respectively.

7.4 Collaborative learning and forecasting

Many works in the literature have revealed that there would be benefits in using informa-
tion in the vicinity of the sites of interest when forecasting their future power generation.
The benefits may be in the form of increased forecast accuracy, but also of a decrease
in the frequency of large/extreme forecast errors [99]. Such information may come from
meteorological stations, remote sensing devices (sky imagers, weather radars, etc.), other
wind farms and solar parks, and alternative weather forecasts over neighboring grid points.
Many examples can be found, e.g. with focus on directly looking at a set of locations and
all relevant dependencies [100], and going towards higher dimensions and online learning
setups [101].

When looking at such proposals to improve forecast accuracy, one somewhat assumes that
the data are to be shared by all agents involved. In practice, however, it is rarely the
case that agents of the power system (wind farm operators, solar parks operators, system
operators, portfolio managers, traders, etc.) are willing to share their private data and
information. Reasons for that behaviour include competition in the electricity markets,
secrecy regarding the performance of installed assets, etc.

Adapting to such a situation requires new business models in renewable energy forecasting,
to find ways to reap the benefits from distributed collection and storage of data, possi-
bly without actively sharing the data themselves. Some proposals were recently pushed
forward towards collaborative learning and forecasting, specifically for renewable energy
forecasting applications - see [102] and [103] for instance. In both cases, the authors
explore alternative setups based on distributed optimization to yield this collaborative
approach. In addition, for the case of [103], special emphasis is placed on lighting the
computational burden and adapting to slow changes in the underlying process dynamics
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within an online learning environment. A natural criticism to those methods is that, even
if the data are not actively shared, some could design attack models (based on inverse op-
timization or Bayesian inference) permitting to eventually retrieve the original data of the
agents. This issue has therefore triggered additional research within privacy-preserving
analytics, i.e., with the aim to protect the privacy of those agents engaged in collabora-
tive learning and forecasting. For a recent overview of methods and challenges related to
privacy-preserving analytics, and application to forecasting, the reader is referred to [104].
Finally, if looking broader than renewable energy forecasting applications only, this trend
towards collaborative and privacy-preserving analytics is in line with more general devel-
opments in the field of machine learning, towards federated learning [105], following the
term proposed by Google scientists in 2016.

7.5 Data and forecasts becoming products themselves?

The quantity and quality of data accessible to each RES agent are reflected in their fore-
casting performance, which may then directly impact their imbalance costs in electricity
markets. The current ways to obtain such data for a RES plant is primarily through his-
torical data and local measurements, which have technological and economic limitations
due to the size and location of the plant [106,107]. Considering the correlation of weather
data among sites within certain geographical distances, it becomes apparent that sharing
data among these RES agents can improve their forecasting capabilities, as discussed in
the above.

One big challenge of data sharing is the preservation of privacy. In a competitive market,
agents tend to be cautious about giving away any private information to their competitors.
Here, we assume the forecasting accuracy is a non-decreasing function of data. In other
words, obtaining more data can only improve an agent’s forecasting accuracy or at least
maintain an agent’s forecasting accuracy at the same level. This may lead to the following
outcomes:

1. The agent with more information can refine their bids in the electricity market to
achieve lower regulation costs and higher revenues.

2. As the overall forecasting accuracy increases for a significant number of RES agents,
the real-time imbalance between the total actual generation and the total forecast
generation is likely to reduce, resulting in lower regulation unit costs for all agents.

The first outcome brings revenue to the agents who gain additional data, and the second
outcome benefits all RES agents. From the perspective of an agent who has data that
can be shared with others, the first outcome is revenue neutral, and the second is revenue
positive. It promises tremendous potential for setting up a data platform for agents to
collaborate and achieve higher mutual profits. By putting a price on the data shared on
this platform, it allows an agent to compare their valuation of privacy and their increased
profit, thus helping them make decisions on whether to share their data with other agents
or not.

The rapid advancements in information and communication technologies in recent years
have made information sharing a very simple task that can be done at almost zero cost.
However, as people become more aware of the value of data, there has been an increasing
interest in reforming data markets to expand their scope and participation [108]. Based
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on the market architecture, the current state-of-the-art data platforms can be put into
four categories: trade, forward auction, reverse auction, and double auction.

In a data trade, only one data seller and one data buyer enter the market at a time
[109]. Through negotiation, the seller and the buyer reach a deal on the price and the
quantity/quality of the traded data. In this market setup, the traded data bring additional
profit to the buyer, while the seller gets a share of that profit through the trading process
itself [110]. Each trade can take place between di↵erent seller-buyer pairs as long as the
trades are independent of each other.

In a data forward auction, there is a single data seller, e.g. a data collector, and multiple
data buyers who submit bids to purchase data from the seller. This monopolist data seller
is the leader of the market, and they can either choose the buyer that bids the highest
price [111] or create di↵erent versions of their data and sell them to multiple buyers at
di↵erent prices depending on the versions selected by the buyers [112, 113].

In a data reverse auction, there is a single data buyer and multiple data sellers. The
monopolistic data buyer makes o↵ers to purchase data from the sellers. Under a limited
budget, the data buyer only selects the data that would maximize the buyer’s utility
[114, 115]. The sellers, on the other hand, only accept o↵ers that outweigh their loss of
privacy as a result of data sales [116, 117]. In an environment where the sellers’ data
are correlated, one agent’s decision to sell their data may cause privacy leakage for other
agents, thus reducing the value of their data [118]. As a result, some agents who initially
place a higher value on their privacy than the o↵er they receive may eventually decide to
accept the o↵er just because others have sold their data.

Finally, in a data double auction, there are multiple data sellers and multiple data buyers.
This market usually requires a third party market operator to purchase data from the
sellers and sell data to the buyers. This market operator can either be a for-profit data
vendor [119, 120] or a non-profit ‘marketplace’ [121]. An iterative auction mechanism is
shown in [122] to be able to achieve the maximized social surplus in a setup where the
sellers, the buyers, and the market operator are all profit-driven.

In the context of an electricity wholesale market, RES agents can trade their information
with each other, which makes them both buyers and sellers. This adds another level of
complexity into the design of the data market because an agent not only has a privacy
value on their own data, they also have to take into account the possible outcomes of other
agents acquiring more data as outlined above, which might in turn a↵ect the agent’s own
profits. Using the basic framework proposed in [121], a data platform was formulated
in [123], where wind producers can sell and purchase data from other wind producers to
achieve better forecasts. The transactions are conducted through a centralized market
operator who collects a portion of the increased profits from each buyer and redistributes
them among the sellers, while ensuring the data privacy of all participants.

A basic assumption made in [123] is that wind producers are price takers and that their
bidding policy of the wind generators cannot impact imbalance prices [124]. This means
that only the first aforementioned outcome as a result of improved forecasting capabilities
has been considered, where the traded data can only benefit the buyers in the electricity
market. An immediate extension of this work is to incorporate the second outcome into the
model as well, allowing the better collective forecasting capabilities to lower the imbalance
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prices for all agents, which o↵ers additional financial incentives for selling data. Other
important research topics relating to the establishment of a data market include the
maximization of social welfare in a competitive environment, and the formulation of a
fair and sustainable profit allocation strategy among the participants.

Looking ahead, data trading among RES agents may lead to additional scenarios besides
the two obvious outcomes mentioned above. For example, in current forward electricity
wholesale markets, generation bids are only accepted based on their prices and quantities
without any consideration given to their reliability. As the RES penetration continues
to grow, maintaining the power network stability will become more challenging given the
RES variability, so it is plausible that the system operator might start prioritizing RES
producers with higher forecasting accuracy when accepting RES bids in order to reduce
the real-time balancing e↵orts and costs. The interaction between the data market and
the electricity market under those circumstances will be a very interesting area of future
research.

8 Conclusions and perspectives

Forecasting of renewable energy generation is often referred to as a mature research field,
with well-established methods, views on input data, interface with forecast users and
decision problems, etc. This has been confirmed by the growing literature on the topic,
as well as operational and commercial o↵ering of forecasting solutions.

However, as technology as well as market and regulatory framework evolve very fast (and
possibly in a non-negligible manner), this induces a new push towards looking at potential
advances in terms of forecasting. The most common objective naturally is to improve
forecast accuracy and quality, but it is also to rethink forecast products in a problem-
oriented manner. Our objective here was to look at the need for new and enhanced
forecast products from various perspectives, e.g. as motivated by various developments
within technology, market, regulation, operational practice etc. but also as seen from the
point of view of forecast users and R&D.

Looking at it from a broader perspective, it is clear that new and enhanced forecast
products will be developed and o↵ered in an operational context in the coming period,
for instance with focus on higher resolution and new power system operational practice.
More generally though, we certainly see the possibility for substantial changes in business
models related to forecasting. Some changes in business models may for instance aim to
yield optimal value from all the relevant data being collected, but not shared. It may
additionally focus on the consistency of forecasts at various granularity and aggregation
levels. Those changes in business models actually go beyond the case of renewable energy
forecasting only – they are a general trend supported by the digitalization of our economies
and societies.

It is the aim of the EU project Smart4RES to explore the possibilities of both new products
and new business models in renewable energy forecasting in the coming, both in terms of
novel developments, but also in shortening the time to market.
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[50] E. Rodrigues, G. J. Osório, R. Godina, A. W. Bizuayehu, J. M. Lujano-Rojas,
and J. P. S. Catalão, “Grid code reinforcements for deeper renewable generation in
insular energy systems,” Renewable and Sustainable Energy Reviews, pp. 163–177,
Jan. 2016.

[51] G. N. Psarros, E. G. Karamanou, and S. A. Papathanassiou, “Feasibility analysis
of centralized storage facilities in isolated grids,” IEEE Transactions on Sustainable
Energy, vol. 9, pp. 1822–1832, Oct. 2018.

[52] H. Gu, R. Yan, and T. K. Saha, “Minimum synchronous inertia requirement of
renewable power systems,” IEEE Transactions on Power Systems, vol. 33, pp. 1533–
1543, Mar. 2018.

[53] J. Marcos, L. Marroyo, E. Lorenzo, D. Alvira, and E. Izco, “Power output fluctu-
ations in large scale PV plants: One year observations with one second resolution
and a derived analytic model,” Progress in Photovoltaics, vol. 19, pp. 218–227, Mar.
2011.

31



[54] “Madeira island grid code,” tech. rep., Região Autónoma da Madeira. Decreto Reg-
ulamentar Regional n.o 8/2019/M, 2019.

[55] C. Gilbert, J. W. Messner, P. Pinson, P.-J. Trombe, R. Verzijlbergh, P. van Dorp,
and H. Jonker, “Statistical post-processing of turbulence-resolving weather forecasts
for o↵shore wind power forecasting,” Wind Energy, vol. 23, pp. 884–897, Apr. 2020.

[56] A. M. Prostejovsky, C. Brosinsky, K. Heussen, D. Westermann, J. Kreusel, and
M. Marinelli, “The future role of human operators in highly automated electric
power systems,” Electric Power Systems Research, vol. 175, p. 105883, Oct. 2019.

[57] M. Panteli and P. Mancarella, “Influence of extreme weather and climate change on
the resilience ofpower systems: Impacts and possible mitigation strategies,” Electric
Power Systems Research, vol. 217, pp. 259–270, 2015.
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